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Abstract

Data centers are among the fastest-growing electricity consumers, raising concerns about

their impact on grid operations and decarbonization goals. Their temporal flexibility—

the ability to shift workloads over time—offers a source of demand-side flexibility. We

model power systems in three U.S. regions: Mid-Atlantic, Texas, and WECC, under varying

flexibility levels. We evaluate flexibility’s effects on grid operations, investment, system

costs, and emissions. Across all scenarios, flexible data centers reduce costs by shifting

load from peak to off-peak hours, flattening net demand and supporting renewable and

baseload resources. This load shifting facilitates renewable integration while improving

the utilization of existing baseload capacity. As a result, the emissions impact depends

on which effect dominates. Higher renewable penetration increases the emissions-reduction

potential of data center flexibility, while lower shares favor baseload generation and may

raise emissions. Our findings highlight the importance of aligning data center flexibility

with renewable deployment and regional conditions.
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1 Introduction

Data centers are among the fastest-growing electricity consumers, with their energy demand

projected to increase over the coming years [1, 2]. In the U.S., that projection is an increase of

7-12% by 2030 [3]. This surge is driven by advances in artificial intelligence and the prevalence

of cloud computing, which poses challenges for grid reliability [4] and decarbonization efforts [5].

The additional load could put stress on the grid and increase the usage of existing thermal power

plants, which may increase carbon emissions. For example, in PJM, the forecasted increase of

32 GW (20% increase) in summer peak load mostly comes from data centers and is equivalent

to adding another mid-sized state’s demand to the system [6]. However, opportunities exist to

operate data centers more flexibly as demand response resources, potentially mitigating large

load impacts. One of these strategies takes advantage of a latent demand response resource

we call data center temporal flexibility—the ability of data centers to change its load profile by

shifting workload across time [7]. Data centers do not operate at full capacity all the time and

typically maintain utilization rates of around 80% [8]. This is especially true for AI training,

which has a relatively flat workload pattern. This gives a headroom of 20% of data center

capacity to accommodate additional shifted data center load. Operationally, there could be

benefits to shift tasks to hours when renewable availability is high or prices are low [9, 10].

This may not only save operating costs for data centers, but also provide flexibility and increase

reliability for the power system while also meeting climate goals [11, 12].

Prior work hints at these benefits—curtailment relief, renewable firming, and even 24/7

carbon-free alignment when spatial shifting across data center networks is layered on [13, 14,

15, 16, 5, 17, 18]. Google’s carbon-aware scheduler offers a high-profile proof-of-concept [10],

and market-based signals appear decisive in whether load-shifting cuts or raises emissions [19].

Strikingly, even modest flexibility could offset most of the projected U.S. data center growth

without a single new power plant [20].

But, several critical research questions remain unanswered: First, it is unclear how data cen-

ter flexibility affects power system planning and operations. The ability to shift demand could

significantly impact investment decisions, plant retirements, and operational strategies. This

may alter the trajectory of capacity expansion and reliability planning for regional operators.

Second, the potential grid benefits that flexible data centers bring are not yet understood for

different levels of flexibility. While some portion of the data center load is flexible, the degree

to which it can be shifted is constrained over time. Tasks cannot be postponed indefinitely,

and certain tasks may not be shifted at all. Thus, understanding the combinations of flexibility

levels (in terms of duration and shifting potential) that can lower cost and emissions is critical.

Furthermore, the impact of data center flexibility on different regions may vary depending on

the characteristics of the regional grid.

To address these questions, we use the GenX capacity expansion model (CEM). GenX is a

least cost model that co-optimizes generation investment, retirement, and operational decisions

in the power system for a representative year of operation [21]. It has been used extensively to

assess policy and technology impacts on the grid (see [22, 23, 24, 25] for examples). We modified

the GenX code-base to accommodate different data center temporal flexibility scenarios (see

Methods in Section 8). We model combinations of scenarios that vary the shifting horizon—
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the time window in which loads can be shifted—from 1 to 24 hours, and the share of flexible

workload—the fraction of total shiftable demand (20% of total gross demand)—from 1% to

100%. The final GenX model then includes decisions on the hourly shifting of flexible data

center load, limited by the level of flexibility in each scenario. We also include a baseline case

without flexibility for comparison and assume that without flexibility, data centers have constant

load throughout the year.

Our testbeds—Texas, the Mid-Atlantic, and theWestern Interconnect (WECC)—collectively

host 82% of the nation’s projected 2030 data center demand [5, 17]. Figure 1 visualizes zonal

loads and transmission corridors.

Figure 1: Model Zones with Transmission Lines and Data Center Load. Yellow and Blue
circles represent annual data center demand per zone. Green line segments indicate transmission links
between zones in a region where the width is scaled to the capacity of the line. Detailed information on
load assumptions can be found in Supplementary Note 9.1.

Our findings show that data center temporal flexibility can significantly change a power

system’s operations and generation mix. Higher flexibility levels enable net load shifting from

peak to off-peak hours, flattening the net load profile1. This reduces reliance on peaker or

ramping plants and promotes more stable operation of base load generators. When renewables

are sufficiently cost-competitive—as in Texas, where wind and solar are projected to supply 54%

of generation—high levels of data center flexibility results in up to 40% lower CO2 emissions and

1Net Load is defined as demand net of VRE (Variable Renewable Energy) generation and curtailment
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accelerate retirements of coal and nuclear plants. This reverses in the Mid-Atlantic and WECC:

renewable penetration is lower, coal units that survive retirements can run more uniformly, and

system-wide emissions rise by as much as 3%, even though costs still fall.

