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Abstract

The marginal cost of electricity fluctuates hour-by-hour, yet retail customers typically
face flat prices. Using data from all seven US wholesale markets and a new method to
evaluate alternative rates set in advance that accounts for equilibrium price effects, we
estimate efficiency gains from time-varying price schedules that better align price with cost.
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1 Introduction

This paper is concerned with the efficiency consequences of the mispricing of a key commodity,

retail electricity. Inefficient pricing is one of the cornerstone topics in economics, and there are

active literatures concerned with its persistence due to factors including market power (e.g.,

De Loecker, Eeckhout, and Unger 2020), environmental externalities (e.g., Fowlie, Reguant,

and Ryan 2016), speculative bubbles (e.g., Scheinkman and Xiong 2003), coarse pricing (e.g.,

Stevens 2020), and rate of return regulation (e.g., Cicala 2015). In the space of public utilities,

the efficiency consequences of inefficient pricing have been studied for water (e.g., Timmins

2002), natural gas (e.g., Davis and Kilian 2011), and electricity (e.g., Borenstein and Bushnell

2022a).

We study inefficient retail electricity pricing that results when customers face time-invariant

prices, whereas hourly costs vary substantially. We quantify the inefficiencies of the mispricing

of electricity and estimate the potential efficiency gains from a wide range of possible pricing

reforms using detailed measures of marginal costs taken from all seven wholesale power markets

in the US over two decades.

We estimate that inefficiencies from mispricing are on the order of $2 billion annually. Rela-

tively simple, feasible time-of-use rates and critical-peak pricing—which we refer to as dynamic

or time-varying pricing—can each reduce that deadweight loss by about 10%. On the other

hand, more complicated pricing schemes based on historical data often backfire because they

lead to poor out-of-sample performance. In a novel machine learning exercise, we demonstrate

that the vast majority of the efficiency gains come from a time-of-use plan having just two

rates. Our results provide guidance to rate setters regarding both the magnitude of potential

gains from time-varying prices and the types of reforms that have the most potential. Some

of our conclusions may be surprising and run counter to industry trends: we find little gain to

increasing time-of-use complexity, and we find robust evidence that basing critical-peak rates on

more timely cost information is critical for efficiency. Finally, we show that exposing consumers

to real-time wholesale prices while protecting them from extreme price risks using price caps

reduces mispricing much more dramatically than either time-of-use or critical-peak pricing.

The efficiency gains of time-varying electricity rates have long been of interest to economists,

but the topic is more important now than ever before for two reasons. First, more complex

prices are now feasible due to the large-scale adoption of advanced metering infrastructure, or

smart meters, that enable utilities to receive real-time information on consumer demand and to

send real-time price signals to consumers. Second, gains from better pricing are likely rising due

to market conditions. At the heart of virtually every clean energy transition plan is the goal

to rapidly build clean power generation and electrify end uses. Electrification of transportation

and buildings, as well as explosive growth in data centers, has led industry to expect a step
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change in load growth (North American Electric Reliability Corporation 2023; EFI Foundation

2024). Expansion of renewable energy increases price volatility and raises the value of accurate

pricing (Imelda, Fripp, and Roberts Forthcoming). Moreover, electric vehicles, heat pumps,

and data centers are especially likely to respond to time-varying prices (Bailey, Brown, Myers,

Shaffer, and Wolak 2024). Failing to set efficient prices for these growing sources of demand

would be a critical missed opportunity.

Economic theory advocates for “real-time pricing,” under which final electricity consumers

would face prices that vary at a high frequency according to the marginal cost of providing

electricity in a given moment. This allows market prices to signal the scarcity value of capacity,

as well as variation in the marginal cost of operations within an existing set of heterogeneous

generators (Boiteux 1949; Joskow 1976; Borenstein and Holland 2005).

Real-time pricing represents one endpoint on a spectrum, with the other endpoint being

entirely flat pricing schemes, where electricity rates are the same every hour. Time-of-use

(TOU) and critical-peak pricing (CPP) schemes lie between these extremes. TOU prices specify

rates for different hours of the day, days of the week, or seasons. CPP rates add a cost premium

to specific blocks of time (referred to as ‘events’) when a system is expected to be near capacity

based on the current or expected price in the market. Many hold to the view that real-time

pricing is too complex, confusing, or risky to impose on residential customers, and so a central

question of the literature has been whether feasible TOU and CPP prices can substantially

improve the alignment between cost and price. Utilities have been moving in this direction,

and many are now creating more and more complex rates.

We evaluate the potential gains from these commonly-applied rate structures, and also

study an alternative in which consumers face real-time pricing, but the prices are subject to

aggressive price ceilings to protect them from extreme pricing events. The basis of our analysis

is equilibrium prices from wholesale electricity markets, which provide a granular measure of the

marginal cost of power in each hour. The basic idea of the paper is to ask how well alternative

retail pricing schemes can align the prices customers face with these marginal costs. Our data

span almost a million hourly prices. Where we extend our analysis to cover spatial variation

within each market, we have on the order of a billion prices.

We start our analysis by fitting alternative rate schedules onto historical wholesale prices

using standard regression tools. In every market and year, we show the goodness of fit of

alternative rate schemes with varying levels of complexity using the in-sample R2. This provides

a descriptive analysis of mispricing, and it also provides an approximation of efficiency costs

following Jacobsen, Knittel, Sallee, and van Benthem (2020). Intuitively, the R2 measures the

efficiency gains achieved by a given rate schedule as compared to a flat-rate baseline, as a

percentage of the efficiency gains achievable by real-time pricing over a flat-rate baseline.

We adapt our methodology to address two issues: out-of-sample fit and equilibrium effects
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of alternative pricing schemes. In practice, rates are set based on backward-looking data. We

develop an out-of-sample fit statistic that allows us to quantify mispricing resulting from setting

rates based on historical data benchmarked against a flat price based on the same historical

data. Our method also accounts for changes in equilibrium prices and quantities that would

result from a pricing reform. We estimate cost curves from industry data in each market

and demand curves based on load-response estimates from the literature. This provides an

improved estimate of the efficiency effects of informationally-achievable policies compared to

the simple in-sample R2. Our revised metric, the “equilibrium basis renormalized R2”, allows

us to approximate efficiency gains of many possible alternatives in a simple and transparent

fashion while accounting both for out-of-sample prediction and for the equilibrium price effects

of alternative pricing structures.

We show that realistic TOU and CPP plans capture only a modest fraction, each on the

order of 10% when averaged across markets and years, of the mispricing created by flat rates.

Increasingly complex TOU rates—for example, rates that vary flexibly by month of the year and

hour of the day—can do much more to align prices with marginal cost in the backward-looking

data, but when we recognize that rates must be set ahead of time, the value of complexity

reverses. More complex rates trained on historical data frequently fit future prices worse than

simpler rates. In doing so, we empirically characterize a textbook lesson from the statistical

learning literature: complicated functional forms have the potential to better explain variation

but are subject to overfitting and thus can perform worse out-of-sample (James, Witten, Hastie,

and Tibshirani 2021). This leads to a concave, non-monotonic relationship between out-of-

sample performance and model complexity with an interior optimum. In the case of TOU

pricing, our data suggest this optimum typically falls below 10 pricing tiers per year.

We evaluate CPP plans under a range of assumptions and calculate the marginal return to

adding events across years and markets. What matters most for CPP efficiency is the ability

of the utility to set CPP rates close to the events. In practice, CPP rates are typically set in

advance during rate hearings and are often set for multiple years; thus, they are not tailored to

specific peak events. We find that CPP rates set in this manner fail to meaningfully improve

efficiency, whereas pricing based on day-ahead prices for 20 yearly events would capture 10%

of the efficiency gain that real-time pricing could achieve.

A pricing-policy counterfactual in which customers face real-time pricing paired with price

caps achieves considerably larger efficiency gains than either TOU or CPP. Even in scenarios

where the price cap binds in 25% of hours, real-time pricing with caps achieves approximately

two-thirds of the efficiency gains of full real-time pricing. If the price cap is set higher, such

that it only binds in 5% of hours, the efficiency gain is over 90%. These price caps are not

extreme—between $28 and $72 per megawatt hour depending on the power market—yet deliver

sizable efficiency gains. These efficiency gains are premised on the notion that customers can
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respond to rapidly changing prices, which might be most realistic for automated load, as we

discuss below. As such, fully realizing the gains from real-time pricing may only be possible in

the future.

As long as a move towards (partial) real-time pricing is unlikely in the near future, our

results suggest that a combination of relatively simple TOU rates and a limited number of

yearly CPP days with rates set based on day-ahead prices strikes a balance between simplicity,

price uncertainty, and efficiency. An additional observation is that the gains from TOU and

CPP policies are mostly additive: when implemented in combination, the two policies deliver

17-20% of the efficiency gain under real-time pricing. This is because CPP targets idiosyncratic

price extremes, whereas TOU targets predictable cyclical variation in prices over days, weeks,

or seasons. While our analysis suggests that efficiency gains are achievable, much of the pricing

reform being rolled out by utilities today—often focusing on more granular TOU schedules and

CPP schemes that use uniform, pre-determined prices—may be relatively ineffective.

These conclusions complement findings in other areas of economics where simpler prices are

a constrained optimum. DellaVigna and Gentzkow (2019) find that US retailers use uniform

pricing across stores and that this has substantial efficiency costs. They suggest that managerial

and customer costs of price differentiation may explain the reliance on simpler pricing schedules.

Chu, Leslie, and Sorensen (2011) find that simple subsets of complex bundled pricing are nearly

optimal among firms selling multiple retail products. In our setting, this complexity might be

eschewed because of the difficulty in setting rates in advance.

Our findings also speak to a distinction suggested by Borenstein (2005b) between rate

granularity (how many different pricing tiers are there?) versus timeliness (how far in advance

must rates be set?). A big-picture question for rate designers is which dimension is most

valuable. Our results point firmly towards a greater importance of timeliness. Additional

granularity in TOU schemes quickly loses value—and can easily backfire—if granular prices

must be set ahead of time. Setting TOU rates ahead of time creates two sources of mispricing:

not only will there be errors in matching the relative prices between tariff levels (e.g., peak

vs. off-peak), but also the average price will be wrong ex-post. We show that this second

inefficiency dominates the former, and therefore, what matters most in CPP and TOU schemes

is the ability to set rates close to the actual events. It also implies that the efficiency advantage

from real-time pricing not only stems from matching relative price differentials but also from

charging the right price on average.

