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Abstract

With the increase in fuel economy of the personal transportation fleet along with the increased
penetration of hybrid and electric vehicles, federal motor vehicle fuel excise tax revenue has been
steadily declining. This has led to calls for finding a replacement for this tax. One option is to
replace the gas tax with a vehicle miles traveled (VMT) tax. To investigate the impact of such
a tax swap, we combine data from the 2017 National Household Transportation Survey (NHTS)
and the American Community Survey (ACS). Using machine learning techniques, we generate
estimates of VMT and gasoline tax collections at the census tract level. This allows us to
explore the distributional implications of this tax swap at a geographically disaggregated level.
We find, as have previous researchers, that this tax swap is modestly progressive. Our more
granular geographic analysis highlights striking disparities not previously reported. We find that
rural areas and census tracts in the center of the country generally benefit from this tax swap,
while urban and bicoastal areas generally experience higher taxation. Additionally, Republican-
leaning districts, which overlap significantly with rural areas, see marked gains compared to
Democratic districts. The results highlight the potential for a VMT tax to address longstanding
inequities in transportation funding while offering a politically salient narrative.
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1 Introduction

The design of transportation taxation has long been a critical issue in public finance, with policymakers
seeking systems that are both efficient and equitable. In the United States, the federal gas tax—a longstand-
ing mechanism for funding transportation infrastructure—has faced increasing scrutiny due to its declining
revenues and concerns about fairness. This decline is largely driven by improvements in fuel efficiency and
the accelerating adoption of electric vehicles (EVs), which do not contribute to gas tax revenues. As EV
adoption grows, particularly in urban areas and coastal states, federal gas tax revenues are falling and are
projected to continue falling (see Figure 1 with actual gas tax revenue through 2023 and projections to
2031). By law, revenues from this tax are earmarked for the Federal Highway Trust Fund, which finances a
major portion of state and federal roadwork in the United States. This has led policymakers and analysts
to explore options for replacing the gas tax. One option gaining traction is a vehicle miles traveled (VMT)
tax, which charges drivers based on the distance they travel rather than the fuel they consume. This paper
examines the winners and losers from transitioning the federal gas tax to a revenue-equivalent VMT tax,
focusing on the distributional impacts across geography and political affiliation.

Previous research has explored the income-based distributional effects of transportation taxes. This paper
confirms the findings of these studies, showing that the shift from a gas tax to a VMT tax is progressive,
benefiting lower-income households. However, we expand on this literature by analyzing the impacts of the
transition across geographic regions and political constituencies, areas that have been less explored in prior
research, building on the methods in Green et al. (2025).

Our results show that while the shift is modestly progressive in terms of income, striking disparities
emerge across geography. Rural areas and the center of the United States, which tend to experience lower
average fuel efficiency, experience substantial benefits from a revenue-neutral VMT-Gas Tax swap. This
effect is closely tied to the uneven geographic distribution of EV adoption: urban areas and coastal regions,
where EV penetration is highest, are less reliant on the gas tax and benefit less from a shift to VMT-based
taxation.

Additionally, Republican-leaning districts, which overlap significantly with rural areas, see marked ad-
vantages compared to Democratic districts. The results highlight the potential for a VMT tax to address
longstanding inequities in transportation funding while offering a politically salient narrative. By document-
ing the geographic and political implications of this policy shift, this study contributes to the broader debate
on how to design equitable and effective transportation taxation systems in a rapidly evolving mobility
landscape.

The remainder of the paper is organized as follows. The next section highlights previous research that

is relevant to our work. Section 3 describes our data and methods. Results follow in section 4. We conclude



in section 5 with comments about policy implications and thoughts about future research.

Figure 1: Federal Gas Tax Revenue
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Note: Revenue in billion dollars from the year 1999 to 2031. Actual revenue data through the
year 2023. The dotted line shows projected data. Source: Actual gas tax revenue data until the
year 2023 are from the IRS Statistics of Income Excise Tax Statistics. (Internal Revenue Service,
2023) Projected gas tax revenue data from the Congressional Budget Office Revenue Projections.
(Congressional Budget Office, 2023a)

2 Previous Research

The literature on the distributional implications of a VMT-Gas tax swap is sparse. McMullen et al.
(2010) used the 2001 National Household Travel Survey to simulate a tax swap for Oregon drivers and found
the swap to be regressive. More recent research accounts for the growing penetration of plug-in hybrid and
electric vehicles in the U.S. auto market. Using 2017 data, Metcalf (2023) analyzes the income incidence
of replacing the gas tax with a carbon tax or VMT tax, finding evidence of progressivity under certain
designs. Similarly, Glaeser et al. (2023) examine how mobility-related user fees, including the gas tax, affect
households across the income distribution, highlighting the regressive nature of the gas tax and the potential
for alternative systems to address this inequity.

The efficiency case for a VMT-Gas tax swap is less clear-cut. Parry and Small (2005) estimate that
seventy percent of the externalities from driving are due to congestion and externalities. On this basis,
taxing EVs would be efficient despite their zero tailpipe pollution. Congestion and accidents, however, vary

both spatially and temporally, suggesting that a uniform VMT tax would not necessarily match damages



with the tax rate efficiently. The pollution impacts of the electricity used to power EVs also vary (Holland
et al., 2019). One externality often cited for EVs is the road wear due to the heavier weight of EV batteries.
Road damage rises with axle weight by a power of four (Low et al., 2023). The Low et al. (2023) analysis
notes, however, that any additional damage from heavier personal vehicles that are EVs relative to their
gasoline-powered alternatives is trivial in comparison to the road wear from buses and heavy-goods-laden
trucks, whether they are powered by diesel, hydrogen, or electricity. One could argue that shifting to a
VMT tax ignores the pollution impacts of gasoline-powered vehicles. Moreover, there are likely positive
externalities from EV adoption to the extent that learning by doing drives down the cost of EV production
as this nascent technology matures. The first-best response would be to combine a carbon price on fossil
fuels with a subsidy for the purchase of an EV, with the subsidy tied to the positive adoption externalities.
We set aside the question of optimal tax and subsidy design for personal transportation to focus narrowly
on the revenue erosion in the gas tax from the adoption of more efficient internal combustion vehicles and
EVs.

