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Abstract

This study examines the impact of critical raw materials (CRMs) and their processed

derivatives on countries’ exposure to lithium-ion battery price fluctuations. Specifically, we

investigate how a country’s position within the global trade network of CRMs and batteries

influences the volatility of its terms-of-trade (TOT) for batteries. To this end, we construct

a new country-level TOT price index for batteries and a series of network indicators at the

country and supply chain levels. Using a panel regression framework covering up to 150

countries over 21 years, we analyze how these indicators affect exposure to price volatility.

Our results show that the volatility-network relationship is conditional on both the stage

of the supply chain and the direction of trade. Export diversification and network central-

ity play a limited role, whereas import dependence, especially on processed materials and

batteries, emerges as the key driver of vulnerability.

JEL Classification: E3, F14, Q37, Q02, Q4.

Keywords: Critical Raw Materials, Battery Price, Exposure, Trade Networks.
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1 Introduction

Achieving Net Zero Emissions (NZE) targets depends on the rapid deployment of green tech-

nologies for renewable energy generation, storage, and mobility. As the cornerstone of these

technologies, batteries play a crucial role in determining the overall costs of clean energy solu-

tions, including hybrid and electric vehicles (EVs), wind turbines, and solar panels (Kittner et al.,

2017). Battery prices are, in turn, heavily influenced by the costs of their material components,

specifically Critical Raw Materials (CRMs) and their processed derivatives (IEA, 2024).

At first glance, the relationship between raw materials and downstream technologies may

appear straightforward: rising mineral prices should lead to higher battery costs.

However, as shown by Figure 1, this does not appear to be the case. Battery prices have

continued to decline steadily, despite increases in mineral prices. This apparent disconnect

warrants further investigation, particularly in light of the structure and complexity of the supply

chain.

Figure 1: Percentage change, with respect to 2002, for battery (interpolated from Kittner et al.
(2017) and Orangi et al. (2024)) and four mineral prices (IMF).

The interconnected nature of global supply chains modifies the impact of upstream (i.e. raw

minerals) and midstream (i.e., processed minerals) dynamics on downstream costs, through pass-

through effects. Several challenges undermine the stability of the lithium-ion (Li-ion) battery

supply chain, potentially exerting pressure on prices. At the upstream level, critical raw materials
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are by definition subject to high supply risks and have limited substitutes (Schrijvers et al., 2020).

In fact, due to the geographical concentration of deposits and other market entry barriers, such

as high fixed capital costs, their production is concentrated in a handful of countries. For

example, in 2024, 76% of global cobalt production came from the Democratic Republic of Congo

(DRC), 59% of global nickel production from Indonesia, 37% of global lithium production from

Australia, and 37% of global manganese production from South Africa (USGS, 2025). The

midstream layer, i.e., processed materials, is even more concentrated, with China accounting

for nearly half of the market value from refining all critical minerals, reaching approximately

75% for cobalt and 65% for lithium, respectively (IEA, 2024). As a result, different countries

are involved at different stages of the supply chain, exposing the market to disruptions from

geopolitical tensions, protectionist trade policies, and cartelization risks.

Understanding the relationship between supply chain interconnections and price dynamics is

key to the success of the energy transition, as price volatility may affect both the affordability and

adoption rate of battery-based clean technologies, which must compete in a tight marketplace

against low-cost, fossil-fuel-based incumbent technologies (Leader et al., 2019). Moreover, several

battery mineral markets are still immature and illiquid, with high price volatility, which creates

additional uncertainty for stakeholders across the supply chain. A further complication is the

lack of reliable price data for both raw materials and batteries, particularly at the country level

and across various stages of the supply chain (Ku et al., 2024).

These challenges pose serious risks for governments and policymakers, who are increasingly

adopting protectionist measures such as export restrictions or trade tariffs, and for private-

sector stakeholders, who face challenging investment environments due to long lead times of

mining projects and price instability. Furthermore, persistent volatility in battery prices could

slow or even derail the energy transition, while the growing role of batteries in global trade

may have broader implications, potentially increasing macroeconomic volatility. In fact, due to

the increasingly interconnected nature of global value chains, even highly localized supply chain

disruptions can have a significant negative impact on global industrial production and trade, as

well as a positive impact on inflation.

In this context, our study investigates how trade network characteristics across different layers

of the battery chain influence the exposure to battery price fluctuations. Specifically, we focus
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on the volatility of a newly developed country-specific price terms-of-trade (TOT) index for

Li-ion batteries and its relationship with the trade network structure. We begin by mapping

the Li-ion battery supply chain, covering the upstream (raw materials), midstream (materials

processing), and downstream (batteries) stages at the single-product (HS6) level. Next, we

employ network analysis techniques to examine the characteristics and topology of international

trade, constructing a set of trade network indicators for each supply chain layer (Fagiolo et al.,

2010). These indicators serve as our country-specific independent variables. As our dependent

variable, we develop a novel country-level TOT battery price volatility index. Finally, through a

series of panel regressions, we analyze how changes in the trade network structure influence the

index volatility.

Our empirical analysis draws on the literature of international trade, the concept of gran-

ularity, and trade network theory. By applying these theoretical frameworks to the context of

critical minerals and battery markets, we recognize that the relationship between a country’s

position in the supply chain and exposure to battery price changes is theoretically ambiguous.

On one hand, greater trade connectivity and centrality within the network may enhance stabil-

ity through diversified partnerships and increased influence, potentially reducing price volatility

and exposure. On the other hand, such a position may heighten exposure to global disruptions,

thereby amplifying such vulnerability.

Our results, which are robust across several specifications, support the second hypothesis

– particularly when considering the impact of a country’s number of importers at the down-

stream (i.e., batteries) and midstream (i.e., processed minerals) levels on battery price exposure.

This relationship does not hold when network interconnection is measured in terms of export

destinations or centrality position.

The remainder of the paper is structured as follows: Section 2 analyzes the literature and

states the hypothesis. Section 3 explains the methodology. Section 4 present the main empirical

results. Section 5 concludes.
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2 Existing Literature and Hypotheses

Our work spans several strands of theoretical literature, including international trade openness,

the concept of granularity, and trade network theory, proposing a novel application in the context

of critical minerals and battery markets. In what follows, we review the main theoretical litera-

ture of reference and use it to inform the hypotheses that will later be tested through empirical

analysis.

The emergence of global value chains has spurred extensive research on the impacts of in-

ternational trade on prices and volatility. While trade openness is widely recognized as a driver

of economic growth (Frankel and Romer, 2017), its effects on volatility are more nuanced. On

one hand, trade can protect economies from domestic demand shortages and productivity shocks

through natural hedging mechanisms (Cavallo and Frankel, 2008; Caselli et al., 2020; Allen and

Atkin, 2022). On the other hand, it exposes countries to idiosyncratic supply shocks, which can

propagate through spillover effects across commodities, sectors, and nations, amplifying macroe-

conomic volatility (Di Giovanni and Levchenko, 2009, 2012; Kramarz et al., 2020).

In this context, it is important to consider the links between the macroeconomy and the

individual “grain” - to use the terminology of the granularity literature - whether this refers to a

specific commodity, sector, or country. The granularity concept emphasizes that large shocks to

influential firms (Gabaix, 2011; Eaton et al., 2012; Freund and Pierola, 2015) or sectors (Acemoglu

et al., 2012; Contreras and Fagiolo, 2014; Barrot and Sauvagnat, 2016; Acemoglu et al., 2016)

can generate aggregate economic fluctuations rather than averaging out. Studies investigating

these dynamics highlight the need to focus on commodity-specific prices or technology-specific

prices to fully grasp the role of potentially influential grains. For example, Bogmans et al.

(2024) argue that most commodity markets exhibit high granularity, with sizeable consumer

or producer countries that, when hit by an idiosyncratic demand or supply shock, can shift

the global demand or supply curve and thus move global commodity prices. Moreover, several

trade economics papers have analyzed export and import prices at the country level, considering

both separate indicators (export and import unit values) and combined measures such as terms

of trade (Spatafora and Tytell, 2009; Gruss and Kebhaj, 2019). These studies emphasize the

importance of accounting for country-specific factors rather than relying solely on global price
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indices.

While, as shown above, the link between terms of trade volatility and macroeconomic ag-

gregates has been extensively explored in the literature, much less attention has been paid to

the relationship between terms of trade and the characteristics and dynamics of global value

chains. In a context of rising trade protectionism, autarky, and concerns about import depen-

dency, understanding the impact of supply chain structures is highly relevant for stakeholders and

policymakers. Trade networks provide a powerful framework for examining these relationships,

as they capture both the structural and dynamic dimensions of international trade (Frohm and

Gunnella, 2021; Dew-Becker, 2023; Barigozzi et al., 2021). Previous research has demonstrated

the utility of network analyses in studying international trade and the propagation of shocks,

providing a robust foundation for our study’s approach (Kali and Reyes, 2007, 2010; Fagiolo

et al., 2009; Chakrabarti, 2018).

A growing body of literature investigates mineral commodities through network analyses,

primarily adopting a descriptive approach to examine patterns within trade networks. Most

of these studies focus on a single commodity (Hou et al., 2018; Chen et al., 2020; Yu et al.,

2022; Zhao et al., 2020; Dong et al., 2018) or a single technology (Guan et al., 2016), often

neglecting the broader supply chain perspective. While some papers analyze multiple materials,

they typically remain limited to the upstream segment of the supply chain (Tian et al., 2021). A

few studies do consider the full supply chain, but mostly by comparing network characteristics

across its different stages (Shi et al., 2022; Zhang et al., 2022). Others examine transmission

mechanisms through risk propagation models (Hao et al., 2022; Zhou et al., 2023; Kang et al.,

2023). Our work advances this empirical literature by embedding the role of supply chains

(raw materials, processed minerals, and batteries) and international trade relationships into an

empirical framework, to assess their impact on price volatility.

2.1 Hypotheses

Turning our focus to the Li-ion battery market, we begin by arguing that battery price dynamics

within a country are influenced by its position in the trade network of critical minerals and

batteries. A country’s position in the network can be characterized by both the quantity and

6



the centrality of its connections with trading partners. The former is captured by the degree

network indicator, which measures how many countries a given country is connected to via

import flows (indegree) or export flows (outdegree) for a specific product market. In other words,

a country with a high indegree acts as an importer with several trading partners, while a country

with a high outdegree acts as an exporter with several trading partners. In both cases, the

country is highly connected (Fagiolo et al., 2009). The second dimension refers to a country’s

importance within the trade system and is typically assessed using centrality metrics, which

indicate the extent to which a country can reach others through direct links. For our analysis,

we use betweenness centrality, which approximates a country’s strategic significance based on

the frequency of shortest paths passing through it. In other words, the indicator measures how

much removing a country would disrupt the connections between other countries (the so-called

network broker).

