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Abstract

An efficient and resilient supply of critical raw materials such as copper, cobalt, and nickel
is essential to ensure supply chain stability and advance energy transition goals. Although
prior research has examined how fluctuations in metal markets affect the energy transition,
the factors that contribute to the greatest uncertainty in metal production costs, ore extrac-
tion, and investment in waste abatement remain poorly understood. Drawing on data from
114 mining projects worldwide and employing an economic model of joint metal production,
this study uses Monte Carlo simulations to assess how cost, technology, and policy factors
drive fluctuations in marginal cost of metal production, ore demand, and waste manage-
ment. The findings reveal that, (1) marginal costs are more sensitive to output elasticity
than to waste intensities and fees, (2) ore demand is more sensitive to output elasticity, waste
fees, and cost of processing, while (3) the percentage of waste managed is most sensitive to
waste fees and abatement costs than production parameters. These insights provide valuable
guidance for stakeholders seeking to optimize metal production while managing waste and
supporting the transition to sustainable energy systems.
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1 Introduction

The efficient processing and refining of ores to produce critical raw materials play a signifi-

cant role in advancing global efforts to reduce carbon emissions and meet energy transition

targets. With increasing demand for metals such as copper, nickel, cobalt, and other energy

transition metals (ETMs), understanding the factors that affect production costs is crucial

for decision making (Liang et al., 2023). As mining and metal processing firms strive to

meet this rising demand, they face significant uncertainties and risks that complicate cost

management and production decisions (Ku et al., 2018). Such industry-specific experiences

reflect a broader economic understanding that uncertainty in cost shocks influence invest-

ment and resource allocation, while regulatory uncertainties play a critical role in shaping

the abatement decision of regulated sectors (Aldy and Armitage, 2022).

Previous studies have examined the uncertainties surrounding metal prices, demand,

technology, and policy, and have assesed their impact on the energy transition. For example,

the prices and demand for energy transition metals are shown to fluctuate rapidly, making

their markets highly volatile (Goutte and Mhadhbi, 2024). Studies estimate that changes in

metal prices can lead to a 13% to 41% increase in the cost of producing clean energy tech-

nologies, potentially creating challenges in attaining energy transition goals (Leader et al.,

2019). Some of this price volatility can be attributed to cost and supply uncertainties, which

arise from unpredictable shifts in production expenses (e.g., exploration, development, re-

fining) and geopolitical tensions. As these cost shocks remain uncertain, they contribute

to investment delays, as companies hesitate to commit resources without clear projections

of potential returns and financial viability, exacerbating shortages and supply chain risks.

Other studies (Bustamante and Gaustad, 2015) suggest that high volatility in ETM mar-

kets creates significant uncertainty for both the production and consumption of clean energy

technologies. Further research also suggests that technological advancements in mineral ex-

traction and processing are highly unpredictable, in part due to uncertain market conditions
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(Lundaev et al., 2023). Different technologies exhibit varying levels of efficiency, leading

to a wide range of metal production volumes (Fikru and Awuah-Offei, 2022). The vari-

ability in returns from investing in new metal extraction and ore processing technologies

could delay advances or cause misallocation of resources, ultimately hindering the sector’s

ability to support energy transition goals. Finally, evolving regulatory frameworks (Massari

and Ruberti, 2013), particularly those governing environmental practices, reclamation and

restoration, and waste management, could further contribute to operational complexity (Ap-

plegate, 2005). Consistent with this thesis, research has shown that increased uncertainty

in environmental policy negatively affects firm-level investment in environmentally sensitive

industries (Palikhe et al., 2024).

Although recent studies (Goutte and Mhadhbi, 2024) have examined the impact of

uncertainties in ETM markets on the energy transition and green investments, the factors

driving the largest fluctuations in metal production costs, ore extraction, and investment

in waste abatement remain poorly understood. Uncertainties in ETM market parameters,

policy, and technology become particularly challenging when two or more metals are pro-

duced from the same ore at a single site (Mudd et al., 2017). When a common ore is used

to produce multiple ETMs, fluctuations in the market prices or demand for one metal can

affect the overall cost structure and production strategy for all co-produced metals. This

interdependence complicates production decisions regarding how much ore to extract and

process, further amplifying uncertainties related to operational efficiency and profitability

(Lewicka et al., 2021).

Despite a growing number of studies estimating the demand for ETMs in a variety of

contexts (Wang et al., 2023; Fikru and Kilinc-Ata, 2024), few works comprehensively examine

the interaction between technical, policy, and cost parameters in shaping cost variations as

well as production and environmental outcomes for joint metal producers. In addition, the

relationship between host and co-host metals is rarely studied (Watari et al., 2020), with only

few studies explicitly modeling metal co-production from a common ore (Fikru and Awuah-
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Offei, 2022). Our study addresses these gaps in the literature by presenting an economic

model capable of capturing the impact of a variety of uncertainty sources in joint metal

production.

