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Abstract

Data centers are among the fastest-growing electricity consumers, raising concerns about
their impact on grid operations and decarbonization goals. Their temporal flexibility—
the ability to shift workloads over time—offers a source of demand-side flexibility. We
model power systems in three U.S. regions: Mid-Atlantic, Texas, and WECC, under varying
flexibility levels. We evaluate flexibility’s effects on grid operations, investment, system
costs, and emissions. Across all scenarios, flexible data centers reduce costs by shifting
load from peak to off-peak hours, flattening net demand and supporting renewable and
baseload resources. This load shifting facilitates renewable integration while improving
the utilization of existing baseload capacity. As a result, the emissions impact depends
on which effect dominates. Higher renewable penetration increases the emissions-reduction
potential of data center flexibility, while lower shares favor baseload generation and may
raise emissions. Our findings highlight the importance of aligning data center flexibility

with renewable deployment and regional conditions.
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1 Introduction

Data centers are among the fastest-growing electricity consumers, with their energy demand
projected to increase over the coming years [1, 2]. In the U.S., that projection is an increase of
7-12% by 2030 [3]. This surge is driven by advances in artificial intelligence and the prevalence
of cloud computing, which poses challenges for grid reliability [/] and decarbonization efforts [5].
The additional load could put stress on the grid and increase the usage of existing thermal power
plants, which may increase carbon emissions. For example, in PJM, the forecasted increase of
32 GW (20% increase) in summer peak load mostly comes from data centers and is equivalent
to adding another mid-sized state’s demand to the system [6]. However, opportunities exist to
operate data centers more flexibly as demand response resources, potentially mitigating large
load impacts. One of these strategies takes advantage of a latent demand response resource
we call data center temporal flexibility—the ability of data centers to change its load profile by
shifting workload across time [7]. Data centers do not operate at full capacity all the time and
typically maintain utilization rates of around 80% [3]. This is especially true for Al training,
which has a relatively flat workload pattern. This gives a headroom of 20% of data center
capacity to accommodate additional shifted data center load. Operationally, there could be
benefits to shift tasks to hours when renewable availability is high or prices are low [9, 10].
This may not only save operating costs for data centers, but also provide flexibility and increase
reliability for the power system while also meeting climate goals [11, 12].

Prior work hints at these benefits—curtailment relief, renewable firming, and even 24/7

carbon-free alignment when spatial shifting across data center networks is layered on [13, 14,

, 16,5, 17, 18]. Google’s carbon-aware scheduler offers a high-profile proof-of-concept [10],
and market-based signals appear decisive in whether load-shifting cuts or raises emissions [19].
Strikingly, even modest flexibility could offset most of the projected U.S. data center growth
without a single new power plant [20].

But, several critical research questions remain unanswered: First, it is unclear how data cen-
ter flexibility affects power system planning and operations. The ability to shift demand could
significantly impact investment decisions, plant retirements, and operational strategies. This
may alter the trajectory of capacity expansion and reliability planning for regional operators.
Second, the potential grid benefits that flexible data centers bring are not yet understood for
different levels of flexibility. While some portion of the data center load is flexible, the degree
to which it can be shifted is constrained over time. Tasks cannot be postponed indefinitely,
and certain tasks may not be shifted at all. Thus, understanding the combinations of flexibility
levels (in terms of duration and shifting potential) that can lower cost and emissions is critical.
Furthermore, the impact of data center flexibility on different regions may vary depending on
the characteristics of the regional grid.

To address these questions, we use the GenX capacity expansion model (CEM). GenX is a
least cost model that co-optimizes generation investment, retirement, and operational decisions
in the power system for a representative year of operation [21]. It has been used extensively to
assess policy and technology impacts on the grid (see [22, 23, 24, 25] for examples). We modified
the GenX code-base to accommodate different data center temporal flexibility scenarios (see

Methods in Section 8). We model combinations of scenarios that vary the shifting horizon—



the time window in which loads can be shifted—from 1 to 24 hours, and the share of flexible
workload—the fraction of total shiftable demand (20% of total gross demand)—from 1% to
100%. The final GenX model then includes decisions on the hourly shifting of flexible data
center load, limited by the level of flexibility in each scenario. We also include a baseline case
without flexibility for comparison and assume that without flexibility, data centers have constant
load throughout the year.

Our testbeds—Texas, the Mid-Atlantic, and the Western Interconnect (WECC)—collectively
host 82% of the nation’s projected 2030 data center demand [5, 17]. Figure 1 visualizes zonal

loads and transmission corridors.
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Figure 1: Model Zones with Transmission Lines and Data Center Load. Yellow and Blue
circles represent annual data center demand per zone. Green line segments indicate transmission links
between zones in a region where the width is scaled to the capacity of the line. Detailed information on
load assumptions can be found in Supplementary Note 9.1.

Our findings show that data center temporal flexibility can significantly change a power
system’s operations and generation mix. Higher flexibility levels enable net load shifting from
peak to off-peak hours, flattening the net load profile!. This reduces reliance on peaker or
ramping plants and promotes more stable operation of base load generators. When renewables
are sufficiently cost-competitive—as in Texas, where wind and solar are projected to supply 54%

of generation—high levels of data center flexibility results in up to 40% lower CO2 emissions and

Net Load is defined as demand net of VRE (Variable Renewable Energy) generation and curtailment



accelerate retirements of coal and nuclear plants. This reverses in the Mid-Atlantic and WECC:
renewable penetration is lower, coal units that survive retirements can run more uniformly, and
system-wide emissions rise by as much as 3%, even though costs still fall.

We confirm this cost sensitivity in a counterfactual experiment that raises renewable invest-
ment and fixed O&M costs in Texas to 1.3 times baseline values. Renewable share collapses to
21%, coal plants remain on the system, and the emissions advantage of flexibility disappears—
demonstrating that data center load shifting substitutes for baseload when clean energy is
economical.

Across all regions and price scenarios, however, temporal flexibility always lowers total
system costs—by up to 5% in Texas—while steering new investment toward renewables (wind
in Texas, solar in WECC and the Mid-Atlantic) and crowding out battery storage. Flexible
data center operations thus emerge as a robust, low-cost reliability resource whose climate value
hinges on the underlying economics of clean power.

To our knowledge, this is the first study to trace end-to-end consequences—from grid build-
out to hourly dispatch—of data center flexibility. The results show that it can either accelerate

decarbonization or it can entrench fossil fuels that it seeks to displace.