We confirm this cost sensitivity in a counterfactual experiment that raises renewable invest-

ment and fixed O&M costs in Texas to 1.3 times baseline values. Renewable share collapses to

21%, coal plants remain on the system, and the emissions advantage of flexibility disappears—

demonstrating that data center load shifting substitutes for baseload when clean energy is

economical.

Across all regions and price scenarios, however, temporal flexibility always lowers total

system costs—by up to 5% in Texas—while steering new investment toward renewables (wind

in Texas, solar in WECC and the Mid-Atlantic) and crowding out battery storage. Flexible

data center operations thus emerge as a robust, low-cost reliability resource whose climate value

hinges on the underlying economics of clean power.

To our knowledge, this is the first study to trace end-to-end consequences—from grid build-

out to hourly dispatch—of data center flexibility. The results show that it can either accelerate

decarbonization or it can entrench fossil fuels that it seeks to displace.

2 The Impact of Data Center Flexibility on Data Center and

System Operations

2.1 Data Center and Grid Operations

We first look at how data centers shift their load given different combinations of temporal

flexibility. Fig. 2 and 3 show the entire year’s data center load shifting operations for the Mid-

Atlantic and Texas, respectively while fig. S5 show WECC’s. We also show in Fig. 4 and 5

the interaction of data center load shifting and power system dispatch across the three regions

for average summer and winter conditions, respectively.

We generally observe that data center load is temporally shifted out of daily peak load hours

so that it can flatten net load. For example, in all regions, we find consistent patterns of shifting

from early morning hours and early night hours to midday during the winter (Fig. 2, 3, fig. S5).

This aligns with reducing the two peaks during these periods and shifting demand to midday

hours with high solar availability (Fig. 4). Notably, the presence of storage and hydro (purple

and dark blue, respectively, in Fig. 4I) in WECC further complements flexible load by reducing

net load volatility. In all cases, flexible data center load reduces system ramping requirements.

We see this from the flattening of the net load curve when comparing the dashed and solid red

lines in Fig. 4.

Comparing the “No Flexibility” subplots in Fig. 5 (Fig. 5A, 5D, 5G) with those incor-

porating 1-hour and 24-hour shifting horizons (middle Fig. 5B, 5E, 5H, and right Fig. 5C,

5F, 5I columns), we observe a clear flattening of the net load curve (red lines) as flexibil-

ity increases. This operational shift leads to notable changes in resource utilization: peaking

gas units (NGCT) are dispatched less frequently, while baseload and mid-merit units—such as

NGCC, coal, and nuclear—operate more uniformly. The alignment of data center load with

solar generation also increases the use of solar. Battery dispatch also becomes less prominent as
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Figure 2: Data Center Load Shifting Operations for the Mid-Atlantic. Each panel displays the
net hourly workload shiftted (in GWh) across an entire year, with the x-axis representing days (1–365)
and the y-axis representing hours of the day (0–23). Positive values (red) indicate workload shifted into
a given hour; negative values (green) represent workload shifted out. Columns show increasing flexible
workload shares—4%, 12%, and 20%—based on 20%, 60%, and 100% of a shiftable portion capped at
20% of total capacity. Rows indicate shifting horizons of 1 hour, 12 hours, and 24 hours, reflecting the
maximum time a task can be advanced or delayed. This illustrates how varying flexibility levels and
temporal windows influence both intra-day load scheduling and broader seasonal shifting patterns.

flexible load partially substitutes its role in balancing variability. Across regions, Texas notably

differs from the Mid-Atlantic and WECC. While workloads are shifted from nighttime to mid-

day during the summer for the Mid-Atlantic and WECC (Fig. 2, 5C, 5I, fig. S5), data center

load is frequently shifted away from the midday in Texas (Fig. 3, 5E). This difference is driven

by Texas’ midday net load peaks (dashed red line, Fig. 5D), which is unique in the three regions

as Texas has high cooling demand during these hours and limited baseload generation (Fig. 5E,

5F). In contrast, more baseload nuclear and coal capacity in the Mid-Atlantic and WECC leads

to net load peaks that are later in the day. Flexible data center loads then tend to be shifted

into midday hours, leveraging lower marginal costs from solar generation and avoiding evening

ramp pressures (Fig. 5C, 5I). We also observe a reduction in coal and nuclear generation in
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Figure 3: Data Center Load Shifting Operations for Texas. Each panel displays the net hourly
workload shiftted (in GWh) across an entire year, with the x-axis representing days (1–365) and the
y-axis representing hours of the day (0–23). Positive values (red) indicate workload shifted into a given
hour; negative values (green) represent workload shifted out. Columns show increasing flexible workload
shares—4%, 12%, and 20%—based on 20%, 60%, and 100% of a shiftable portion capped at 20% of total
capacity. Rows indicate shifting horizons of 1 hour, 12 hours, and 24 hours, reflecting the maximum time
a task can be advanced or delayed. This illustrates how varying flexibility levels and temporal windows
influence both intra-day load scheduling and broader seasonal shifting patterns.

Texas with more flexibility, leading up to almost no baseload generation at a 24-hour shifting

horizon (Fig. 5D, 5E, 5F). Regional system characteristics, such as resource mix and load

shape, thus influence optimal data center shifting operations.

Finally, we note that the load shifting is more localized in the 1-hour shifting horizon case

as load is constrained to a smaller time window, but becomes more pronounced with a 12-

or 24-hour shifting horizon (for example, Fig. 2A, 2D, 2G for the Mid-Atlantic). This also

implies that the 24-hour and 100% share of flexible workload scenario (Fig. 2I) shows the most

extensive redistribution of data center load. However, even modest flexibility (12-hour shifting

horizon and 60% share of flexible workload; Fig. 2E) in data center operations can already lead

to significant grid re-balancing.
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Figure 4: Average Winter Operations per Region. Each subplot shows the average generation
per technology, net load, and data center load shifts in MWh per hour of the day during the Winter
season. Panels correspond to three levels of operational flexibility: No Flexibility (A, D, G) 1-hour (B,
E, H) and 24-hour (C, F, I) Shifting Horizon with a 100% share of flexible workload.