The objective of this work is to investigate how marginal production costs, demand

for ore, and waste management decisions in joint metal production are influenced by a se-

ries of factors, including cost parameters, total factor productivity, output elasticity, waste

intensity of ore processing, and regulatory fees. First, we provide a descriptive analysis of

data from 114 mining projects that produce joint ETMs, to justify the importance of under-

standing the sources of variations in the cost and volume of processed ore. These empirical

insights are then used to develop an economic optimization model which analyzes the effects

of key parameters, i.e., cost, technical (technology, output elasticity, waste intensity) and

policy parameters (waste regulation fees), on the marginal costs of metal production, the

volume of ore processed, and the percentage of waste managed. Finally, we apply Monte

Carlo simulations to visualize the variation in model outputs and identify the key factors

contributing to this variability. These simulations are effective in illustrating how input

parameters in environmental studies propagate uncertainty in model outputs (Gillingham

et al., 2018). Through this comprehensive approach, our work aims to clarify the complex

dynamics that affect joint metal production.

The study is structured as follows: Section 2 presents insights on 114 mining projects

focused on the joint production of ETMs. Section 3 discusses the theoretical model and its

assumptions in order to characterize a generic firm that processes and refines ore to produce

metals. Section 4 implements a Monte Carlo simulation to illustrate the source of uncertainty

in the firm’s optimal solutions, while Section 5 concludes with a summary of key insights.
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2 Project-Level Insights on Cost and Volume Varia-

tions

Most ETMs are produced using joint production technology. A common ore is extracted

and initially processed for the first metal, with additional metals recovered through further

processing (Watari et al., 2020; Lewicka et al., 2021). Figure 1 illustrates a typical joint

production model, where copper is the host metal and cobalt is recovered from the same ore

(Fikru and Awuah-Offei, 2022; Ayres et al., 2003). Both metals are then used in various

clean energy technologies.

Copper-Cobalt 
ores

Several 
processing
activities

 

Copper metal

Cobalt hydroxide

Electrowinning

Cobalt precipitation

Cobalt metal

Further refining

Solar panels
Wind turbines

Fuel cells
Electric vehicles

 

Figure 1: Joint production of copper and cobalt based on Crundwell et al. (2020)

Expanding on this simplification, different ores host several combinations of ETMs.

In what follows, we aim to include as many of these combinations as possible. Using our

institutional subscription to S&P Global Market Intelligence, we identify a total of 114

mining projects worldwide, referred to as joint metal producers. These projects process a

common ore to produce different combinations of copper (Cu), cobalt (Co), nickel (Ni),

molybdenum (Mo), palladium (Pd), platinum (Pt), and rhodium (Rh) as joint products at
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a given site. We limit our analysis to these metals because they are key inputs for energy

transition technologies, difficult to substitute, and often produced jointly from a common

ore. For example, Co and Ni are key battery materials, Cu is universally needed for electrical

wiring, Mo for wind turbines (Henckens et al., 2018), Pd and Pt as catalysts in hydrogen fuel

cells (Månberger and Stenqvist, 2018) and Rh is also used in fuel cells. In addition, these

metals are often classified as critical minerals or materials for the energy transition (US

Department of Energy, 2023). As shown in Table 1, most of the projects (N = 72) produce

only two metals, while the rest of the joint production is characterized by nine different

combinations of three or more metals. Moreover, most joint metal producers (N = 96)

process copper together with at least one other critical metal.

Figure 2 shows the countries in which the 114 mining projects produce different

combinations of joint metals. Most of the joint producers in the sample are located in South

Africa, China, Chile, and the US. Other countries with significant joint production operations

include Australia, Canada, the Democratic Republic of Congo (DRC), and Peru. The figure

also shows that some countries focus on the joint production of two metals (e.g., Cu-Mo

in Peru, Chile, and the US); others on the joint production of several metals (e.g., Cu-Ni-

Pd-Pt-Rh in South Africa); and others are involved in multiple types of joint production

operations (e.g., Canada and Zimbabwe).

Different combinations of metals can have significantly different production charac-

teristics. To study this production variability, we analyze site-level data from S&P on two

metrics: the average cash cost of processing ore (dollars per tonne of ore processed) and the

total volume of ore processed at each site (kilotonnes of ore processed), in 2022. The aver-

age cash cost documents costs associated with extracting, treating, processing, and refining

the ore to produce metals, hence representing the operating expenditures incurred at both

the mining and processing stages. For each combination of joint products, we compute the

average cash cost per tonne of ore processed, and the average volume of ore used to jointly

produce two or more metals (see Table 1).
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Figure 2: Country rankings based on the number of mining projects (total 114 projects).