2 The Impact of Data Center Flexibility on Data Center and

System Operations

2.1 Data Center and Grid Operations

We first look at how data centers shift their load given different combinations of temporal
flexibility. Fig. 2 and 3 show the entire year’s data center load shifting operations for the Mid-
Atlantic and Texas, respectively while fig. S5 show WECC’s. We also show in Fig. 4 and 5
the interaction of data center load shifting and power system dispatch across the three regions
for average summer and winter conditions, respectively.

We generally observe that data center load is temporally shifted out of daily peak load hours
so that it can flatten net load. For example, in all regions, we find consistent patterns of shifting
from early morning hours and early night hours to midday during the winter (Fig. 2, 3, fig. S5).
This aligns with reducing the two peaks during these periods and shifting demand to midday
hours with high solar availability (Fig. 4). Notably, the presence of storage and hydro (purple
and dark blue, respectively, in Fig. 4I) in WECC further complements flexible load by reducing
net load volatility. In all cases, flexible data center load reduces system ramping requirements.
We see this from the flattening of the net load curve when comparing the dashed and solid red
lines in Fig. 4.

Comparing the “No Flexibility” subplots in Fig. 5 (Fig. 5A, 5D, 5G) with those incor-
porating 1-hour and 24-hour shifting horizons (middle Fig. 5B, 5E, 5H, and right Fig. 5C,
5F, b5I columns), we observe a clear flattening of the net load curve (red lines) as flexibil-
ity increases. This operational shift leads to notable changes in resource utilization: peaking
gas units (NGCT) are dispatched less frequently, while baseload and mid-merit units—such as
NGCC, coal, and nuclear—operate more uniformly. The alignment of data center load with

solar generation also increases the use of solar. Battery dispatch also becomes less prominent as
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Figure 2: Data Center Load Shifting Operations for the Mid-Atlantic. Each panel displays the
net hourly workload shiftted (in GWh) across an entire year, with the x-axis representing days (1-365)
and the y-axis representing hours of the day (0-23). Positive values (red) indicate workload shifted into
a given hour; negative values (green) represent workload shifted out. Columns show increasing flexible
workload shares—4%, 12%, and 20%—based on 20%, 60%, and 100% of a shiftable portion capped at
20% of total capacity. Rows indicate shifting horizons of 1 hour, 12 hours, and 24 hours, reflecting the
maximum time a task can be advanced or delayed. This illustrates how varying flexibility levels and
temporal windows influence both intra-day load scheduling and broader seasonal shifting patterns.

flexible load partially substitutes its role in balancing variability. Across regions, Texas notably
differs from the Mid-Atlantic and WECC. While workloads are shifted from nighttime to mid-
day during the summer for the Mid-Atlantic and WECC (Fig. 2, 5C, 5I, fig. S5), data center
load is frequently shifted away from the midday in Texas (Fig. 3, 5E). This difference is driven
by Texas’ midday net load peaks (dashed red line, Fig. 5D), which is unique in the three regions
as Texas has high cooling demand during these hours and limited baseload generation (Fig. 5E,
5F). In contrast, more baseload nuclear and coal capacity in the Mid-Atlantic and WECC leads
to net load peaks that are later in the day. Flexible data center loads then tend to be shifted
into midday hours, leveraging lower marginal costs from solar generation and avoiding evening

ramp pressures (Fig. 5C, 5I). We also observe a reduction in coal and nuclear generation in
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Figure 3: Data Center Load Shifting Operations for Texas. Each panel displays the net hourly
workload shiftted (in GWh) across an entire year, with the x-axis representing days (1-365) and the
y-axis representing hours of the day (0-23). Positive values (red) indicate workload shifted into a given
hour; negative values (green) represent workload shifted out. Columns show increasing flexible workload
shares—4%, 12%, and 20%—based on 20%, 60%, and 100% of a shiftable portion capped at 20% of total
capacity. Rows indicate shifting horizons of 1 hour, 12 hours, and 24 hours, reflecting the maximum time
a task can be advanced or delayed. This illustrates how varying flexibility levels and temporal windows
influence both intra-day load scheduling and broader seasonal shifting patterns.

Texas with more flexibility, leading up to almost no baseload generation at a 24-hour shifting
horizon (Fig. 5D, 5E, 5F). Regional system characteristics, such as resource mix and load
shape, thus influence optimal data center shifting operations.

Finally, we note that the load shifting is more localized in the 1-hour shifting horizon case
as load is constrained to a smaller time window, but becomes more pronounced with a 12-
or 24-hour shifting horizon (for example, Fig. 2A, 2D, 2G for the Mid-Atlantic). This also
implies that the 24-hour and 100% share of flexible workload scenario (Fig. 2I) shows the most
extensive redistribution of data center load. However, even modest flexibility (12-hour shifting
horizon and 60% share of flexible workload; Fig. 2E) in data center operations can already lead

to significant grid re-balancing.
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Figure 4: Average Winter Operations per Region. Each subplot shows the average generation
per technology, net load, and data center load shifts in MWh per hour of the day during the Winter
season. Panels correspond to three levels of operational flexibility: No Flexibility (A, D, G) 1-hour (B,
E, H) and 24-hour (C, F, I) Shifting Horizon with a 100% share of flexible workload.

2.2 Capacity and Generation Mix

Data center flexibility and the redistribution of net load naturally affect the capacity and gen-
eration mix of a power system. Fig. 6 shows the capacity and generation per technology at
varying levels of data center flexibility for each region.

Overall, we observe two main effects. First, flexibility supports renewable investments. By
shifting demand into hours with high renewable availability, data center flexibility increases
the economic value of wind and solar generation. This leads to larger solar investment in the
Mid-Atlantic (and to a lesser extent in WECC), and larger wind investment in Texas. The
preference for either is driven by which resources are more abundant in the region. Texas has
strong wind potential, while the Mid-Atlantic and WECC are better suited to solar. Second,

data center flexibility supports baseload operations. By flattening net load profiles, data center
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Figure 5: Average Summer Operations per Region. Each subplot shows the average generation
per technology, net load, and data center load shifts in MWh per hour of the day during the Summer
season. Panels correspond to three levels of operational flexibility: No Flexibility (A, D, G) 1-hour
(B, E, H) and 24-hour (C, F, I) Shifting Horizon with a 100% share of flexible workload. The graphs
don’t include the regions’ net electricity imports. This is relevant for the Mid-Atlantic where we assume
deterministic hourly net imports. Details on net import data can be found in Supplementary Note 9.4.

flexibility makes it more cost-effective to run inflexible baseload plants like coal with fewer
ramping requirements.