2.2 Capacity and Generation Mix

Data center flexibility and the redistribution of net load naturally affect the capacity and gen-

eration mix of a power system. Fig. 6 shows the capacity and generation per technology at

varying levels of data center flexibility for each region.

Overall, we observe two main effects. First, flexibility supports renewable investments. By

shifting demand into hours with high renewable availability, data center flexibility increases

the economic value of wind and solar generation. This leads to larger solar investment in the

Mid-Atlantic (and to a lesser extent in WECC), and larger wind investment in Texas. The

preference for either is driven by which resources are more abundant in the region. Texas has

strong wind potential, while the Mid-Atlantic and WECC are better suited to solar. Second,

data center flexibility supports baseload operations. By flattening net load profiles, data center
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Figure 5: Average Summer Operations per Region. Each subplot shows the average generation
per technology, net load, and data center load shifts in MWh per hour of the day during the Summer
season. Panels correspond to three levels of operational flexibility: No Flexibility (A, D, G) 1-hour
(B, E, H) and 24-hour (C, F, I) Shifting Horizon with a 100% share of flexible workload. The graphs
don’t include the regions’ net electricity imports. This is relevant for the Mid-Atlantic where we assume
deterministic hourly net imports. Details on net import data can be found in Supplementary Note 9.4.

flexibility makes it more cost-effective to run inflexible baseload plants like coal with fewer

ramping requirements.

Whether natural gas capacity and generation increase or decrease depends on which of

these two effects dominates. In the Mid-Atlantic and WECC, the support for baseload is

stronger. This reduces the need for flexible natural gas capacity as coal generation becomes

more economically viable. In contrast, in Texas, the support for renewables dominates due

to the high share of renewable generation of around 54% (39% wind, 15% solar) of total mix,

compared to 22% (10% wind and 12% solar) in the Mid-Atlantic and 33% (14% wind and 19%

solar) in WECC. This drives an increase in natural gas generation that serves as a flexible,

fast-ramping complement to wind. As a result, Texas sees less reliance on baseload plants like
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Figure 6: Capacity and Generation per Region with 24-hour shifting horizon. Top row (A,
C, E) shows total installed capacity by technology, accounting for new investments and retirements.
Bottom row (B, D, F) shows corresponding total generation by technology. Results are shown across
increasing flexible workload shares (20% to 100% in 20% increments), assuming a 24-hour shifting hori-
zon, alongside a baseline scenario without flexibility. Coal, nuclear, and hydro are excluded from new
capacity additions but remain eligible for retirement. Data on capacity retirements and investments at
all flexibility combinations can be found in Supplementary Notes 10 and 11.

coal and nuclear. This is reflected in coal and nuclear retirements and reduced generation.

Interestingly, in the Mid-Atlantic, coal retirements also increase, but the baseload support of

data center flexibility leads to higher coal generation.

3 The Impact of Data Center Flexibility on Carbon Emissions

The results of our modeling show that projected 2030 data center load growth relative to a

system with no data center growth increases annual CO2 emissions by 47 Mmt (20%), 55 Mmt

(58%), and 46 Mmt (24%) for the Mid-Atlantic, Texas, and WECC regions, respectively. The

increase in projected emissions emphasizes the urgency of identifying strategies to reduce data

centers’ environmental impact, particularly in evaluating if data center flexibility can lead to

emissions mitigation. However, the environmental consequences of the shifts in generation and

capacity induced by data center flexibility are not straightforward. As section 2.2 showed,

flexibility can simultaneously promote both renewable deployment and greater utilization of

inflexible baseload generators. This dual effect raises a natural question: does data center

flexibility reliably reduce emissions, or can it, under certain conditions, lead to the opposite?

8



While the prevailing view is that any form of demand flexibility complements the use of clean

energy, our results suggest this intuition may not always hold. In this section, we examine how

emissions outcomes depend on the interplay between flexibility and the underlying generation

mix. We find that temporal flexibility in data centers does not always reduce total annual CO2

emissions relative to a system without flexibility.

Fig. 7D, 7E, and 7F show the percentage reduction in emissions of systems with flexible

data centers compared to systems without that flexibility. In Texas, emissions fall significantly

by up to 40%. But in the Mid-Atlantic, we observe a counterintuitive result: greater data

center flexibility leads to higher CO2 emissions. In systems with high renewable penetration

and limited remaining coal capacity, flexibility mostly enables greater renewable utilization

and emissions reductions (i.e., Texas). Data center flexibility can have a significant impact

on emissions when coupled with high renewable penetration, such that even with projected

growth in data center load, a flexible system can achieve lower emissions than a system without

either data center growth or flexibility (Fig. 7H). In contrast, in systems with a large share of

existing coal and relatively limited VRE availability, flexibility tends to shift load toward cheap,

carbon-intensive baseload generation, which raises emissions even as costs fall (Fig. 7D).

This trade-off is evident in the Mid-Atlantic. Initially, with flexibility, load shifts to hours

with high VRE generation, which reduces thermal dispatch and variable O&M costs—the first

effect. However, once VRE potential is exhausted, the second effect emerges with additional

load shifted to hours when cheap thermal generation is available, particularly baseload coal

(Fig. 5A and 5C). With full flexibility, average hourly coal utilization in the Mid-Atlantic rises

from 50% to 59%. Fig. 8A and 8B show heatmaps of hourly coal utilization in the Mid-Atlantic.