Both the Metcalf (2023) and Glaeser et al. (2023) papers focus on the distributional impact across income
groups. Metcalf (2023) provides a model that demonstrates the importance of the income elasticity of fuel
intensity (gallons of gasoline per mile driven) with a VMT-gas tax swap being progressive (regressive) over
much of the income range if this elasticity is negative (positive). The sign of this elasticity is an empirical
matter. To the extent that higher-income households value fuel economy, whether in gasoline-powered
vehicles or through a taste for electric vehicles, this elasticity will be negative. Conversely, if higher-income
households prefer larger, more powerful gasoline-powered vehicles, the elasticity will be positive. Metcalf
estimates that the income elasticity of fuel intensity is negative, albeit small. This suggests the tax swap
should be modestly progressive. The data bear out that theoretical prediction.

Turning to a geographic distributional analysis, the Glaeser et al. (2023) paper is silent on this question.
The Metcalf (2023) paper provides one table looking at regional variation across nine broad regions. He finds
a higher burden of the tax on households in New England, Middle Atlantic, and Pacific states relative to
other states. None of the other papers cited in either of these analyses does a geographic-based distributional
analysis of a VMT-gas tax swap. This paper builds on that literature by focusing sharply on the geographic

incidence of the VMT-gas tax swap.



3 Data and Methods

3.1 Representative Data

For the highly disaggregated geographic analysis we undertake, we need to generate a prediction of
household travel at the census tract level. There are about 80,000 census tracts in the United States
with an average of 4,000 households per tract. Unfortunately, a measure of vehicle miles traveled at the
census tract level does not exist. Instead, we predict household level annual vehicle miles at the census
tract level using data from the 2017 National Household Transportation Survey (NHTS 2017), a nationally
representative household travel survey, that provides household-level data on annual vehicle miles traveled
and other household demographic characteristics, such as income, age, race, education, and employment for
about 7000 households (Federal Highway Administration, 2017). The survey also includes information on
the number of vehicles owned by the household, type of vehicles, and the use of public transport to travel
to work.!

The NHTS only provides geographic information at the nine Census division levels. Using household-
level variables common to the NHTS and to the American Community Survey (ACS 2022), we construct a
best-fit model from the NHTS and use that model to predict average household vehicle miles traveled at the
tract level in the 2022 ACS. (U.S. Census Bureau, 2022)

Given the large number of possible variables available to us to predict household-level vehicle miles
traveled, we use machine learning techniques to identify a best-fit model to apply to the ACS data. We

describe our methodology next.

3.2 Machine Learning Model

Our methodology relies on the machine learning model used by Green et al. (2025). Specifically, we use
an adaptive lasso model, which involves the two-step lasso developed by Zou (2006). Lasso models modify
the least squares optimization target in ordinary least squares (OLS) regressions by including a penalty term,
A, that encourages shrinking the estimated coefficients toward zero and setting some estimated coefficients
to zero. In effect, the penalty term trades off some mean square error for more parsimonious models. The
two-step adaptive lasso approach begins by running a standard lasso model on a portion of the data (the

“training” data). It then uses those coefficient estimates to form weights in a second-step lasso model

1We have also conducted the analysis using the 2022 NHTS. There are an order of magnitude fewer observations
in that dataset. We also find anomalous results that are likely due to the impact of COVID on household travel
patterns. In our regression, for example, we find that income is negatively associated with vehicle miles traveled.
This is likely due to the greater flexibility of jobs held by higher-income households for remote work. We do find
similar distributional results when using that dataset, albeit with significantly less precision.



cross-validation exercise.? Equation 1 shows this two-step adaptive lasso model.
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coefficient from the first-step lasso regression. As noted above, A is the penalty term. A larger value of

where, w; = are the weights added to cross-validation second-step lasso regression. le is the jt"
A will force a more restrictive model selection (i.e., fewer variables used to predict household vehicle miles
traveled). The lasso cross-validation can include one of the two choices of A, i.e., Apin and Ajge. While A
minimizes the mean cross-validation error, Ais. corresponds to the value A such that the cross-validation
error is within one standard error of the minimum A.? This two-step approach allows us to overcome the
problem of over-fitting arising from highly correlated independent variables.

We vary several features to determine the best-fit model. Our choices include two functional forms for the
dependent variable (levels and logs), two penalty terms (Apin and Ais.), and two final prediction approaches
for household vehicle miles traveled. We can predict VMT using the coefficients from the second-step lasso
estimation (so-called lasso approach) or we can run an ordinary least squares regression on the variables
identified in the second-step adaptive lasso procedure (so-called OLS approach). We also consider higher
orders of our independent variables. The four possible independent variable matrices are as follows: (a)
a base model with all variables in linear form, (b) a model with linear variables and squares of selected
variables, (c¢) a model with linear variables and interactions between selected variables, and (d) a model with
linear variables with both squares and interactions of selected variables.* This yields a set of 32 possible
model fits in all.?