The average cost of processing a tonne of ore varies depending on the combination of

metals produced. Costs range from a minimum average of $22.32/tonne for Cu-Mo projects,

to a maximum average of $225.36/tonne for the production of Cu-Co-Ni-Pd-Pt-Rh. Simi-

larly, the average volume of ore processed ranges from a minimum of 165 kilotonnes for the

only project that produces all seven metals, to a maximum of 35,924 kilotonnes for Cu-Mo

projects. It is important to note that the dataset is unbalanced, as some joint metal cat-

egories contain just one project (e.g., Cu-Co-Mo), while others are more populated (e.g.,

Cu-Mo).

To further understand the production variability, we analyze the distribution of these

two production metrics. First, Figure 3 shows box plots of the cash cost per tonne of ore.

It suggests that there is significant variation in terms of cash cost within a joint metal

combination and between the different combinations of metals produced. For example, the

46 projects producing copper and molybdenum display fairly homogeneous cash cost levels,
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Joint products No. of projects Cost per tonne of ore Volume of ore

(project average) (project average)

Cu-Co 11 118.79 4063.97
Cu-Mo 46 22.32 35924.23
Co-Ni 15 168.33 4066.02
Cu-Co-Mo 1 29.39 1827.20
Cu-Co-Ni 7 192.05 1728.69
Cu-Pd-Pt 1 80.29 3751.00
Pd-Pt-Rh 1 50.02 4320.50
Ni-Pd-Pt-Rh 2 142.24 5985.00
Cu-Co-Ni-Pd-Pt 5 101.46 2826.56
Cu-Ni-Pd-Pt-Rh 16 120.93 4819.39
Cu-Co-Ni-Pd-Pt-Rh 8 225.36 7632.53
Cu-Co-Ni-Mo-Pd-Pt-Rh 1 48.89 165.00

Table 1: Average costs and volume of ore for joint metal producers across the globe (N = 114)

while the 15 projects producing cobalt and nickel have more varying costs. In comparison,

Figure 4 displays box plots of the volume of ore processed. The highest variation in volume

is that of the copper and molybdenum projects (partly driven by an outlier, the Cerro

Verde mine in Peru, which produces almost 150, 000 kilotonnes of ore), while most of the

other metals’ combinations exhibit homogeneous levels in terms of processed ore per project.

Overall, the figures suggest that those projects that exhibit high amount of volatility in terms

of costs, do not necessarily display higher variability in terms of the volume of ore processed.

In other words, even when the ore volumes processed are similar between projects, their

costs can vary widely; and when the volumes processed vary significantly, costs can still be

homogeneous.

Thus, ore volatility alone does not appear sufficient to explain variations in production

costs. For example, simply considering the geographical location of mineral projects reveals

a complex relationship between ore volume and cost volatility. Figure 5 presents country

rankings based on the average ore processed per project (light blue circle) and the average

cash cost per project (dark blue bar), for the entire sample. The figure suggests that the

cost of processing ore varies significantly between countries, with New Caledonia, Canada,
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Figure 3: Total cash cost per ore processed for each group of jointly produced metals
(N=114). The central box encloses the middle 50 percent of the data. The whiskers extend
from each end of the box for a range equal to 1.5 times the interquartile range. Observations
outside that range are represented via dots. The median is represented by the line drawn
across the box. The red plus sign indicates the mean.

and Indonesia among the high-cost producers, while Finland, Mexico, and Kazakhstan are

among the low-cost ones. Notably, the figure also illustrates a possible negative correlation

at the country level between cost and volume processed, where countries that produce large

amounts of ores tend to have lower costs (e.g., China, Peru).1 This could be attributed to

several factors, such as countries developing technological advantages that increase metal

production and reduce costs, or countries imposing less stringent environmental and waste

management regulations.

Two seemingly conflicting insights can be drawn from the 114 projects. On the one

hand, when comparing projects across the combinations of metals produced, variations in

1The correlation coefficient between average cost and average ore is −0.1186 (with a 5% critical value
(two-tailed) = 0.3961 for the 25 countries).
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Figure 4: Ore processed (kilotonnes) for each group of jointly produced metals (N=114).
The central box encloses the middle 50 percent of the data. The whiskers extend from each
end of the box for a range equal to 1.5 times the interquartile range. Observations outside
that range are represented via dots. The median is represented by the line drawn across the
box. The red plus sign indicates the mean.

cost and in ore processed are rarely correlated. On the other hand, when comparing projects

across geographical location, a negative relationship between average ore and cost emerges.

This correlation between ore and cost is potentially influenced by factors such as the specific

type and number of metals jointly produced, as well as the location of the project, which

might, in turn, affect the quality (grade) of the ore, operational costs (e.g. extraction,

refining, and processing technologies), and policy or regulatory factors that impact costs,

such as via waste fees.

In this context, our work aims to shed light on the complex relationships between

technical, policy and cost parameters, as well as their volatility. By presenting a theoretical

framework grounded in economic principles, followed by simulations using real-world data, we
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Figure 5: Country ranking according to the average project cash cost (blue histograms on
the left axis) and ore processed (light blue circles on the right axis).

provide insights into cost variations for joint metal producers from an economic perspective.