Whether natural gas capacity and generation increase or decrease depends on which of
these two effects dominates. In the Mid-Atlantic and WECC, the support for baseload is
stronger. This reduces the need for flexible natural gas capacity as coal generation becomes
more economically viable. In contrast, in Texas, the support for renewables dominates due
to the high share of renewable generation of around 54% (39% wind, 15% solar) of total mix,
compared to 22% (10% wind and 12% solar) in the Mid-Atlantic and 33% (14% wind and 19%
solar) in WECC. This drives an increase in natural gas generation that serves as a flexible,

fast-ramping complement to wind. As a result, Texas sees less reliance on baseload plants like
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Figure 6: Capacity and Generation per Region with 24-hour shifting horizon. Top row (A,
C, E) shows total installed capacity by technology, accounting for new investments and retirements.
Bottom row (B, D, F) shows corresponding total generation by technology. Results are shown across
increasing flexible workload shares (20% to 100% in 20% increments), assuming a 24-hour shifting hori-
zon, alongside a baseline scenario without flexibility. Coal, nuclear, and hydro are excluded from new
capacity additions but remain eligible for retirement. Data on capacity retirements and investments at
all flexibility combinations can be found in Supplementary Notes 10 and 11.

coal and nuclear. This is reflected in coal and nuclear retirements and reduced generation.
Interestingly, in the Mid-Atlantic, coal retirements also increase, but the baseload support of

data center flexibility leads to higher coal generation.

3 The Impact of Data Center Flexibility on Carbon Emissions

The results of our modeling show that projected 2030 data center load growth relative to a
system with no data center growth increases annual CO9 emissions by 47 Mmt (20%), 55 Mmt
(58%), and 46 Mmt (24%) for the Mid-Atlantic, Texas, and WECC regions, respectively. The
increase in projected emissions emphasizes the urgency of identifying strategies to reduce data
centers’ environmental impact, particularly in evaluating if data center flexibility can lead to
emissions mitigation. However, the environmental consequences of the shifts in generation and
capacity induced by data center flexibility are not straightforward. As section 2.2 showed,
flexibility can simultaneously promote both renewable deployment and greater utilization of
inflexible baseload generators. This dual effect raises a natural question: does data center
flexibility reliably reduce emissions, or can it, under certain conditions, lead to the opposite?



While the prevailing view is that any form of demand flexibility complements the use of clean
energy, our results suggest this intuition may not always hold. In this section, we examine how
emissions outcomes depend on the interplay between flexibility and the underlying generation
mix. We find that temporal flexibility in data centers does not always reduce total annual CO9
emissions relative to a system without flexibility.

Fig. 7D, TE, and 7F show the percentage reduction in emissions of systems with flexible
data centers compared to systems without that flexibility. In Texas, emissions fall significantly
by up to 40%. But in the Mid-Atlantic, we observe a counterintuitive result: greater data
center flexibility leads to higher COs emissions. In systems with high renewable penetration
and limited remaining coal capacity, flexibility mostly enables greater renewable utilization
and emissions reductions (i.e., Texas). Data center flexibility can have a significant impact
on emissions when coupled with high renewable penetration, such that even with projected
growth in data center load, a flexible system can achieve lower emissions than a system without
either data center growth or flexibility (Fig. 7H). In contrast, in systems with a large share of
existing coal and relatively limited VRE availability, flexibility tends to shift load toward cheap,
carbon-intensive baseload generation, which raises emissions even as costs fall (Fig. 7D).

This trade-off is evident in the Mid-Atlantic. Initially, with flexibility, load shifts to hours
with high VRE generation, which reduces thermal dispatch and variable O&M costs—the first
effect. However, once VRE potential is exhausted, the second effect emerges with additional
load shifted to hours when cheap thermal generation is available, particularly baseload coal
(Fig. 5A and 5C). With full flexibility, average hourly coal utilization in the Mid-Atlantic rises
from 50% to 59%. Fig. 8A and 8B show heatmaps of hourly coal utilization in the Mid-Atlantic.
Without flexibility, coal ramps up in the evening and ramps down during the day when solar
generation is high (Fig. 8A). The summer evenings see the largest utilization of coal as this time
period coincides to the highest net loads. With flexibility, coal’s output gets distributed more
evenly from the evening to the early morning (Fig. 8B). The high summer evening utilization
of coal is lowered, and utilization throughout the rest of the day is increased as evening data
center load gets shifted to the morning (Fig. 2). A duration curve reveals that coal operates
between 68 to 78% utilization for 4,526 hours (52% of the year) with flexibility, compared to
just 898 hours (10%) without (Fig. 8C). This shift to steadier coal operations contributes to
higher total emissions .

To further illustrate that the emissions impact is driven by the availability of renewables,
we simulate an alternative set of Texas scenarios where the investment and fixed O&M costs of
renewables are increased. In these systems with less economically viable renewables, we expect
and find that the share of renewables decreases. More importantly, we see that the emissions-
reducing effect of flexibility is reversed. Data center flexibility increases emissions relative to
an inflexible system by up to 5% at renewables that cost 1.3 times the base prices (Fig. 8I). In
this system, as in the Mid-Atlantic, insufficient renewable capacity to absorb flexible demand
results in coal not being retired and instead becoming more heavily utilized with less ramping
(Fig. 8D, 8E).

These findings show that the generation mix determines whether data center flexibility

reduces or increases emissions. This also parallels results on battery storage where it can
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Figure 7: Cost and Emissions Reduction. Top row (A, B, C): Heatmaps show the percentage
reduction in total system cost from introducing flexible data centers, relative to a system without flex-
ibility, across combinations of shifting horizon and share of flexible workload. Middle row (D, E, F):
Heatmaps of percentage reduction in system COs emissions under the same flexibility configurations,
relative to the no flexibility baseline. Bottom row (G, H, I): Heatmaps of percentage reduction of
system CO5 emissions relative to a reference system with no data center flexibility and no data center
load growth. Green (red) color indicates a decrease (increase) in COq emissions relative to the no growth
scenario. The “no growth” baseline assumes data center load in 2030 maintains the same share of total
system load as in 2022. Details on load assumptions are found in Supplementary Note 9.1. Note: Color
scales vary across rows.