In light of the literature reviewed, we then formulate two contrasting hypotheses regarding

the impact of a country’s position in the trade network (as represented by network indicators)

on exposure to battery price fluctuations. Indeed, the direction of this impact remains unclear,

and our empirical analysis aims to shed light on it.

H1 A country with more trading partners and a more central position in the trade network

may benefit from greater stability due to diversified partnerships and its influential position, and

thus experience lower exposure to price changes.

H2 A country with more trading partners and a more central position in the trade network

may be more exposed to external shocks, and thus experience higher exposure to battery price

changes.

Several factors might influence whether hypothesis 1 or hypothesis 2 prevails.

One such factor is the direction of the trade relationships being analyzed, i.e., whether they

involve exports or imports. For example, a non-influential exporter (i.e., a country with low

outdegree) might seek to gain market shares by lowering its export prices as a way to remain

competitive - a behavior known as pricing-to-market (Krugman, 1986). At the same time, an

influential importer (i.e., a country with high indegree) might be targeted by the same pricing-to-

7



market strategy, and therefore benefit from lower import prices (Dees et al., 2013). This potential

price reduction might, in turn, translate into increased volatility for countries characterized by

low outdegree or high indegree.

Another important factor is the level of the supply chain at which trade relationships occur,

i.e., upstream, midstream, or downstream, as each may have different implications in terms

of both magnitude and direction of impact. To the best of our knowledge, no study has yet

examined the relationship between supply chain layers and downstream price volatility. However,

some research has investigated how shocks propagate along supply chain layers, showing that

these layers exhibit distinct dynamics. Consider, for instance, the increasing need for EVs and

clean energy technologies as a positive demand shock for Li-ion batteries. This shock propagates

upstream from one sector to its direct and indirect suppliers (Acemoglu et al., 2016). As a result,

the goods produced as outputs in the upstream and midstream layers, and used as inputs in the

downstream layers, are all appreciated. At the same time, this positive shock raises a sector’s

productivity, shifting the input supply curve to the right and thereby devaluing the sector’s

capital. This supply effect (the so-called vertical creative destruction) is stronger for downstream

layers. Since they rely on inputs produced by all the layers above them, whose goods become

cheaper to produce, downstream sectors experience a cumulative downward supply effect, which

might lead to greater price volatility. In contrast, upstream layers have no suppliers and are thus

not subject to vertical creative destruction, potentially resulting in lower volatility. However,

vertical creative destruction can also be interpreted as a form of hedging, which might lead to

the opposite volatility effects. Due to the cumulative supply effect, downstream layers are less

sensitive to positive demand effect and thus productivity shocks, while upstream layers see their

values appreciate in a cyclical, riskier, and therefore more volatile manner (Gofman et al., 2020).

An alternative and more straightforward way to think about it is considering that upstream

sectors’ product inputs for the entire economy are more systemically risky than downstream

sectors exclusively producing final outputs (Dew-Becker, 2023). This is generally true for the

oil market, with firms involved in the exploration and production (upstream) being generally

riskier than downstream ones involved in refining and distribution (Ewing et al., 2024). In the

context of critical minerals, the relationship is even more complex, as some minerals function as

substitutes (e.g., the ongoing development of sodium versus lithium in Li- and Na-ion batteries
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(Yao et al., 2025)), while others are complements (e.g., cobalt and lithium jointly demanded for

Li-ion batteries). When minerals are substitutes, greater trade participation can mitigate risk

through hedging, thereby dampening volatility. By contrast, when they are complements, deeper

trade ties heighten the risk of joint disruptions, amplifying volatility exposure.

The complex interactions between a country’s position in the trade network (i.e., indegree,

outdegree, betweenness centrality) and along the supply chain (i.e., upstream, midstream, down-

stream) make it difficult to determine, a priori, the direction of their impact on exposure to

battery price fluctuations. For this reason, our work aims to shed light on this relationship

through an empirical analysis using up-to-date real-world data.

3 Data and Methods

By focusing on exposure to battery price changes and its connection to global supply chain

characteristics, our study explores the critical role of trade networks in the energy transition.

The core of our empirical design is a country-level panel regression framework covering up to

150 countries, including the main exporters (e.g. China, Australia, Canada) and 21 years (2002-

2022).

The main independent variables are country-specific network indicators, i.e. indegree, out-

degree, and betweenness centrality. The dependent variable is a volatility measure of a country-

specific TOT battery price index. Multiple regressions are carried out by varying the network

indicator and the supply chain level of the independent variables, e.g., whether they refer to the

upstream, midstream, or downstream segment.

3.1 Dataset

In light of the lack of data on prices for minerals and batteries, both at the country- and supply

chain stage- level, our first contribution is the development of two novel panel datasets. The

first dataset includes country-level price indices of batteries, the second a series of trade network

indicators for each level of the supply chain, i.e., raw materials (upstream), processed materials

(midstream), and Li-ion batteries (downstream).

To construct country-level TOT price indices for batteries, we start from a global nominal
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battery price series, using two main sources. Kittner et al. (2017) provide a global dataset of

average prices for Li-ion consumer cells from 1991 to 2015, based on expert elicitation methods.

Orangi et al. (2024) compile ten different estimates of Li-ion battery costs from both academic

and industrial sources, covering the period 2010 to 2023. First, we convert both series from real

to nominal terms using the Consumer Price Index (CPI) from the FRED dataset. Then, we

apply the year-on-year percentage changes from the Orangi series, moving backward from 2023

to 2010. To extend the series further back, we use the percentage changes from the Kittner

series from 2009 to 2002. This yields a continuous interpolated real price series, shown in the

first panel of Figure 2. Battery prices have been decreasing steadily since 2002, recently reaching

USD 100 per kWh, a level widely regarded as a key threshold for EVs to compete on cost

with conventional models (IEA). This decline has been primarily driven by a combination of

lower production costs and improved battery efficiency, resulting from technological progress,

innovations in battery chemistry and manufacturing, and economies of scale, largely spurred by

the rapid growth in EV demand. For the same reasons, the volatility of the cyclical component

of battery prices has also declined over the years, except during the periods following the 2009

financial crisis and the 2020 pandemic (second panel of Figure 2).

Figure 2: Li-ion Battery Price - Real and 4-Year Rolling Volatility.

To map the global supply chain for Li-ion batteries, we use yearly, commodity-level (HS-6

digit) trade data from the CEPII dataset BACI (Gaulier and Zignago, 2010). We opt for the

CEPII variant instead of the raw data from UN Comtrade for several reasons. Firstly, BACI

implements a harmonization procedure to provide a unique, reconciled trade flow, meaning that
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exports and re-exports from country i to country j for a given product and year are identical to

imports and re-imports for the same product and year from country j to country i. Secondly,

BACI provides comparable quantities of the trade flows: all the values are reported in USD

thousands, and all the quantities are converted into tons.

Relevant commodities are identified through keyword searches (i.e., “cobalt”, “lithium”,

“manganese”, “nickel”, and “battery”), and benchmarked against technical reports.1 These com-

modities are then categorized into supply chain layers – upstream, midstream and downstream –

and mineral type, informed by the United Nations Conference on Trade and Development (UNC-

TAD) and the Joint Research Centre (JRC) frameworks.2 Table 1 provides more details about

this categorization, which is employed for constructing both the dependent and independent

variables in our panel regression analysis.

3.2 Supply chain mapping

To build our independent variables, we develop country-specific indicators capturing the structure

(across layers, ℓ ∈ {upstream,midstream, downstream}) and dynamics (through years, τ) of

trade networks by applying different network theory measures.

We define the trade network as G
(ℓ)
τ = (N

(ℓ)
τ , E

(ℓ)
τ ,W

(ℓ)
τ ), where N is the number of nodes

(countries), E the number of edges (imports and exports flows), W the edge weights (quantity),

and τ years (ranging from 2002 to 2022).3 If a country i exports to country j during a given

year, the edge representing the trade relationship from i to j is drawn, so a
(ℓ)
i,j,τ = 1. Otherwise,

no edge is drawn.

In addition, the distance between i and j is defined as gij , representing the number of edges

in the shortest path connecting them, which may pass through an intermediary country k.

Based on these definitions, we construct the following network indicators:

• Indegree: ID
(ℓ)
i,τ =

∑N
j=1 a

(ℓ)
j,i,τ counts the number of trading partners country i imports

from;

1We employ the IMF Low Carbon Technology Harmonized System Codes (Source), and the OECD Inventory
of Export Restrictions on Industrial Raw Materials by Kowalski and Legendre (2023).

2We use the UNCTAD Technical note on critical minerals - Supply chains, trade flows and value addition, link
and the RMIS Dashboard by the JRC, link.

3The layer-specific trade networks are constructed by aggregating bilateral trade flow matrices across all
commodities c that define each supply chain layer ℓ (see Table 1). For each ℓ, Gτ =

∑
c Fτ (c), where Fτ (c)

denotes the trade matrix for commodity c.
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Supply chain layer Mineral HS code HS description

Raw min.s (upstream)

Cobalt 260500 Cobalt ores and concentrates
Lithium 283691 Lithium carbonate
Manganese 260200 Manganese ores and concen-

trates

Nickel

260400 Nickel ores and concentrates
750110 Nickel mattes
750120 Oxide sinters and other interme-

diate
products of nickel metallurgy

Processed min.s (midstream)

Cobalt
282200 Cobalt oxides and hydroxides;

commercial cobalt oxides
810520 Cobalt; mattes and other inter-

mediate products of cobalt met-
allurgy, unwrought cobalt, pow-
ders

Lithium 282520 Lithium oxide and hydroxide

Manganese

282010 Manganese dioxide
282090 Manganese oxides
284161 Manganese salts
720211 Ferro-manganese, containing >

2% carbon
720219 Ferroalloys; ferro-manganese,

containing < 2% carbon
720230 Ferro-alloys; ferro-

silicomanganese

Nickel
282540 Nickel oxides and hydroxides
282735 Chlorides of nickel
283324 Sulphates of nickel

Li-ion batteries (down-
stream)

Battery 850650 Cells and batteries; primary,
lithium

Table 1: HS codes and description of the commodities, c, included in the three layers of the
supply chain, ℓ.
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• Outdegree: OD
(ℓ)
i,τ =

∑N
j=1 a

(ℓ)
i,j,τ counts the number of trading partners country i exports

to;

• Betweenness centrality: BTW
(ℓ)
k,τ =

∑
i,j

g
(ℓ),k
i,j,τ

g
(ℓ)
i,j,τ

measures the extent to which country k

lies on the shortest paths between other countries, indicating its critical position in the

network.