These insights can help inform decisions on the extraction and processing of additional ore,

and the management of increased waste, taking into account both production cost structures

and resource allocation efficiency.

3 Joint Production Model Framework

3.1 General model setup

In this sub-section, we present the general model setup used to characterize a generic firm

that processes and refines ores to produce metals. We follow a double optimization procedure,

described in Figure 6, where the firm makes decisions in two stages: first, minimizing cost

subject to a production function with a given waste fee, and then maximizing profit given

the demand. The model incorporates a series of uncertain parameters widely discussed in

the economics literature, such as total factor productivity (Gillingham et al., 2018), cost and
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(environmental) policies (Aldy and Armitage, 2022; Palikhe et al., 2024). Specifically, we

distinguish between (1) production and abatement cost parameters, (2) technical parameters

(total factor productivity, output elasticity, and waste intensity), and (3) waste fee as the

policy parameter, all of which affect first-stage decisions.

In the first stage, the firm minimizes its expenditure subject to production constraints,

to determine the volume of ore needed for processing. The decision-making in this stage

also involves determining the optimal percentage of waste to manage. The model assumes

that refining ores for metal production involves the generation of waste (e.g., solid waste,

greenhouse gas emissions), some or all of which will be managed due to the presence of a

waste release fee. In the second stage, after selecting the ore volume (i.e., the input choice),

the firm maximizes its profits by determining the optimal metal production volumes. Each

of these stages is discussed in detail in the remainder of this section.

Assume the firm is a joint metal producer, utilizing a common natural resource de-

posit, i.e. the ore. It produces two metals, x1 and x2, by processing and refining a common

ore, xo. To simplify the model, we limit joint production to two metals only, even though

each firm may actually produce more than two, as discussed in Section 2. The first metal

is a critical ETM, which might face limited technological processing capacity (e.g., cobalt),

while the second is a base metal with well-developed processing technologies, such as copper.

Among the projects presented in Table 1, our theoretical model might best represent the

joint production of copper and cobalt (Cu-Co) metals from a common ore (e.g., copper-cobalt

ore).

3.1.1 First stage decision

First, the common ore, xo, is extracted and then processed and refined to produce the two

metals using a joint production technology. Metal production is represented by production

functions which include a numeraire input, xn, where x1 = g(xo, xn,1) and x2 = h(xo, xn,2).
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First Stage Decision
Minimize cost subject to production 

function given waste fee

• Total cost function
• Marginal cost function

Joint metals –
volume produced

• Conditional demand for ore
• Percent of waste managed

Second Stage Decision
Maximize profit given demand

Uncertain technical, policy, and cost parameters

Figure 6: Double optimization framework

The two metals have different numeraire inputs because the reagents or chemicals used to

refine each metal could differ. The cost of processing and refining the ore to produce the two

metals is given by c(xo) = cxo, where c > 0. This cost also includes the cost of procuring

the ore, such as buying it from a mining company. Therefore, our model is general enough

to represent either an integrated mining company that extracts and processes the ore, or

a metallurgical company that procures the ore from a mining company. We assume linear

costs to reduce the complexity of the model.

Processing and refining ores to produce the two metals generate waste and emissions.

Waste generation is generally penalized, incentivizing firms to invest in more responsible

and sustainable processing practices. The generation of waste is proportional to the ore

volume, W = wxo, w > 0. The parameter w represents the waste generated per unit of ore,

i.e., the waste intensity of ore processing for metal production. A percentage 0 ≤ k ≤ 1

of total waste is managed, e.g., treated, recycled, or used in energy recovery, depending

on the type of waste management technology (Eng et al., 2021). The remaining waste is
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subject to a waste fee τ > 0, measured in dollars per tonne of waste and assumed to be

exogenous to the firm (Lahiri and Ono, 2007). Therefore, the total waste fee paid by the

firm is (1− k)Wτ . The volume of waste that is managed, kW , instead, incurs management

costs (e.g., treatment cost), which are assumed to be quadratic and convex as in Fowlie and

Muller (2019), c(kW ) = ϵ(kwxo)
2/2, ϵ > 0. The parameter ϵ > 0 represents the slope of the

marginal abatement cost function (Strandholm et al., 2023).