Without flexibility, coal ramps up in the evening and ramps down during the day when solar

generation is high (Fig. 8A). The summer evenings see the largest utilization of coal as this time

period coincides to the highest net loads. With flexibility, coal’s output gets distributed more

evenly from the evening to the early morning (Fig. 8B). The high summer evening utilization

of coal is lowered, and utilization throughout the rest of the day is increased as evening data

center load gets shifted to the morning (Fig. 2). A duration curve reveals that coal operates

between 68 to 78% utilization for 4,526 hours (52% of the year) with flexibility, compared to

just 898 hours (10%) without (Fig. 8C). This shift to steadier coal operations contributes to

higher total emissions .

To further illustrate that the emissions impact is driven by the availability of renewables,

we simulate an alternative set of Texas scenarios where the investment and fixed O&M costs of

renewables are increased. In these systems with less economically viable renewables, we expect

and find that the share of renewables decreases. More importantly, we see that the emissions-

reducing effect of flexibility is reversed. Data center flexibility increases emissions relative to

an inflexible system by up to 5% at renewables that cost 1.3 times the base prices (Fig. 8I). In

this system, as in the Mid-Atlantic, insufficient renewable capacity to absorb flexible demand

results in coal not being retired and instead becoming more heavily utilized with less ramping

(Fig. 8D, 8E).

These findings show that the generation mix determines whether data center flexibility

reduces or increases emissions. This also parallels results on battery storage where it can
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Figure 7: Cost and Emissions Reduction. Top row (A, B, C): Heatmaps show the percentage
reduction in total system cost from introducing flexible data centers, relative to a system without flex-
ibility, across combinations of shifting horizon and share of flexible workload. Middle row (D, E, F):
Heatmaps of percentage reduction in system CO2 emissions under the same flexibility configurations,
relative to the no flexibility baseline. Bottom row (G, H, I): Heatmaps of percentage reduction of
system CO2 emissions relative to a reference system with no data center flexibility and no data center
load growth. Green (red) color indicates a decrease (increase) in CO2 emissions relative to the no growth
scenario. The “no growth” baseline assumes data center load in 2030 maintains the same share of total
system load as in 2022. Details on load assumptions are found in Supplementary Note 9.1. Note: Color
scales vary across rows.

produce counterintuitive emissions outcomes under certain conditions [26]. In systems with high

renewable penetration and potential like Texas, flexibility typically aligns with wind and solar,

displacing thermal generation and lowering emissions. As a consequence, the lower emissions

outcome is not guaranteed and is contingent on the availability and build-out of renewable

resources. The emissions impact of data center flexibility is thus not inherent to flexibility itself,

but rather depends on the surrounding resource mix and investment environment. Flexibility

consistently reduces system costs, but without adequate clean generation, it can inadvertently

increase system emissions by reinforcing baseload coal operations.
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Figure 8: Coal utilization and emissions under varying VRE costs and data center flexibility.
Panels (A-B) show heatmaps of coal utilization in the Mid-Atlantic under no flexibility and with a 24-
hour shifting horizon with 100% flexible workload. Panels (D-E) show analogous results for Texas under
a 40% increase in VRE costs. Coal utilization is normalized using a common capacity baseline—the higher
of the two scenarios’ remaining coal capacity—to ensure consistent comparison. Panels (C) and (F)
display duration curves ranking hourly coal output in descending order across all 8,760 hours. Panels
(G-H) show average generation by technology in Texas under varying VRE cost multipliers, which affect
investment and fixed O&M costs for new wind and solar. Panel (I) reports total system CO2 emissions
across the same cost multipliers.The base model is represented by a cost multiplier of 1.0.

4 The Impact of Data Center Flexibility on Cost

A key output of the GenX model is the optimal total annual system cost. This consists of

investment, fixed and variable operating and maintenance (O&M), fuel, startup costs, and

applicable tax credits. Fig. 7A, 7B, and 7C are heatmaps of the percentage reduction in total

system cost of a system with Flexible Data Centers relative to the No Flexibility scenario for

the Mid-Atlantic, Texas, and WECC regions, respectively.

Data center temporal flexibility leads to lower total system costs. Increasing the shifting
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horizon and the share of flexible workload also increases the cost savings, with reductions of up

to 4% in the Mid-Atlantic, 5% in Texas, and 2% in WECC compared to a no flexibility scenario.

The cost reduction is primarily constrained by the share of flexible workload rather than the

shifting horizon. The contour lines indicate that achieving specific cost reduction levels is only

possible over certain ranges of the share of flexible workload. For example, in Texas, a 2%

reduction in costs cannot be achieved if only 10% of data center load can be shifted to other

hours, no matter how long the shifting horizon is. To achieve that 2% reduction, the share of

flexible workload has to be increased to a value between 21 to 49%. The relationship between

flexibility and cost reduction is also nonlinear, with an additional share of flexible workload

yielding diminishing returns.

While data center flexibility reduces cost at all levels of flexibility, the source of these savings

varies per region. fig. S7, S8, and S9 show the cost difference per cost component relative

to a No Flexibility scenario for the Mid-Atlantic, Texas, and WECC, respectively. In the

Mid-Atlantic, the savings come from a reduction of investments in new natural gas (Fig. 6A,

fig. S2D) and the retirement of a portion of the existing coal plants (Fig. 6A, fig. S1B). With the

lower investment in new natural gas capacity, the system avoids a generation mix that would

need to spend on fuel costs that it would otherwise incur in an inflexible system. These lower

investments and the additional retirements of coal generation also avoid fixed O&M costs. Note,

however, that the increase in operation of the remaining non-retired coal plants with additional

flexibility (fig. 6B) increases the variable O&M costs.