Out of the 32 models we run, we select the model with the highest out-of-sample test R-squared (which
has the smallest out-of-sample test mean squared error) to predict the household annual vehicle miles traveled
at the census tract level. Appendix Table A1 reports the out-of-sample test and train R-squared values for
all possible model fits. It also reports the out-of-sample adjusted test R-squared. If more than one model has
the same value for the out-of-sample R-squared statistic, we break ties by choosing the model with the higher
out-of-sample adjusted R-squared. In the case of a tie at this second level, we choose the more conservative
model, i.e, the model with fewer independent variables. Appendix Table A reports model fit statistics for
the 32 models we run. Based on our selection criteria, the “best” fit model to predict household annual

vehicle miles traveled includes the dependent variable in levels, regressors in linear form only (base), Anin

2Refer to Green et al. (2025) for a detailed methodology.

3The parameter Aise is considered to give a more regularized (or restrictive) variable selection and is the default
option in most machine learning models.

4Squares of all continuous variables are added to the models including square terms. We have two such variables
in our dataset—log of income and miles per gallon.

5Two As x two dependent variables x two predict functions x four independent variable matrices.



as the cross-validation A, and the lasso approach to predicting VMT.

Appendix Table A2 provides the summary statistics for vehicle miles traveled. The first row presents
statistics from the 2017 NHTS “test” dataset, a subset of 33,683 observations from that dataset from which
the model is estimated.® The second row reports statistics on predicted annual household VMT from the
two-step adaptive Lasso procedure, where we use the estimated coefficients from that model (our preferred
model). The third row presents summary statistics where we run OLS on the variables identified in the
two-step Lasso procedure. While not our preferred model, we include it to show that our estimated VMT
is not sensitive to the final prediction model choice. Our predictive model reports a mean of 17,650 miles
driven by the household in a year. This is close to the actual “test” data mean of 17,472 miles. As the table
shows, we lose some variation in household VMT in the prediction. There is less variation in the LASSO
estimated VMT, but this really only affects outliers, as the confidence intervals reported in Appendix Table

B1 demonstrate. This table calculates the prediction intervals as a percentage of the prediction means.

3.3 Tract data

Using data from the American Community Survey (ACS 2022) and our “best” fit model, we predict the
average household annual vehicle miles traveled at the census tract level (U.S. Census Bureau, 2022). The
ACS 2022 provides a wide range of household demographic and socio-economic characteristics per census
tract. There are about 80,000 census tracts with an average of 4,000 households per tract. We use a subset

of household characteristics that match the information available in NHTS 2017.7

5The maximum VMT in the test data is a significant outlier. The 99th percentile VMT value is 61,928.

" Appendix C reports the coefficients for the variables selected by the “best” fit model, when predicted on the ACS
2022. Note that Urban and Log of income are forced variables in the first step lasso. We believe these two variables
are important predictors of household vehicle miles traveled, and, thus, should be included in our predictive models,
irrespective of the first step lasso including or excluding these variables.
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Figure 2: Miles driven by Households in US census tracts, winsorized at 95%.

Figure 2 depicts the predictions for the annual household vehicle miles traveled at the US census tract
level.® Households along the west coast and portions of the east coast tend to drive fewer miles than the
national average, while portions of the Midwest and much of the mountain states average more household
vehicle miles traveled.

Next, we add data on the average miles per gallon, which is available at the zip code level.” We match
the zip codes to census tracts and calculate the average miles per gallon at the census tract level and match
this to the ACS 2022 data.'® Figure 3 shows the variation in average fuel economy across census tracts.
More fuel-efficient (higher mpg) vehicles tend to be owned on the two coasts. Combining this information
with the VMT information in Figure 2 indicates that more gasoline is consumed by households in the central
portion of the country. This follows since gasoline consumption equals vehicle miles traveled divided by fuel

efficiency (as measured by miles per gallon):

VMT;

where Gas; is average household gasoline consumption, M PG; is the tract ¢ average miles per gallon, and

V MT; is the household annual vehicle miles traveled in tract 4.

8We trim (winsorize) the tracts at the bottom and top 2.5 percent for legibility.

9We get these data from the THS Markit report, frequently referred to as “Polk data.”

We use the USPS zip code crosswalk files from the US Department of Housing and Urban Development. (U.S.
Department of Housing and Urban Development, 2022)
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Figure 3: Average miles per gallon for a household in US census tracts, winsorized at 95%.

3.4 Tax Policies

Our thought experiment is to replace the federal gas tax with a vehicle-miles-traveled tax, holding revenue
constant. The federal excise tax rate on gasoline is 18.4 cents per gallon.'? Using the predicted vehicle miles
per household for a census tract, we first calculate federal gasoline tax collections for an average household

in census tract ¢ as follows:

TE* = 0.184 x Gas;, (3)

where TiG“s is household gas tax collections in dollars per year and Gas; is household gasoline consumption
in gallons per year.
For the VMT tax, we set the tax rate 7 such that it generates the same revenue as the federal gasoline

tax, weighting by the number of households in each census tracts (H;):'?

TVMT =N"rVMT; x Hy = Y TE% x H; = 79, (4)
i 1

where TVMT is aggregate VMT tax collections and TV M7T is census tract i average household VMT tax

HThere is a separate tax on diesel fuel for personal motor vehicles. We ignore that in this analysis. We do include
the 0.1 cent per gallon gas tax that funds the Leaking Underground Storage Tank (LUST) trust fund.
12YWe ignore behavioral changes in driving or preferences for fuel efficient vehicles in this analysis.



collections (and similarly for the gas tax).
For purposes of assessing the distributional impact of the VMT gas tax swap, we calculate the difference
between the gasoline tax (7.9%°) and the VMT tax (7M7) paid by the households in a census tract, i.e.,

A; in the following equation:

Az’ — TiVMT o TiGas' (5)

A positive A; indicates that the average household in census tract ¢ pays more in taxes when the VMT

tax replaces the gas tax. The next section presents our findings.