The firm’s objective is to minimize its expenditure, subject to the production func-

tions, by deciding the volume of input to use (ore and numeraire inputs) and the percentage

of waste to abate, in order to balance abatement costs and waste penalties. The constrained

optimization problem is presented as follows:

L(xo, xn,1, xn,2, k, λ1, λ2) = c(xo) + c(kW ) + (1− k)Wτ + xn,1 + xn,2

+ λ1[x1 − g(xo, xn,1)] + λ2[x2 − h(xo, xn,2)] (1)

The price per unit of each numeraire input is assumed to be one. Hence, the solution

is solved from the following first-order conditions:

∂L

∂xo

= c+ ϵxo(kw)
2 + (1− k)wτ − λ1

dx1

dxo

− λ2
dx2

dxo

= 0 (2)

∂L

∂xn,1

= 1− λ1
dx1

dxn,1

= 0 (3)

∂L

∂xn,2

= 1− λ2
dx2

dxn,2

= 0 (4)

∂L

∂k
= ϵ(wxo)

2k − wxoτ = 0 (5)

∂L

∂λ1

= x1 − g(.) = 0 (6)

∂L

∂λ2

= x2 − h(.) = 0 (7)

The solution provides the conditional demand for ore, x∗
o(x1, x2), and the numeraire

inputs, x∗
n,i(x1, x2), where i = 1, 2, as well as the percentage of waste that is managed,
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k∗(x1, x2). These conditional input demands are substituted into the firm’s expenditure func-

tion, where the total cost of production is calculated from TC(x1, x2). Thus, the marginal

cost of producing one metal (MC1 = ∂TC/∂x1) depends on x2, and vice versa, highlighting

the aspect of joint production. In other words, the production of one metal can affect the

marginal cost of producing the other metal (Watari et al., 2020; Lewicka et al., 2021).

3.1.2 Second stage decision

After optimally choosing input volumes, the metal producer maximizes its profit by deciding

its production volume. The price of each metal is p1 and p2. We assume a linear demand for

the metals, represented by p1 = a1 − b1
∑

j x1 and p2 = a2 − b2
∑

j x2, where j = 1, 2, ..., n is

the number of companies in the market, ai > 0, with i = 1, 2, is an indicator of market size

and bi > 0 is the slope of the metal demand line.

The joint producer’s objective is to maximize profits as follows:

max
x1,x2

Π = p1x1 + p2x2 − TC(x1, x2) (8)

The first-order profit maximizing conditions are:

p1 + x1
∂p1
∂x1

− ∂TC(x1, x2)

∂x1

= 0 (9)

p2 + x2
∂p2
∂x2

− ∂TC(x1, x2)

∂x2

= 0 (10)

The final equilibrium solutions per firm are x∗
1 and x∗

2. Under a symmetric equilibrium

assumption, the industry supply is simply given by nx∗
1 and nx∗

2. The equilibrium metal

prices are calculated using the equilibrium production levels. The solutions are derived

from:

x1 =
a1 −MC1

b1(n+ 1)
(11)

x2 =
a2 −MC2

b2(n+ 1)
(12)
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3.2 Model and simulation assumptions

3.2.1 Model assumptions

To solve the model, we introduce a series of simplifying assumptions. First, the production

functions are assumed to be Cobb-Douglas, as in Fikru and Awuah-Offei (2022). They are

defined as x1 = A1x
α
ox

β
n,1 and x2 = A2x

θ
ox

η
n,1. The parameters A1, A2 represent total factor

productivity in processing ore into metals (e.g., scaling factor). Technologies that produce

more metal per ore result in a higher efficiency frontier, while constrained metal production

due to inefficient technologies leads to a lower A. The returns to scale in metal production

are given by α + β for the critical ETM, x1, and θ + η for the base metal, x2.

Second, we assume increasing returns to scale in the production of the base metal,

x2, where θ = η = 1, resulting in θ + η = 2. This reflects the fact that base metals, such

as copper, zinc, and aluminium are generally produced from ores with fewer productivity

or technology related challenges (Aydin, 2020; Boulamanti and Moya, 2016). In contrast,

for the critical ETM, x1, we assume constant or decreasing returns to scale, α + β ≤ 1,

reflecting the technological and/or scaling challenges associated with their production, which

result in non-declining marginal costs (Rosenau-Tornow et al., 2009; Dutta, 2017). In fact,

the complex processing methods currently used for producing ETMs could limit economies

of scale (Humphries, 2013; Jaskula, 2019). In addition, for simplicity, we assume α = β,

implying that the output elasticity of the critical metal production is identical for the ore

and the numeraire input.

3.2.2 Initial values and simulation assumptions

As highlighted in Section 3.1, our theoretical model is best suited for ETMs such as Cu-

Co projects, where copper has an established and more efficient processing technology than

cobalt. For this reason, the simulation focuses on joint producers of Cu-Co. We first col-

lect the most current data on metal production volumes in the US from the USGS-Copper
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Report and USGS-Cobalt Report, which we use as proxies for cobalt production, x1, (U.S.

Geological Survey, 2024a) and copper production, x2 (U.S. Geological Survey, 2024b). Then

we assume that the values for the model parameters (c, ϵ, τ, w, α,Ai) are drawn from uni-

form distributions with minimum and maximum values, U(min,max) as indicated in Table

2. Through 1,000 random draws, we simulate the marginal cost of producing the critical

ETM of interest, i.e., cobalt, (MC1), and the base metal, i.e., copper, (MC2), and use the

same procedure to calculate the optimized volume of ore demanded, x∗
o. We also restrict the

percentage of waste managed k∗ ≤ 1 and present results for its optimum level. Since data

of metal production volumes are taken from the real world, these are assumed to represent

optimized solutions (x∗
1, x

∗
2) resulting from fully solving the second stage.