produce counterintuitive emissions outcomes under certain conditions [26]. In systems with high
renewable penetration and potential like Texas, flexibility typically aligns with wind and solar,
displacing thermal generation and lowering emissions. As a consequence, the lower emissions
outcome is not guaranteed and is contingent on the availability and build-out of renewable
resources. The emissions impact of data center flexibility is thus not inherent to flexibility itself,
but rather depends on the surrounding resource mix and investment environment. Flexibility
consistently reduces system costs, but without adequate clean generation, it can inadvertently

increase system emissions by reinforcing baseload coal operations.
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Figure 8: Coal utilization and emissions under varying VRE costs and data center flexibility.
Panels (A-B) show heatmaps of coal utilization in the Mid-Atlantic under no flexibility and with a 24-
hour shifting horizon with 100% flexible workload. Panels (D-E) show analogous results for Texas under
a 40% increase in VRE costs. Coal utilization is normalized using a common capacity baseline—the higher
of the two scenarios’ remaining coal capacity—to ensure consistent comparison. Panels (C) and (F)
display duration curves ranking hourly coal output in descending order across all 8,760 hours. Panels
(G-H) show average generation by technology in Texas under varying VRE cost multipliers, which affect
investment and fixed O&M costs for new wind and solar. Panel (I) reports total system COq emissions
across the same cost multipliers. The base model is represented by a cost multiplier of 1.0.

4 The Impact of Data Center Flexibility on Cost

A key output of the GenX model is the optimal total annual system cost. This consists of
investment, fixed and variable operating and maintenance (O&M), fuel, startup costs, and
applicable tax credits. Fig. TA, 7B, and 7C are heatmaps of the percentage reduction in total
system cost of a system with Flexible Data Centers relative to the No Flexibility scenario for
the Mid-Atlantic, Texas, and WECC regions, respectively.

Data center temporal flexibility leads to lower total system costs. Increasing the shifting

11



horizon and the share of flexible workload also increases the cost savings, with reductions of up
to 4% in the Mid-Atlantic, 5% in Texas, and 2% in WECC compared to a no flexibility scenario.
The cost reduction is primarily constrained by the share of flexible workload rather than the
shifting horizon. The contour lines indicate that achieving specific cost reduction levels is only
possible over certain ranges of the share of flexible workload. For example, in Texas, a 2%
reduction in costs cannot be achieved if only 10% of data center load can be shifted to other
hours, no matter how long the shifting horizon is. To achieve that 2% reduction, the share of
flexible workload has to be increased to a value between 21 to 49%. The relationship between
flexibility and cost reduction is also nonlinear, with an additional share of flexible workload
yielding diminishing returns.

While data center flexibility reduces cost at all levels of flexibility, the source of these savings
varies per region. fig. S7, S8, and S9 show the cost difference per cost component relative
to a No Flexibility scenario for the Mid-Atlantic, Texas, and WECC, respectively. In the
Mid-Atlantic, the savings come from a reduction of investments in new natural gas (Fig. 6A,
fig. S2D) and the retirement of a portion of the existing coal plants (Fig. 6A, fig. S1B). With the
lower investment in new natural gas capacity, the system avoids a generation mix that would
need to spend on fuel costs that it would otherwise incur in an inflexible system. These lower
investments and the additional retirements of coal generation also avoid fixed O&M costs. Note,
however, that the increase in operation of the remaining non-retired coal plants with additional
flexibility (fig. 6B) increases the variable O&M costs.

In Texas, the cost benefits of temporal flexibility rely on aligning data center load with
cheap VRE resources. When there is a larger share of load that can be shifted to hours with
high VRE availability factors, it results in lower spending on fuel and variable O&M for thermal
generators. However, this increased share of renewables is only possible by building new wind
capacity, increasing the investment cost (Fig. 6C, fig. S3B). At relatively small shares of flexible
workload (i.e., < 50%), Texas systems with flexibility increase fixed O&M cost, because of the
non-retirement of nuclear plants (Fig. 6C, fig. S1D). Similar insights to those in Texas can be
found in WECC. The only difference is that the increase in investments primarily comes from
solar rather than wind, which slightly goes down as flexibility increases. This reduction in wind
investments (Fig. 6E, fig. S4B) and an increase in natural gas retirements (Fig. 6E, fig. S1I)
with more flexibility is what drives the lower fixed O&M costs.

5 Policy Implications

This study examines the role of data center temporal flexibility in shaping power system out-
comes amid rapidly growing electricity demand. Policymakers should consider mechanisms to
incentivize or require flexible data center operations, such as dynamic pricing, demand response
programs, or performance-based incentives tied to load-shifting capabilities. Flexibility enables
cost-effective grid management by reducing peak demand, facilitating renewable integration,
and lowering system costs. However, its emissions impact is highly context-dependent: in grids
with abundant renewables, flexibility supports decarbonization, while in fossil-heavy systems, it

may increase emissions by extending the operational life of baseload coal. Therefore, unlocking
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the full benefits of data center flexibility requires coupling it with strong clean energy poli-
cies such as carbon pricing, investment incentives, or renewable portfolio standards, to ensure

emissions reductions accompany cost savings.

6 Conclusion

Data centers are projected to account for a substantial share of U.S. electricity demand in the
coming years. This study examines how the temporal flexibility of data center load can alter
power systems in response to this rapid demand growth. Specifically, we analyze how flexibility
affects grid operations, investment and retirement decisions, system costs, and emissions out-
comes. Our results show that temporal flexibility can substantially reshape the power system
and mitigate the challenges associated with rising data center demand.

Flexible data centers are able to adjust their load profiles in response to system conditions,
enabling more efficient power system operations. We find that the cost-optimal load-shifting
strategy tends to flatten the net load curve by reducing demand during peak hours and shifting
it toward periods of low net load. This operational adjustment reduces reliance on peaker
plants and enables better utilization of low-cost renewable energy, resulting in lower system
costs compared to inflexible demand. The magnitude of these savings depends on both the
share of flexible workload and the shifting horizon, with more flexibility leading to lower cost.
To capture these benefits, policy-makers should consider the necessary legislative support or
market-based incentives that promote temporal flexibility. Our analysis provides a framework
for identifying combinations of flexibility parameters that yield equivalent cost savings, which
could inform effective policy design and implementation.