4 Results

Given aggregate gas tax collections and an estimate of aggregate vehicle-miles traveled, we calculate
the revenue-neutral VMT tax rate to replace federal excise taxes on gasoline to be 0.89 cents per mile.
Our predicted household vehicle miles at the census tract level aggregate to the national annual household
vehicle miles of 2,310.5 billion for the year 2022. The actual U.S. aggregate household vehicle miles is 2,797.2

billion.'® The next subsection details our results.

4.1 Gas Tax Collection

Before turning to the distributional analysis, we check to see whether our modeled gas tax collections
match actual data. As discussed in Section 3 above, we predict average household miles driven at the census
tract level and divide by average fuel economy (miles per gallon) at the tract level to obtain an estimate of
average miles driven at the census tract level. Multiplying this by the federal gasoline excise tax rate yields
average motor vehicle gas tax revenue at the tract level. We aggregate to the national level (weighting census
tracts by population) and obtain predicted federal tax revenue of $20.6 billion for 2022. This tracks closely
to IRS Statistics of Income (SOI) data, which reports average federal excise gasoline tax collections of $26.2
billion over the years 2018 - 2022, the period covered by our ACS data. (Internal Revenue Service, 2023)

As an additional check on our calculations, we gross up census tract federal gas tax collections to the
state level (weighting by census tract population) and compare to state-level federal collections as pub-
lished in the Federal Highway Administration’s annual Highway Statistics publication. (U.S. Department
of Transportation Federal Highway Administration, 2022) The FHWA publication tracks at the state level

total revenue into the Highway Trust Fund. According to the Congressional Budget Office, the tax on motor

13Urban 4 Rural values in Highway Statistics Series Table VM-1. Data taken from editions covering the years
2018 to 2022.
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vehicle gasoline consumption accounts for 58.3 percent of total highway trust fund revenue (motor vehicle
diesel taxes account for much of the rest). (Congressional Budget Office, 2023b; Urban-Brookings Tax Policy
Center, 2023) Applying that percentage rate to the state-level data in the FHWA publication, we compare
actual and predicted federal gas tax collections in Figure 4. The fit is quite good, whether plotted in levels

(Figure 4a) or in logs (showing percentage differences) (Figure 4b).

4.2 Distributional Implications of a Federal Gas-VMT Tax Swap

We begin our analysis by showing distributional impacts by income decile. This allows us to compare
our results to the results in previous distributional analyses of a Gas VMT tax swap. Figure 5 shows the
distributional impact for the entire sample (upper left) and broken out by types of areas. Focusing on the
overall impact (upper left), the figure shows for each decile a box and whisker plot showing the mean value
and the inter-quartile range. While within each decile, there are tracts with tax increases and decreases, the
figure shows that, on average, the tax swap is mildly progressive, with the mean amount of the tax increase
increasing with income, as is the proportion of tracts with positive tax changes. Our results accord with
results from Glaeser et al. (2023) and Metcalf (2023).

Breaking out results by type of census tract leads to interesting results. Most rural tracts experience a
decline in tax payments, though there is a sharp rise in the top income decile, with most tracts in that decile
paying more in taxes. The story for metropolitan tracts is similar to the overall story, while suburban areas

look similar to rural areas (except in the top decile).

11



Figure 4: Actual and Predicted Federal Gas Tax Revenue at State Level

30001

20001

Actual state-level federal tax collection, in million dollar

1000 {
(] * °
. ) >
&
O.
0 1000 2000 3000
Predicted state-level federal tax collection, in million dollars
(a)
o 25.07
c
o
3]
@
[s)
(&)
x 22.51
8
E [ ]
@
°©
2 .
q>_) 20.01 J
% :.' *
ES. o og®
®
r— [ ]
S 17.51
(&)
©
©
(@]
S
15.01
15.0 17.5 20.0 225 25.0

Log of predicted state-level federal tax collections

(b)
Note: Panel (a) reports actual versus predicted gas tax collection in levels. Panel (b) reports the
log of revenues. Red line represents 45°line. Data: Highway Statistics Series 2018-2022. Revenue

from gas tax collection is about 58% of the total payments into the Highway Trust Fund as
reported in Table FE-221B.
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Figure 5: Change in tax payments by income decile and urbanity
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Note: See text for definition of the areas.

Our results above show changes in tax collections across income groups. Tax progressivity is traditionally
defined in terms of the income-related pattern of changes in tax burden as a share of income. A tax reform
that leads to a change in tax burden as a share of income rising with income is said to be progressive. If the
burden as a share of income falls as income rises, the tax is regressive. In the appendix, we provide figures
depicting the change in driving-related tax burden as a percentage of household income for various cuts of
the data. We find that the pattern across income groups looks similar whether we are measuring changes in
tax burden or changes in tax burden relative to income.

Tax-incidence analysis has long focused on the question of how to sort people by some intrinsic measure
of well-being (aptitude, ability to earn, etc). A highly able individual might have the ability to earn a
high income, but choose to work less and consume more leisure. We should not group that individual
with a lower ability individual who works two jobs to earn the same income as the more able, but less
hardworking individual. As the example highlights, annual income is an imperfect proxy for well-being,
and researchers have long understood that it can bias distributional analyses of excise taxes in a regressive

direction.!'® Lifetime income would be a better measure of well-being, but this is unobservable. Researchers

Differences between transitory and permanent income can also bias distributional analyses as discussed by, among
others, Poterba (1991) and Metcalf (1999)
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have constructed measures of lifetime income (Caspersen and Metcalf (1994), for example) or used current
consumption as a proxy (Poterba (1991), Metcalf (1999)), among others). Another possibility is to use
education as a proxy for lifetime income. We take that approach here by ranking census tracts by the
percentage of college-educated households in each tract. When we do that (Figure 6), we find that the
tax swap does not look appreciably different. It is still modestly progressive, with the proportion of tracts

showing positive tax changes rising with the proportion of college-educated households in the tract.