Parameters Units Values Source/Assumptions

Cost parameters
c USD per kilotonne of ore U(75, 150) Figure 3
ϵ USD per waste tonne U(0.85, 0.99) Values represent a plausible range

Policy parameter
τ USD per waste tonne U(25, 100) Losurdo (2024),

California Department of Toxic Substances Control (2024),
Missouri Department of Natural Resources (2024)

Technical parameters
α = β Unit free U(0.45, 0.5) < 0.5 for decreasing returns;

> 0.45 for plausible range for non-negative MC2

A1 Unit free U(0.7, 0.9) Values represent a plausible range
A2 Unit free U(A1, 1) A1 < A2

w waste tonne per kilotonne of ore U(0.8, 0.99) Values represent a plausible range
Optimal metal production volumes

x∗
1 (Cobalt) metric tonnes 500 U.S. Geological Survey (2024a)

x∗
2 (Copper) metric tonnes 1,230,000 U.S. Geological Survey (2024b)

Table 2: Assumptions and initial values

4 Results and Discussions

4.1 Model solutions

Given the model framework and the simplifying assumptions, we now present solutions for

the first and second stages. The equations below represent the conditional demand for ore

(Eq.13), the optimal rate of waste management (Eq.14), and the numeraire inputs (Eq.15-
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16).

x∗
o =

{
1

c+ τw

[
α

(
x1

A1

) 1
α

+
x2

A2

]} 1
2

(13)

k∗ =
τ

ϵwx∗
o

(14)

x∗
n,1 =

[
x1

A1x∗α
o

] 1
α

(15)

x∗
n,2 =

x2

A2x∗
o

(16)

We find that demand for the common ore decreases with factors that increase its cost

of production (e.g., the unit cost of processing the ore, c, its waste intensity, w, and the

waste fee, τ) and increases with demand for metals, x1, x2. Moreover, a technically efficient

production leads to lower volumes of ore being demanded, dxo/dA < 0. Similarly, we find

that under the assumptions given, improvements in the output elasticity of the critical ETM

reduce demand for ore, dxo/dα < 0.

The solutions also imply that the firm will treat a higher percentage of the waste it

generates if the penalty, τ , is high. This positive relationship occurs both directly through

increases in τ and indirectly as higher τ decreases conditional ore demand x∗
o. Waste in-

tensity also influences the percentage of waste managed both directly, as increases in waste

intensity decrease k∗, and indirectly through ore demand, leading to an overall negative

effect (dk∗/dw < 0). Similarly, a higher unit cost of processing of the ore, c, leads to a

lower demand for the ore, x∗
o, which in turn increases the percentage of processed waste, k∗.

Finally, Equation 14 hypothesizes that a high marginal cost of abatement, ϵ, will lead to a

lower percentage of waste managed. Improvements in technical efficiency (Ai, i = 1, 2) and

improvements in ETM output elasticity (α) will also indirectly increase the percentage of

waste managed, through decreases in ore demand.

The solutions presented in Equations 13-16 are plugged into the firm’s total cost
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function to obtain the total optimized expenditure (as a function of both metals) and to

derive the marginal cost of metal production. The total cost of metal production is calculated

as:

TC(x1, x2) = (

{
1

c+ τw

[
α

(
x1

A1

) 1
α

+
x2

A2

]} 1
2

(c+ τw) +
(x1/A1)

1
α + (x2/A2)

x∗
o

− 0.5τ 2ϵ−1(17)

The last term in the above equation is negative, showing the abatement effect where

firms save on waste fee by abating a higher percentage of their waste (Lahiri and Ono, 2007).

Marginal costs are also important for production decisions and are calculated from:

MC1(x1, x2) =
x

1
α
1

√
c+ τw

x1A
1
α
1

√
ν

[
(α− 1)x

1
α
1

2A
1
α
1 ν

+ α−1

]
(18)

MC2(x1, x2) =

√
c+ τw

2A2ν3/2

[
x
1/α
1 (3α− 2)

A
1
α
1

+
x2

A2

]
(19)

The parameter ν is a function of both metal production volumes, ν = α(x1/A1)
1/α +

x2/A2 > 0. The base metal, x2, is produced with increasing returns to scale. Therefore, it

is less likely that its production will require additional technical efficiency or productivity

gains. Moreover, due to the base metal’s increasing returns to scale, marginal cost, MC2,

declines with increased demand, x2, whereas this is not the case for critical ETM production,

x1 (i.e,., MC1 is increasing in x1 with decreasing returns). For the critical ETM to exhibit

declining returns to scale α < 0.5 must hold, while for constant returns to scale, α = 0.5.