In Texas, the cost benefits of temporal flexibility rely on aligning data center load with

cheap VRE resources. When there is a larger share of load that can be shifted to hours with

high VRE availability factors, it results in lower spending on fuel and variable O&M for thermal

generators. However, this increased share of renewables is only possible by building new wind

capacity, increasing the investment cost (Fig. 6C, fig. S3B). At relatively small shares of flexible

workload (i.e., ≤ 50%), Texas systems with flexibility increase fixed O&M cost, because of the

non-retirement of nuclear plants (Fig. 6C, fig. S1D). Similar insights to those in Texas can be

found in WECC. The only difference is that the increase in investments primarily comes from

solar rather than wind, which slightly goes down as flexibility increases. This reduction in wind

investments (Fig. 6E, fig. S4B) and an increase in natural gas retirements (Fig. 6E, fig. S1I)

with more flexibility is what drives the lower fixed O&M costs.

5 Policy Implications

This study examines the role of data center temporal flexibility in shaping power system out-

comes amid rapidly growing electricity demand. Policymakers should consider mechanisms to

incentivize or require flexible data center operations, such as dynamic pricing, demand response

programs, or performance-based incentives tied to load-shifting capabilities. Flexibility enables

cost-effective grid management by reducing peak demand, facilitating renewable integration,

and lowering system costs. However, its emissions impact is highly context-dependent: in grids

with abundant renewables, flexibility supports decarbonization, while in fossil-heavy systems, it

may increase emissions by extending the operational life of baseload coal. Therefore, unlocking
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the full benefits of data center flexibility requires coupling it with strong clean energy poli-

cies such as carbon pricing, investment incentives, or renewable portfolio standards, to ensure

emissions reductions accompany cost savings.

6 Conclusion

Data centers are projected to account for a substantial share of U.S. electricity demand in the

coming years. This study examines how the temporal flexibility of data center load can alter

power systems in response to this rapid demand growth. Specifically, we analyze how flexibility

affects grid operations, investment and retirement decisions, system costs, and emissions out-

comes. Our results show that temporal flexibility can substantially reshape the power system

and mitigate the challenges associated with rising data center demand.

Flexible data centers are able to adjust their load profiles in response to system conditions,

enabling more efficient power system operations. We find that the cost-optimal load-shifting

strategy tends to flatten the net load curve by reducing demand during peak hours and shifting

it toward periods of low net load. This operational adjustment reduces reliance on peaker

plants and enables better utilization of low-cost renewable energy, resulting in lower system

costs compared to inflexible demand. The magnitude of these savings depends on both the

share of flexible workload and the shifting horizon, with more flexibility leading to lower cost.

To capture these benefits, policy-makers should consider the necessary legislative support or

market-based incentives that promote temporal flexibility. Our analysis provides a framework

for identifying combinations of flexibility parameters that yield equivalent cost savings, which

could inform effective policy design and implementation.

Data center flexibility also has important implications for long-term capacity investment and

retirement decisions. These impacts depend on the existing generation mix, renewable resource

availability, and the evolving costs of clean energy technologies. In general, temporal flexibil-

ity encourages investment in wind and solar by shifting demand to hours with low marginal

costs, which often align with high renewable production. In high renewable systems like Texas,

where renewables comprise 50% of generation, flexibility leads to increased investment in VRE

capacity, accelerated retirement of baseload capacity, and increased reliance on flexible thermal

generation to manage intermittency. In contrast, in regions with lower renewable shares, such

as the Mid-Atlantic, flexibility can increase the utilization of baseload plants like coal even if

some retirements still occur.

As a result, the emissions impact of data center flexibility is highly context-dependent. In

systems with abundant and cost-competitive renewables, flexibility supports decarbonization

by aligning demand with clean energy availability. However, in fossil-heavy grids, flexibility

can increase emissions by increasing coal generation. Complementary policies that accelerate

renewable deployment or lower clean energy costs are needed alongside flexibility incentives to

ensure that the emissions-reduction potential of data center temporal flexibility is fully realized.

Overall, we find that the rapid growth in data center load has significant implications for

power system planning and operations. Its inherent capability to temporally shift load can be

used to mitigate the costs and infrastructure needs associated with this increased demand. To

13



ensure that this flexibility supports decarbonization, it must be deployed alongside strong clean

energy policies that accelerate renewable deployment. When aligned with such policies, data

center flexibility can act as a valuable grid asset, lowering peak capacity, reducing cost, and

facilitating the integration of variable renewable resources.

7 Limitations

The model optimizes a representative year of operation where the investment, dispatch, and

data shifting decisions are made by a centralized entity. Decentralized decision making of

carbon-aware loads is not accounted for but is studied by [19]. We assume that data center

load is constant and that it can freely shift its load within the hourly horizon without the need

for ramping and without disruption to operations. The costs associated with data center load

shifting are not modeled, as we focus on workload advancement and delay, where direct costs

are typically small or difficult to quantify due to their dependence on user preferences and

application-specific requirements. The stochastic variability of VRE and load is not considered

by assuming exogenous, deterministic time series inputs. We also assume that there are no

restrictions on the amount of new capacity that can be built and that this capacity can be built

by the model year. The model can then be thought of as a stylized and idealized U.S. power

system with data centers.