For a detailed discussion of these indicators and their descriptive statistics, refer to Appendix

A.

3.3 Battery Price Index

The dependent variable of our analysis is a measure of the volatility of a newly constructed

country-specific TOT Li-ion battery price index (BPI).

To construct the country-specific battery price index, we follow the TOT index methodology

of Gruss and Kebhaj (2019):

∆ log BPIi,τ = Wi,τ ·∆ logPτ , (1)

where ∆ log indicates the log first differences, Pτ represents the international nominal price of

batteries, defined in Subsection 3.1.4 This price series is then weighted by a country-specific

and time-varying factor, Wi,τ , which captures the economic significance of net battery exports

relative to country i’s GDP (sourced from the IMF).

We smooth short-term fluctuations in trade flows by averaging net trade exposure over the

three preceding years (s = 3). This approach reduces noise from temporary trade fluctuations

and ensures that variations in the price index primarily reflect changes in international prices

rather than short-term or endogenous shifts in trade volumes.5

Wi,τ =
1

3

3∑
s=1

wi,τ−s, (2)

4Since this series is expressed in nominal terms, we deflate it using the Consumer Price Index for All Urban
Consumers to obtain a real price index.

5To avoid losing the observations of the first three years due to the lag, we use the average trade flows over
those years, rather than lagged flows.
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where wi,τ is defined as:

wi,τ =
expi,τ − impi,τ

GDPi,τ
, (3)

where expi,τ and impi,τ represent the trade flows of batteries, identified by HS code 850650 (see

cells and batteries in Table 1). We use net exports – rather than exports or imports alone –

to account for the trade balance. Moreover, including the GDP in the denominator allows the

weights to reflect cross-country differences in the relative importance of battery trade. Both net

exports and GDP are expressed in nominal thousand USD.

The resulting series in log differences (∆ log) is then exponentiated and rebased to levels

(2002 = 100) for empirical analysis.

The TOT BPI essentially captures countries’ battery-driven revenues, i.e., traded quantities

of batteries multiplied by their prices (Makhlouf et al., 2023). Our interest lies in studying the

volatility of the TOT BPI, in other words, in estimating changes in disposable income, relative

to GDP, arising from movements in battery prices, thereby providing a convenient proxy for

countries’ exposure. To study the volatility, we extract the cyclical component of the TOT BPI

using the Hodrick-Prescott (HP) filter with smoothing parameter λ = 100 and compute the

logarithmic volatility over non-overlapping four-year rolling windows as follows:

log σi,t = log

√√√√1

4

4∑
j=1

(
ci,4(t−1)+j − c̄i,t

)2 , (4)

where ci,t denotes the cyclical component of the log battery price index for country i, t indexes

the non-overlapping four-year periods from 2002 to 2021 (e.g., t = 1 corresponds to 2002–2005,

t = 2 to 2006–2009, and so forth), and c̄i,t is its mean over the same window. In Appendix B,

we conduct a sensitivity analysis on the time dimension of the rolling window of the volatility,

reducing it to two years.

3.4 Empirical design

We employ panel regression models to analyze the relationship between different network mea-

sures, Xi,t (i.e. indegree, outdegree, and betweenness centrality), and the logarithmic cyclical
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price volatility, Yi,t = log σi,t, which serves as a proxy for countries’ exposure to fluctuations in

battery prices.

To account for time-invariant country heterogeneity and common time shocks, we esti-

mate generalized fixed effects regressions, which are implemented using the Frisch-Waugh-Lovell

(FWL) theorem to partial out the fixed effects before estimating the coefficients of interest.

Standard errors are clustered at the country level.

We use the following baseline regression set up:

Yi,t = α+ β log(1+X
(ℓ)
i,t ) + γi + δt + λ log(1+Si,t) + θD

(ℓ)
i,t +µ

[
log(1+X

(ℓ)
i,t )×D

(ℓ)
i,t

]
+ ϵi,t, (5)

where each network indicator X
(ℓ)
i,t enters the regression in log-transformed form, such that

the coefficient β represents the change in volatility associated with 1% increase in the network

indicator. t represents 4-year periods6, ℓ indexes the supply chain layer (raw, processed minerals,

batteries, aggregated or disaggregated), γi are country fixed effects, and δt are time fixed effects.

This setup controls for characteristics that vary over time but remain constant across countries

(e.g., inflation), as well as for country-specific characteristics that do not vary over time. We

also include a set of control variables, Si,t, capturing a country’s stage in the energy transition.

Specifically, we include the share of renewable energy in total final energy consumption (Indicator

EE2, 7.2.1, sourced from the UN Statistics, Energy Statistics) and installed renewable energy-

generating capacity, expressed in watts per capita (Indicator GN3, 7.b.1, sourced from the

United Nations Global SDG Database). As some countries reduce their reliance on fossil fuels,

their demand for renewable technologies and batteries may increase, thereby stimulating trade

in critical minerals.

The dummy variableD
(ℓ)
i,t equals 1 if country i is a net exporter within layer ℓ (e.g., of batteries,

in our baseline case) at time t, or 0 otherwise. The interaction term µ captures heterogeneous

effects by export status.

By varying the layer of the independent variable, we obtain results at different layers and

aggregation levels, i.e. for the entire supply chain (ℓ = up + mid + down), for minerals only

6Since volatility is computed over a four-year rolling window, the other variables entering the regression –
whether independent or instrumental – are also averaged over the same four-year rolling window.
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(ℓ = mid + down), or separately for the upstream, midstream, and downstream layers (ℓ =

up,mid, down).

These models assess how a country’s network position within specific supply chain layers

relates to the BPI volatility. A positive β̂, indicates that greater proportional connectivity

(e.g., more import trading partners or higher centrality) is associated with higher exposure to

battery price fluctuations, while a negative β̂ suggests that greater connectivity is linked to lower

volatility. By contrast, a statistically insignificant β̂ would imply that network position has no

systematic effect on battery price volatility in that specific supply chain layer. As outlined in

Section 2.1, we remain agnostic about the sign of β̂ ex ante, as the net effect may depend on

several factors. For instance, depending on the specific supply chain layer under consideration,

a country with more import trading partners may enjoy a more stable trade position - leading

to lower volatility - or might be more exposed to external shocks, resulting in higher volatility.

4 Results

4.1 Descriptive statistics

From the supply chain mapping, it is already possible to derive insightful descriptive statistics

that highlight the role of key players along the Li-ion battery supply chain.

Figures 3a, 3b, and 3c provide a graphical representation of the trade network structure

across the upstream, midstream, and downstream segments of the supply chain. The most

striking feature is the variation in concentration along the supply chain: while the network for

Li-ion batteries appears relatively evenly distributed, processed minerals – and even more so,

raw minerals – exhibit a higher degree of concentration, with a few actors accounting for the

majority of trade flows. At the processed materials level, the most connected countries are the

Netherlands and Germany, followed by China, the US, and Canada. At the raw materials level,

China and the Netherlands emerge as the most indegree-connected nodes, followed by South

Korea, France, and Germany. Two main patterns can be distinguished. Some countries have a

high number of importers because they play an active role in a specific segment of the supply

chain - for instance, China, which imports raw materials from several countries to establish itself
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as the main processing hub. Others, however, are highly involved in the trade of these minerals

without being central to the production process, as in the case of the Netherlands, whose high

indegree largely reflects the presence of the Port of Rotterdam, the largest in Europe.

Looking at the value of trade flows helps refine this picture further. Table 2 reports the top

three importing and exporting countries, averaged across the entire time span, for each of the

three supply chain layers. In addition, Appendix A includes Table 8, which summarizes the

average minimum, mean, and maximum values of each network indicator, as well as Figures 5 to

8, plotting the variation of the indicators across years and supply chain segments for a selection

of countries.

Some countries maintain a persistent presence across all three stages. For example, Indonesia

ranks among the top three exporters of batteries, as well as processed and raw minerals. Others,

such as the US, appear solely as major importers. Meanwhile, countries like China and Japan

import significant amounts of raw and processed minerals before establishing themselves as major

battery exporters. Notably, China has had the largest demand for EV batteries over the last

decade, all of which has been met through domestic production. Conversely, the second- and

third-largest EV markets, Europe and the US, still heavily rely on imports from other countries

(see IEA Global EV Outlook 2024).

Batteries Processed min.s Raw min.s
(downstream) (midstream) (upstream)

First importer HKG (8.17) USA (684.37) CHN (45,975)
Second importer USA (5.05) JPN (436.85) JPN (5,190.6)
Third importer CHN (4.86) NLD (399.06) KOR (2,623.9)
First exporter CHN (16.08) ZAF (781.18) PHL (19,887)
Second exporter JPN (5.10) UKR (717.62) IDN (13,637)
Third exporter IDN (4.78) IDN (648.71) ZAF (10,114)

Table 2: Top three countries ranked according to average (2002–2022) imports and exports
(million US dollars), by supply chain layer.

Considering the dependent variable of our analysis, i.e., the battery TOT index, across coun-

tries and years provides insights into the exposure of different countries to the battery market.

To this end, Figure 4 plots the newly-built TOT BPI, both in levels and as a 4-year rolling

volatility7, and categorizes countries according to three distinct TOT BPI dynamics. The first

7We apply the HP filter to remove short-term fluctuations associated with the business cycle, highlighting
long-term trends.
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(a) Raw materials (b) Processed materials

(c) Li-ion batteries

Figure 3: Trade networks of raw (a), processed materials (b), and batteries (c), in 2022. Each
node represents a country, with node size proportional to its indegree and node color indicating
geographical region. Directed edges represent import flows.
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column shows countries experiencing a recent TOT boom followed by a bust, the second column

includes countries experiencing recent busts and subsequent recoveries, and the third column

focuses on countries with persistently higher TOT BPI levels since the early 2000s (note the

change in y-axis scale).

Figure 4: Li-ion Battery Price Index — Levels (top panel) and 4-Year Rolling Volatility (bottom
panel). Columns include different country groups. First column: Germany (DEU), Netherlands
(NLD), United States (USA), Canada (CAN). Second column: France (FRA), China (CHN),
Japan (JPN), Tunisia (TUN). Third column: Indonesia (IDN), Hong Kong (HKG), Singapore
(SGP), Malaysia (MYS).