Time-varying electricity pricing schemes have been extensively piloted and fully deployed

in some locations (Faruqui and Sergici 2010; Faruqui and Tang 2021), with several papers

evaluating consumer response and efficiency gains from critical-peak pricing (Wolak 2007 2011a;

Ito, Ida, and Tanaka 2018; Blonz 2022; Ito, Ida, and Tanaka 2023), time-of-use rates (Aigner

1984; Train and Mehrez 1994; Enrich, Li, Mizrahi, and Reguant 2024), and real-time pricing
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pilots (Allcott 2011; Andersen, Hansen, Jensen, and Wolak 2017; Fabra, Rapson, Reguant, and

Wang 2021). Closest to our work is a prior literature that studies the benefits of alternative

schemes using market simulations. Our conclusion that TOU and CPP rates can capture only

a modest fraction of the potential gains of real-time pricing is similar to Borenstein (2005a),

Borenstein (2005b), Borenstein and Holland (2005), and Holland and Mansur (2006), but those

prior papers either used simulations based on hypothetical generator costs or deployed wholesale

market data from only one market. In contrast, we examine all major US power markets over

twenty years. We also differ by using a new, renormalized R2 metric that accounts for out-

of-sample prediction, the equilibrium price effects of policies, and is directly tied to economic

welfare.1 Our paper sheds new light on why complex, high-dimensional TOU policies have

limited potential and on the importance of errors in average prices when prices are set far

in advance.2 We additionally extend our equilibrium model to consider inter-temporal load-

shifting where demand can move across hours.

Before proceeding, we mention here three key caveats associated with the starting pre-

sumption of this paper, which is that we want retail rates to reflect the real-time variation in

wholesale electricity prices as a theoretical ideal. First, we abstract from fixed cost recovery,

or other cost components, that are included in customer bills, as well as from environmental

externalities. As pointed out by Borenstein and Bushnell (2022ab), these issues can also create

an important wedge between marginal costs and benefits, so passing through wholesale prices

to final customers can have more complex welfare interpretations when these other price wedges

exist. Our analysis demonstrates the potential to align prices with energy market costs, which is

ideal when other inefficiencies are resolved through separate rate reforms, like emissions pricing.

Second, in reality, electricity customers may have limited rationality and may find real-time

price variation overwhelming. In particular, prior research has called into question the ability

of customers to understand marginal prices for electricity (Ito 2014), though evidence suggests

that improved understanding can be taught (Kahn and Wolak 2013). Jessoe and Rapson (2014)

show experimentally that it is essential to provide readily accessible information about price

surges in order to generate a response. These types of findings call into question whether

real-time variation in prices would really be as efficient as standard theory suggests, and we

interpret this as yet another reason why simple dynamic pricing schemes may be preferred to

1Also related is Schittekatte, Mallapragada, Joskow, and Schmalensee (2024), which studies recent data from
three wholesale power markets and reaches a more optimistic conclusion about TOU rates. The difference stems
from their focus on getting rank correlation of prices right within the day, consistent with a world of fully
automated demand that effortlessly reshuffles. In contrast to their approach, we link our measures of fit directly
to welfare measures and account for temporal load-shifting using recent empirical estimates.

2This aligns with the finding in Holland and Mansur (2006), which is based on two years of data from one
market, that monthly flat rates can outperform TOU rates, which they describe as surprising. Our conclusion
that getting average prices right in a period is more important than matching patterns, which is based on
additional markets, years, and alternative rates, as well as a different method to assess out-of-sample efficiency,
provides an explanation for their finding.
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complex ones in most settings. Existing evidence shows that automation increases demand

response, as one would expect (Gillan 2017; Bailey, Brown, Shaffer, and Wolak 2023; Blonz,

Palmer, Wichman, and Wietelman Forthcoming). As home automation expands, it may be

feasible to introduce additional complexity, but our results suggest this must leverage more

timely generation cost data (i.e., from wholesale prices), not just more rate granularity.

Third, we do not consider the distributional impacts of alternative rate designs, focusing

only on the aggregate efficiency implications. Shifts to alternative rate structures are likely

to create winners and losers among different customer groups. Burger, Knittel, Perez-Arriaga,

Schneider, and vom Scheidt (2020) and Cahana, Fabra, Reguant, and Wang (2024) consider

the distributional impacts of real-time pricing across income groups but do not consider the

implications of TOU and CPP programs.

This paper proceeds as follows. Section 2 gives background about electricity pricing in the

United States. Section 3 describes our data. Section 4 discusses our methodology. Section 5

presents the results for a wide range of potential pricing schemes. Section 6 presents a set of

refinements and extensions. Section 7 concludes.

2 Background and Institutions

In many cases, electricity consumers pay the same, or nearly the same, price to their electric

utility regardless of when they consume electricity. Data from the EIA suggest that, nationally,

90-95% of end-users face a flat price schedule (see Appendix Figure A.1 for a sector breakdown

and trends over time). However, the marginal cost of electricity generation varies substantially

across time. The generation required for low levels of demand is typically met by solar, wind, and

inexpensive baseload power plants, resulting in a low marginal cost of electricity. In contrast,

at high levels of demand, higher-cost peaker plants produce the marginal megawatt hour of

electricity. As a result, the marginal cost of electricity can frequently vary by multiple orders

of magnitude within a given day.

A wave of deregulation created wholesale electricity markets that yield prices which achieve

a real-time balance between supply and demand in ways that follow the textbook economic

recipe (Borenstein and Bushnell 2015). These prices, however, are rarely passed through to

final consumers who instead face prices that represent costs averaged over an extended time

period, often a year or more. This creates an inefficiency because end users purchase power

at prices that are well below the cost of provision in some hours and well above that cost in

others.

Historically, it was infeasible to measure electricity consumption in real time for each end

user, so this mispricing was a necessary compromise. As discussed above, with the advent

and roll-out of computerized “smart” electricity meters, high-frequency measurement at the
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Figure 1: A Time-of-Use Pricing Schedule from San Diego Gas & Electric

Note: San Diego Gas & Electric “TOU-DR1” price schedule (the default residential electricity pricing plan) as
of May 2024. Summer prices (three of six prices) are displayed. New versions of the schedule (changes to at
least one of the price levels) were released 21 times between January 2018 and May 2024. Source:
https://www.sdge.com/total-electric-rates.

customer level is already a reality in most parts of the United States. Even so, real-time

electricity pricing has been met with considerable resistance from utilities and regulators, who

fear that consumers will complain about price surges and unpredictable bills. As one example,

the skyrocketing wholesale-market prices in Texas in the winter of 2021 made these concerns

especially salient, as a small group of customers who had opted into real-time pricing were faced

with electricity bills in the tens of thousands of dollars.3

As an alternative to real-time pricing, utilities have begun to set increasingly intricate

time-varying pricing schemes (Badtke-Berkow, Centore, Mohlin, and Spiller 2015; Faruqui and

Tang 2021). As an illustration, San Diego Gas and Electric uses a time-of-use pricing schedule

with four different peak periods that change depending on the month (see Figure 1). While

time-varying, these tariffs are set in advance; pricing is not adjusted based on realized market

conditions.

In addition, utilities are implementing policies such as critical-peak pricing, in which they

inform customers, typically a day in advance, about significantly higher rates the following

day. This usually happens during the hottest days of the summer when the grid is expected

to operate near capacity constraints. Most often, CPP price levels and hours of the day are

3https://www.nytimes.com/2021/02/20/us/texas-storm-electric-bills.html
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set in advance (for example, using data from the previous year), but events are called flexibly.

Southern California Edison, for example, calls 12 to 15 annual CPP events with each event

lasting between 4pm and 9pm on a given day, and it announces these critical peak events a day

in advance.4 The number of CPP events called each year as well as the rate charged during

CPP events varies across utilities.

The basic idea of TOU and CPP schemes is to better align wholesale and retail prices.

However, TOU and CPP schemes, by construction, create a limited number of unique prices

and/or affect a limited number of hours. If wholesale market price variation is large and

unpredictable, then simple TOU and CPP schemes may be too blunt of an instrument to

deliver the expected benefits.

Figure 2 provides an example to illustrate the limitations of a simple daily on-peak vs.

off-peak pricing scheme. In the graph, each dot is a wholesale market price from a node in

the PJM market for one summer week in 2019. The dotted blue line shows the best-fit two

rate schedule based on in-sample data for the entire year, with the peak hours defined as 6

am to 8 pm. This represents an improvement over a flat rate, but it falls far short of a true

real-time rate. By using the in-sample average for the year, we will get the average price right

by construction, but the peak-pricing scheme does not capture variation across hours within

each day’s peak period, variation across days, or variation across space within an hour. This

pricing schedule thus fails to provide efficient incentives to conserve electricity, though it does

represent an improvement over a single flat rate.

In reality, however, rates must be set ahead of time. This creates two potential sources

of mispricing: errors in matching relative price differentials between different tariff levels and,

importantly also, errors from getting the average price wrong. As an example, the peak pricing

schedule in the dotted red line in Figure 2 is the best fit schedule based on ex-ante predictions

for 2019 using pricing data from the previous three years. Relative peak vs. off-peak prices

remain similar to the in-sample prediction in the blue dotted line, but the average retail price

no longer matches the average price in the wholesale market overall in 2019. These features,

the substantial variation not accounted for by simple TOU rates and the importance of out-of-

sample prediction errors in the level of prices, turn out to play a persistent role when analyzing

our full data set.

4https://www.sce.com/business/rates/cpp
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Figure 2: Wholesale Prices and On-Peak vs. Off-Peak Pricing Schedule

Note: Data points in black are drawn from a random sample of 20 PJM network nodes in the 31st week of
2019. The dotted blue line represents the yearly in-sample optimal peak pricing schedule estimated using 2019
pricing data. The dotted red line represents the predicted schedule based on the preceding three years. Peak
hours are defined as 6am-8pm. Price outliers below $0 and above $150 are omitted for visual clarity.

3 Data

The pricing data for this paper consist of locational marginal prices for all wholesale electric-

ity markets’ hourly auctions in the US: PJM (Mid-Atlantic and some Chicagoland), ISO-New

England, New York ISO, ERCOT (Texas), MISO (Midcontinent), SPP (South Central), and

CAISO (California).5 Together, these markets cover approximately two-thirds of the US pop-

ulation. We source these price data for the first six markets from SNL Financial, a subsidiary

of S&P Global Market Intelligence that collects the data directly from the Independent System

Operators (ISOs), the organizations that coordinate the operations of the electrical grid. The

data include both real-time (spot) and day-ahead (forward) prices, with each market’s data

beginning somewhere between 2000 and 2011 and ending in 2020. We obtain CAISO node-level

pricing data from 2009 through 2015 from an archive of downloads directly from the ISO.6 We

5Restructured wholesale electricity markets in the United States do not clear with a single price. Rather,
many “nodes” in the market are given their own locational marginal price, which represents the marginal cost of
providing electricity at that location in the network, accounting for transmission losses and congestion constraints.

6We are grateful to Akshaya Jha for sharing these data.
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present some results using the full geographic data, but we often collapse the data across nodes

and use an hourly dataset at the ISO level due to a lack of nodal electrical load (quantity)

data. Results are shown at the ISO level unless labeled otherwise. We also source load data at

the ISO-hour level from SNL Financial, who aggregated these data from each ISO’s FERC 714

filing. These data span from 2009 through 2020 for all markets.

Table 1 shows summary statistics. Mean electricity prices are usually in the $20-40 per

megawatt hour range, but prices are volatile and extreme pricing happens—either negative or

in the thousands of dollars per megawatt hour. This volatility is not completely eliminated by

collapsing to the hourly ISO mean.