8 Methods

8.1 GenX

The analysis uses the Capacity Expansion model, GenX. Details and documentation on the

GenX model can be found in https://genxproject.github.io/GenX.jl/dev/. The specific

implementation used for this work can be found in the Supplementary Code. GenX is a least-cost

mixed integer linear programming (MILP) model that co-optimizes generation and transmission

investments and dispatch decisions among pre-defined zones within the power system. The

optimization accounts for capital, operational, and fuel costs, generator technical operating

characteristics, capacity factors for renewables, and demand information. The objective is to

minimize annual system cost, which is the sum of investment in generation and storage, fixed and

variable operating and maintenance costs, new transmission investment costs, fuel and startup

costs, accounting for tax credits and other incentives, if any. GenX assumes a representative

year of operation and perfect foresight of hourly demand and capacity factor data for renewables

supply in its dispatch decisions. We source input data from PowerGenome [27] which is a data

processing software that aggregates data from publicly available sources such as NREL’s ATB

for cost data [28], NREL’s EFS for demand data [29, 30] and EIA’s Form-860 [31] for existing

generator data.

8.2 Modeling Data Center Temporal Flexibility

We modified the GenX code-base to include temporal flexibility of data centers. GenX already

has the capability to represent flexible demand resources built into the base model, but we
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included constraints to constrain the amount that can be shifted to and from an hour, given

the capacity of a data center. For our model, data centers that can shift load temporally

are modeled similarly to storage assets that can ”store” demand from each hour and must be

deployed elsewhere within the shifting horizon.

Consider a representative data center with capacity C and data center load Lt at hour t.

Temporal flexibility is defined by two parameters: First is the shifting horizon h, which is the

number of hours before or after the originally scheduled hour in which data center load can

be deferred and advanced. Second, the share of flexible workload s, (0 ≤ s ≤ 1), which is the

fraction of total data center demand that can be shifted to other hours.

Let Yt ∈ R be the amount of data center demand that is yet to be satisfied at hour t. A

positive value means that there exists demand that is delayed, and a negative value means

that demand has been advanced. Let St ≥ 0 be the amount of shifted data center load that is

satisfied at hour t. Finally, let Dt ≥ 0 be the amount of data center load that was originally

allocated to hour t but is deferred and will be satisfied in a future hour t′, where t < t′ ≤ t+ h.

We include the following constraint to model data center flexibility:

Data Center Load Balancing Constraint : the amount of data center demand that is yet to be

satisfied is equal to the amount from the previous hour, less what is satisfied in the current

hour, plus any deferrals.

Yt = Yt−1 − St +Dt (1)

Maximum Time to Delay Demand Constraint : The amount of data center load that is satisfied

in the next h hours from time t must be greater than or equal to the amount that is yet to be

satisfied by time t.

t+h∑
i=t+1

Si ≥ Yt,∀t (2)

Maximum Time to Advance Demand Constraint : The amount of data center load that is de-

ferred in the next h hours from time t must be greater than the advanced demand (negative of

Yt) in hour t.

t+h∑
i=t+1

Di ≥ −Yt, ∀t (3)

Maximum amount of demand Deferred Constraint : The amount of demand that can be deferred

in each hour must be less than the share of flexible workload.

Dt ≤ sLt, ∀t (4)

Maximum Data Center Load Satisfied : Shifted data center load that is satisfied during an hour

must be less than or equal to the capacity of the data center net of the deferred demand.

St ≤ C − Lt +Dt (5)
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9 Input Assumptions

9.1 Regions and Load

Table S1 shows the number of zones per region along with the total and hourly data center

load, and the total non-data center load per zone. Zones are IPM regions from the EPA. Data

center load is sourced from [5] while non-data center load is sourced from [27] who source the

base hourly demand from NREL’s EFS [30]. We use the ”High Growth” scenario as our base

case.

Table S1: Base Data Center and Non-Data Center Load per Model Zone (in MWh)

The EPRI report [17] indicates what % of each state’s 2023 electricity demand was for Data

Centers. We assume that without data center growth, load will have the same % share of data

center load in 2030. We then calculate the additional data center load on top of the % share in

the base case. We provide an illustrative example for Texas Zone 1:

1. 4.59% of Texas’ load in 2023 is for Data Centers.

2. 2030 NREL EFS Demand for Texas Zone 1 is 418.2 TWh. 418 TWh × 4.59% = 19.2

TWh of Base Data Center Load in 2030

3. 418.2 TWh − 19.2 TWh = 399 TWh of non-Data Center Load in 2030

S1



4. There is a high growth forecast of 25.28% of Texas 2030 load will come from Data Centers

5. 399 TWh / (100% − 25.28%) = 534 TWh total Texas Zone 1 Load.

6. 534 TWh × 25.28% = 135 TWh of Data Center load in 2030.

7. Since we assume that data center load is constant per hour, we divide the 135 TWh by

8760 hours.

9.2 Generators

Our model includes existing capacity generators as well as a set of new technologies that can be

deployed. Existing generation capacity is sourced from EIA Form-860 and aggregated through

PowerGenome [27]. Details can be found in Table S2. Investment, operating, and maintenance

costs for new generators can be found in Table S3. Fixed O&M costs, CAPEX, and WACC

for new capacity are taken as average values from NREL ATB 2022 from the years 2023 to

2030 [28]. The investment costs vary based on regional multipliers. Meanwhile, cost assumptions

for existing plants use the basis year 2020, with variation assumptions from PowerGenome

depending on the start year of operation. Production and tax credits associated with the

Inflation Reduction Act are also implemented in the model.