Variations in the index provide an estimate of the windfall gains and losses of income asso-

ciated with changes in international battery prices. That is, a one percentage point change in

the TOT BPI can be interpreted as a change in aggregate disposable income equivalent to one

percentage point of GDP (Gruss and Kebhaj, 2019).

By construction, the average yearly growth rate of the index across countries and over time

is close to zero, as the price variations’ effects on exporters and importers offset each other.

However, the index exhibits substantial variability across countries and over time.

The persistently high TOT values of Malaysia, Indonesia, Hong Kong, and Singapore suggest

that several East and Southeast Asian economies established themselves as active players in the

battery trade since the early 2000s, while most of the rest of the world had not yet engaged

in the market. After 2014, and especially after 2018, Western countries also entered the game,

19



opening up new opportunities that some Asian countries were able to capitalize on. For example,

Indonesia positioned itself among the world’s top battery producers (in 2022 the country exported

USD 391M of Li-ion batteries, while importing just USD 27.8M). Indonesia is also rich in mineral

resources, especially nickel, and, in an effort to stimulate domestic battery production, banned

nickel ore exports in 2020. A different strategy can be observed in Hong Kong, which, despite

limited manufacturing capacities, established itself as a central financial hub and transit port,

primarily for China and Japan. Accordingly, the index demonstrates a complementary pattern.

For example, in 2019, the TOT BPI peaks for Hong Kong (third column, orange line), while it

declines for Japan, China, France, and Tunisia (second column), reflecting the first country as

net battery exporter and the second group of countries as net importers. By 2021, the situation

reverses, illustrating the dynamic shifts in countries’ exposure to battery price fluctuations.

4.2 Regression Results at the Aggregate Supply Chain Level

Table 3 presents the regression coefficients from Eq. (5), using indegree as network indicator.

Different columns report alternative specifications, with one or two control variables, and with

or without the dummy and the interaction term. As the results with the other two network

indicators are almost never significant, we report them in Appendix B. In all cases, the dummy

variable D
(ℓ)
i,t is constructed with reference to the battery layer.

This subsection focuses on the general results, where the network indicators are computed

at the aggregate supply chain level, i.e., summing the upstream, midstream, and downstream

layers.

The coefficient of the network indicator X (indegree) is always positive and significant. This

suggests that when a country becomes more connected through its imports along the entire bat-

tery supply chain, it experiences higher battery price exposure. Since the independent variables

enter the model as log(1+X), the coefficients can be interpreted as the approximate percentage

change in battery exposure resulting from a 1% increase in the network indicator. In this case,

in Regression n.7, which includes renewable capacity and the dummy as controls without an

interaction term8, a 1% increase in the number of import trading partners corresponds to about

8We focus on Regression n.7, as it consistently yields the highest adjusted R2 across the empirical analyses
(Tables 3-7).
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.546*** 0.636*** 0.512** 0.588*** 0.560*** 0.648*** 0.525*** 0.603*** 0.613*** 0.701*** 0.573*** 0.653***

(0.202) (0.213) (0.202) (0.217) (0.199) (0.208) (0.200) (0.212) (0.198) (0.206) (0.200) (0.211)

Ren. consumption 0.284 0.225 0.281 0.231 0.280 0.235

(0.236) (0.254) (0.230) (0.247) (0.231) (0.248)

Ren. capacity 0.105* 0.0822 0.0991* 0.0753 0.0995* 0.0753

(0.0596) (0.0637) (0.0592) (0.0622) (0.0596) (0.0624)

Dummy 0.258 0.254 0.196 0.203 1.064** 1.058** 0.898* 0.919*

(0.190) (0.191) (0.190) (0.189) (0.509) (0.509) (0.525) (0.527)

X × D -0.244 -0.243 -0.210 -0.214

(0.159) (0.156) (0.160) (0.158)

Constant -11.59*** -12.66*** -11.93*** -12.70*** -11.65*** -12.72*** -11.96*** -12.75*** -11.82*** -12.88*** -12.11*** -12.92***

(0.639) (1.092) (0.663) (1.108) (0.629) (1.051) (0.656) (1.074) (0.626) (1.045) (0.661) (1.074)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 750 745 745 740 750 745 745 740 750 745 745 740

Adj. R2 0.738 0.738 0.741 0.740 0.739 0.739 0.741 0.740 0.740 0.739 0.741 0.740

Table 3: Regression results — indegree, aggregate supply-chain level (1–12). Robust standard errors in parentheses.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.

a 0.525% increase in battery price exposure at the aggregate supply chain level. This pattern is

consistent with the hypothesis that higher import connectivity increases vulnerability to external

shocks. No significant effects emerge for outdegree or betweenness centrality.

In the models with the dummy variable but without the interaction term (Columns 5–8),

the coefficient on the dummy variable is positive but not statistically significant, suggesting

that net exporters of batteries tend to have slightly higher average volatility of the BPI, but

the effect is weak. When the interaction term is included (Columns 9–12), its coefficient is

consistently negative (though not significant), indicating that the marginal effect of indegree in

the supply chain network on BPI volatility is lower for net exporters of batteries. Importantly,

the coefficient on the dummy becomes statistically significant once the interaction term is added

because its interpretation changes: without the interaction, it measures the average difference in

BPI volatility between net exporters (D=1) and non-exporters (D=0) across all levels of indegree;

with the interaction, it measures this difference specifically when indegree is zero. In other words,

while being a net exporter has no significant effect on average, among countries with no trade

exposure (indegree = 0) the difference is significant and positive.

To better understand which part of the supply chain drives this relationship, the next subsec-

tion increases the level of disaggregation by considering network indicators at the mineral level,

excluding the downstream layer.
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4.3 Regression Results at the Mineral Level

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.476*** 0.510*** 0.473*** 0.498*** 0.489*** 0.523*** 0.486*** 0.512*** 0.535*** 0.566*** 0.530*** 0.554***

(0.170) (0.175) (0.177) (0.183) (0.169) (0.174) (0.177) (0.182) (0.170) (0.174) (0.180) (0.184)

Ren. consumption 0.229 0.164 0.224 0.169 0.217 0.166

(0.228) (0.246) (0.224) (0.240) (0.224) (0.240)

Ren. capacity 0.101* 0.0837 0.0948 0.0770 0.0949 0.0773

(0.0606) (0.0653) (0.0604) (0.0643) (0.0608) (0.0645)

Dummy 0.257 0.252 0.198 0.201 0.862** 0.836** 0.727* 0.722*

(0.187) (0.188) (0.188) (0.187) (0.361) (0.368) (0.383) (0.388)

X × D -0.216 -0.209 -0.186 -0.183

(0.133) (0.130) (0.135) (0.134)

Constant -11.09*** -11.81*** -11.52*** -11.96*** -11.15*** -11.86*** -11.54*** -12.00*** -11.26*** -11.94*** -11.65*** -12.09***

(0.430) (0.876) (0.506) (0.883) (0.430) (0.849) (0.503) (0.862) (0.430) (0.847) (0.511) (0.863)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 744 739 739 734 744 739 739 734 744 739 739 734

Adj. R2 0.727 0.726 0.729 0.728 0.727 0.726 0.730 0.728 0.728 0.727 0.730 0.728

Table 4: Regression results — indegree, aggregate mineral level (1–12). Robust standard errors in parentheses.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 4 reports results excluding the downstream layer and focusing on raw and processed

minerals. As before, the table focuses on indegree as the network indicator of choice, while

the results for outdegree and betweenness centrality are reported in Appendix B. The dummy

variable D
(ℓ)
i,t continues to reference the battery layer.

The positive and significant effect of indegree persists, though with a smaller magnitude. For

instance, in the Regression n.7, a 1% increase in mineral import indegree is now associated with

an approximate 0.486% rise in battery price volatility.

In the next subsection, we further disaggregate the analysis by examining the supply chain

layers separately.

4.4 Regression Results Disaggregated by Supply Chain Layer

Tables 5 through 7 show regression results disaggregated by supply chain layer – considering the

downstream, midstream, and upstream segments, respectively. Again, the analysis focuses on

indegree as the network indicator, with different columns corresponding to different regression

specifications. The dummy variable D
(ℓ)
i,t is constructed with reference to the battery layer.

The indegree retains its positive and significant relationship with exposure in the downstream

(Table 5) and midstream layers (Table 6), but not in the upstream (Table 7). In the downstream
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.563*** 0.650*** 0.545*** 0.616*** 0.567*** 0.653*** 0.549*** 0.621*** 0.590*** 0.676*** 0.567*** 0.641***

(0.178) (0.183) (0.177) (0.185) (0.176) (0.181) (0.175) (0.182) (0.176) (0.181) (0.175) (0.182)

Ren. consumption 0.307 0.247 0.303 0.251 0.303 0.253

(0.233) (0.249) (0.228) (0.243) (0.230) (0.244)

Ren. capacity 0.112* 0.0878 0.107* 0.0819 0.107* 0.0826

(0.0592) (0.0625) (0.0588) (0.0612) (0.0592) (0.0615)

Dummy 0.244 0.237 0.180 0.184 0.727 0.718 0.572 0.584

(0.189) (0.191) (0.188) (0.188) (0.540) (0.538) (0.551) (0.553)

X × D -0.158 -0.157 -0.127 -0.129

(0.179) (0.174) (0.179) (0.177)

Constant -11.51*** -12.63*** -11.94*** -12.74*** -11.55*** -12.65*** -11.94*** -12.75*** -11.61*** -12.72*** -12.00*** -12.82***

(0.522) (0.962) (0.570) (0.980) (0.518) (0.937) (0.566) (0.961) (0.517) (0.942) (0.567) (0.966)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 750 745 745 740 750 745 745 740 750 745 745 740

Adj. R2 0.740 0.740 0.742 0.742 0.740 0.740 0.742 0.742 0.740 0.740 0.742 0.742

Table 5: Regression results — indegree, battery level (1–12). Robust standard errors in parentheses. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1.

segment, a 1% increase in the number of battery importers corresponds to about a 0.549%

increase in battery price exposure (Reg. 7, in Table 5). Moving along the supply chain, at the

midstream level, a 1% increase in the number of processed minerals importers corresponds to

about a 0.432% increase in battery price exposure (Reg. 7, in Table 6). Finally, at the raw

minerals level, the effect vanishes, as the coefficient of 0.163 is not statistically significant (Reg.

7, in Table 7).

This pattern suggests that greater import connectivity in the downstream and midstream

layers of the battery supply chain increases countries’ exposure to battery TOT volatility, but

this relationship weakens upstream, where raw materials are involved.