To translate goodness of fit statistics into dollar deadweight loss (DWL) estimates, we need

measures of the slope of supply and demand. For the demand side, we take a linear functional

form and calibrate the slope using observed prices and quantities and an elasticity of -0.2 (see

Appendix A.1). We perform sensitivity analysis with alternative values of -0.1 and -0.3 in

Appendix B. We discuss load-shifting in Section 6.3 and extend the model by applying a range

of cross-price elasticities drawn from the literature.

For the supply side, we have collected merit orders—data on the engineering capacities and

marginal fuel and other operating costs of power plants in each ISO. We again source these data

from SNL Financial. We assign marginal costs for each facility by taking the sum of fuel costs,

emissions allowance costs, and other variable operation and maintenance costs. For renewable

sources, we first generate baseline capacity for each step by taking the product of the facility’s

maximum capacity and its capacity factor7 over the relevant timeframe, and then calibrate

hourly generation using observed price and quantity pairs (see Section 4). For other sources,

we take the product of the facility’s capacity and 1 minus the equivalent forced outage rate

demand (EFORd).8

7The capacity factor is the ratio of a power generator’s production over the theoretical maximum possible
production under ideal circumstances.

8We source this parameter from various technical reports from the ISOs, assigning each facility the appropriate
average EFORd by generation type and ISO when possible. When these detailed data are unavailable, we instead
assign each facility the ISO-level average EFORd (this is the case for SPP and ISO-NE).
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4 Methodology

The primary empirical question in this paper is how well TOU and CPP rates can approximate

wholesale energy price fluctuations. We rely on a standard “goodness of fit” metric, the R2,

as well as variants of that metric appropriate to our situation. We define and explain these

metrics here.

Our analysis begins by partitioning the year into groups of hours and running regressions

that describe how much of the variation across all hours is explained by dummy variables

representing those partitions. These regressions take the following form:

yis =
∑
k

βkD
k
is + εis, (1)

where yis is the wholesale price of electricity in hour i in sample s (where sample refers to

a specific year of data in a specific wholesale market), k indexes the set of unique price tiers

(there is a unique k for every price charged), Dk
is are indicator variables that are coded as one

if a given hour falls within the specific tier k, βk are pricing-policy parameters to be estimated,

and εis is an error term.

After estimating such an equation for a given sample s, we first assume that the utility

charges the price β̂k in each pricing tier k. This assigns to each block of hours the average

wholesale price in that block. Our focus is not on those prices per se, but rather on how well

those prices are able to match the pattern of prices in the wholesale market. Thus, we focus

not on the β̂ coefficients themselves but rather on goodness of fit statistics.

In-sample R2: We begin with the traditional in-sample R2, which is defined as one minus

the ratio of the sum of squared residuals from an ordinary least squares (OLS) regression divided

by the total sum of squares of the dependent variable. That is, R2 = 1−
∑

i(yi−ŷi)2/
∑

i(yi−ȳ)2,

where yi is the dependent variable, ȳ is that variable’s mean, ŷi is the predicted value, and i

indexes the observations in the sample. The R2 is bounded between zero and 1 when it comes

from a regression that includes an intercept term.

In our case, y corresponds to wholesale electricity prices and ŷ to retail prices charged to

customers. Implicitly, we imagine a utility would set the best possible rates given the allowed

degree of flexibility. Jacobsen et al. (2020) show that, under certain conditions, the efficiency-

maximizing rate can be found by simply running OLS regressions with indicator variables coded

as one for the hours when a given rate tier applies, as in our Equation (1). Intuitively, in any

given hour, the deadweight loss (inefficiency) from retail prices that differ from wholesale prices

is (approximately) proportional to the square of the difference between the two prices. Thus,

inefficiency is minimized by minimizing the sum of squared errors (differences between wholesale

and retail prices) across all hours. This is exactly what an OLS regression does. In turn, this

12



means that the R2 from this regression directly measures the fraction of the efficiency gain that

a given pricing scheme can achieve as the proportion of the efficiency gain that real-time pricing

could achieve over a baseline flat price.9

This approximation is most accurate when demand and supply curves are close to linear,

there is little correlation between the slopes of demand curves and pricing errors across hours,

when there is little correlation between cross-hour elasticities and products of pricing errors,10

and when equilibrium effects of policy are small (i.e., the observed price closely approximates

the price under real-time pricing). Correlation between cross-hour elasticities and products of

pricing errors is zero or small by definition when demand response is entirely or mostly within

an hour; i.e., if “load shifting” is small relative to the main demand response. When load-

shifting between hours is strong then correlations with products of errors could appear, though

Jacobsen et al. (2020) show that the R2 remains a good approximation in many cases. We

investigate cross-hour substitution in detail here using a range of possibilities for load-shifting

from the literature in Section 6.3.11 We find only small biases away from the R2 measure,

and running in either direction (positive or negative correlations) depending on the setting.

Therefore for our main analysis below we simplify the model to abstract from cross-effects.

Out-of-sample R2: The above in-sample analysis assumes that the optimal tariff schedules

prescribed by OLS are feasible in practice. In reality, utilities can only set tariffs in advance

based on past pricing data and cost projections. It is, therefore, the out-of-sample (OoS)

performance that matters. To incorporate an electric utility’s ability to set efficient prices into

our analysis, we derive several novel out-of-sample welfare metrics.

As an intermediate step, consider an out-of-sample R2 statistic, which we label OoS R2,

that simply applies the standard R2 formula to our out-of-sample price schedule. That is, it

uses the equation R2 = 1−
∑

i(yi − ŷi,OoS)2/
∑

i(yi − ȳ)2, where ŷi,OoS are fitted values using

coefficients estimated from a different sample. For example suppose a utility uses 3 years of

data to choose a TOU pricing system for the year 2020: The coefficient estimates would be

derived from 2017-2019 data, but OoS R2 is calculated using 2020 data with ȳ still representing

the mean of the (realized) yi. In this case, it is possible that the R2 becomes negative, which

means that the proposed prices created larger squared errors than would result from applying

an unbiased flat price (e.g., the in-sample mean for 2020).

The advantage of the OoS R2 is that it is on the same scale as the in-sample R2—both

9Note that a flat pricing policy has R2 = 0 (regression on a constant), whereas R2 = 1 for real-time pricing
(regression on a fully-saturated set of indicator variables for each hour i in each sample s).

10Jacobsen et al. (2020) provide conditions on cross-price elasticities where the R2 approximation holds exactly.
11Schittekatte et al. (2024) take a different approach. They focus on the rank correlation of prices with

marginal costs within a day, which is consistent with an assumption that all electricity load can freely shift
across hours. In that case, a simple R2 may be a poor proxy. This scenario may someday be true if enough load
is fully automated. Our approach is instead to use recent empirical estimates of load-shifting to divide demand
responses into load-shifting and total reductions.
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statistics measure performance relative to ȳ. As in the case of the in-sample R2, the numerator

is a sum of squared residuals that is proportional to deadweight loss. Scaling this as a percentage

of the gains achieved by an unbiased flat tariff is, however, not obviously meaningful because

the unbiased flat tariff is not a feasible policy—it too requires information about the ex-post

realized mean price. This information is unavailable to the electric utility when prices are set

based on historical data or inaccurate forecasts. Hence, out-of-sample, a flat pricing policy is

also biased. We therefore propose an alternative measure described next.

Renormalized R2: Our preferred measure of out-of-sample goodness of fit is what we

label renormalized R2. It is the out-of-sample R2 of a given policy of interest P minus the

out-of-sample R2 of a flat tariff B given the same information (that is, using the mean price

from the estimation sample of past prices), divided by one minus the out-of-sample R2 of the

flat tariff given the same information:

Renormalized R2 =
R2

P −R2
B

1−R2
B

, (2)

where R2
P is the OoS R2 of the policy we want to evaluate and R2

B is the OoS R2 of the equally-

informed flat tariff. This renormalized R2 is equal to the percentage of deadweight loss recovered

by applying this policy relative to an equally-informed flat tariff.12 The benefit of using such

a metric is its ease of interpretation—a renormalized R2 of 1 is equivalent to true real-time

pricing (as is the case for the in-sample R2), and a renormalized R2 of 0 is welfare-equivalent

to the best flat tariff given the information the policymaker has ex-ante.13

Equilibrium Effects: The final extension we make to the R2 method concerns the left-

hand side of the regression. In previous analyses, the regressand was the observed wholesale

price since it represents the per-unit cost of electricity of the marginal generator. This has

a direct welfare implication for a TOU program that affects a small portion of the market,

but we are also interested here in the welfare implications of broad adoption. In that case,

because the short-run wholesale supply curve is sloped, the marginal cost of electricity varies

with equilibrium in the market.

The R2 method described above would suggest that the first-best counterfactual real-time

pricing schedule would be a replication of the wholesale prices we observe in the data (which we

call the “observed basis”). However, this policy would change the marginal cost of electricity

12To see this, let P,B,U be the OoS policy to be evaluated, the equally-informed flat tariff, and the un-

biased flat tariff, respectively. Then, substituting using the result from Jacobsen et al. (2020):
R2

P−R2
B

1−R2
B

=(
1−DWL(P )

DWL(U)

)
−
(
1−DWL(B)

DWL(U)

)
1−

(
1−DWL(B)

DWL(U)

) =
DWL(B)−DWL(P )

DWL(U)
DWL(B)
DWL(U)

= 1 − DWL(P )
DWL(B)

.

13Note that this is on a different scale than the in-sample R2. Both are linear in policy deadweight loss with
a value of 1 representing real-time pricing, but a value of 0 represents the deadweight loss from either unbiased
or biased flat pricing for the in-sample and out-of-sample, renormalized R2, respectively.
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in equilibrium; the first-best real-time pricing schedule is therefore a function of an equilibrium

outcome. For small shifts in retail prices, like those usually prescribed in peak/off-peak rules,

these equilibrium effects will be relatively minor, leaving the observed basis R2 a good approx-

imation of the true deadweight loss ratio. However, for greater absolute changes in price, like

those implied by CPP or complex TOU schemes, the equilibrium effects may be significant.

We address this possibility by simulating equilibrium prices under real-time pricing and

under the out-of-sample price schedule in question. In all of our out-of-sample analysis (with

the exception of the analysis of locational pricing in Section 6.2), we then evaluate policies

using simulated equilibrium prices and refer to this approach as the “equilibrium basis.” We

generate policies using regressions of simulated equilibrium prices on policy indicators, and then

construct the renormalized R2 metric using the deadweight losses implied by hourly supply and

demand curves. This approach also allows us to account for convex generation costs when

computing efficiency losses. We discuss the construction of supply and demand curves in detail

in Appendix A.1. Although our qualitative conclusions are similar between the observed base

and equilibrium approaches, this methodology allows greater precision especially during peak

periods.

Operationalization of Policies: Our regression-based methodology allows for the evalu-

ation of any arbitrarily shaped price schedule. Here we discuss the method used for producing

TOU and CPP price schedules generally; the specific schedules explored appear in Section 5.