Data center flexibility also has important implications for long-term capacity investment and
retirement decisions. These impacts depend on the existing generation mix, renewable resource
availability, and the evolving costs of clean energy technologies. In general, temporal flexibil-
ity encourages investment in wind and solar by shifting demand to hours with low marginal
costs, which often align with high renewable production. In high renewable systems like Texas,
where renewables comprise 50% of generation, flexibility leads to increased investment in VRE
capacity, accelerated retirement of baseload capacity, and increased reliance on flexible thermal
generation to manage intermittency. In contrast, in regions with lower renewable shares, such
as the Mid-Atlantic, flexibility can increase the utilization of baseload plants like coal even if
some retirements still occur.

As a result, the emissions impact of data center flexibility is highly context-dependent. In
systems with abundant and cost-competitive renewables, flexibility supports decarbonization
by aligning demand with clean energy availability. However, in fossil-heavy grids, flexibility
can increase emissions by increasing coal generation. Complementary policies that accelerate
renewable deployment or lower clean energy costs are needed alongside flexibility incentives to
ensure that the emissions-reduction potential of data center temporal flexibility is fully realized.

Overall, we find that the rapid growth in data center load has significant implications for
power system planning and operations. Its inherent capability to temporally shift load can be

used to mitigate the costs and infrastructure needs associated with this increased demand. To
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ensure that this flexibility supports decarbonization, it must be deployed alongside strong clean
energy policies that accelerate renewable deployment. When aligned with such policies, data
center flexibility can act as a valuable grid asset, lowering peak capacity, reducing cost, and

facilitating the integration of variable renewable resources.

7 Limitations

The model optimizes a representative year of operation where the investment, dispatch, and
data shifting decisions are made by a centralized entity. Decentralized decision making of
carbon-aware loads is not accounted for but is studied by [19]. We assume that data center
load is constant and that it can freely shift its load within the hourly horizon without the need
for ramping and without disruption to operations. The costs associated with data center load
shifting are not modeled, as we focus on workload advancement and delay, where direct costs
are typically small or difficult to quantify due to their dependence on user preferences and
application-specific requirements. The stochastic variability of VRE and load is not considered
by assuming exogenous, deterministic time series inputs. We also assume that there are no
restrictions on the amount of new capacity that can be built and that this capacity can be built
by the model year. The model can then be thought of as a stylized and idealized U.S. power

system with data centers.

8 Methods

8.1 GenX

The analysis uses the Capacity Expansion model, GenX. Details and documentation on the
GenX model can be found in https://genxproject.github.io/GenX.jl/dev/. The specific
implementation used for this work can be found in the Supplementary Code. GenX is a least-cost
mixed integer linear programming (MILP) model that co-optimizes generation and transmission
investments and dispatch decisions among pre-defined zones within the power system. The
optimization accounts for capital, operational, and fuel costs, generator technical operating
characteristics, capacity factors for renewables, and demand information. The objective is to
minimize annual system cost, which is the sum of investment in generation and storage, fixed and
variable operating and maintenance costs, new transmission investment costs, fuel and startup
costs, accounting for tax credits and other incentives, if any. GenX assumes a representative
year of operation and perfect foresight of hourly demand and capacity factor data for renewables
supply in its dispatch decisions. We source input data from PowerGenome [27] which is a data
processing software that aggregates data from publicly available sources such as NREL’s ATB
for cost data [28], NREL’s EFS for demand data [29, 30] and EIA’s Form-860 [31] for existing

generator data.

8.2 Modeling Data Center Temporal Flexibility

We modified the GenX code-base to include temporal flexibility of data centers. GenX already

has the capability to represent flexible demand resources built into the base model, but we
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included constraints to constrain the amount that can be shifted to and from an hour, given
the capacity of a data center. For our model, data centers that can shift load temporally
are modeled similarly to storage assets that can ”store” demand from each hour and must be
deployed elsewhere within the shifting horizon.

Consider a representative data center with capacity C' and data center load L; at hour ¢.
Temporal flexibility is defined by two parameters: First is the shifting horizon h, which is the
number of hours before or after the originally scheduled hour in which data center load can
be deferred and advanced. Second, the share of flexible workload s, (0 < s < 1), which is the
fraction of total data center demand that can be shifted to other hours.

Let Y; € R be the amount of data center demand that is yet to be satisfied at hour ¢t. A
positive value means that there exists demand that is delayed, and a negative value means
that demand has been advanced. Let S; > 0 be the amount of shifted data center load that is
satisfied at hour ¢. Finally, let Dy > 0 be the amount of data center load that was originally
allocated to hour ¢ but is deferred and will be satisfied in a future hour ¢/, where ¢t < ¢’ <t -+ h.

We include the following constraint to model data center flexibility:

Data Center Load Balancing Constraint: the amount of data center demand that is yet to be
satisfied is equal to the amount from the previous hour, less what is satisfied in the current

hour, plus any deferrals.
Yi=Y1— St + Dy (1)

Mazimum Time to Delay Demand Constraint: The amount of data center load that is satisfied
in the next h hours from time ¢ must be greater than or equal to the amount that is yet to be

satisfied by time ¢.

t+h

> S =Y, (2)
i=t+1

Maximum Time to Advance Demand Constraint: The amount of data center load that is de-
ferred in the next h hours from time ¢ must be greater than the advanced demand (negative of
Y;) in hour t.

t+h

> Diz YVt (3)
i=t+1

Mazimum amount of demand Deferred Constraint: The amount of demand that can be deferred

in each hour must be less than the share of flexible workload.
Dy < sLy, Vit (4)

Maximum Data Center Load Satisfied : Shifted data center load that is satisfied during an hour

must be less than or equal to the capacity of the data center net of the deferred demand.

S <C—Li+ Dy (5)
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9 Input Assumptions

9.1 Regions and Load

Table S1 shows the number of zones per region along with the total and hourly data center
load, and the total non-data center load per zone. Zones are IPM regions from the EPA. Data
center load is sourced from [5] while non-data center load is sourced from [27] who source the
base hourly demand from NREL’s EFS [30]. We use the "High Growth” scenario as our base

case.