We also carry out a series of additional regression analyses. First, we vary the network

indicator of choice, using outdegree and betweenness centrality (Tables 9 to 18 in Appendix B).

Then, as a robustness check, we vary the layer to which the dummy refers. Since it yields almost

identical results, we do not report the full regression outputs. As a further robustness check, we

reduce the temporal dimension of the rolling window, carrying out the same analysis considering

five two-year long windows (Tables 19 to 23 in Appendix B). Finally, to assess the role of all three

layers simultaneously, we estimate an extended specification with the three layers as separate

regressors (Equation 6 and Table 24 in Appendix B).
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.424** 0.453** 0.422** 0.439** 0.434** 0.462** 0.432** 0.450** 0.468*** 0.494*** 0.465** 0.482**

(0.174) (0.178) (0.183) (0.186) (0.174) (0.177) (0.184) (0.186) (0.174) (0.177) (0.184) (0.187)

Ren. consumption 0.217 0.148 0.213 0.152 0.206 0.149

(0.226) (0.242) (0.222) (0.237) (0.223) (0.238)

Ren. capacity 0.106* 0.0910 0.100* 0.0847 0.101 0.0851

(0.0609) (0.0652) (0.0606) (0.0642) (0.0609) (0.0644)

Dummy 0.250 0.245 0.190 0.192 0.794** 0.768** 0.656* 0.649

(0.187) (0.189) (0.188) (0.188) (0.369) (0.378) (0.387) (0.394)

X × D -0.202 -0.194 -0.170 -0.167

(0.140) (0.138) (0.141) (0.141)

Constant -10.92*** -11.59*** -11.37*** -11.75*** -10.97*** -11.63*** -11.39*** -11.78*** -11.04*** -11.68*** -11.46*** -11.85***

(0.423) (0.847) (0.513) (0.857) (0.426) (0.823) (0.512) (0.839) (0.424) (0.822) (0.515) (0.840)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 744 739 739 734 744 739 739 734 744 739 739 734

Adj. R2 0.726 0.725 0.728 0.727 0.726 0.725 0.729 0.727 0.727 0.726 0.729 0.727

Table 6: Regression results — indegree, processed mineral level (1–12). Robust standard errors in parentheses.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.

5 Conclusion

This paper has investigated how countries’ positions in the global trade network of critical raw

materials, processed materials, and batteries shape their exposure to Li-ion battery price volatil-

ity. We constructed a novel country-level TOT price index for batteries and combined it with

network indicators across different stages of the supply chain. Using a panel regression frame-

work, we showed how trade structures propagate or mitigate volatility, linking supply chain

characteristics to downstream price dynamics.

Our analysis shows that the connection between trade along the Li-ion battery supply chain

and exposure to battery price volatility appears to be conditional rather than universal. Our

findings suggest that the relationship depends on the nature of the traded product (raw materials

versus processed materials versus batteries) and the position of a country along the supply chain.

Upstream trade (of raw materials) links seem less critical for determining downstream battery

price volatility, whereas midstream and downstream connections play a more important role.

This underlines the need to distinguish between different supply chain stages when assessing

trade-related vulnerabilities.

We further find that export diversification (outdegree) and centrality (betweenness) in the

trade network matter less than import diversification (indegree). In other words, the number of

exporters and the network position do not systematically influence battery price fluctuations. By
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.195 0.188 0.161 0.158 0.195 0.188 0.163 0.160 0.211 0.203 0.178 0.175

(0.153) (0.151) (0.150) (0.150) (0.152) (0.151) (0.150) (0.150) (0.152) (0.151) (0.150) (0.150)

Ren. consumption 0.162 0.100 0.160 0.102 0.158 0.0986

(0.228) (0.241) (0.225) (0.237) (0.225) (0.237)

Ren. capacity 0.132** 0.121* 0.128** 0.117* 0.128** 0.117*

(0.0632) (0.0685) (0.0630) (0.0675) (0.0632) (0.0676)

Dummy 0.168 0.165 0.139 0.139 0.424 0.410 0.401 0.394

(0.185) (0.187) (0.182) (0.182) (0.358) (0.371) (0.358) (0.366)

X × D -0.123 -0.118 -0.126 -0.122

(0.158) (0.158) (0.155) (0.156)

Constant -10.22*** -10.66*** -10.74*** -10.96*** -10.24*** -10.67*** -10.73*** -10.96*** -10.26*** -10.68*** -10.76*** -10.97***

(0.263) (0.740) (0.371) (0.731) (0.263) (0.724) (0.369) (0.721) (0.263) (0.721) (0.370) (0.719)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 715 710 713 708 715 710 713 708 715 710 713 708

Adj. R2 0.718 0.716 0.721 0.719 0.718 0.717 0.721 0.719 0.718 0.716 0.721 0.719

Table 7: Regression results — indegree, raw mineral level (1–12). Robust standard errors in parentheses. P-values:
*** p < 0.01, ** p < 0.05, * p < 0.1.

contrast, import-dependent countries are more directly exposed to volatility transmitted through

their suppliers, confirming the intuition in Hypothesis 2.

Import-dependent economies, particularly those relying heavily on processed materials and

batteries, are the most vulnerable. A high number of import origins amplifies exposure to ex-

ternal shocks, since each additional supplier increases the risk of transmitting volatility. This

vulnerability does not hold for imports of raw materials, which show little connection to down-

stream price fluctuations. Instead, exposure intensifies when countries import at later stages

of the supply chain, where vertical creative destruction and cumulative supply effects magnify

volatility. Thus, dependence on midstream and downstream imports is the key driver of vulner-

ability.

Another reason behind the increased price exposure following import diversification lies in

the complement versus substitute reasoning. When the imported good is a substitute for a

domestically available input, trade integration may mitigate volatility through hedging. By

contrast, when imports are complements to other inputs, deeper integration heightens the risk of

joint disruptions and thereby amplifies volatility exposure. Our findings suggest that the latter

case is particularly relevant for the Li-ion battery sector, where multiple minerals are jointly

demanded and cannot be easily substituted.

In terms of policy implications, we can assert that reducing vulnerability requires strategic
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import concentration rather than simple diversification. Mineral-dependent countries may re-

duce their exposure to battery price volatility by lowering the number of origin countries from

which they import processed materials and batteries. This runs counter to the conventional

diversification logic that more trading partners reduce risk, highlighting instead the asymme-

try between exporting and importing positions in the trade network. For mineral-importing

economies, resilience lies in building more stable, possibly long-term contractual relationships

with fewer suppliers, or in developing domestic midstream and downstream capacities. In ad-

dition, fostering research, innovation, and industrial policies that encourage the substitution of

scarce or complementary critical minerals with more abundant alternatives could further mitigate

vulnerability by reducing the risk of joint supply disruptions.

Finally, we acknowledge the potential for endogeneity of the relationship between trade po-

sition and price exposure: countries may adjust their trade structures not only in response to

structural or technological changes but also in reaction to price dynamics. For instance, a surge

in battery prices might prompt mineral-exporting economies to broaden or shift their trading

partnerships to secure better terms or mitigate risks. Conversely, a decline in battery prices may

incentivize countries with strong processing or manufacturing capabilities to reposition them-

selves more centrally within the supply network to capture value and improve competitiveness.

Future research will address this concern using approaches such as Shift-Share Instrumental

Variables (SSIV) (Goldsmith-Pinkham et al., 2020; Borusyak et al., 2022), to isolate the causal

impact of trade network structure on price exposure.
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A Network indicators

Table 8 reports descriptive statistics for the three network indicators, averaged across all countries

and years, for each of the three supply-chain layers.

Upstream Midstream Downstream

Mean Min Max Mean Min Max Mean Min Max

Indegree 33.84 0.00 62.25 42.85 0.00 70.50 46.51 0.00 70.00

Outdegree 52.19 0.00 74.00 85.49 0.00 125.50 133.80 0.00 181.75

Betweenness 1733.38 0.00 4425.14 1548.45 0.00 4083.64 1865.73 0.00 4264.86

Table 8: Average descriptive statistics of network indicators across supply-chain layers.

The interpretation of indegree and outdegree indicators is relatively straightforward, as they

represent actual counts. The average number of source (destination) countries a country imports

from (exports to) ranges is about 34 (52) to 46 (134) across layers.

In contrast, betweenness centrality is a centrality score that depends on network size and

structure, rather than being directly scaled to a simple count like indegree or outdegree. In our

data, average betweenness values range between about 1548 and 1866.

The maximum possible value for betweenness occurs for the central node of a star network,

where one country is connected to all others, and those others are only connected to the central

country. In this case, the central country lies on every shortest path between any two peripheral

countries. The number of such paths is (n−1)(n−2)
2 , where n is the total number of countries.

At the other extreme, the minimum value for betweenness occurs for a leaf node (a country

connected to only one other country), which does not lie on any shortest path between pairs of

other countries. In this case, the betweenness is zero.

A key part of our analysis examines the variation in network indicators across countries and

over time, shown in Figures 5 to 8 for a selection of countries (China, USA, Germany, and

Indonesia).

32



Figure 5: Variation of the network indicators across years and supply chain segments, for China.

Figure 6: Variation of the network indicators across years and supply chain segments, for the
USA.
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Figure 7: Variation of the network indicators across years and supply chain segments, for Ger-
many.