Table S2: Capacity of Existing Generators per Technology in each Region (in GW)

Table S3: New Technology Investment and Operation Cost Assumptions in 2030

9.3 Transmission

We source current transfer capabilities per line between each IPM zone from the EPA’s Power

Sector Modeling Platform v6—2021 Summer Reference Case [32]. We assume a pipeline flow

model such that the amount of transmission that can flow between two zones is only restricted

by the capacity of the line.
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9.4 Net Imports

Texas and WECC are fairly isolated as model regions within the continental U.S.. The impacts

of electricity exchange with neighboring regions on these two regions via transmission lines

is therefore minimal. However, the Mid-Atlantic is extensively connected to other neighbor-

ing regions such as the Midwest, Southeast, and New York. To account for this in the model,

we sourced hourly net import data for the Mid-Atlantic from EIA’s Grid Monitor Dashboard for

2022 (https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/

US48). Within the dataset, Mid-Atlantic’s (MIDA) net imports are aggregated to hourly ex-

change with CAR (Carolinas), MIDW (Midwest), NY (New York), and TEN (Tennessee). To

allocate the net import to model zones, we first determine whether the model zone has existing

transmission capacity with the EIA regions. If there is, we calculate the percentage allocation

as the total load of the model zone divided by the total load of all model zones connected to

the region (see Table S4). Each model zone’s net import is thus the hourly net import from the

EIA data set multiplied by this allocation percentage.

Table S4: Net Import Allocation Percentage

9.5 CO2 Emissions Factors

Emission factors are available for Natural Gas and Coal. CO2 is generated per MMBtu of

fuel consumed. We assume 0.09552 mtCO2/MMBtu and 0.05306 mtCO2/MMBtu for coal and

natural gas, respectively. Table S5 shows the average heat rates for existing generators.

Table S5: Average Heat Rates of Existing Generators (in MMbtu/MWh)

9.6 Supply Curves

Supply curves for renewables are sourced from PowerGenome [27], who source the data from

Vibrant Clean Energy’s data sets [33].
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9.7 Fuel Costs

Fuel costs are sourced from EIA’s Annual Energy Outlook (AEO) 2022 for the year 2030. The

individual zones are matched to the AEO regions through PowerGenome. Fuel cost information

can be found below in Table S6.

Table S6: Fuel Cost (in $/MMbtu)

10 Capacity Retirements

Fig. S1 shows the impact of flexible data centers on retirement decisions for nuclear, coal, and

natural gas generators across the three regions. In the Mid-Atlantic and WECC, retirement

decisions appear largely insensitive to data center flexibility across all three fuel types, although

coal and natural gas show an increase in retirements for the Mid-Atlantic (Fig. S1B) and

WECC (Fig. S1I, respectively. Nuclear retirements for both regions (Fig. S1A, Fig. S1G) and

natural gas retirements for the Mid-Atlantic (Fig. S1C) remain similar regardless of flexibility

levels. This suggests that the generation mix and system constraints in these regions limit the

ability of flexible demand to displace firm capacity.

In contrast, Texas sees different retirement patterns. As both the share of flexible workload

and the shifting horizon increase, significant generator retirements are observed, particularly

for nuclear (Fig. S1D) and coal (Fig. S1E) resources. At high flexibility levels and long shifting

horizons (e.g., ≥ 80% flexible workload and 24-hour shifting horizon), nuclear and coal retire-

ments approach or exceed 80% and 90%, respectively. This indicates that flexible data center
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Figure S1: Percentage Retirement per Technology for each Region. Panels show the percentage
of existing capacity retired for nuclear (A, D, G), coal (B, E, H), and natural gas (C, F, I) across
combinations of data center shifting horizon (1 to 24 hours) and flexible workload share (1% to 100%).
Values displayed at the top of each heatmap indicate the initial installed capacity for the corresponding
technology in each region.

demand in Texas has a capacity substitution effect, particularly for baseload resources. This

is due to the region’s high penetration of high-quality renewables. Natural gas retirements in

Texas (Fig. S1F) remain low overall, with only marginal increases under the highest flexibility

levels.
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11 Capacity Investments

Fig. S2, S3, and S4 show the effect of flexible data center operations on new capacity invest-

ments in the Mid-Atlantic, Texas, and WECC, respectively.

In the Mid-Atlantic, solar (Fig. S2A) investments increase significantly with higher levels of

data center flexibility, particularly when both the share of flexible workload exceeds 60% and

the shifting horizon extends beyond 2 hours. Under these conditions, solar capacity reaches

over 52 GW. This reflects the ability of the system to align flexible data center demand with

solar output. This increases the value of solar in balancing load within a day, which leads to

more investments. Investments in wind capacity (Fig. S2B), in contrast, remain unchanged

across the different combinations of flexibility. This suggests that the temporal characteristics

of flexible demand do not substantially affect wind investment decisions in the Mid-Atlantic.

Battery investments (Fig. S2C) remain relatively limited, with total new capacity not exceeding

2 GW. Notably, battery deployment decreases once the flexible workload share exceeds 60%.

This decline can be attributed to functional competition between batteries and flexible data

center loads, as both serve similar roles in providing temporal flexibility to the power system.

As flexible data center operations become more prominent, they can displace the need for

additional storage by shifting load in response to system conditions. Investments in new natural

gas capacity (Fig. S2D) decrease as data center flexibility increases. With high levels of both

the share of flexible workload and long shifting horizons, natural gas investment drops from

over 14 GW to below 6 GW, indicating that flexible demand can substitute for peaking gas

capacity by reducing peak load and system ramping needs.

In Texas, a higher level of data center flexibility leads to an increase in wind investments

from approximately 46 GW to over 58 GW (Fig. S3B). Solar capacity (Fig. S3A) shows

a more modest and stable pattern with only a slight increase from 19 GW to 22.5 GW. The

flatter gradient suggests that while solar remains valuable, its incremental benefit diminishes in

the presence of high data center flexibility. This is due to the temporal mismatch between peak

solar output and peak system stress in Texas. Battery and natural gas investments (Fig. S3C,

S3D) remain negligible across the entire flexibility space, with capacities barely exceeding 0.05

GW. Thus, in Texas, data center temporal flexibility can strongly incentivize wind deployment,

supporting a more renewable-heavy system configuration. Similar to PJM, this indicates that

flexible data center operations are effectively substituting for both short-duration storage and

fast-ramping thermal resources.