Table S1: Base Data Center and Non-Data Center Load per Model Zone (in MWh)

Reglon Zone Zone Number Data Center Load {Mo Growth)  MWh per Hour (Base) Data Center Load (Base] Mon-Data Center Load Total Load {Base) Share of Data Center Load
Texas ERC_REST 1 18,196,070 15415 135,033,643 399,01E,9:8 534,052,817 25.3%
Texas ERC_WEST z B52,570 6385 6,000,174 17,730,244 23,730,418 25.5%
Texas ERC_PHDL 3 268,607 2168 1,888,506 5,083 406 TA72,912 25.3%
Mid-Atlantic  PIM_AP 1 1,638,236 &0o0 5,253,312 96,335,623 £1,588,935 B.5%
Mid-Atlantic  PIM_ATS| z 1,415,551 2634 23,076,374 88,176,254 111,252 627 20.7%
Mid-Atlantic  PIM_Dom 3 30,408,937 9,605 84,157 388 86,425,239 172,562 GBS 4E.B%
Mid-Atlantic  PIM_EMAC 4 5,470,400 12380 11,212 385 170,061,177 1E1.293 562 6.2%
Mid-Atlantic  PIM_PENE 5 678,669 221 1,938 439 20,7BE,210 22,737 64B B.5%
Mid-Atlantic  PIM_SMAC ] 107,757 n 20,173 67,240,235 E7.330,434 0.1%
Mid-Atlantic  PIM_WMAC 7 1,304, 539 455 3,985,355 42,738,269 46,723 625 B.5%
Mid-Atlantic  PIM_Weast E 15,404,103 6,131 93,703,310 170,446,581 224,150,291 24.0%
WECC WEC_CALM 1 3,618,438 568 4977247 94,177,173 53,154,420 5.0%
WECC WELC_LADW z 2,710,231 426 3,727,587 70,550,254 74267 241 5.0%
WECC WEC_SDGE 3 58,730 141 1,237,600 23,417,738 24,654,898 0.0%
WECC WECC_SCE 4 2,838,787 446 3,904,620 73,885,197 F1.ra0,016 0.0%
WECC WECG_MT 5 641,553 50 51B.599 16,650,987 17,169,585 3.0%
WECC WEC_BANC ] 510,639 an TOZATI 13,201,530 13,394,468 0.0%
WECC WECC_ID 7 141,588 13 11B,052 24,E0E 432 24,816,543 0.5%
WECC WECC_MNNY B 1,038,416 148 1,303,616 10,911,131 12214747 10.7%
WECC WECC_SNV ] Z,BIT.400 405 3,540 487 20,708,849 33,258,336 10.7%
WECC WECC_UT i 3,030,388 358 3,133,353 36,427,730 39,361,143 7.9%
WECC WECC_PNW 11 11.887.277 8449 74,011,855 165,076,398 239,088,252 31.0%
WECC WECC_CO 12 1,666,168 310 2,715,211 69,022,339 71,737,610 3.6%
WECC WECC_WY 13 1E26.323 148 1,276,063 23,664,710 24342773 5.1%
WECC WECG_AZ 14 6,B71,657 7242 63,441 721 85,613,629 149,054,850 42.6%
WECC WECC_MM 15 612,040 a8 S0E,741 40,742,002 41,248,743 1.2%
WECC WECC_IID 16 53,403 B 73457 1,368,019 1,463,376 5.0%

The EPRI report [17] indicates what % of each state’s 2023 electricity demand was for Data
Centers. We assume that without data center growth, load will have the same % share of data
center load in 2030. We then calculate the additional data center load on top of the % share in

the base case. We provide an illustrative example for Texas Zone 1:

1. 4.59% of Texas’ load in 2023 is for Data Centers.

2. 2030 NREL EFS Demand for Texas Zone 1 is 418.2 TWh. 418 TWh x 4.59% = 19.2
TWh of Base Data Center Load in 2030

3. 418.2 TWh — 19.2 TWh = 399 TWh of non-Data Center Load in 2030
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4. There is a high growth forecast of 25.28% of Texas 2030 load will come from Data Centers
5. 399 TWh / (100% — 25.28%) = 534 TWh total Texas Zone 1 Load.
6. 534 TWh x 25.28% = 135 TWh of Data Center load in 2030.

7. Since we assume that data center load is constant per hour, we divide the 135 TWh by
8760 hours.

9.2 Generators

Our model includes existing capacity generators as well as a set of new technologies that can be
deployed. Existing generation capacity is sourced from EIA Form-860 and aggregated through
PowerGenome [27]. Details can be found in Table S2. Investment, operating, and maintenance
costs for new generators can be found in Table S3. Fixed O&M costs, CAPEX, and WACC
for new capacity are taken as average values from NREL ATB 2022 from the years 2023 to
2030 [28]. The investment costs vary based on regional multipliers. Meanwhile, cost assumptions
for existing plants use the basis year 2020, with variation assumptions from PowerGenome
depending on the start year of operation. Production and tax credits associated with the

Inflation Reduction Act are also implemented in the model.

Table S2: Capacity of Existing Generators per Technology in each Region (in GW)

Technology Mid-Atlantic Texas WECC

Batteries 0.25 4.40 13.69
Conventional Hydroelectric 3.35 0.54 50.25
Conventional Steam Coal 39.24 13.63 22.08
Hydroelectric Pumped Storage 521 0.00 5.05
MNatural Gas Fired Combined Cycle 55.90 41.75 5275
MNatural Gas Fired Combustion Turbine 22.26 11.16 23.57
Nuclear 22.80 5.12 7.42
Onshore Wind Turbine 5497 34.05 3222
Solar Photovoltaic 10.79 20.83 38.27

Table S3: New Technology Investment and Operation Cost Assumptions in 2030

Capex Capital RecoveryPeriod WACC Investment Cost Fixed O&M Variable O&M
($/MW) (years) ($/MW-yr) ($/MW-yr)  [$/MWh)

Natural Gas Combined Cycle 932,813 15 3.56% 81,708 28,000 2
Solar Photovoltaic 913,819 20 2.50% 58,794 22,623 -
Onshore Wind Turbine 1,131,578 20 3.06% 76,816 40,367 -
Battery 250,489 20 2.50% 16,116 6,262 -

9.3 Transmission

We source current transfer capabilities per line between each IPM zone from the EPA’s Power
Sector Modeling Platform v6—2021 Summer Reference Case [32]. We assume a pipeline flow
model such that the amount of transmission that can flow between two zones is only restricted

by the capacity of the line.
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9.4 Net Imports

Texas and WECC are fairly isolated as model regions within the continental U.S.. The impacts
of electricity exchange with neighboring regions on these two regions via transmission lines
is therefore minimal. However, the Mid-Atlantic is extensively connected to other neighbor-
ing regions such as the Midwest, Southeast, and New York. To account for this in the model,
we sourced hourly net import data for the Mid-Atlantic from EIA’s Grid Monitor Dashboard for
2022 (https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/
UsS48). Within the dataset, Mid-Atlantic’s (MIDA) net imports are aggregated to hourly ex-
change with CAR (Carolinas), MIDW (Midwest), NY (New York), and TEN (Tennessee). To
allocate the net import to model zones, we first determine whether the model zone has existing
transmission capacity with the EIA regions. If there is, we calculate the percentage allocation
as the total load of the model zone divided by the total load of all model zones connected to
the region (see Table S4). Each model zone’s net import is thus the hourly net import from the

EIA data set multiplied by this allocation percentage.