For all out-of-sample results shown in the paper, we assume that price data from the three

previous years are used to create the listed year’s price schedule. Other papers in this literature

have used a similar prediction time window (Schittekatte et al. 2024). The numbers of years

chosen reflects a tradeoff between including information about recent price patterns and reduc-

ing the influence of noise. In Appendix B, we vary the number of years we use as the training

sample and find no significant trend in the resulting R2. This suggests that there are few pre-

dictive gains to increasing the number of years used. In specifications using the observed basis,

the regressand is the observed real-time price. In specifications using the equilibrium basis, the

regressand is instead the simulated real-time equilibrium price.

When applying TOU pricing schemes we consider varying degrees of complexity using a set

of indicators and their interactions. To capture typical within-day variation, for example, we

define “peak” as an indicator equal to 1 during hours of high expected prices and 0 otherwise.

We define the set of peak hours using an in-sample variant of the best subsets selection algorithm

(described in more detail in Appendix A.2). In most markets, this amounts to a day/night

indicator, with the exception of ERCOT, where the algorithm chooses peak hours as noon

through 6pm.14 Energy-use patterns also vary between weekends and weekdays, so we introduce

14For other markets, we use 6am-8pm (PJM/ISO-NE/MISO/SPP), 7am-8pm (NYISO), and 10am-10pm
(CAISO).
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a “weekend” indicator variable to represent this. Finally, energy prices vary seasonally as well,

so we define “season” as an indicator equal to 1 from April through September and 0 otherwise.

In defining some more complex TOU schemes we also use hour of day, day of week, and month of

year indicators in a similar fashion. To define CPP policies, we order days by their peak-period

price, assign the top-n days a critical-peak price based on either forward or spot prices, and

assign all other hours an off-peak price. For further details on CPP schedules, see Appendix

A.3.

5 Results

5.1 In-sample Results

We begin with the observed-basis in-sample analysis as a benchmark, showing results across

years and markets at the ISO level.15 That is, for a given pricing policy, we use OLS to define

the optimal in-sample price schedule and interpret the R2 of this regression to be the proportion

of deadweight loss recovered relative to the deadweight loss with a flat price. As discussed, these

efficiency gains are not actually achievable in practice (since prices are set using historical rather

than contemporaneous price data) and so this exercise provides an upper bound on the possible

efficiency gains of dynamic pricing policies.

Figure 3 shows the in-sample R2 for three candidate TOU policies and one candidate CPP

policy across all market-years in our sample. The R2 values vary by year and market. The

top-left panel shows that the simplest peak pricing policy explains, on average, 8.9% of the

total variation in wholesale prices (median: 7.2%). While small as a percentage, we show below

that these gains are still economically significant. Additional complexity increases potential

efficiency gains in this in-sample context: gains are weakly increasing when adding variables

by construction. These gains turn out to be economically meaningful in our context. Means

(medians) of the R2 in the remaining three panels are 0.099, 0.216, and 0.231 (0.080, 0.208, and

0.224), respectively. Table 2 reports an expanded range of policies for one market, PJM. This

shows clearly that increasing complexity, using observed-basis prices and analyzing in-sample

fit, strongly improves efficiency. The most detailed pricing policy recovers over 50% of the

efficiency benefits of real-time pricing, but such a scheme would require 24 * 7 * 12 = 2,016

different prices (set for each day-of-week by hour-of-day by month combination). This is not

a tariff scheme that any utility would realistically consider, but we think it serves as a useful

upper bound.

15In general, ISO-level R2s are somewhat lower than node-level R2s, as we are mechanically removing any
variation in price across locations. See Appendix Tables C.1 and C.2 for a comparison of in-sample regressions.
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Figure 3: In-Sample Efficiency Gain of Different TOU and CPP Designs
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across markets due to data availability.
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Table 2: R2 from In-Sample Electricity Tariff Regressions - PJM

Pricing Scheme 2003 2004 2005 2006 2007 2008 2009 2010 2011

Flat Tariff 0 0 0 0 0 0 0 0 0
Peak .261 .216 .206 .136 .171 .199 .127 .128 .092
Peak x Weekend .291 .245 .240 .160 .192 .208 .143 .141 .108
Peak x Season .277 .225 .216 .150 .185 .282 .207 .153 .125
Peak x Weekend x Season .308 .257 .250 .177 .207 .291 .224 .168 .143
Peak x Weekend x Month .365 .335 .437 .282 .263 .391 .370 .293 .206
Hour x DoW x Month .601 .601 .665 .481 .490 .611 .558 .493 .411
CPP, 20 Events .168 .123 .158 .305 .177 .172 .231 .259 .360

Pricing Scheme 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0
Peak .114 .120 .017 .050 .131 .075 .034 .041 .089
Peak x Weekend .136 .143 .029 .057 .153 .085 .039 .052 .105
Peak x Season .125 .137 .050 .070 .150 .089 .054 .048 .100
Peak x Weekend x Season .149 .160 .067 .078 .172 .101 .061 .059 .115
Peak x Weekend x Month .236 .204 .187 .246 .232 .150 .240 .086 .208
Hour x DoW x Month .437 .398 .349 .444 .500 .356 .361 .312 .453
CPP, 20 Events .308 .349 .493 .382 .193 .263 .365 .174 .143

Note: Cells of this table present R2 values for regressions of the hourly ISO-average price of electricity observed in

the PJM wholesale market in a given year (given by the column) and a given set of independent variables which

define a time-of-use or critical-peak price schedule (given by the row). Peak hours are defined as 6am-8pm.

Season is an indicator variable splitting the year into April through September and October through March.

Versions for other markets are found in Appendix Table C.1. Versions at the node level are found in Appendix

Table C.2.
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We also find significant cross-market heterogeneity—prices in MISO and PJM are generally

better matched by simple intermediate TOU pricing schemes than those in ERCOT or CAISO.

This suggests that the performance of pricing policies is highly market-specific; some markets

experience substantially higher efficiency gains from time-varying pricing than others.

The in-sample R2 for the CPP policy (represented by a regression with indicator variables

for each of the 20 highest peak price periods) is similar in both mean and variance to the peak

× weekend × month policy. The R2 of the CPP policy has an interquartile range between 0.148

and 0.306, and the R2 of the complex TOU has an interquartile range between 0.117 and 0.295.

This suggests that, in-sample, the potential efficiency gains of CPP policies are similar to those

from a rather complex TOU policy.

5.2 Out-of-Sample TOU Policies

We now turn to the efficiency gains possible with more realistic, out-of-sample policies. Are

historical prices informative enough to produce efficiency-improving price schedules, and do

they offer economically meaningful improvements? We use the equilibrium-basis renormalized

R2 metric described in Section 4 to consider policies set using out-of-sample data. The renor-

malized R2 represents the proportion of deadweight loss that is recovered by the policy relative

to an equally-informed (i.e., set using the same historical dataset) flat tariff. This concisely

summarizes the aggregate efficiency gains available. Our simulation method also allows us

to explore further decomposition below. The results in this section differ from the prior re-

sults both in that they use out-of-sample data and in using simulated real-time prices as the

dependent variable.

In general, R2 values are low for out-of-sample TOU policies. These low R2 values persist for

complex policies. For peak pricing, the renormalized R2 has a mean (median) of 0.095 (0.084).

The renormalized R2 from the highly-complex peak × weekend × month policy has a mean

(median) of 0.071 (0.097). In contrast to the in-sample analysis, our out-of-sample evaluation

shows no gain—and even a loss after a certain point—from additional complexity.

Figure 4 compares results from our observed-basis in-sample analysis to results from our

equilibrium-basis out-of-sample analysis (see Appendix Figure B.1 for plots of the out-of-sample

efficiency gains analogous to Figure 3). While the two methodologies are not directly compara-

ble in welfare terms, this provides an illustration of how seemingly promising in-sample policies

can underperform out-of-sample. In each panel, we display the 45-degree line in yellow. Points

above this line, under our framework, appear to perform better out-of-sample than they do in-

sample. Points below this line appear to perform worse. Comparing panels, we see that more

complex policies typically underperform expectations more strongly than simple policies do.

Further, within each panel, when a greater proportion of the in-sample variation is explained

by the policy, the greater the risk of overfitting. This can be seen using the line of best fit for
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Figure 4: In-Sample versus Out-of-Sample Performance
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Note: Each point represents the in-sample and out-of-sample performance for a given policy in a given market-
year. The horizontal axis represents the simple in-sample R2 as in Section 5.1. The vertical axis represents the
equilibrium-basis renormalized R2 as described in Section 4 and as used in most of the out-of-sample analysis
in the paper. 45-degree line shown in yellow. In-sample results are only shown when there are enough data to
produce corresponding out-of-sample values.

each panel—for all four policies shown, this line has a slope below 1.16 This is consistent with

in-sample gains not being realized out-of-sample, even conditional on the tariff structure being

used.

This highlights a critical tradeoff between complexity and prediction accuracy. For a peak

pricing policy, the utility only needs to correctly gauge the price differential between two groups

of hours. For the peak × weekend × month policy, they must accurately set a 48-part tariff. As

policies grow more complex, price schedules are determined using fewer observations per price

category in the training data, and the category-specific mean prices in the test data are also

more volatile for the same reason.

The renormalized R2 results are robust to our choice of the price elasticity of demand.

Appendix Figure B.2 shows that choosing -0.1 or -0.3 as opposed to our base value of -0.2 has

very little impact. Likewise, the result that there are diminishing (and even negative) returns to

TOU complexity is similar when using observed wholesale prices instead of simulated real-time

16The (slope, intercept) of these fit lines in each panel are (0.589, 0.061), (0.639, 0.062), (0.531, 0.065), and
(0.285, 0.021), respectively.
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prices (see Appendix Figure B.3).17 Our main conclusions are also robust to variation in the

number of years used for training the data to set prices—see Appendix Figure B.5 for details.

We conclude that, for the markets and years in our study, simple peak pricing delivers

most of the potential efficiency gains from TOU pricing. Added complexity, where it does

render additional benefits, leads to a tradeoff between additional average welfare gains and an

associated increase in the variance in those gains, and also to an increasing risk of performing

worse than flat pricing.

An advantage of our simulation approach is that we can adjust our policy price schedules to

evaluate why promising in-sample policies fail to deliver out-of-sample. We focus on two sources

of misprediction: getting the average price wrong and getting the “shape” of the optimal price

schedule wrong. The average price can be wrong because the average wholesale electricity price

varies from year-to-year—therefore the mean price in-sample need not equal the mean price

over the last three years.18 To decompose the impact of this mispricing, we define a “mean-

corrected” price schedule that vertically shifts the policy price schedules to match the mean in

the year where the policy is applied.