Figure 8: Variation of the network indicators across years and supply chain segments, for In-
donesia.
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B Regression results and robustness checks

B.1 Regression results using outdegree as network indicator

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.245* 0.252* 0.194 0.198 0.234* 0.241* 0.188 0.193 0.234* 0.241* 0.189 0.193

(0.133) (0.133) (0.135) (0.134) (0.133) (0.133) (0.135) (0.135) (0.133) (0.133) (0.135) (0.135)

Ren. consumption 0.178 0.109 0.173 0.110 0.169 0.106

(0.213) (0.228) (0.210) (0.224) (0.211) (0.225)

Ren. capacity 0.108* 0.0975 0.104* 0.0931 0.105* 0.0946

(0.0600) (0.0635) (0.0597) (0.0627) (0.0600) (0.0628)

Dummy 0.207 0.200 0.152 0.153 0.444 0.420 0.387 0.375

(0.183) (0.185) (0.185) (0.185) (0.355) (0.359) (0.355) (0.358)

X × D -0.0736 -0.0680 -0.0726 -0.0687

(0.115) (0.114) (0.113) (0.113)

Constant -10.46*** -10.98*** -10.80*** -11.06*** -10.46*** -10.95*** -10.78*** -11.05*** -10.45*** -10.94*** -10.78*** -11.04***

(0.328) (0.694) (0.439) (0.717) (0.327) (0.691) (0.438) (0.715) (0.328) (0.692) (0.439) (0.719)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 750 745 745 740 750 745 745 740 750 745 745 740

Adj. R2 0.736 0.735 0.738 0.736 0.736 0.735 0.738 0.736 0.736 0.735 0.738 0.736

Table 9: Regression results — outdegree, aggregate supply-chain level (1–12). Robust standard errors in parentheses.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.102 0.103 0.102 0.103 0.0968 0.0983 0.0983 0.0989 0.103 0.104 0.101 0.102

(0.131) (0.132) (0.130) (0.131) (0.132) (0.133) (0.131) (0.132) (0.132) (0.133) (0.131) (0.132)

Ren. consumption 0.170 0.105 0.165 0.107 0.155 0.102

(0.220) (0.236) (0.216) (0.232) (0.218) (0.233)

Ren. capacity 0.107* 0.0963 0.102* 0.0913 0.103* 0.0923

(0.0608) (0.0650) (0.0605) (0.0639) (0.0608) (0.0643)

Dummy 0.228 0.223 0.162 0.163 0.621** 0.602** 0.480 0.474

(0.188) (0.190) (0.187) (0.187) (0.295) (0.301) (0.314) (0.318)

X × D -0.155 -0.149 -0.121 -0.119

(0.107) (0.105) (0.110) (0.110)

Constant -10.08*** -10.56*** -10.54*** -10.78*** -10.09*** -10.56*** -10.53*** -10.77*** -10.10*** -10.53*** -10.53*** -10.76***

(0.250) (0.692) (0.371) (0.709) (0.250) (0.681) (0.371) (0.703) (0.250) (0.686) (0.373) (0.706)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 744 739 739 734 744 739 739 734 744 739 739 734

Adj. R2 0.723 0.721 0.726 0.724 0.723 0.722 0.726 0.724 0.724 0.722 0.726 0.724

Table 10: Regression results — outdegree, mineral level (1–12). Robust standard errors in parentheses. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.123 0.123 0.0601 0.0574 0.105 0.105 0.0494 0.0466 0.104 0.104 0.0481 0.0452

(0.119) (0.119) (0.116) (0.115) (0.119) (0.119) (0.117) (0.117) (0.119) (0.120) (0.117) (0.117)

Ren. consumption 0.161 0.0899 0.155 0.0910 0.152 0.0871

(0.213) (0.228) (0.211) (0.225) (0.211) (0.225)

Ren. capacity 0.113* 0.104 0.108* 0.0998 0.109* 0.101

(0.0600) (0.0633) (0.0597) (0.0624) (0.0599) (0.0625)

Dummy 0.215 0.210 0.160 0.161 0.370 0.352 0.326 0.318

(0.185) (0.187) (0.185) (0.186) (0.309) (0.312) (0.308) (0.310)

X × D -0.0518 -0.0473 -0.0554 -0.0524

(0.109) (0.108) (0.107) (0.106)

Constant -10.11*** -10.56*** -10.46*** -10.67*** -10.10*** -10.53*** -10.44*** -10.64*** -10.09*** -10.52*** -10.44*** -10.63***

(0.244) (0.646) (0.369) (0.664) (0.243) (0.644) (0.369) (0.665) (0.245) (0.644) (0.371) (0.667)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 750 745 745 740 750 745 745 740 750 745 745 740

Adj. R2 0.734 0.733 0.737 0.735 0.735 0.733 0.737 0.735 0.734 0.733 0.736 0.734

Table 11: Regression results — outdegree, battery level (1–12). Robust standard errors in parentheses. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.0342 0.0345 0.0313 0.0312 0.0272 0.0276 0.0260 0.0260 0.0311 0.0311 0.0276 0.0274

(0.121) (0.122) (0.121) (0.122) (0.123) (0.124) (0.123) (0.124) (0.123) (0.124) (0.123) (0.124)

Ren. consumption 0.167 0.101 0.162 0.103 0.151 0.0977

(0.219) (0.236) (0.216) (0.232) (0.217) (0.233)

Ren. capacity 0.109* 0.0982 0.104* 0.0931 0.103* 0.0933

(0.0607) (0.0650) (0.0604) (0.0640) (0.0608) (0.0644)

Dummy 0.231 0.226 0.165 0.166 0.573** 0.554** 0.437 0.432

(0.188) (0.190) (0.187) (0.187) (0.271) (0.276) (0.285) (0.289)

X × D -0.143 -0.137 -0.110 -0.107

(0.104) (0.102) (0.106) (0.105)

Constant -9.946*** -10.41*** -10.40*** -10.64*** -9.955*** -10.41*** -10.39*** -10.63*** -9.957*** -10.38*** -10.39*** -10.61***

(0.208) (0.672) (0.342) (0.686) (0.209) (0.661) (0.342) (0.680) (0.209) (0.666) (0.345) (0.684)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 744 739 739 734 744 739 739 734 744 739 739 734

Adj. R2 0.722 0.721 0.725 0.723 0.723 0.721 0.725 0.723 0.723 0.722 0.725 0.723

Table 12: Regression results — outdegree, processed mineral level (1–12). Robust standard errors in parentheses.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.160 0.149 0.151 0.143 0.152 0.141 0.145 0.136 0.155 0.144 0.148 0.140

(0.153) (0.152) (0.152) (0.151) (0.154) (0.153) (0.153) (0.153) (0.155) (0.154) (0.154) (0.153)

Ren. consumption 0.157 0.0902 0.156 0.0922 0.151 0.0846

(0.228) (0.240) (0.225) (0.236) (0.224) (0.236)

Ren. capacity 0.138** 0.128* 0.134** 0.124* 0.136** 0.127*

(0.0642) (0.0693) (0.0640) (0.0683) (0.0638) (0.0683)

Dummy 0.153 0.151 0.123 0.125 0.426 0.416 0.415 0.410

(0.189) (0.190) (0.185) (0.185) (0.347) (0.358) (0.345) (0.352)

X × D -0.142 -0.138 -0.152 -0.149

(0.151) (0.151) (0.148) (0.149)

Constant -10.10*** -10.52*** -10.68*** -10.87*** -10.10*** -10.52*** -10.67*** -10.87*** -10.10*** -10.51*** -10.68*** -10.86***

(0.203) (0.703) (0.357) (0.695) (0.204) (0.694) (0.358) (0.693) (0.205) (0.695) (0.357) (0.692)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 715 710 713 708 715 710 713 708 715 710 713 708

Adj. R2 0.718 0.716 0.722 0.719 0.718 0.716 0.721 0.719 0.718 0.716 0.722 0.719

Table 13: Regression results — outdegree, raw mineral level (1–12). Robust standard errors in parentheses. P-values:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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B.2 Regression results using betweenness centrality as network indi-

cator

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.0328 0.0320 0.0252 0.0246 0.0279 0.0271 0.0220 0.0214 0.0348 0.0338 0.0278 0.0270

(0.0514) (0.0524) (0.0511) (0.0523) (0.0522) (0.0533) (0.0518) (0.0531) (0.0513) (0.0523) (0.0510) (0.0521)

Ren. consumption 0.154 0.0876 0.149 0.0893 0.136 0.0811

(0.218) (0.234) (0.215) (0.229) (0.215) (0.228)

Ren. capacity 0.113* 0.105 0.108* 0.100 0.112* 0.104

(0.0602) (0.0644) (0.0598) (0.0633) (0.0604) (0.0639)

Dummy 0.227 0.223 0.162 0.163 0.764** 0.746** 0.656** 0.650*

(0.189) (0.192) (0.189) (0.189) (0.305) (0.320) (0.329) (0.339)

X × D -0.124* -0.121* -0.111* -0.110

(0.0646) (0.0650) (0.0664) (0.0671)

Constant -9.966*** -10.39*** -10.42*** -10.62*** -9.971*** -10.38*** -10.41*** -10.61*** -9.986*** -10.36*** -10.43*** -10.62***

(0.162) (0.691) (0.309) (0.695) (0.161) (0.675) (0.309) (0.687) (0.158) (0.673) (0.311) (0.683)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 750 745 745 740 750 745 745 740 750 745 745 740

Adj. R2 0.734 0.732 0.737 0.735 0.734 0.733 0.737 0.735 0.736 0.734 0.738 0.736

Table 14: Regression results — betweenness, aggregate supply-chain level (1–12). Robust standard errors in paren-
theses. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.0629 0.0633 0.0575 0.0578 0.0584 0.0589 0.0545 0.0549 0.0695 0.0699 0.0643 0.0647

(0.0515) (0.0519) (0.0520) (0.0527) (0.0522) (0.0527) (0.0526) (0.0533) (0.0516) (0.0519) (0.0521) (0.0526)

Ren. consumption 0.172 0.109 0.167 0.110 0.163 0.112

(0.220) (0.238) (0.217) (0.233) (0.212) (0.228)

Ren. capacity 0.105* 0.0940 0.101* 0.0894 0.103* 0.0916

(0.0608) (0.0655) (0.0604) (0.0644) (0.0611) (0.0651)

Dummy 0.220 0.215 0.156 0.157 0.754*** 0.746** 0.665** 0.665**

(0.189) (0.192) (0.188) (0.189) (0.284) (0.296) (0.304) (0.310)

X × D -0.143** -0.142** -0.132** -0.132**

(0.0648) (0.0645) (0.0661) (0.0661)

Constant -10.06*** -10.54*** -10.49*** -10.74*** -10.06*** -10.53*** -10.48*** -10.73*** -10.09*** -10.54*** -10.51*** -10.77***

(0.139) (0.664) (0.295) (0.671) (0.139) (0.652) (0.294) (0.664) (0.137) (0.637) (0.296) (0.650)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 744 739 739 734 744 739 739 734 744 739 739 734

Adj. R2 0.723 0.721 0.726 0.724 0.723 0.722 0.726 0.724 0.726 0.724 0.728 0.726

Table 15: Regression results — betweenness, mineral level (1–12). Robust standard errors in parentheses. P-values:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.0121 0.0126 0.00920 0.00859 0.0112 0.0117 0.00868 0.00813 0.0181 0.0181 0.0146 0.0138

(0.0441) (0.0453) (0.0437) (0.0450) (0.0443) (0.0455) (0.0439) (0.0451) (0.0445) (0.0455) (0.0442) (0.0453)

Ren. consumption 0.155 0.0869 0.150 0.0889 0.139 0.0809

(0.219) (0.233) (0.215) (0.229) (0.216) (0.229)

Ren. capacity 0.115* 0.107* 0.110* 0.102 0.112* 0.105

(0.0606) (0.0643) (0.0602) (0.0632) (0.0609) (0.0639)