Figure 6: Change in tax payments by college education
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Note: Change in tax payments by deciles of percentage of college-educated households in a census
tract.

As another cut of the data by demographics, we consider the change in tax payments when we sort tracts
by the share of non-white households in the tract.!> Figure 7 shows that the change in tax burden is positively
correlated with the share of non-white households. The median change in tax payments is negative for the
first three deciles and positive for the remaining seven. This reflects the tendency for non-white households

to congregate disproportionately in urban areas and along the two coasts.

5 Household race is defined by the self-reported race of the household head.
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Figure 7: Change in tax payments by race
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Note: Change in tax payments by deciles of percentage of non-white households in a census tract.

The results discussed so far confirm the results of previous research. We next turn to new results where
we focus on distributional impacts along geographic and political dimensions. Table 1 reports the share of
census tracts (weighted by population) that experience either an increase or decrease in tax payments from a
VMT gas tax swap. At the national level, the swap raises taxes for roughly 55 percent of households. Figure
8 shows that the census tracks on the two coasts are more likely to experience an increase in taxation, while
those in the middle of the country are more likely to experience a decrease.'® By construction, the mean
change in tax payments across census tracts is zero. The median change is $1.14 while tax revenue changes
vary from a minimum of -$51.43 to a maximum of $46.43. The full range includes a few large outliers; the

interquartile range is $14.19 (-$6.65 to $7.54) and the standard deviation is $9.97.17

Higher tax payments are also correlated with EV and PHEV ownership within census tracts. In Appendix E.3,
we plot the average change in driving-related taxes from the gas-VMT tax swap against EV and PHEV ownership
shares at the tract level. Not surprisingly, higher penetration of EV and PHEV vehicles in a census tract is associated
with higher tax payments in those tracts across the range of ownership shares typically experienced in the data.

17 All summary statistics are weighted by the number of households in each census tract.
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Table 1: Regional Impact of Gas-VMT Tax Swap

Tax Increase

Tax Decrease

US 0.55 0.45
New England 0.81 0.19
Middle Atlantic 0.83 0.17
South Atlantic 0.63 0.37
East North Central 0.34 0.66
West North Central 0.23 0.77
East South Central 0.19 0.81
West South Central 0.34 0.66
Mountain 0.44 0.56
Pacific 0.79 0.21

Note: Table reports the population weighted share of census tracts experiencing a tax increase or

decrease.

Figure 8: Changes in tax collections from Gas-VMT swap

Note: Census tract average data are winsorized at 95%.

Figure 9 shows a density plot of the change in average household tax collections at the tract level when

distinguishing between metropolitan, suburban, and rural tracts.
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The distribution for changes in tax

80ur measure of urbanity is based on the U.S. Department of Agriculture Economic Research Service definition
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payments is quite similar between rural and suburban tracts, with most tracts experiencing a decline in tax

payments. The density curve for urban tracts, in contrast, is shifted significantly to the right.

Figure 9: Change in tax collections from gas-VMT tax swap tax by urbanity.
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Note: See text for definition of urbanity groups.

We next turn to an analysis by political affiliation. The geographic results presented above suggest
that census tracts with Republican voters are likely to pay lower taxes with this tax swap, while tracts
with Democratic voters are likely to pay more. We explore that explicitly here. Figure 10 shows density
functions for changes in tax payments by the political affiliation of the census tract’s member of the U.S.
House of Representatives. There is a clear difference in the distribution of changes in tax payments, with

the distribution for Democratic tracts shifted significantly to the right.

of Rural Urban continuum codes for U.S. counties. 2023 Rural-Urban Continuum Codes used. (U.S. Department
of Agriculture Economic Research Service, 2023) Metropolitan counties are all counties in metro areas. Suburban
counties are the ones adjacent to metro areas. Finally, rural counties are the ones not adjacent to metro areas. All
census tracts in a county are marked metropolitan, suburban, or rural based on these codes.
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Figure 10: Change in tax collections from gas-VMT tax swap by political party affiliation
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Note: Party affiliation based on affiliation of the House Members in the 118th Congress

Table 2 shows the proportion of tracts (weighted by population) with tax increases and decreases based
on the affiliation of the Congressional representative. Over three-quarters of households with Democratic
representatives experience an increase in tax payments, while nearly three-quarters of Republican tracts

experience a tax decrease.

Table 2: Tax changes by political affiliation

Tax Increase Tax Decrease Population

Republican 0.282 0.718 0.499
Democrat 0.770 0.230 0.498
Independent 0.275 0.725 0.002

Note: Table reports census tracts, weighted by population, with tax increases or decreases by
party affiliation of Congressional representative.

We also graphically show tax changes from the tax swap aggregated to the Congressional District level.

Figure 11 illustrates that bi-coastal Congressional districts predominantly face higher taxes while districts

18



in the middle of the country benefit from lower tax payments.

Figure 11: Change in tax collections from gas-VMT swap by Congressional District

Note: Congressional district data are winsorized at 95%.

To emphasize the variation within political affiliation, we also present figures conditional on Congressional
representation. Figures 12 and 13 show variation within Republican and Democratic districts, respectively.
The few Republican districts with increases in tax payments due to the swap are in California, Florida, and
the New York metropolitan area. Democratic-aligned tracts with tax decreases are scattered around the

United States, but mostly in the central portions of the country.!?

19 Appendix E1 combines these two figures into a single figure.
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Figure 12: Change in tax collections from gas-VMT swap for Republican Congressional Districts
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Note: Data are winsorized at 95%.