The error remaining in this mean-corrected schedule comes from the difference in prices

between sets of hours differentiated by the policy; i.e., getting the shape wrong. For example,

absolute levels notwithstanding, if the optimal policy would charge $20 per megawatt hour more

in peak hours than off-peak hours, an out-of-sample policy charging only $15 per megawatt hour

more in those hours constitutes an error. By comparing the deadweight loss of out-of-sample,

mean-corrected price schedules with in-sample price schedules, we are able to quantify the

efficiency losses attributed to these “shape” errors versus the efficiency losses from inaccuracy

in the mean price level.

Table 3 shows the simulated deadweight loss associated with two pricing policies in each

of our markets, averaged over the years of our sample.19 As reflected in the R2 values, the

difference between the “biased flat” and the two out-of-sample columns shows that there is a

modest efficiency gain from implementing these out-of-sample TOU policies. The nationwide

17The mean R2 using the observed wholesale prices is lower, however, as price spikes in observed prices are
more extreme than under equilibrium pricing. Consequentially, the observed basis overweights the deadweight
loss associated with the highest price hours—see Appendix Figure B.4 for details. This demonstrates why the
equilibrium simulations are necessary to fully understand the welfare impacts of intermediate policies.

18Note that the “mean prices” in question are the means of the simulated real-time prices, not those of the
observed wholesale prices.

19Note that the in-sample DWL values in this table are derived from our simulated equilibrium prices, in
contrast with the R2 values used in Section 5.1, which use observed wholesale prices. The relative pattern of
results is robust to whether we use the observed or equilibrium-basis prices, but the total dollar numbers are lower
when using the equilibrium-basis prices. Thus, we conclude again that the qualitative results about complexity
and predictions out of sample are not driven by our method of establishing counterfactual real-time prices, but
the total efficiency gain in dollars is more sensitive. As explained in Section 4, simulated equilibrium prices
are superior to observed prices as the latter fail to account for equilibrium adjustments caused by the pricing
schemes.
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Table 3: Out-of-Sample Deadweight Loss by Market

Peak Peak x Weekend x Month

ISO Biased
Flat

Out-of-
Sample

Mean-
Corrected

In-
Sample

Out-of-
Sample

Mean-
Corrected

In-
Sample

CAISO 207 193 118 118 200 122 107
ERCOT 663 594 521 521 581 505 431
ISO-NE 243 237 181 181 239 187 103
MISO 237 199 136 135 201 138 106
NYISO 210 197 145 145 198 146 91
PJM 505 462 306 304 453 299 193
SPP 131 117 91 91 119 94 80

All ISOs 2196 1998 1497 1493 1991 1491 1111

Note: This table presents estimated DWL figures (in millions of dollars per year) for two potential policies across

markets (averaged over the period 2014-2020) with an assumed demand elasticity of −0.2. The biased flat column

represents DWL from an out-of-sample flat tariff equal to the previous three years’ mean. The out-of-sample

columns represent the DWL from the tariffs generated with data from the three years preceding the listed year.

The mean-corrected columns are the same, but tariffs are shifted to align the mean of the tariff with the true

real-time mean price in the listed year. The in-sample columns represent the DWL from the tariffs generated

with data from the listed year.

efficiency gains relative to the biased flat policy are ∼$198 million per year for the peak policy

(the difference between the DWL of $2,196 million for the biased flat policy and the DWL of

$1,998 million for the out-of-sample peak policy) and ∼$206 million for the peak × weekend

× month policy (the difference between the biased flat DWL of $2,196 million and the peak ×
weekend × month DWL of $1,991 million)20, with significant heterogeneity across markets.

The hypothetical in-sample peak policy reduces DWL by ∼$505 million relative to the OoS

peak policy, nearly all of which is due to getting the average price right, not better fitting the

relative price movements. For the more granular policy, the hypothetical in-sample policy would

reduce DWL by ∼$880 million relative to OoS, of which 57% is due to getting the average price

right and the remaining 43% from fitting the shape of price movements more precisely. These

results highlight the inherent weakness of TOU pricing that is often discussed in the literature—

tariffs must be set using historical prices, which ex-post will be a poor fit for realized relative

price changes. Our analysis highlights a different reason why TOU pricing underperforms

relative to real-time or critical-peak pricing: despite the focus on price fluctuations as motivation

for CPP and real-time pricing, getting the average price level right appears to be the more

important benefit of real-time pricing.

20These numbers do not line up arithmetically because of rounding.
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In summary, TOU policies are limited in the efficiency gains that they can achieve, but a

simple peak vs. off-peak tariff can still recover about 10% of the efficiency gap with real-time

pricing—varying from 0-25% across markets and years—and is straightforward to implement.

Additional gains to implementing more complex policies are small because predicting the shape

of the optimal tariff becomes more difficult as the number of price levels increases.

5.3 Out-of-Sample CPP Policies

We now use the same methodology, the equilibrium-basis renormalized R2, to evaluate potential

CPP policies and their performance out-of-sample. We focus on how the design of CPP policy

impacts its efficiency. How are events called? How are prices set? How many events are allowed?

While our focus with TOU policies was on their ability to project optimal price schedules a year

in advance, a CPP policy that uses day-ahead or real-time price information to call critical-peak

events and set critical-peak prices is feasible and may able to match wholesale prices better and

generate larger efficiency benefits per hour affected. This leads us to also explore variation in

what information is used to set CPP rates that is different from our analysis of TOUs.

In this section, we assume that CPP rates are introduced on top of an otherwise flat rate.

This allows us to isolate their efficiency potential. In the next section we demonstrate the

interaction of CPP and TOU rates.

We define a critical-peak event using the same hours of the day as TOU peak/off-peak

pricing, but only a limited number of days of the year will be subject to a critical-peak price.

By contrast, all off-peak hours and all peak hours on non-event days receive the same flat rate.

Critical-peak events can be called a day in advance using price information from the day-ahead

market.

Utilities have a number of options regarding the structure of prices charged during these

critical peak events. Our default throughout this paper is event-level pricing, which assigns a

unique price for all hours during each critical peak event called. In this case, we assume that

utilities will charge a price based on the average day-ahead price for each peak period.21 As an

alternative we consider hour-level pricing that assigns a unique price to each hour of each critical

peak event—this is between 7 and 16 times as granular as event-level pricing, depending on the

number of hours in the peak period. In the opposite extreme, “single” event pricing assigns just

one uniform price to every hour of every critical peak event across the year—overwhelmingly,

this is the pricing structure that utilities use when implementing CPP policies.22 In principle,

21We use predicted values from a regression of mean simulated equilibrium prices on mean day-ahead prices
during peak periods to set event-level prices. See Appendix A.3 for details.

22We set this price to the mean of all event-level prices across the year—equivalently, this is the mean of the
simulated equilibrium prices as predicted by the observed day-ahead prices among all critical peak hours. Note
that this is too optimistic as, in practice, the single price would be set a year in advance, but we show below
that even this optimistic version hardly achieves any efficiency gains.
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Figure 5: Out-of-Sample Efficiency Gain of Different CPP Designs
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Note: Each point represents the mean equilibrium-basis renormalized R2 for a given CPP policy in a given
market, using the simulation methodology described in Section 4. Means are taken across years between 2014-
2020, although CAISO ends in 2015 and ERCOT begins in 2014 due to data availability issues, and SPP begins
in 2015 as their day-ahead market began in March 2014. Prices are based on and called on day-ahead prices.

utilities could call critical peak events in real time and charge a real-time price, but this is far

removed from standard practice. Typically, utilities call events around one day in advance,

which increases the margin of error for calling events and therefore decreases the efficiency

gains.23

Figure 5 shows the renormalized R2 of CPP policies varying across the number of events

called, with each panel representing a different critical-peak pricing structure. Most strikingly,

our results show that using a single price for all peak events prevents most meaningful efficiency

gains—even with 40 events, no market averages even 5% deadweight loss recovery (and SPP

is even negative on net). In effect, this policy becomes a TOU peak policy that only affects a

small number of days per year. In principle, this could be more effective than the TOU peak

policy, as it would allow the policymaker to more precisely target high-price events. However,

23An additional question relating to CPP policy design is how accurately utilities can predict the peak periods
with the highest prices throughout the year. Most active CPP policies have a fixed maximum allotment of CPP
days per year (usually between 10 and 20). We assume that the utility calls event days with perfect hindsight.
In reality, the utility must solve an optimal stopping problem to determine when they should call these critical
peak events. We abstract from this and instead compare the performance of CPP policies that call and price
with either day-ahead or real-time prices. Note that calling and pricing based on day-ahead prices serve as the
default in all other figures in this text.
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we do not find this to be the case in our data. In contrast, a CPP with 20 event-level prices

can consistently recover a significant amount of deadweight loss, with a mean (median) R2 of

0.092 (0.074). We see little to no change in efficiency from further increasing the granularity to

event pricing at the hour-level.

In general, these results suggest that the gains from CPP policies that are priced and called

based on day-ahead markets are similar to those from the simple TOU policies in Section 5.2.

The mean deadweight loss across all market-years for the biased flat policy is $321 million.

With 20 CPP events, it is $273 million, and with 40 events, it is $259 million. The average

for the best-performing TOU policy (peak × weekend × season) is $285 million. The overall

economic magnitude remains somewhat limited, although closing the efficiency gap relative

to real-time pricing by approximately 10% is still a meaningful improvement. As with TOU

pricing, the efficiency gains from CPP policies vary significantly by market, with 20 events in

ISO New England showing large gains close to 17% but SPP achieving just above 3%. This can

be explained in part by differences in predictive accuracy in the day-ahead market. Regressions

of real-time prices on day-ahead prices yield R2 values well below 1. This demonstrates that

a sizable component of the variation in real-time prices cannot be predicted even a day in

advance, though forward markets in some ISOs explain more of the variation in spot prices

than in others (see Appendix Figure B.6 for details).

We now consider the efficiency gains from allowing utilities to set appropriate prices shortly

before these events occur. We also vary whether the critical peak event prices are defined based

on the day-ahead price data or on the real-time price data. We consider the case of event-level

pricing unique to each event window.

Figure 6 presents the results of CPP policies that are called and priced based on day-ahead

vs. real-time prices. The top-left panel presents the same results as the top-left panel of Figure

5—this is the “realistic” scenario that allows the utility to call and price events based on day-

ahead market information. Broadly, we find small benefits to increasing either price accuracy

or event-calling accuracy, but larger benefits from increasing both. As before, with 20 CPP

events, calling and pricing on the day-ahead market results in a mean (median) renormalized

R2 of 0.092 (0.074). Calling events based on real-time prices leads to slightly higher R2 at 0.102

(0.099), and pricing events real-time also leads to somewhat higher R2 at 0.111 (0.0129). When

both calling and pricing in real time, however, R2 increases much more to 0.157 (0.149). This

suggests that, while an ex-post real-time CPP policy closes an additional ∼ 7% of the efficiency

gap with real-time pricing, a more feasible implementation using day-ahead calling and pricing

can still meaningfully improve efficiency.