Table S4: Net Import Allocation Percentage

Zone Number CAR MIDW NY TEN
PIM_AP 1 0% 0% 0% 0%
PIM_ATSI 2 0% 0% 0% 0%
PIM Dom 3 43% 0% 0% 0%
PIM_EMAC 4 0% 0% 89% 0%
PIM_PENE 5 0% 0% 11% 0%
PIM_SMAC 6 0% 0% 0% 0%
PIM_WMAC 7 0% 0% 0% 0%
PIM_West 8 57% 100% 0% 100%

9.5 CO, Emissions Factors

Emission factors are available for Natural Gas and Coal. COs is generated per MMBtu of
fuel consumed. We assume 0.09552 mtCO2/MMBtu and 0.05306 mtCO2/MMBtu for coal and

natural gas, respectively. Table S5 shows the average heat rates for existing generators.

Table S5: Average Heat Rates of Existing Generators (in MMbtu/MWh)

Mid-Atlantic  Texas WECC
Conventional Steam Coal 12.27 11.28 10.97
Natural Gas Fired Combined Cycle 8.19 8.69 8.07
Natural Gas Fired Combustion Turbine 13.12 12.10 12.08
Nuclear 10.45 10.45 10.45
9.6 Supply Curves
Supply curves for renewables are sourced from PowerGenome [27], who source the data from

Vibrant Clean Energy’s data sets [33].
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9.7 Fuel Costs

Fuel costs are sourced from EIA’s Annual Energy Outlook (AEO) 2022 for the year 2030. The
individual zones are matched to the AEO regions through PowerGenome. Fuel cost information

can be found below in Table S6.

Table S6: Fuel Cost (in $/MMbtu)

Muﬂﬂﬂagiun Fuel AEDQ Haginn Fual Mame Model Zone $/MMBiu
Mid-Atlantic Coal South Atlantic south_atlantic_coal PIM_AP,PIM_Dom 2.40
East Morth Central  east_north_central_coal FIM_ATSI, PIM _West 1.84
Middle Atlantic middle_atlantic_coal FIM_EMALC, PIM_PEME, PIM_SMAC,
PIM_WMALC 2.25
Natural Gas South Atlantic south_atlantic_naturalgas FIM_AR, PIM_Dom 4.10
EastMorth Central  east_north_central_naturalgas PIM_ATSI PIM _Waest 3.41
Middle Atlantic rriddle_atlantic_naturalgas  PIM_EMALC, PIM_PENE, PIM_SMAC,
FIM_WMAC 3.19
Uranium  South Atlantic south_atlantic_uranium FIM_Dom 071
East Morth Central  east_north_central_uranium  PIM_ATS] PIM _West 071
Middle Atlantic middle_atlantic_uranium PIM_EMAC, PIM_SMAC, PIM_WMAC 071
Texas Coal West South Central west_south_central_coal ERC_REST 173
Matural Gas West South Central west_south_central_naturalgas ERC_REST 3.49
Uranium  West South Central west_south_central_uranium  ERC_REST, ERC_PHDL ERC_WEST 071
Coal Mountain mountain_coal WECC_AZ, WECC_CO, WECC_MT,
WECC_NM, WECC_MHNV, WECC_UT,
WECC WECC Wy 1.55
Pacific pacific_coal WECC_PMW, WECC _SCE 2.02
Matural Gas Mountain mountain_naturalgas WECC_AZ, WECC_CO,WECC_ID,
WECC_MT,WECC_NM,WECC_MMNV,
WECEC SNV WECD UT, WECC WY 4.00
Pacific pacific_naturalgas WECC_lID, WECC_PNW, WECC_SCE,
WEC_BANC, WEC_CALN, WEC_LADWY,
WEC_SDGE 3.88
Uranium  Molintain frouftain_uranium WECC_AZ 071
Pacific pacific_uranium WECC_PNW, WEC_CALN 071

10 Capacity Retirements

Fig. S1 shows the impact of flexible data centers on retirement decisions for nuclear, coal, and
natural gas generators across the three regions. In the Mid-Atlantic and WECC, retirement
decisions appear largely insensitive to data center flexibility across all three fuel types, although
coal and natural gas show an increase in retirements for the Mid-Atlantic (Fig. S1B) and
WECC (Fig. S1I, respectively. Nuclear retirements for both regions (Fig. S1A, Fig. S1G) and
natural gas retirements for the Mid-Atlantic (Fig. S1C) remain similar regardless of flexibility
levels. This suggests that the generation mix and system constraints in these regions limit the
ability of flexible demand to displace firm capacity.

In contrast, Texas sees different retirement patterns. As both the share of flexible workload
and the shifting horizon increase, significant generator retirements are observed, particularly
for nuclear (Fig. S1D) and coal (Fig. S1E) resources. At high flexibility levels and long shifting
horizons (e.g., > 80% flexible workload and 24-hour shifting horizon), nuclear and coal retire-

ments approach or exceed 80% and 90%, respectively. This indicates that flexible data center
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Figure S1: Percentage Retirement per Technology for each Region. Panels show the percentage
of existing capacity retired for nuclear (A, D, G), coal (B, E, H), and natural gas (C, F, I) across
combinations of data center shifting horizon (1 to 24 hours) and flexible workload share (1% to 100%).
Values displayed at the top of each heatmap indicate the initial installed capacity for the corresponding
technology in each region.

demand in Texas has a capacity substitution effect, particularly for baseload resources. This
is due to the region’s high penetration of high-quality renewables. Natural gas retirements in
Texas (Fig. S1F) remain low overall, with only marginal increases under the highest flexibility

levels.
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11 Capacity Investments

Fig. S2, S3, and S4 show the effect of flexible data center operations on new capacity invest-
ments in the Mid-Atlantic, Texas, and WECC, respectively.