The characterization of costs shows that, while total and average costs (Eq. 17)

are directly affected by the slope of the marginal waste abatement cost, ϵ, marginal costs

(Equations 18-19) are not. This is due to the endogenous choice of k, where a higher ϵ

lowers k∗. However, we find that waste intensity, cost of ore processing, and waste penalty

positively and directly affect marginal costs. Equations 18-19 also suggest that production

parameters (Ai, i = 1, 2 and α) influence marginal cost of production in a non-linear way.
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For instance, A1 affects MC1 directly (productivity lowers marginal costs) and indirectly,

since it lowers the volume of ore demanded (captured by ν), while A2 affects MC1 indirectly

through ν.

The main analytical findings are summarized in the following proposition.

Proposition 4.1. (1) A higher cost of processing ore, c, a higher waste fee, τ , and a higher

waste intensity, w, increase marginal costs. (2) The conditional demand for ore decreases

with total factor productivity, A, output elasticity, α, and with the parameters that increase

costs, i.e., c, w, τ . (3) The optimal percentage of waste managed increases with the waste fee

and cost of processing, decreases with the slope of the marginal cost of abatement, and waste

intensity. Improvements in technical efficiency and output elasticity will also increase the

percentage of waste managed, indirectly through decreases in ore demand.

4.2 Variability in cost, ore, and waste managed

Building on the theoretical model outlined above, we now examine the variation in the three

model outputs (i.e., marginal cost, optimized demand for ore, and waste management) to

identify which parameters have the strongest effect on the uncertainty in joint metal pro-

duction – specifically through their impact on ore demand and marginal cost of production.

The effect of the technical parameters Ai, α, w, the waste fee, τ , and the cost param-

eter, c, on the marginal cost of producing cobalt, MC1, and copper, MC2 is presented in

Figures 7 to 9. Figure 7 suggests that as the value of A1 increases, the median and spread

of cobalt’s marginal cost appear to decline (top left panel), indicating that as technical

efficiency improves cobalt’s production costs could start to fall and become less variable (al-

though this effect is not particularly strong). Hence, enhanced efficiency has the potential to

improve not only cost reduction, but also cost predictability for cobalt. For copper (bottom

right panel) this effect is much less pronounced likely due to increasing returns which make

copper’s marginal costs less sensitive to additional technical efficiency gains. The figure also
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illustrates that the cross-impacts of one metal’s technical efficiency on the marginal cost of

the other are negligible.

Figure 8 suggests that as the output elasticity of cobalt production (α) increases, the

marginal cost of cobalt production (both median and spread) decreases significantly, becom-

ing less variable and more stable, with very few outliers (top-left panel). However, a higher

output elasticity of cobalt production increases the level of copper’s marginal production

costs (top-right panel). The figure (bottom panels) also shows that the marginal costs of

both cobalt and copper remain relatively consistent across different levels of waste intensity,

with no clear increase in the median or spread of costs, though some outliers are present at

certain levels of w. This suggests that, in the simulations, waste intensity is not a dominant

driver of variability in marginal cost. Similar results are observed for the impact of cost, c,

and waste fee, τ , on the variation of marginal costs, as shown in Figure 9.

The effect of the model parameters on the optimized demand for ore, x∗
o, and the

percentage of managed waste, k∗, are presented in Figures 10 and 11, respectively. Figure 10

suggests that α, c, and τ are the three main factors driving the reduction in both the level

and spread of ore processed. This indicates that higher output elasticity of cobalt production

is associated with lower and less volatile volumes of ore processed, while a similar effect is

observed for the waste fee and cost of processing. Technical efficiency indicators, A1 and A2,

also seem to play a role, though there are several outliers. Figure 11 shows that a higher

τ increases both the level and variability of k∗, suggesting that while a higher waste fee

increases waste management, it also increases variability up to a certain threshold.

We also asses the influence of the slope of the marginal abatement cost (ϵ) on the

percentage of waste managed. Figure 12 illustrates the relationships between ϵ, and k∗,

suggesting that the waste fee and abatement cost parameter have a larger impact on the

percentage of waste managed than the production parameters.

To further examine the relationship between the model parameters and the three
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Figure 7: Impact of technical efficiency (A) on marginal costs
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Figure 8: Impact of output elasticity (α) and waste intensity (w) on marginal costs.
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Figure 9: Impact of cost (c) and waste fee (τ) on marginal costs
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Figure 10: Impact of model parameters on ore processed (x∗
o)
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Figure 11: Impact of model parameters on the percentage of managed waste (k∗)
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Figure 12: Impact of ϵ on the percentage of managed waste (k∗)

model outputs (marginal cost, ore demand, and percentage of waste managed), we analyze

the correlation coefficients in Table 3. These statistics further highlight the strong influence

of α on marginal costs and ore demand, and the strong impact of waste fee on waste manage-

ment. The technical efficiency parameters A1 and A2 are also correlated with marginal costs

even though to a lesser extent. The waste fee, τ , and the cost of processing ore, c, parameters

are correlated with waste managed. Both costs increase the percentage of waste managed,

for c this occurs indirectly through decreasing the ore demand, x∗
o, and τ increases the per-

centage of waste managed both directly and indirectly through ore demand, explaining why

the correlation is much stronger for the waste fee than the processing cost parameter.