We are not aware of any prior studies that systematically demonstrate how the efficiency

gains from CPP relate to these underlying design features. Of special note is our finding that

pre-specifying a single event price for the year ahead of time sharply limits the value of CPP
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Figure 6: CPP Price and Call Comparison
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Note: Each point represents the mean equilibrium-basis renormalized R2 for a given CPP policy in a given
market, using the simulation methodology described in Section 4. The two panels on the left price based on
day-ahead prices and the two panels on the right price based on real-time prices. The two panels on top call
on day-ahead prices, and the two panels on the bottom call on real-time prices. Means are taken across years
between 2014-2020, although CAISO ends in 2015 and ERCOT begins in 2014 due to data availability issues,
and SPP begins in 2015 as their day-ahead market began in March 2014. Each CPP event is assigned a unique
critical-peak price.

plans. This stems from the fact that there are large differences in equilibrium prices among

the peak days within each market-year in the data and from our assumption that there will

be meaningful differences in demand response across “peak” and “super peak” days. This may

run counter to the intuition of some because prior studies have suggested that many customers

have a binary response to pricing events (Wolak 2011a; Gillan 2017). But, as long as there is

still slope in the aggregate demand response, getting the price differences right among the very

highest price days will still have efficiency gains.

5.4 Are TOU and CPP Policies Complementary?

In the previous two sections, we discussed whether or not TOU or CPP price policies are

effective at improving efficiency out-of-sample, and we found mean renormalized OoS R2’s of

approximately 10% each. TOU schedules attempt to match the typical fluctuations in electricity

prices, and CPP events attempt to match spikes in electricity prices. As they serve different
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Figure 7: CPP with Underlying TOU Policies
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Note: Each point represents the mean differenced equilibrium-basis renormalized R2 for a given CPP policy in
a given market, using the simulation methodology described in Section 4. Means are taken across years between
2012-2020, although CAISO ends in 2015 and ERCOT begins in 2014 due to data availability issues, and SPP
begins in 2015 as their day-ahead market began in March 2014. Prices are based on and called on day-ahead
prices. Each CPP event is assigned a unique critical-peak price.

purposes, this raises the possibility that they are largely complementary and could lead to a

larger efficiency gain when applied simultaneously.

Concretely, what we mean by complementary policies is that their DWL gains (and thus

their R2s) are additive when layering the two policies on top of one another. To empirically

investigate this, we define a set of CPP policies jointly with various TOU policies. To isolate

the efficiency gains of the additional CPP events, in addition to renormalizing to a flat baseline,

in each panel we subtract the renormalized R2 values of the respective TOU policy with zero

critical-peak price events.24 Algebraically, this is the difference in DWLs between the TOU-

only and the joint policy divided by the DWL of the flat policy—if the policies are perfectly

orthogonal, this metric will have the same value regardless of the underlying TOU policy.

Figure 7 presents the results, which align with the hypothesis that TOU and CPP are largely

complementary. The top-left panel presents the same results as the top-left panel of Figures 5

and 6. The next three panels present the same, but with increasingly complex underlying TOU

24This mechanically sets the zero-event CPP policy to a renormalized R2 of zero, as in the previous CPP
figures.
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schedules. R2 values decrease slightly as underlying policies become more complex. For a CPP

policy with 20 events, the mean (median) value for the policies described by the four panels is

0.095, 0.068, 0.065, and 0.058 (0.077, 0.044, 0.037, and 0.043), respectively. This suggests that,

on average, less than half of the efficiency gains of CPP would be subsumed by a pre-existing

TOU policy. This is more present in some markets than others—ERCOT and MISO incur more

significant cannibalization, while efficiency gains in ISO-NE are closer to perfectly orthogonal.

These results suggest that TOU and CPP policies provide separate and largely comple-

mentary efficiency gains in retail markets. The approximately 10% DWL recovery from TOU

and the approximately 10% DWL recovery from CPP, accounting for a mild overlap, result in

a mean 17.2% DWL recovery for a policy with 20 CPP events with a peak × weekend policy

underlying it—with 40 CPP events, this increases to 19.6%. This is a meaningful efficiency gain

that seems quite feasible to achieve, so long as utilities are disciplined in the number of TOU

rates they choose to set and judiciously use recent price data to create event-level critical-peak

prices. Even so, it does not come close to the efficiency gains from real-time pricing.

5.5 Real-Time Pricing with Price Caps

So far, we have focused on TOU and CPP because these are the time-varying pricing policies

that have been implemented in practice. They are also “manageable” from the perspective of

the effort needed from a customer to respond to price signals. In contrast, real-time pricing

has drawn skepticism as it might be challenging for customers to effectively respond without

automation. Further, it could lead to significant bill uncertainty and leaves people vulnerable to

potentially skyrocketing prices during extreme peak hours. Motivated by the potential efficiency

benefits of real-time pricing, and the need to address its price-volatility concerns, we now study

the efficiency gains of a third set of pricing systems: real-time pricing programs with price caps.

The caps prevent retail prices from going to extreme levels. Naturally, this limits the efficiency

of real-time pricing during hours when the price ceiling is exceeded, but the system achieves

maximum efficiency in the remaining hours.

Our methodology is well-suited to compare real-time pricing programs with price ceilings

to those without. We take the schedule of simulated first-best equilibrium prices under real-

time pricing, and truncate its values above a certain threshold. We then calculate deadweight

loss under both this capped real-time pricing schedule and an out-of-sample flat tariff, and

calculate the renormalized R2 value as usual. This value gives the proportion of deadweight

loss that would be abated by the capped real-time pricing program over the biased flat tariff.

Equivalently, one minus this metric is proportional to the welfare losses associated with having

imposed the cap onto a true real-time pricing program, scaled relative to the total deadweight

loss associated with a biased flat policy.

Figure 8 presents the results with price caps at the 75th, 90th, 95th, and 99th percentiles of
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Figure 8: Real-Time Pricing with Price Caps
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Note: Each point represents the equilibrium-basis renormalized R2 for real-time pricing with a given price cap
in a given market-year, using the simulation methodology described in Section 4. CAISO ends in 2015 and
ERCOT begins in 2014 due to data availability issues. Panels represent real-time pricing schedules with price
caps set at the 75th, 90th, 95th, and 99th percentiles of simulated equilibrium prices from the three previous years,
respectively. A version using in-sample price caps appears in Appendix Figure B.7. A version using a constant
price cap over time appears in Appendix Figure B.8.

simulated equilibrium prices over the preceding three years of data.25 The results reveal large

efficiency benefits from real-time pricing with price caps. Across these four panels, the mean

(median) renormalized R2 values are 0.670, 0.874, 0.932, and 0.978 (0.766, 0.932, 0.988, and 1),

respectively. Price caps set at the 99th percentile almost fully restore efficiency, and they do so

with price limits that are arguably implementable—the caps average between $52 in ERCOT

and MISO and $96 in ISO-NE (see Appendix Table B.1 for details). These caps are an order

of magnitude smaller than the typical wholesale-market price caps, which are in the thousands

of dollars.

On average across markets and years, we conclude that welfare gains from price-capped

real-time pricing programs persist, even when price caps bind on a significant fraction of hours.

These programs correct for all mispricing in most hours of the year, precisely fitting both the

mean and the shape of marginal costs.

Results are highly variable from market to market and (more strongly) from year to year.

25We avoid using absolute dollar number caps because the distributions of observed and simulated prices vary
significantly between market-years. See Appendix Table B.1 for a sense of scale in dollar terms.
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In large part, this is due to the fact that we are setting these caps out of sample. In years where

the prices of inputs to marginal electricity generation (oil, natural gas, coal, etc.) increase, the

cap (set based on historical data) binds more frequently, leading to a lower capped-policy R2.

In years where the average price of electricity falls nationwide, the cap binds less frequently,

leading to higher R2s. To net out these effects, we include a (not achievable in practice) version

in Appendix Figure B.7, which fixes the proportion of hours in which the cap binds by setting

it in-sample. Results are less variable across market-years, but are qualitatively similar on

average.

These results suggest that the current emphasis on implementing TOU and CPP programs

is leaving a pricing policy with potentially superior efficiency performance on the table—even

very conservative price caps achieve far higher efficiency gains than either TOU or CPP systems.

Importantly, the efficiency gains from real-time pricing with caps that we calculate assume that

demand can respond to a high-dimensional, frequently varying price schedule. Many consumers

may be overwhelmed by the price variation and might (perhaps rationally) ignore much of it.

In contrast, programmable, automated load could handle such a price schedule well. Thus,

we interpret the potential gains from real-time pricing with caps as something that could be

realized in the future as more load becomes “smart,” rather than gains that could be realized

immediately.

6 Extensions

6.1 Best Subsets Selection

While our analysis has evaluated many potential policies, there are obviously many more poten-

tial variations and combinations than we are able to show explicitly. Out of this vast expanse,

it becomes difficult to determine which policies are globally optimal. In particular, we may ask

how many different price levels we should define, what sources of cyclical variation these should

attempt to capture (e.g., daily, weekly, seasonal), and what the specific temporal “cuts” should

be for a given policy. As a case study, we apply a variant of the best subsets selection algorithm

(BSS) to create a more flexible set of TOU rates. Specifically, we look at systems with as many

as 12 different price levels throughout the day and allow the data to choose any contiguous sets

of hours to be put into each of the rate categories (with that price pattern then applied to each

day throughout the year). In contrast, for our peak/off-peak analysis above, we took as given

the peak hour window for each ISO.26

The BSS algorithm is an optimization procedure that, in a regression context, selects the

best k linear predictors out of a large set of possible predictors. Applied to our context, it begins

26Note that the peak hours we took as given were selected using an average over runs of an in-sample version
of this same algorithm, as described in Appendix A.2.
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by fixing the number of price levels k within the day. Then, we evaluate each of the possible sets

of k contiguous price levels within the training data (using the same three-years-prior training

data as before). This step is computationally expensive, so we lower the temporal granularity

of our policy space to two-hour intervals—this leaves us with between 1 and 12 different price

levels. To construct each of the
(
12
k

)
tariff schedules, we define a set of indicator variables

I{dj−1 < houri ≤ dj}, where {dj}kj=1 is a subset of {midnight, 2AM, 4AM, . . . , 10PM} with

size k. This splits the day into k contiguous periods, potentially with one period maintaining

continuity by crossing between days (e.g., a period of 10pm to 2am). For example, when k = 2,

the set of potential policies are all pairs of {midnight, 2AM, 4AM, . . . , 10PM} — the hours

between the policy pair are classed as “peak” and the remaining hours are “off-peak” (or vice

versa). For each policy, the model records the training-data root mean squared error (RMSE)

from an OLS regression of simulated equilibrium prices on the set of indicator variables dictated

by the policy. Finally, it then applies the policy schedule with the lowest training RMSE to

the test data, where we calculate deadweight loss and obtain the renormalized R2 metric used

throughout the rest of the paper. We do this for k between 1 and 12 for every market-year in

the data.