In the Mid-Atlantic, solar (Fig. S2A) investments increase significantly with higher levels of
data center flexibility, particularly when both the share of flexible workload exceeds 60% and
the shifting horizon extends beyond 2 hours. Under these conditions, solar capacity reaches
over 52 GW. This reflects the ability of the system to align flexible data center demand with
solar output. This increases the value of solar in balancing load within a day, which leads to
more investments. Investments in wind capacity (Fig. S2B), in contrast, remain unchanged
across the different combinations of flexibility. This suggests that the temporal characteristics
of flexible demand do not substantially affect wind investment decisions in the Mid-Atlantic.
Battery investments (Fig. S2C) remain relatively limited, with total new capacity not exceeding
2 GW. Notably, battery deployment decreases once the flexible workload share exceeds 60%.
This decline can be attributed to functional competition between batteries and flexible data
center loads, as both serve similar roles in providing temporal flexibility to the power system.
As flexible data center operations become more prominent, they can displace the need for
additional storage by shifting load in response to system conditions. Investments in new natural
gas capacity (Fig. S2D) decrease as data center flexibility increases. With high levels of both
the share of flexible workload and long shifting horizons, natural gas investment drops from
over 14 GW to below 6 GW, indicating that flexible demand can substitute for peaking gas
capacity by reducing peak load and system ramping needs.

In Texas, a higher level of data center flexibility leads to an increase in wind investments
from approximately 46 GW to over 58 GW (Fig. S3B). Solar capacity (Fig. S3A) shows
a more modest and stable pattern with only a slight increase from 19 GW to 22.5 GW. The
flatter gradient suggests that while solar remains valuable, its incremental benefit diminishes in
the presence of high data center flexibility. This is due to the temporal mismatch between peak
solar output and peak system stress in Texas. Battery and natural gas investments (Fig. S3C,
S3D) remain negligible across the entire flexibility space, with capacities barely exceeding 0.05
GW. Thus, in Texas, data center temporal flexibility can strongly incentivize wind deployment,
supporting a more renewable-heavy system configuration. Similar to PJM, this indicates that
flexible data center operations are effectively substituting for both short-duration storage and
fast-ramping thermal resources.

In WECC, both solar and wind capacity exhibit noticeable increases as data center flexi-
bility increases. Solar investments (Fig. S4A) increase steadily from 38 GW to over 43 GW,
particularly when the share of flexible workload exceeds 40% and the shifting horizon is greater
than 8 hours. Similarly, wind capacity (Fig. S4B) shows an upward trend, growing from 13 GW
to 14 GW under higher flexibility. Just like in the Mid-Atlantic and Texas, these patterns also
suggest that flexible data center demand in WECC increases the economic viability of variable
renewables. In contrast, there are no new battery investments (Fig. S4C) across all flexibility
scenarios. Natural gas (Fig. S4D) investments are small even without flexibility at around 1.75
GW, and decline to almost no investments as flexibility increases. This indicates that the load

flexibility is sufficient to meet system balancing needs, diminishing the marginal value of new
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Figure S2: Capacity Investments per Technology in the Mid-Atlantic. Panels show new
capacity additions for solar (A), wind (B), batteries (C)), and natural gas (D) across combinations of
data center shifting horizon (1 to 24 hours) and flexible workload share (1% to 100%). Note that color
scales vary across subplots.
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Figure S3: Capacity Investments per Technology in Texas. Panels show new capacity additions
for solar (A), wind (B), batteries (C)), and natural gas (D) across combinations of data center shifting
horizon (1 to 24 hours) and flexible workload share (1% to 100%). Note that color scales vary across
subplots.
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12 WECC Data Center Shifting Operations

A B C
i
e s l
IS 10
£ o £
G 2- ©

5
1
-
|
5

. _D ,ﬂ'[[lIIIIHlHMH‘IIM'm‘ww{“m ﬂ'mHIH||“MHW“MW” l
E - A sl I _

] | Iﬂ'i|lIIIIU|I|!lIIF'|IMIw‘wmm] ]wmMlillﬂqlmwmmu LO

c
o
N
S
I .
o ~
£ <
£ 03
R I I
3 \
2 ‘
< 0 - I—10
o
-l Julil i \“thm“‘ﬂI\IIHI\FIIIIIJ I\ﬁllllm Ji lhlI’lmmmmmllﬂﬂuwlw‘u il
O O 0O OO0 O O o 9o O O 0O OO0 9O O O O [elelNocl e ool -]
TEISRIRS TEISRIRS MR LR
20% Flexible Workload 60% Flexible Workload 100% Flexible Workload
Day of the Year

Figure S5: Data Center Load Shifting for WECC. Each panel displays the net hourly workload
shifted (in GWh) across an entire year, with the x-axis representing days (1-365) and the y-axis repre-
senting hours of the day (0-23). Positive values (red) indicate workload shifted into a given hour; negative
values (green) represent workload shifted out. Columns show increasing flexible workload shares—4%,
12%, and 20%—based on 20%, 60%, and 100% of a shiftable portion capped at 20% of total capacity.
Rows indicate shifting horizons of 1 hour, 12 hours, and 24 hours, reflecting the maximum time a task can
be advanced or delayed. This illustrates how varying flexibility levels and temporal windows influence
both intra-day load scheduling and broader seasonal shifting patterns.

13 Additional Capacity Information
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shown for flexible workload shares ranging from 20% to 100% in 20% increments, alongside a baseline
scenario without flexibility. All scenarios assume a 1-hour shifting horizon. No new capacity investments
can be made in Coal, Nuclear, and Hydro. All technology types can be retired.

S11



14 Cost Differences per Component
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Figure S7: Cost Difference per Component for the Mid-Atlantic. Panels show the change in
system costs between scenarios with and without data center flexibility for fuel (A), fixed O&M (B),
variable O&M (C), and generation investment (D), across combinations of shifting horizon and flexible
workload share. Green indicates a cost reduction with flexibility; red indicates an increase.
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Figure S8: Cost Difference per Component for Texas. Panels show the change in system costs
between scenarios with and without data center flexibility for fuel (A), fixed O&M (B), variable O&M
(C), and generation investment (D), across combinations of shifting horizon and flexible workload share.
Green indicates a cost reduction with flexibility; red indicates an increase.
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Figure S9: Cost Difference per Component for WECC. Panels show the change in system costs
between scenarios with and without data center flexibility for fuel (A), fixed O&M (B), variable O&M
(C), and generation investment (D), across combinations of shifting horizon and flexible workload share.
Green indicates a cost reduction with flexibility; red indicates an increase.
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