5 Conclusion

The efficient processing and refining of ores to produce critical energy transition metals

(ETMs) is essential for advancing global efforts to reduce carbon emissions and achieve

clean energy targets. As demand for metals such as copper, nickel and cobalt continues to

increase, understanding the factors influencing production cost uncertainty becomes increas-

ingly important (Liang et al., 2023; Romani and Casoli, 2024). These uncertainties may arise
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Table 3: Correlation between model’s parameters and outputs. P-value represented in the
parenthesis. *, ** and *** indicate significance at the 0.1, 0.05 and 0.01 levels.

Co Cu Ore demand Waste managed

Parameters MC1 MC2 x∗
0 k∗

c 0.145*** 0.177*** -0.623*** 0.163***
(<0.001) (<0.001) (<0.001) (<0.001)

τ 0.155*** 0.136*** -0.576*** 0.958***
(<0.001) (<0.001) (<0.001) (<0.001)

w 0.034 0.053* -0.186 -0.027
(0.285) (0.091) (<0.001) (0.396)

α -0.904*** 0.923*** -0.419*** 0.087***
(<0.001) (<0.001) (<0.001) (0.006)

A1 -0.294*** 0.197*** -0.231*** 0.043
(<0.001) (<0.001) (<0.001) (0.175)

A2 -0.045 -0.128*** -0.335*** 0.105***
(0.160) (<0.001) (<0.001) (<0.001)

from a variety and combination of sources, including technical factors (e.g., extraction and

processing efficiency), policy changes (e.g., evolving regulations and frameworks), and market

conditions (e.g., fluctuating demand). Such factors can affect resource allocation decisions

in the extractive industries, potentially leading to delayed or reduced investments, and ul-

timately hindering production. In fact, metal production is often constrained by technical

challenges and high processing costs, which affects the overall cost of the energy transition

and the adoption of new energy technologies.

In particular, when multiple products are derived from a common ore, the production

of joint metals faces heightened uncertainty for several reasons. First, the economic viability

of extracting and processing one metal can be significantly affected by the market dynamics

of another metal produced from the same ore. Second, joint metals are often produced at

the same site, where varying technical requirements for processing different metals can in-

troduce operational complexities. Each metal may require distinct technologies, processes,

and methods, increasing the likelihood of technical challenges that could disrupt production

timelines and escalate costs. This is especially true for critical minerals such as cobalt, which
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face greater technological uncertainties compared to base metals like copper. Lastly, regu-

latory changes could further amplify these uncertainties. For these reasons, understanding

the economic and environmental dynamics of joint metal production is crucial for optimiz-

ing resource use, minimizing waste, and enhancing the sustainability of metal production

processes.

Drawing from empirical trends observed from 114 mining projects worldwide, and

theoretical insights from an economic model of joint metal production, this study uses a

Monte Carlo simulation to assess the impact of technical, policy, and cost parameters on

fluctuations in the marginal cost of joint metal production and ore demand. The key find-

ings reveal that marginal costs are more sensitive to production function parameters (e.g.,

output elasticity) than to waste intensities and fees, that ore demand is more sensitive to

output elasticity, waste fees and cost of processing than total factor productivity, while the

percentage of waste managed is most sensitive to waste fees and abatement costs.

These results suggest that improving production parameters can significantly enhance

the economic viability of joint metal production by lowering marginal costs. This also em-

phasizes the need for mining firms to prioritize investments in technology and innovations

to better navigate uncertainties and improve overall production outcomes in the rapidly

evolving landscape of ETMs. Finally, the fact that the percentage of waste managed is

more sensitive to the waste fee than to cost and production parameters underscores the

need for ongoing investment in technological advancements and robust environmental policy

frameworks to optimize production while minimizing environmental impacts.

In connection with this point, we propose extending the current model as a potential

avenue for future research to explore the economic impacts of material recycling. For ex-

ample, while most materials in lithium-ion batteries can theoretically be recycled, the high

cost of material recovery currently hinders large-scale recycling efforts (Compagnoni et al.,

2024). Standardizing batteries, materials, and cell design could improve recycling efficiency
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and cost-effectiveness, potentially generating spillover effects on joint metal production and

recycling.

The economic model can also be expanded to accommodate more complex and dy-

namic scenarios. For example, future research could relax simplifying assumptions such as

constant marginal costs, linear demand, and the static structure. Moreover, incorporating

a broader set of technological advancements and evolving regulatory frameworks would pro-

vide a more nuanced understanding of the uncertainties facing the ETM sector. Finally,

future studies could explore how external factors such as geopolitical risks and environmen-

tal considerations contribute to uncertainty in production and investment decisions within

the extraction industry.
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