Figure 9: Best-Subsets Selection for Within-Day Price Levels
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further in the text.
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Figure 9 shows the results of this exercise, presenting mean renormalized R2 values for

each market by number of price level pairs. By construction, a policy with 1 price group (i.e.,

a flat price) has a renormalized R2 of 0. Splitting the day into two pricing periods (i.e., a

simple peak vs. off-peak tariff) provides significant efficiency gains in most markets. Optimal

peak pricing policies according to the BSS algorithm typically set either an off-peak period

throughout the night or an on-peak period in the early evening. However, we find very little

evidence for additional efficiency gains beyond this first cut—the efficiency gains flatten out

almost immediately, possibly with the exception of ERCOT. We interpret this as another piece

of evidence bolstering our theme of relative simplicity: most of the feasible efficiency gains from

TOU come from relatively simple schemes.

6.2 Locational Pricing

There is a substantial literature discussing the value of locational marginal pricing in wholesale

electricity markets (e.g., Hogan 2002; Wolak 2011b; Triolo and Wolak 2022). However, the link

between locational marginal pricing and intermediate dynamic pricing schemes has not been

explored as thoroughly. Are intertemporal patterns in wholesale electricity prices predictably

different across space?

To answer this question, we exploit the spatial information provided by our price data.

Recall that, in other sections of this paper, we have used a single hourly average price for each

market we study. We now use node-level prices at the same temporal frequency. We estimate

the relative out-of-sample efficiency of various TOU and CPP policies interacted with different

levels of spatial aggregation. Specifically, we construct policies at the ISO, county, and 5-digit

zip code levels for six of our seven markets and calculate the ISO-wide renormalized R2 for each

policy at the node level.27

Note that, because we do not have node-level load data, we are unable to simulate equilibria

under true real-time pricing. Therefore, as described in Section 4, we now use the “observed”

basis rather than the “equilibrium” basis. That is, we are evaluating prospective policies’ ability

to match observed price patterns without accounting for demand response to the implied price

changes.

Figure 10 shows the results of this exercise in the PJM market. In general, R2 values

are somewhat below those seen in earlier sections, although keep in mind that the metric

is not directly comparable to the other out-of-sample analyses in Section 5 because it uses

observed wholesale prices and because those analyses were all carried out on ISO-level data.

Collapsing prices to the ISO-level mutes locational price variation, which slightly overstates

the performance of TOU policies. Using nodal price data, we see modest gains from locational

27CAISO does not make geolocation data available for nodes in its network, so we are unable to replicate this
exercise in California.
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Figure 10: Locational Pricing – PJM
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policy complexity. With a single ISO-wide price, mean (median) R2 values from the four panels

above across all markets are 0.044, 0.049, 0.045, and 0.091 (0.035, 0.033, 0.036, and 0.077) for

the four pricing schemes, respectively. With county-level pricing, these are 0.052, 0.057, 0.052,

and 0.122 (0.033, 0.034, 0.042, and 0.123), respectively. Zip code pricing yields similar results.

The CPP policy (where events are still defined at the ISO-level) generally benefits from

locational granularity more than the TOU policies. This is as expected, as binding transmission

constraints and local plant outages are a frequent cause of wholesale price spikes, but are

difficult to predict far in advance. Flexibly pricing critical peak events in those locations most

affected by these price spikes more efficiently targets the differential between wholesale and

retail prices. In contrast, the daily, weekly, and seasonal variation captured by TOU policies is

less heterogeneous across space, leading to a lower benefit from spatial retail pricing.

We also observe significant heterogeneity by market. Appendix Figures C.1–C.5 show the

same figure for all other markets in our sample except for CAISO. The same trends appear

on aggregate, although while NYISO and MISO see rather large gains from locational pricing,

ISO-NE and ERCOT only experience mild benefits.
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6.3 Load-Shifting

We also extend our analysis to consider the role of load-shifting, where price changes lead to

substitution in demand across hours. This has an ambiguous effect on deadweight loss since

changes in price in any one hour can now either worsen or improve welfare losses in adjacent

hours depending on the sign of existing distortions in those hours. The effect of load-shifting

on relative deadweight loss between constant prices and TOU (the primary measure we focus

on in Section 5) will be small if either the absolute effects on deadweight loss are small (i.e.,

if welfare effects for different hours cancel out), or if the effects on deadweight loss are similar

as a proportion for the time-invariant and TOU policies. Jacobsen et al. (2020) show how

the presence of substitution alters relative deadweight loss depending on correlation between

pricing errors and substitutability.28

To investigate load-shifting in our setting we expand on the approach used in Section 5 and

now write demand as a linear system of all prices: q(p) = d−Hp. Here p and q are vectors of

prices and quantities and H is a positive semi-definite matrix of demand derivatives. When H

is diagonal this demand system nests the analysis done in Section 5. To explore load-shifting

we set off-diagonal elements (cross-price derivatives) so that a fraction γ1 of demand shifts

to adjacent hours, spread evenly over γ2 hours in either direction. Varying γ1 and γ2 allows

us to approximate a range of results in the empirical literature on load-shifting. The vector of

constants d is set such that prices and demand in the baseline data are reproduced. Equilibrium

is solved numerically and is a set of prices in each hour such that demand above matches the

piece-wise linear supply curve for each hour described in Appendix A.1.

To construct deadweight losses we observe that linear demand systems in this form can be

micro-founded on a quasilinear quadratic model of utility (Spence 1976). We compute consumer

surplus in this setting following Choné and Linnemer (2020).29 Producer surplus over the piece-

wise linear marginal cost function is computed at the new equilibrium using the approach as in

Section 5 above.

Figure 11 presents welfare results when exploring our model with load-shifting applied to

three TOU policies and one CPP policy. For computational reasons we limit the analysis to

a single year (2015) where we have complete data. The “Diagonal” benchmark in each panel

reproduces out-of-sample R2 values for 2015 as displayed in Appendix Figure B.1. Note this

is a year where CPP performed relatively poorly in many ISOs; we are interested here in

comparisons between the diagonal benchmark and the load-shifting cases.

The cases labeled “Andersen et al. (2017), 2 hour” and “12 hour” reflect load-shifting

28In the electricity pricing context, correlations between cross-price derivatives and the products of wedges
remaining after fitting a TOU policy make the TOU policy more efficient after considering load-shifting. Corre-
lations between the policy itself (i.e., prices in the hours designated as peak) and cross-price derivatives worsen
the TOU policy’s relative performance. Both types of correlation are likely to be present empirically.

29Consumer surplus in this setting is given by (1/2)(H−1d− p)′H(H−1d− p).
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Figure 11: Efficiency Gains with Various Load-Shifting Patterns
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patterns estimated in Andersen et al. (2017) using an experiment in Denmark. They find

an average shift in load equal to 29% of the size of the own-price demand response. The

shifted load reappears within 2 hours, to as much as 12 hours, on either side of the hours

with a price change depending on the setting. Our parameters to span these cases are then

{γ1 = 0.29, γ2 = 2} and {γ1 = 0.29, γ2 = 12}. Next we consider an experiment where demand

shifts instead reflected complementarities: Jessoe and Rapson (2014) find that information

combined with price changes leads to spillovers, making cross-price derivatives negative. In

their main treatment there is a reduction in shoulder demand (defined as 2 hours either side)

that is 68% as large as the reduction during hours where prices have been increased. We

reflect this with {γ1 = −0.68, γ2 = 2}. We also include an ad-hoc case of {γ1 = 0.5, γ2 = 4} to

consider even stronger substitution than in the Andersen et al. (2017) study. Other studies that

we located from this literature all estimated weaker substitution patterns (and would therefore

fall even closer to our primary diagonal case). For example, Ata, Duran, and Islegen (2018)

estimate that only about 9% of load response moves to adjacent hours.

Figure 11 shows that when accounting for different types and degrees of load-shifting, and

across our datasets, there is relatively little impact on the fraction of deadweight loss recovered
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by TOU and CPP policies. The mostly-offsetting effects of load-shifting in these scenarios lead

to some cases where TOU and CPP look slightly better and some where they look slightly worse.

We see average differences from the diagonal R2 (the mean absolute value of that difference)

of -0.004, 0.011, -0.003, and -0.008 (0.005, 0.018, 0.006, and 0.009) for the four alternative

substitution patterns, respectively.30 The largest individual effect in absolute terms is in ISO-

NE where broad load-shifting (12 hours either side of peak) leads to a 0.04 lower R2 under the

CPP policy.

Appendix Figure B.9 provides additional detail for a selection of hours, showing first-best

equilibrium prices under the various substitution patterns. The relatively small changes in

first-best prices (compared to the diagonal case) visible in this figure mirror the small effect we

find for load-shifting overall.

7 Conclusion

Wholesale electricity prices vary substantially hour to hour. In theory, there are large efficiency

gains that can be realized if this variation in prices can be passed on to final customers, just as

they are in nearly all other commodity markets. The question of how to capture some of those

efficiency gains has been a perennial topic in energy economics, but it takes on more importance

today because the technology to implement more advanced pricing has matured and because

the energy transition simultaneously means that prices are likely to become more volatile as

renewables play an expanded role in generation, electricity demand will be rising as we electrify

transportation and buildings, and much of the new load, be it from electric vehicles or data

centers, is likely to be more responsive to variable rates than has been typical in the past. All

of this means that it is critical to get prices right, now more than ever.

This paper explores the ability of TOU and CPP pricing policies, which are the lynchpin

tools currently available to utilities, to realize these benefits. The paper examines two decades

of data from all seven US wholesale power markets, with a focus on measuring goodness of fit

statistics associated with alternative rate designs and accounting for out-of-sample forecasting

and the equilibrium price effects of alternative pricing policies. These statistics summarize

the ability of proposed rates to match wholesale price fluctuations, and as a result they are

a simple way to characterize the efficiency gains of alternative tariffs. Our data coverage and

our methodological improvements allow us to shed new light on the efficiency potential of

time-varying rates.

There is a considerable amount of variation in wholesale electricity prices that is difficult to

reflect in TOU and CPP schemes. At the same time, these rates deliver meaningful economic

benefits and are largely complementary in nature. Together, simple peak pricing and CPP

30In percentage terms, these are -2.8%, 14%, -4.3%, and -6.1% (6.1%, 19.9%, 7.6%, and 10.8%) respectively.
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pricing that calls and prices events using day-ahead markets recover about 17% of the efficiency

gap with real-time pricing. While a far cry from real-time pricing, regulators and utilities are

well-advised to consider them if policies closer to real-time pricing are unavailable. To take full

advantage of these efficiency-improving pricing schemes, utilities will need to be sophisticated

in how they define peak hours and how they call and price CPP events—current practice is

unlikely to capture the benefits we document. Another avenue that utilities might pursue is the

introduction of real-time pricing paired with strict price caps. This type of pricing can recover

the vast majority of the current efficiency gap while still protecting customers from extreme

price fluctuations.

More complex TOU schemes do not improve much on simple peak pricing policies when

evaluated out-of-sample and may even backfire. Our results consistently emphasize the im-

portance of more timely rate setting—that is, rates that are able to adjust to current market

conditions—rather than having schemes that feature many prices when those prices have to

be specified well in advance. Pricing data from past years is hardly informative in predicting

detailed price patterns and the risk of overfitting looms large. The patterns of results we doc-

ument here are largely consistent over time, but the relative efficiency gains of TOU and CPP

policies vary substantially across markets.