In WECC, both solar and wind capacity exhibit noticeable increases as data center flexi-

bility increases. Solar investments (Fig. S4A) increase steadily from 38 GW to over 43 GW,

particularly when the share of flexible workload exceeds 40% and the shifting horizon is greater

than 8 hours. Similarly, wind capacity (Fig. S4B) shows an upward trend, growing from 13 GW

to 14 GW under higher flexibility. Just like in the Mid-Atlantic and Texas, these patterns also

suggest that flexible data center demand in WECC increases the economic viability of variable

renewables. In contrast, there are no new battery investments (Fig. S4C) across all flexibility

scenarios. Natural gas (Fig. S4D) investments are small even without flexibility at around 1.75

GW, and decline to almost no investments as flexibility increases. This indicates that the load

flexibility is sufficient to meet system balancing needs, diminishing the marginal value of new
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natural gas plants.

Figure S2: Capacity Investments per Technology in the Mid-Atlantic. Panels show new
capacity additions for solar (A), wind (B), batteries (C)), and natural gas (D) across combinations of
data center shifting horizon (1 to 24 hours) and flexible workload share (1% to 100%). Note that color
scales vary across subplots.
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Figure S3: Capacity Investments per Technology in Texas. Panels show new capacity additions
for solar (A), wind (B), batteries (C)), and natural gas (D) across combinations of data center shifting
horizon (1 to 24 hours) and flexible workload share (1% to 100%). Note that color scales vary across
subplots.
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Figure S4: Capacity Investments per Technology in WECC. Panels show new capacity additions
for solar (A), wind (B), batteries (C)), and natural gas (D) across combinations of data center shifting
horizon (1 to 24 hours) and flexible workload share (1% to 100%). Note that color scales vary across
subplots.
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12 WECC Data Center Shifting Operations

Figure S5: Data Center Load Shifting for WECC. Each panel displays the net hourly workload
shifted (in GWh) across an entire year, with the x-axis representing days (1–365) and the y-axis repre-
senting hours of the day (0–23). Positive values (red) indicate workload shifted into a given hour; negative
values (green) represent workload shifted out. Columns show increasing flexible workload shares—4%,
12%, and 20%—based on 20%, 60%, and 100% of a shiftable portion capped at 20% of total capacity.
Rows indicate shifting horizons of 1 hour, 12 hours, and 24 hours, reflecting the maximum time a task can
be advanced or delayed. This illustrates how varying flexibility levels and temporal windows influence
both intra-day load scheduling and broader seasonal shifting patterns.

13 Additional Capacity Information
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Figure S6: Capacity and Generation per Region with a 1-hour shifting horizon. Top row
(A, C, E) shows total installed capacity by technology, net of new investments and retirements, for
each region. Bottom row (B, D, F) presents corresponding total generation by technology. Results are
shown for flexible workload shares ranging from 20% to 100% in 20% increments, alongside a baseline
scenario without flexibility. All scenarios assume a 1-hour shifting horizon. No new capacity investments
can be made in Coal, Nuclear, and Hydro. All technology types can be retired.
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14 Cost Differences per Component

Figure S7: Cost Difference per Component for the Mid-Atlantic. Panels show the change in
system costs between scenarios with and without data center flexibility for fuel (A), fixed O&M (B),
variable O&M (C), and generation investment (D), across combinations of shifting horizon and flexible
workload share. Green indicates a cost reduction with flexibility; red indicates an increase.
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Figure S8: Cost Difference per Component for Texas. Panels show the change in system costs
between scenarios with and without data center flexibility for fuel (A), fixed O&M (B), variable O&M
(C), and generation investment (D), across combinations of shifting horizon and flexible workload share.
Green indicates a cost reduction with flexibility; red indicates an increase.
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Figure S9: Cost Difference per Component for WECC. Panels show the change in system costs
between scenarios with and without data center flexibility for fuel (A), fixed O&M (B), variable O&M
(C), and generation investment (D), across combinations of shifting horizon and flexible workload share.
Green indicates a cost reduction with flexibility; red indicates an increase.

S14



MIT CEEPR Working Paper Series 
is published by the MIT Center for Energy 
and Environmental Policy Research from 
submissions by affiliated researchers.
For inquiries and/or for permission to 
reproduce material in this working paper, 
please contact:

General inquiries: ceepr@mit.edu
Media inquiries: ceepr-media@mit.edu

Copyright © 2025
Massachusetts Institute of Technology

Contact.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MIT Center for Energy and  
Environmental Policy Research 
Massachusetts Institute of Technology
77 Massachusetts Avenue, E19-411
Cambridge, MA  02139-4307
USA

ceepr.mit.edu


	Blank Page
	Data_Center_Modeling_FundingFootnote.pdf
	Introduction
	The Impact of Data Center Flexibility on Data Center and System Operations
	Data Center and Grid Operations
	Capacity and Generation Mix

	The Impact of Data Center Flexibility on Carbon Emissions
	The Impact of Data Center Flexibility on Cost
	Policy Implications
	Conclusion
	Limitations
	Methods
	GenX
	Modeling Data Center Temporal Flexibility

	Input Assumptions
	Regions and Load
	Generators
	Transmission
	Net Imports
	CO2 Emissions Factors
	Supply Curves
	Fuel Costs

	Capacity Retirements
	Capacity Investments
	WECC Data Center Shifting Operations
	Additional Capacity Information
	Cost Differences per Component