Figure 13: Change in tax collections from gas-VMT swap for Democratic Congressional Districts

USD/
Household

Note: Data are winsorized at 95%.
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5 Conclusion

Using machine learning techniques, we estimate average household vehicle miles traveled at the census
tract level. This allows us to provide a highly disaggregated analysis of the distributional impacts of a tax
swap where the federal excise tax on gasoline for motor vehicles is replaced with a vehicle miles traveled tax.
Our results on the distributional impacts by income confirm results from previous studies, albeit with more
recent data. We then go on to provide results showing the distributional impact across geographic regions
as well as political affiliation. The most striking result of this analysis is the distinct benefit this tax swap
provides to rural and lower-income census tracts, including those in the middle of the country.

Our focus here has been on the distributional implications of a tax swap to address the ongoing erosion
of the tax base of the motor vehicle fuel excise tax. We should emphasize that we have not made a case
on theoretical grounds for efficiency improvements from such a tax swap. Whether we should think of the
gas (or VMT) tax as a benefit tax or as an externality-correcting tax, there are a number of factors to take
into consideration. A benefits perspective argues for a VMT tax on the grounds that those using roads
should bear the cost of their upkeep (as financed through the Highway Trust Fund). But this begs the
question of the appropriate sharing of costs between personal and commercial transportation, and especially
long-haul trucking in the latter category. From an externalities perspective, considerations of local pollution,
road wear, congestion, and accidents all come into play. Innovation and network failures that impede the

penetration of electric vehicles are also a consideration. We leave that analysis for future research.
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A Model Selection

Table A1l: Predicting Annual Household Vehicle Miles Traveled

Model LASSO Prediction OLS Prediction

OOS test OOS train  OOS test OOS test OOS train  OOS test

R? R? adj. R? R? R? adj. R?
(1) (2) (3) (4) (5) (6)

Level, base, \.1se 0.2327 0.2327 0.2325 0.2499 0.2500 0.2497
Level, sq, A.1se 0.2330 0.2330 0.2328 0.2499 0.2500 0.2497
Level, int, \.1se 0.2344 0.2344 0.2342 0.2499 0.2500 0.2497
Level, sq int, A.1se 0.2345 0.2345 0.2343 0.2499 0.2500 0.2497
Level, base, \.min 0.2662 0.2662 0.2656 0.2656 0.2656 0.2651
Level, sq, A.min 0.2661 0.2662 0.2656 0.2656 0.2656 0.2651
Level, int, A.min 0.2659 0.2659 0.2652 0.2648 0.2648 0.2642
Level, sq int, A\.min 0.2659 0.2659 0.2652 0.2648 0.2648 0.2642
Log, base, A.1se, leveled 0.1634 0.1634 0.1632 0.1842 0.1842 0.1841
Log, sq, A.1se, leveled 0.1634 0.1634 0.1632 0.1842 0.1842 0.1841
Log, int, \.1se, leveled 0.1635 0.1635 0.1633 0.1847 0.1847 0.1846
Log, sq int, A.1se, leveled 0.1635 0.1635 0.1633 0.1847 0.1847 0.1846
Log, base, A\.min, leveled 0.1989 0.1989 0.1984 0.1985 0.1985 0.1979
Log, sq, A.min, leveled 0.1989 0.1989 0.1984 0.1985 0.1985 0.1979
Log, int, A.min, leveled 0.1988 0.1988 0.1982 0.1983 0.1983 0.1978
Log, sq int, A.min, leveled 0.1988 0.1988 0.1982 0.1983 0.1983 0.1978

Note: This table reports out-of-sample R-squared statistics on the test and train data for the 32
models considered: LASSO and OLS prediction models, A,,;, and Aig, dependent variable in
levels and logs, independent variables in linear form (base), linear and quadratic (sq), with
interactions among variables in linear form (int), and interactions in linear and quadratic form (sq
int). The final selected model is shown in italics.

Table A2: Summary Statistics

Statistic N Mean St. Dev. Min Median Max

Test data 33,683 17,472 13,472 0 14,376 241,619
Predicted, Adaptive Lasso 33,683 17,650 7,142 1,920 17,384 40,373
Predicted, OLS 33,683 17,604 7,206 1,204 17,312 41,273

Note: Actual and predicted data by best fit model for household annual vehicle miles traveled
model.
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B Prediction Confidence Intervals as a % of Prediction Means

Table B1: Model evaluation for household annual vehicle miles traveled.

Model Adaptive LASSO OLS
2.5% CIp  97.5% Clp P 8Cle 100 2.5% CIp  97.5% Clp P 2<le 100

(1) 2) ®3) 4) ) (6) (M) (®)
Level, base, \.1se 1829878  18432.17  18365.48 0.73 17864.41 1801545  17939.93 0.84
Level, sq, A.1se 18295.46  18428.92  18362.19 0.73 17864.41 1801545  17939.93 0.84
Level, int, \.1se 1827059  18404.71  18337.65 0.73 17864.41  18015.45  17939.93 0.84
Level, sq int, A.Ise  18269.22  18403.37  18336.29 0.73 17864.41 1801545  17939.93 0.84
Level, base, \.-min  17574.22  17726.76 1765049 0.86 17527.29  17681.20  17604.24 0.87
Level, sq, A.min 17573.66  17726.20  17649.93 0.86 17527.29  17681.20  17604.24 0.87
Level, int, A.min 17528.02  17682.16  17605.09 0.88 17504.60  17659.92  17582.26 0.88
Level, sq int, Amin  17527.77  17681.92  17604.84 0.88 17504.60  17659.92  17582.26 0.88
Log, base, \.1se 14304.57 1442533 14364.95 0.84 20668.86  20872.53  20770.70 0.98
Log, sq, A.1se 1430457 14425.33  14364.95 0.84 20668.86 2087253  20770.70 0.98
Log, int, A.1se 14302.50 1442328  14362.89 0.84 20675.73  20879.80  20777.77 0.98
Log, sq int, A.1se 1430250 1442328 14362.89 0.84 20675.73  20879.80  20777.77 0.98
Log, base, A.min 13904.30  14046.70  13975.50 1.02 20198.84  20408.83  20303.84 1.03
Log, sq, A.min 13904.30  14046.70  13975.50 1.02 20198.84  20408.83  20303.84 1.03
Log, int, A\.min 13905.04  14047.46  13976.25 1.02 20200.01  20410.02  20305.01 1.03
Log, sq int, A-min  13905.04  14047.46  13976.25 1.02 20200.01  20410.02  20305.01 1.03