Dummy 0.234 0.229 0.167 0.168 0.609** 0.591** 0.501* 0.494*

(0.187) (0.189) (0.186) (0.186) (0.271) (0.281) (0.284) (0.290)

X × D -0.0939 -0.0906 -0.0813 -0.0794

(0.0632) (0.0626) (0.0633) (0.0633)

Constant -9.898*** -10.33*** -10.38*** -10.58*** -9.917*** -10.33*** -10.37*** -10.58*** -9.931*** -10.32*** -10.39*** -10.58***

(0.127) (0.667) (0.298) (0.678) (0.128) (0.650) (0.296) (0.668) (0.127) (0.655) (0.299) (0.671)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 750 745 745 740 750 745 745 740 750 745 745 740

Adj. R2 0.734 0.732 0.737 0.735 0.734 0.733 0.737 0.735 0.735 0.733 0.737 0.735

Table 16: Regression results — betweenness, battery level (1–12). Robust standard errors in parentheses. P-values:
*** p < 0.01, ** p < 0.05, * p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X -0.0250 -0.0220 -0.0235 -0.0224 -0.0249 -0.0220 -0.0235 -0.0223 -0.0141 -0.0114 -0.0138 -0.0126

(0.0463) (0.0473) (0.0467) (0.0477) (0.0461) (0.0471) (0.0465) (0.0476) (0.0457) (0.0464) (0.0462) (0.0470)

Ren. consumption 0.160 0.0930 0.155 0.0952 0.151 0.0965

(0.221) (0.238) (0.217) (0.233) (0.215) (0.230)

Ren. capacity 0.109* 0.0996 0.104* 0.0943 0.105* 0.0947

(0.0611) (0.0654) (0.0607) (0.0643) (0.0616) (0.0652)

Dummy 0.233 0.228 0.167 0.168 0.651** 0.642** 0.554** 0.554**

(0.185) (0.187) (0.184) (0.184) (0.262) (0.271) (0.276) (0.280)

X × D -0.120* -0.119* -0.107* -0.107*

(0.0629) (0.0623) (0.0634) (0.0631)

Constant -9.823*** -10.28*** -10.29*** -10.51*** -9.845*** -10.28*** -10.28*** -10.51*** -9.866*** -10.29*** -10.31*** -10.53***

(0.119) (0.670) (0.293) (0.678) (0.120) (0.652) (0.290) (0.667) (0.118) (0.643) (0.294) (0.658)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 744 739 739 734 744 739 739 734 744 739 739 734

Adj. R2 0.722 0.721 0.725 0.723 0.723 0.721 0.725 0.723 0.725 0.723 0.727 0.725

Table 17: Regression results — betweenness, processed mineral level (1–12). Robust standard errors in parentheses.
P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.0228 0.0188 0.00606 0.00405 0.0176 0.0137 0.00216 0.000136 0.0249 0.0209 0.00972 0.00755

(0.0532) (0.0525) (0.0531) (0.0532) (0.0544) (0.0538) (0.0543) (0.0545) (0.0531) (0.0526) (0.0531) (0.0532)

Ren. consumption 0.164 0.0977 0.163 0.0994 0.160 0.0922

(0.227) (0.240) (0.224) (0.236) (0.222) (0.234)

Ren. capacity 0.139** 0.128* 0.135** 0.124* 0.141** 0.131*

(0.0638) (0.0695) (0.0635) (0.0684) (0.0634) (0.0689)

Dummy 0.163 0.161 0.136 0.137 0.415 0.408 0.423 0.418

(0.190) (0.192) (0.186) (0.186) (0.340) (0.352) (0.340) (0.349)

X × D -0.0767 -0.0754 -0.0876 -0.0858

(0.0810) (0.0811) (0.0797) (0.0808)

Constant -9.933*** -10.38*** -10.50*** -10.72*** -9.937*** -10.38*** -10.49*** -10.71*** -9.948*** -10.38*** -10.53*** -10.73***

(0.113) (0.677) (0.303) (0.667) (0.114) (0.667) (0.302) (0.662) (0.112) (0.658) (0.299) (0.651)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 715 710 713 708 715 710 713 708 715 710 713 708

Adj. R2 0.717 0.716 0.721 0.718 0.717 0.716 0.721 0.718 0.718 0.716 0.721 0.719

Table 18: Regression results — betweenness, raw mineral level (1–12). Robust standard errors in parentheses. P-values:
*** p < 0.01, ** p < 0.05, * p < 0.1.
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B.3 Regression results using indegree as network indicator, with 2

years rolling window

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

X 0.496*** 0.552*** 0.478*** 0.528*** 0.500*** 0.562*** 0.485*** 0.542*** 0.559*** 0.622*** 0.545*** 0.604***

(0.159) (0.164) (0.158) (0.165) (0.157) (0.162) (0.156) (0.163) (0.158) (0.162) (0.158) (0.163)

Ren. consumption 0.238 0.198 0.261 0.226 0.263 0.232

(0.220) (0.235) (0.210) (0.225) (0.212) (0.227)

Ren. capacity 0.108* 0.0887 0.106* 0.0839 0.107* 0.0837

(0.0566) (0.0597) (0.0557) (0.0585) (0.0563) (0.0589)

Dummy 0.330** 0.346** 0.301** 0.317** 1.516*** 1.536*** 1.451*** 1.480***

(0.137) (0.136) (0.138) (0.137) (0.286) (0.277) (0.295) (0.288)

X × D -0.365*** -0.367*** -0.351*** -0.355***

(0.0935) (0.0908) (0.0941) (0.0920)

Constant -11.63*** -12.47*** -12.04*** -12.66*** -11.68*** -12.61*** -12.08*** -12.80*** -11.86*** -12.79*** -12.27*** -13.01***

(0.502) (0.911) (0.552) (0.933) (0.497) (0.877) (0.548) (0.900) (0.498) (0.881) (0.558) (0.906)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,500 1,490 1,490 1,480 1,500 1,490 1,490 1,480 1,500 1,490 1,490 1,480

Adj. R2 0.705 0.704 0.707 0.705 0.706 0.706 0.708 0.707 0.708 0.708 0.710 0.709

Table 19: Regression results — indegree, aggregate supply-chain level (1–12) with 2 years rolling window. Robust
standard errors in parentheses. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Y 0.380*** 0.402*** 0.373*** 0.389*** 0.384*** 0.408*** 0.379*** 0.398*** 0.414*** 0.438*** 0.413*** 0.431***

(0.117) (0.122) (0.121) (0.125) (0.116) (0.121) (0.120) (0.124) (0.118) (0.122) (0.123) (0.127)

Ren. consumption 0.206 0.155 0.225 0.178 0.227 0.181

(0.218) (0.234) (0.208) (0.225) (0.209) (0.225)

Ren. capacity 0.109* 0.0928 0.107* 0.0889 0.111* 0.0924

(0.0575) (0.0619) (0.0565) (0.0608) (0.0567) (0.0610)

Dummy 0.322** 0.333** 0.293** 0.304** 0.988*** 1.001*** 0.950*** 0.964***

(0.137) (0.135) (0.137) (0.136) (0.252) (0.244) (0.264) (0.262)

Y × D -0.246*** -0.247*** -0.239** -0.239***

(0.0893) (0.0870) (0.0919) (0.0911)

Constant -11.06*** -11.69*** -11.50*** -11.90*** -11.10*** -11.79*** -11.55*** -12.01*** -11.17*** -11.86*** -11.64*** -12.11***

(0.297) (0.759) (0.402) (0.768) (0.295) (0.728) (0.398) (0.739) (0.299) (0.734) (0.408) (0.744)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,482 1,472 1,472 1,462 1,482 1,472 1,472 1,462 1,482 1,472 1,472 1,462

Adj. R2 0.693 0.692 0.695 0.694 0.695 0.694 0.697 0.695 0.696 0.695 0.698 0.696

Table 20: Regression results — indegree, mineral level (1–12) with 2 years rolling window. Robust standard errors in
parentheses. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Z 0.478*** 0.532*** 0.474*** 0.520*** 0.475*** 0.533*** 0.473*** 0.524*** 0.519*** 0.577*** 0.517*** 0.569***

(0.145) (0.146) (0.144) (0.146) (0.143) (0.144) (0.142) (0.144) (0.145) (0.146) (0.144) (0.146)

Ren. consumption 0.249 0.208 0.269 0.232 0.269 0.235

(0.217) (0.231) (0.208) (0.222) (0.211) (0.224)

Ren. capacity 0.115** 0.0952 0.113** 0.0909 0.114** 0.0915

(0.0565) (0.0592) (0.0557) (0.0582) (0.0565) (0.0588)

Dummy 0.320** 0.334** 0.290** 0.305** 1.328*** 1.341*** 1.260*** 1.281***

(0.136) (0.135) (0.137) (0.136) (0.288) (0.280) (0.282) (0.279)

Z × D -0.335*** -0.334*** -0.319*** -0.320***

(0.0997) (0.0969) (0.0967) (0.0952)

Constant -11.47*** -12.33*** -11.95*** -12.58*** -11.49*** -12.42*** -11.97*** -12.67*** -11.62*** -12.54*** -12.09*** -12.81***

(0.425) (0.819) (0.494) (0.844) (0.422) (0.792) (0.491) (0.818) (0.427) (0.804) (0.501) (0.831)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,500 1,490 1,490 1,480 1,500 1,490 1,490 1,480 1,500 1,490 1,490 1,480

Adj. R2 0.705 0.704 0.708 0.706 0.707 0.706 0.709 0.708 0.709 0.708 0.710 0.709

Table 21: Regression results — indegree, battery level (1–12) with 2 years rolling window. Robust standard errors in
parentheses. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

W 0.306** 0.325** 0.298** 0.311** 0.308** 0.329*** 0.303** 0.318** 0.338*** 0.359*** 0.337** 0.351***

(0.124) (0.127) (0.129) (0.131) (0.123) (0.126) (0.129) (0.131) (0.125) (0.127) (0.131) (0.133)

Ren. consumption 0.197 0.143 0.216 0.166 0.216 0.167

(0.216) (0.232) (0.207) (0.223) (0.208) (0.223)

Ren. capacity 0.112* 0.0974 0.110* 0.0937 0.114** 0.0968

(0.0580) (0.0623) (0.0570) (0.0612) (0.0571) (0.0613)

Dummy 0.316** 0.327** 0.286** 0.296** 1.009*** 1.019*** 0.966*** 0.977***

(0.137) (0.136) (0.138) (0.137) (0.259) (0.256) (0.273) (0.274)

W × D -0.265*** -0.265*** -0.256** -0.256**

(0.0954) (0.0943) (0.0990) (0.0990)

Constant -10.84*** -11.44*** -11.30*** -11.66*** -10.88*** -11.53*** -11.34*** -11.76*** -10.94*** -11.60*** -11.43*** -11.85***

(0.303) (0.739) (0.413) (0.752) (0.302) (0.711) (0.410) (0.725) (0.305) (0.717) (0.419) (0.731)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,479 1,469 1,469 1,459 1,479 1,469 1,469 1,459 1,479 1,469 1,469 1,459

Adj. R2 0.692 0.691 0.695 0.693 0.694 0.693 0.696 0.694 0.695 0.694 0.697 0.695

Table 22: Regression results — indegree, processed mineral level (1–12) with 2 years rolling window. Robust standard
errors in parentheses. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

V 0.214** 0.207** 0.196* 0.192* 0.221** 0.213** 0.202** 0.199* 0.229** 0.222** 0.211** 0.208**

(0.105) (0.104) (0.102) (0.102) (0.105) (0.104) (0.102) (0.102) (0.104) (0.104) (0.102) (0.102)

Ren. consumption 0.204 0.143 0.224 0.162 0.229 0.165

(0.224) (0.238) (0.215) (0.229) (0.215) (0.229)

Ren. capacity 0.111* 0.0941 0.110* 0.0911 0.113* 0.0938

(0.0618) (0.0677) (0.0609) (0.0665) (0.0609) (0.0667)

Dummy 0.269* 0.283** 0.259* 0.268* 0.437 0.470* 0.448 0.462*

(0.139) (0.138) (0.138) (0.137) (0.284) (0.278) (0.278) (0.276)

V × D -0.0860 -0.0957 -0.0965 -0.0987

(0.116) (0.113) (0.114) (0.113)

Constant -10.47*** -11.03*** -10.93*** -11.24*** -10.52*** -11.13*** -10.97*** -11.33*** -10.53*** -11.15*** -10.99*** -11.36***

(0.186) (0.692) (0.343) (0.682) (0.185) (0.665) (0.339) (0.657) (0.185) (0.664) (0.340) (0.655)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,377 1,367 1,375 1,365 1,377 1,367 1,375 1,365 1,377 1,367 1,375 1,365

Adj. R2 0.680 0.679 0.682 0.680 0.682 0.680 0.683 0.681 0.681 0.680 0.683 0.681

Table 23: Regression results — indegree, raw mineral level (1–12) with 2 years rolling window. Robust standard errors
in parentheses. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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B.4 Regression results with contemporaneous regressors

As a robustness check, to assess the role of all three layers simultaneously, we estimate the

following extended specification, which includes the three layers as separate regressors:

Yi,t = α+β1 log(1+Xdown
i,t )+β2 log(1+Xmid

i,t )+β3 log(1+Xup
i,t )+γi+δt+λ log(1+Si,t)+θDup

i,t

+ µ1

[
log(1 +Xdown

i,t )×Dup
i,t

]
+ µ2

[
log(1 +Xmid

i,t )×Dup
i,t

]
+ µ3

[
log(1 +Xup

i,t )×Dup
i,t

]
+ ϵi,t

(6)

Table 24 displays the results from regression 6. The results are coherent with all the others:

only the indegree at the battery level yields a significant and positive coefficient, across the four

regression specifications tested.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Xdown 0.402* 0.499** 0.413** 0.488** 0.402* 0.498** 0.412** 0.489** 0.373* 0.471** 0.387* 0.463**

(0.213) (0.215) (0.207) (0.211) (0.212) (0.214) (0.207) (0.211) (0.205) (0.208) (0.201) (0.205)

Xmid 0.147 0.153 0.121 0.123 0.158 0.163 0.130 0.132 0.181 0.184 0.149 0.151

(0.219) (0.220) (0.222) (0.223) (0.221) (0.223) (0.224) (0.225) (0.225) (0.225) (0.227) (0.227)

Xup 0.0583 0.0256 0.0297 0.0107 0.0550 0.0224 0.0283 0.00902 0.0614 0.0306 0.0381 0.0195

(0.158) (0.150) (0.158) (0.152) (0.158) (0.151) (0.158) (0.152) (0.157) (0.152) (0.158) (0.154)

D 0.129 0.156 0.122 0.139

(0.675) (0.667) (0.666) (0.663)

Xdown× D 0.488 0.435 0.430 0.400

(0.542) (0.526) (0.530) (0.521)

Xmid× D -0.453 -0.399 -0.370 -0.341

(0.582) (0.573) (0.565) (0.563)

Xup × D -0.103 -0.110 -0.138 -0.139

(0.478) (0.480) (0.468) (0.473)

Ren. consumption 0.306 0.243 0.304 0.246 0.295 0.238

(0.245) (0.260) (0.241) (0.254) (0.239) (0.253)

Ren. capacity 0.137** 0.110 0.132** 0.105 0.129** 0.104

(0.0629) (0.0682) (0.0627) (0.0669) (0.0623) (0.0669)

Constant -11.56*** -12.66*** -12.07*** -12.83*** -11.59*** -12.69*** -12.08*** -12.85*** -11.57*** -12.64*** -12.05*** -12.81***

(0.634) (1.097) (0.682) (1.093) (0.633) (1.070) (0.680) (1.073) (0.625) (1.072) (0.679) (1.076)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 715 710 713 708 715 710 713 708 715 710 713 708

Adj. R2 0.722 0.721 0.725 0.723 0.722 0.722 0.725 0.723 0.721 0.721 0.724 0.723

Table 24: Regression results — indegree, all layers (1–12). Robust standard errors in parentheses. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Xdown 0.121 0.127 0.0680 0.0690 0.112 0.118 0.0601 0.0611 0.102 0.108 0.0517 0.0526

(0.127) (0.127) (0.128) (0.127) (0.127) (0.127) (0.128) (0.127) (0.127) (0.127) (0.128) (0.127)

Xmid -0.0201 -0.0189 -0.0168 -0.0148 -0.0206 -0.0194 -0.0169 -0.0149 -0.0158 -0.0147 -0.0145 -0.0123

(0.132) (0.133) (0.134) (0.134) (0.133) (0.134) (0.134) (0.134) (0.132) (0.133) (0.134) (0.134)

Xup 0.151 0.139 0.148 0.139 0.145 0.133 0.143 0.134 0.162 0.150 0.160 0.151

(0.151) (0.150) (0.151) (0.150) (0.153) (0.151) (0.153) (0.151) (0.153) (0.151) (0.152) (0.151)

D 0.142 0.122 0.148 0.138

(0.316) (0.318) (0.306) (0.308)

Xdown × D 0.303 0.308 0.258 0.266

(0.290) (0.294) (0.289) (0.289)

Xmid × D -0.150 -0.147 -0.0635 -0.0711

(0.245) (0.242) (0.260) (0.260)

Xup × D -0.286 -0.290 -0.344 -0.340

(0.403) (0.410) (0.403) (0.411)

Ren. consumption 0.173 0.0995 0.170 0.100 0.171 0.100

(0.224) (0.238) (0.223) (0.235) (0.210) (0.223)

Ren. capacity 0.134** 0.123* 0.131** 0.120* 0.132** 0.121*

(0.0636) (0.0684) (0.0634) (0.0675) (0.0631) (0.0679)

Constant -10.31*** -10.78*** -10.78*** -11.00*** -10.29*** -10.76*** -10.76*** -10.97*** -10.31*** -10.78*** -10.77*** -10.99***

(0.344) (0.744) (0.456) (0.746) (0.347) (0.748) (0.460) (0.754) (0.348) (0.713) (0.461) (0.721)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 715 710 713 708 715 710 713 708 715 710 713 708

Adj. R2 0.718 0.716 0.721 0.718 0.718 0.716 0.720 0.718 0.718 0.716 0.721 0.718

Table 25: Regression results — outdegree, all layers (1–12). Robust standard errors in parentheses. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Xdown 0.0183 0.0184 0.0136 0.0131 0.0174 0.0176 0.0130 0.0125 0.0124 0.0121 0.00804 0.00732

(0.0461) (0.0471) (0.0456) (0.0467) (0.0463) (0.0473) (0.0458) (0.0469) (0.0485) (0.0497) (0.0481) (0.0494)

Xmid -0.0354 -0.0315 -0.0295 -0.0277 -0.0341 -0.0303 -0.0285 -0.0268 -0.0205 -0.0158 -0.0174 -0.0148

(0.0500) (0.0504) (0.0503) (0.0507) (0.0500) (0.0503) (0.0503) (0.0506) (0.0521) (0.0525) (0.0524) (0.0528)

Xup 0.0309 0.0259 0.0132 0.0107 0.0255 0.0207 0.00911 0.00664 0.0187 0.0132 0.00632 0.00320

(0.0544) (0.0534) (0.0545) (0.0543) (0.0558) (0.0548) (0.0558) (0.0556) (0.0550) (0.0543) (0.0549) (0.0546)

D 0.427 0.414 0.421 0.413

(0.287) (0.296) (0.284) (0.291)

Xdown × D 0.0711 0.0803 0.0672 0.0737

(0.162) (0.163) (0.158) (0.158)

Xmid × D -0.166 -0.176 -0.138 -0.147

(0.156) (0.155) (0.164) (0.161)

Xup × D 0.0137 0.0162 -0.0184 -0.0139

(0.178) (0.179) (0.187) (0.189)

Ren. consumption 0.159 0.0934 0.157 0.0951 0.167 0.103

(0.232) (0.245) (0.229) (0.241) (0.221) (0.235)

Ren. capacity 0.136** 0.126* 0.133** 0.123* 0.133** 0.122*

(0.0638) (0.0697) (0.0634) (0.0685) (0.0640) (0.0701)

Constant -9.910*** -10.35*** -10.47*** -10.68*** -9.915*** -10.35*** -10.46*** -10.67*** -9.918*** -10.38*** -10.46*** -10.69***

(0.190) (0.749) (0.344) (0.736) (0.189) (0.737) (0.344) (0.730) (0.189) (0.719) (0.343) (0.710)

Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Observations 715 710 713 708 715 710 713 708 715 710 713 708

Adj. R2 0.717 0.715 0.720 0.718 0.717 0.715 0.720 0.718 0.717 0.715 0.720 0.718

Table 26: Regression results — betweenness, all layers (1–12). Robust standard errors in parentheses. P-values: ***
p < 0.01, ** p < 0.05, * p < 0.1.
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