Note: This table reports prediction confidence interval (ACIp) as a percentage of prediction mean
(P) for Adaptive LASSO (Columns (1) to (4)) and OLS (Columns (5) to (8)) models, choice of
s, choice of dependent variable in logs and levels, choice of independent variable matrix including
base variables, squares, interactions, and both squares and interactions. Columns (1), (2), (5), and
(6) show the 2.5% and 97.5% confidence intervals for the Adaptive LASSO and OLS predictions,
respectively. Columns (3) and (7) report the mean predictions from the Adaptive LASSO and
OLS models, respectively. Finally, Columns (4) and (8) report the prediction confidence intervals
as a percentage of prediction means, i.e., ACI:DIP x 100, where ACIp = 97.5%CIp — 2.5%CIp, for
the Adaptive LASSO and OLS models, respectively. Best fit model shown in italics.
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C Variable Selection

Table C1: Variables selected: Vehicle Miles. Note: (.) denotes variables not selected by the predictive model.

Variable

Vehicle Miles (miles)

Intercept

Division East North Central
Division East South Central
Division Middle Atlantic
Division Mountain

Division New England
Division Pacific

Division South Atlantic
Division West North Central
Division West South Central
Region Midwest

Region Northeast

Region South

Region West

Household: Race American Indian Alaska Native

Household: Race Asian

Household: Race Black

Household: Race Mixed

Household: Race Native Hawaiian Pacific Islander

Household: Race Other
Household: Race White
Household: Age 35 To 44

Household: Age 45 To 54

1845.26

887.57

-1501

1851.6
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Table C1: Variables selected: Vehicle Miles. Note: (.) denotes variables not selected by the predictive model.

(Continued)

Household: Age 55 To 64

Household: Age 65 To 74 -1309.52
Household: Age 75 To 84 -2265.21
Household: Age Above 85 -3229.6

Household: Age Under 35

Household: Education Bachelors or Higher 665.06
Household: Education Below High School 215291
Household: Education High School

Household: Education Some College

Household: Vehicles None

Household: Vehicles 1 -4200.43

Household: Vehicles 2

Household: Vehicles 3 or More 5071.46
To Work by Bicycle -5945.08
To Work by Cab 3784.07

To Work by Car

To Work by Home

To Work by Public Transport -4918.94
To Work by Walk -4665.39
Household: Size 1 -1448.19

Household: Size 2

Household: Size 3 1693.97
Household: Size 4 or More 3233.72
Household: Employed 1

Household: Employed 2 2838.68

Continued on next page
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Table C1: Variables selected: Vehicle Miles. Note: (.) denotes variables not selected by the predictive model.

(Continued)
Household: Employed 3 5674.03
Household: Employed 4 or More 9126.49
Household: Employed None -1930.89

Miles per gallon

Owner Occupied Housing Units

Metropolitan -1513.69
Suburban
Urban -1878.46

Household: Hispanic Latino

Log of Income 1693.33
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D Policy Tables

Urbanity Policy D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Total Gas Tax -143.2780 -155.2913 -159.7528 -162.4248 -164.3859 -165.1462 -166.6645 -167.7863 -171.7481 -175.3432
Total VMT Tax -139.7121  -150.7284 -155.3634 -158.6665 -161.5515 -163.8511 -167.0110 -170.4529 -176.9802 -184.8270
Total Gas VMT Swap 6 -3.5659 -4.5629 -4.3894 -3.7583 -2.8345 -1.2951 0.3464 2.6666 5.2321 9.4838
Total Gas VMT Swap Rate -0.0110 -0.0100 -0.0082 -0.0062 -0.0042 -0.0017 0.0004 0.0027 0.0045 0.0057
Metropolitan ~ Gas Tax -135.1843  -145.2236 -150.1285 -153.2819 -157.2309 -160.0722 -163.3192 -166.4192 -171.3274 -175.2585
Metropolitan  VMT Tax -133.9497 -143.9911 -149.2045 -152.9504 -157.1460 -160.7270 -164.9250 -169.5790 -176.7106 -184.7677
Metropolitan  Gas VMT Swap & -1.2346 -1.2325 -0.9240 -0.3315 -0.0849 0.6548 1.6059 3.1598 5.3832 9.5092
Metropolitan  Gas VMT Swap Rate -0.0038 -0.0027 -0.0017 -0.0005 -0.0001 0.0009 0.0019 0.0032 0.0046 0.0057
Rural Gas Tax -187.2410 -196.6840 -200.6876 -204.9254 -208.0052 -211.3461 -213.9239 -213.2545 -220.7869 -203.7519
Rural VMT Tax -172.6121  -180.2657 -184.0013 -187.4768 -191.0402 -194.3801 -198.5411 -200.5928 -209.7803 -208.6240
Rural Gas VMT Swap 6 -14.6289  -16.4183  -16.6863  -17.4486  -16.9650  -16.9660  -15.3827  -12.6617  -11.0066 4.8721
Rural Gas VMT Swap Rate -0.0438 -0.0360 -0.0310 -0.0287 -0.0249 -0.0224 -0.0181 -0.0130 -0.0094 0.0030
Suburban Gas Tax -166.3486 -174.7819 -179.9593 -183.9389 -187.0908 -190.1284 -193.1036 -192.6820 -192.2754 -192.2906
Suburban VMT Tax -155.2679  -162.7755 -167.1245 -171.0976 -174.3488 -178.3458 -182.7346 -185.9760 -189.3613 -195.2649
Suburban Gas VMT Swap & -11.0807  -12.0064  -12.8348  -12.8413 -12.7420 -11.7826  -10.3690 -6.7059 -2.9141 2.9744
Suburban Gas VMT Swap Rate -0.0328 -0.0263 -0.0239 -0.0211 -0.0187 -0.0155 -0.0122 -0.0069 -0.0025 0.0020

Table D1: Change in tax collections from gas-VMT swap by Income Decile and Urbanity

Urbanity Policy G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11
Total Gas Tax -112.2675 -113.9302 -129.4050 -142.3208 -153.6437 -162.5447 -166.4765 -170.2401 -175.1000 -175.0028 -175.8655
Total VMT Tax -112.7144  -113.1302 -127.6199 -138.8869 -149.1476 -159.1051 -166.9911 -174.6705 -182.2328 -184.9169 -189.0282
Total Gas VMT Swap § 0.4469 -0.8000 -1.7851 -3.4339 -4.4962 -3.4395 0.5146 4.4304 7.1328 9.9141 13.1627
Total Gas VMT Swap Rate 0.0058 -0.0061 -0.0084 -0.0111 -0.0103 -0.0055 0.0006 0.0040 0.0052 0.0059 0.0058
Metropolitan ~ Gas Tax -112.4104 -112.0325 -123.5450 -134.7813 -143.8544 -154.4013 -163.3231 -169.6104 -174.8747 -174.9634 -175.8414
Metropolitan  VMT Tax -112.8578 -111.4398 -123.2877 -133.5117 -142.5318 -154.0684 -165.0755 -174.2880 -182.0646 -184.8928 -189.0104
Metropolitan  Gas VMT Swap § 0.4475 -0.5926 -0.2573 -1.2696 -1.3226 -0.3329 1.7524 4.6776 7.1899 9.9294 13.1690
Metropolitan  Gas VMT Swap Rate 0.0058 -0.0045 -0.0012 -0.0041 -0.0030 -0.0005 0.0020 0.0042 0.0053 0.0059 0.0058
Rural Gas Tax 0.0000 -145.3882 -177.3773 -186.8395 -195.0255 -204.6835 -212.9059 -219.2664 -216.5412 -194.9877 -203.2473
Rural VMT Tax 0.0000 -142.7081 -165.3014 -172.1235 -178.9139 -187.6480 -197.4634 -205.9561 -213.4371 -201.5489 -214.0707
Rural Gas VMT Swap ¢ 0.0000 -2.6800  -12.0759  -14.7160  -16.1116  -17.0356  -15.4425  -13.3104 -3.1041 6.5612 10.8234
Rural Gas VMT Swap Rate 0.0000 -0.0190 -0.0559 -0.0475 -0.0368 -0.0278 -0.0185 -0.0122 -0.0023 0.0039 0.0043
Suburban Gas Tax -144.7450 -152.7893 -164.3514 -173.7211 -183.8109 -192.3689 -191.5797 -198.4199 -183.1963 -197.0133
Suburban VMT Tax -139.8789 -143.6135 -153.7328 -161.7523 -171.1143 -181.8529 -187.0010 -199.5109 -188.0099 -197.8203
Suburban Gas VMT Swap 6 -4.8662 -9.1757  -10.6186  -11.9688  -12.6967  -10.5160 -4.5787 1.0910 4.8136 0.8070
Suburban Gas VMT Swap Rate -0.0381 -0.0417 -0.0341 -0.0274 -0.0207 -0.0125 -0.0043 0.0008 0.0029 0.0004

Table D2: Change in tax

collections from gas-VMT swap by Income Group and Urbanity
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E Other Figures

E.1 Congressional District Impacts

uSD/ s/ N uso/ [

Household -10-5 0 5 10 Household -10-5 0 5 10 Household ¢ 2 4 &

Figure E1: Change in tax collections from gas-VMT swap by 118" Congressional District and
party affiliation, winsorized at 95%. (Republican as red, Democrat as blue, and Independent as
green.)
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E.2 Distributional Figures using Change in Burden to Income

We include here additional distributional charts where we graph the change in tax burden as a share of

household income across different demographic characteristics. The patterns in the figure mimic the patterns

when graphing the change in tax payments across these demographic characteristics.

Figure E2: Change in tax payments as a percentage of income by income decile and urbanity
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Figure E3: Change in tax payments as a percentage of income by college education
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Note: Change in tax payments as a percentage of income by deciles of percentage of
college-educated households in a census tract.

Figure E4: Change in tax payments as a percentage of income by race
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Note: Change in tax payments as a percentage of income by deciles of percentage of non-white
households in a census tract.
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E.3 Relation of EV and PHEV Ownership and Change in Tax Payments

While electric vehicles (EVs) and plug-in hybrid vehicles (PHEVS) are a small fraction of vehicles owned
by households, we do a check to see if there is a relationship between the change in tax payments and EV or
PHEV ownership. Figure E5 displays a scatterplot along with a lowess plot of the change in tax payments
from the tax swap against the percentage of EVs owned by households within a census tract. Over the
support of the data, there is a strong positive correlation between EV penetration at the census tract level

and the change in tax payments. Figure E6 shows the same positive relation for PHEVs.

Figure E5: Change in tax payments by electric vehicle (EV) percentage: scatter and loess plot
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Figure E6: Change in tax payments by plug-in hybrid electric vehicle (PHEV) percentage: scatter
and loess plot

50

25

-25

Average household change in tax payment

-50 .

0 10 20
PHEV Percentage

Note: Includes all US census tracts.
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