We believe that these results should be of interest to regulators, utilities, and other stake-

holders interested in making electricity markets more efficient. While our analysis calls for

significant changes in how utilities operate their CPP programs, technological advances in

home automation will make it easier for customers to respond to CPP events that are called

at relatively short notice, or to continuous price fluctuations in a system of partial real-time

pricing with price caps. This should eventually aid the political feasibility of such changes in

policy design.
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A Appendix: Additional Methodological Details

A.1 Equilibrium Simulation

To define hourly demand curves we use a linear functional form. We calibrate the slope in

each hour using observed average prices/quantities and an assumed elasticity of -0.2 (based on

Reguant (2019)), which gives us a slope term of −0.2( qp) for each hour in the data. We also

consider values of -0.1 and -0.3 to assess sensitivity of results. We then calibrate the hourly in-

tercept terms by aligning the observed load in each hour with the average price across the entire

market-year. This is implicitly assuming that consumers were facing a flat tariff, set at average

price, in the data. In reality most consumers do face flat tariffs, but industrial and commercial

consumers are more likely to face time-varying prices than residential consumers. Figure A.1

shows that only 5-10% of load in each year do not face flat prices, although this proportion is

increasing modestly over time. Among consumers that do face time-varying prices, industrial

consumers are relatively more likely to face true real-time prices and residential/commercial

consumers are relatively more likely to face simple time-of-use prices.

Figure A.1: Proportion of Consumers Facing Time-Varying Prices
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time-of-use pricing, critical-peak pricing, critical-peak rebates, variable-peak pricing, and real-time pricing),

calculated by sector. Total is an average of the sectoral estimates weighted by annual usage (in GWh). Source:

Form EIA-861 (https://www.eia.gov/electricity/data/eia861/).
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In light of this, we interpret our demand curve here as an overall response to retail electricity

price changes, which is then an average of the demand response from each segment weighted

according to its size and likelihood to face retail prices. We selected values based on estimates

of residential, commercial, and industrial demand elasticities and shares. See Reguant (2019)

(Table 2 and footnote 27) for a brief overview of these.

To generate hourly supply curves, we begin with market-year-level merit order curves. For

ease of computation, we fit linear splines with knots at the 75th and 95th percentiles of quantity

along the merit order. This specification was selected via grid search over every possible set of

1, 2, or 3 vigintile knots—this set explained the greatest proportion of the variance in our merit

order data, with an average R2 of 0.959 across all market-years. We then horizontally shift the

supply curves such that they intersect demand at the observed price and quantity in each hour.

This assumes that hourly shocks to the merit order all occur among the lowest marginal cost

technologies (e.g., wind/solar).

Finally, we generate the counterfactual hourly equilibria via the intersection of these two

curves. We then simulate hourly policy equilibria by crossing the demand curve with a hori-

zontal “enforced” supply curve set at the policy price. Deadweight losses caused by any given

policy are computed by integrating to evaluate consumer and producer surpluses.

A.2 Peak-Hour Definition

To create our standard definition of peak vs. off-peak hours in each market, we find the pair

of hours that, as a start and end hour for the peak period, on average explain the greatest

proportion of the variation in observed wholesale prices in that market. To do so, we employ

an exhaustive search best-subsets selection algorithm, an out-of-sample variant of which we use

in Section 6.1.

We define a peak policy by its start and end hour. This is any subset of {midnight, 1AM,

2AM, . . . , 11PM} of size 2, where the peak period is defined as those hours weakly after the

start hour and weakly before the end hour (or vice versa). There are
(
24
2

)
= 276 possible

arrangements. For each market-year of our data, we calculate the in-sample R2 from each of

these possible peak definitions. We then collapse to the market-level median R2 value for each

peak definition (of which there are 276× 7), and select the definition with the highest median

R2 value in each market as the 7 peak definitions in our analysis.31 The results of this exercise

(local time) are shown in Table A.1. As is often practiced by utilities, peak hours usually run

from sunrise until sundown, with the exceptions of ERCOT (which is more concentrated during

the hottest hours of the day) and CAISO (which is shifted slightly later in the day).

31Selections using the market-level mean R2 are qualitatively similar.
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Table A.1: Peak Hours for Each Market, Inclusive

Market Start Hour End Hour

PJM 6am 8pm
ISO-NE 6am 8pm
NYISO 7am 8pm
ERCOT 12pm 6pm
MISO 6am 8pm
SPP 6am 8pm

CAISO 10am 10pm

A.3 CPP Price Schedule Construction

To define in-sample CPP schedules (such as those in Figure 3 and Table 2), we first order days

in the year by their mean of the observed real-time prices during their peak period. Then,

we define indicator variables for each of the top-20 peak periods and report the R2 from the

regression of real-time prices on those indicator variables. This creates a schedule consisting

of the day-specific mean peak-period price during the top-20 peak periods (i.e., following what

we call “event-level pricing” in Section 5.3) and the mean of all remaining real-time price

observations in non-CPP hours.

To define out-of-sample CPP schedules, we begin similarly. In most cases, we sort days of

the year by their peak period day-ahead price and define the top-n peak periods as critical-peak

periods—in Figure 6, we also display results sorted by real-time price. Using the day-ahead

market in this way gives our model an imperfect signal of the best CPP events to call given

a fixed number of them. However, it is still an ex post solution to the true optimal-stopping

problem utilities must solve in calling CPP events. We discuss this issue further in Section 5.3.

Then, we define either a single critical-peak price (averaged over all event-hours), event-level

critical-peak prices (averaged over hours for each event), or hourly critical-peak prices (each

critical-peak hour is priced individually) depending on the structure of the policy. Unless oth-

erwise specified, we report results with event-level prices—Figure 5 compares these structures

directly. When using event-level pricing, we define these critical-peak prices using predicted

values from a regression of daily peak-period mean simulated equilibrium prices on day-ahead

prices. This accounts for risk premia in the forward market and the equilibrium price effects of

the critical-peak price. When using single pricing, we use the mean value of these event-level

prices. When using hourly pricing, we instead use predicted values from a regression of sim-

ulated equilibrium prices on day-ahead prices during peak periods without collapsing to daily

peak-period averages (although the regression coefficients are qualitatively similar). In Figure

6, we also display results priced in real-time—in those cases, we use the simulated equilibrium
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price directly in place of the predicted values based on the day-ahead market.

Finally, we must define prices during off-peak hours. Other than in Section 5.4, we use a

flat price for these hours. To define this flat price, we take the mean of the previous three years’

simulated equilibrium prices, excluding the 3n highest-priced hours (where n is the number of

yearly critical peak periods considered). This approximates excluding CPP event hours in the

creation of off-peak prices.32 In Section 5.4, we define TOU schedules underlying CPP policies

in much the same way. We construct TOU policies using the simulated equilibrium prices from

the three previous years, and exclude the 3n highest-priced hours from the training data.

B Appendix: Additional Figures and Tables

Figure B.1: Out-of-Sample Efficiency Gain of Different TOU Designs

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

2012 2014 2016 2018 2020 2012 2014 2016 2018 2020

Peak Peak x Weekend

Peak x Weekend x Season Peak x Weekend x Month

PJM ISO−NE NYISO ERCOT MISO SPP CAISO

R
e

n
o

rm
a

liz
e

d
 R

2

Year

Note: Each point represents the equilibrium-basis renormalized R2 for a given TOU policy in a given market-
year, using the simulation methodology described in Section 4. Season splits the year into two 6-month periods,
beginning in April and October. CAISO ends in 2015 and ERCOT begins in 2014 due to data availability issues.
Versions with alternative demand elasticities of −0.1 and −0.3 appear in Appendix Figure B.2. A version using
observed-basis R2 is in Appendix Figure B.3.

Figure B.1 shows R2 values for out-of-sample TOU policies. The low R2 values persist for

complex policies. The means (medians) of the four panels in Figure B.1 are 0.095, 0.103, 0.111,

32We do not explicitly simulate what peak periods in the training sample would have been critical-peak events
because it would require day-ahead data in the training sample, reducing our OoS analysis sample size by three
years in each market.
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and 0.071 (0.084, 0.092, 0.107, and 0.097) respectively. The standard deviation (interquartile

range) of the R2 values is generally increasing in policy complexity, with values for the four

panels of 0.059, 0.066, 0.084, and 0.166 (0.079, 0.085, 0.082, and 0.112) respectively.

Figure B.2: Out-of-Sample Efficiency Gain of Different TOU Designs,
Varying Demand Elasticity
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(B) −0.3 Demand Elasticity
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Note: Each point represents the equilibrium-basis renormalized R2 for a given TOU policy in a given market-

year, using the simulation methodology described in Section 4. Panel (A) uses a −0.1 demand elasticity and

Panel (B) uses a −0.3 demand elasticity. Season splits the year into two 6-month periods, beginning in April and

October. CAISO ends in 2015 and ERCOT begins in 2014 due to data availability issues. Main version using

−0.2 demand elasticity available in Figure B.1.
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Figure B.2 shows a variation of our main results in Figure B.1 assuming a demand elasticity

of -0.1 or -0.3 (as opposed to our base value of -0.2), in panels A and B respectively. This has

little impact on the R2 results, though it does affect the magnitude of total DWL.

Figure B.3: Out-of-Sample Efficiency Gain of Different TOU Designs, Observed Basis
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Note: Each point represents the observed-basis renormalized R2 for a given TOU policy in a given market-year,

using the simulation methodology described in Section 4. Season splits the year into two 6-month periods,

beginning in April and October. CAISO ends in 2015 and ERCOT begins in 2014 due to data availability issues.

Main version using the equilibrium basis available at Figure B.1.

Figure B.3 demonstrates that the result that there are diminishing (and even negative)

returns to TOU complexity is similar when using observed wholesale prices instead of simulated

real-time prices. Note that, relative to the equilibrium-basis out-of-sample results, we have also

changed the functional form of the supply curve: the equilibrium basis out-of-sample results

in Figure B.1 assume linear spline supply curves; the observed basis out-of-sample results here

assume linear supply.
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Figure B.4: Cumulative Distribution of In-Sample DWL - PJM - 2018
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Note: This figure shows the cumulative distribution function of deadweight loss across hours of the year un-

der linear supply/demand with observed wholesale prices as the benchmark (solid black line) and with spline

supply/linear demand with simulated equilibrium prices as the benchmark (dashed grey line), for an in-sample

peak/off-peak policy in the PJM market in 2018.

Under the observed wholesale basis, the “target” price schedule is the observed marginal cost

of generation. However, the first-best equilibrium price is that which would have been reached

under full real-time pricing. When the supply curve is sloped, these two prices are generally

not the same. The observed wholesale basis overweights the deadweight loss associated with

the most extreme outlier hours, which, under real-time pricing, would have experienced a large

reduction in load due to demand response to the higher price. Simulated equilibrium prices

have a smaller variance than observed wholesale prices, so the estimated deadweight loss from

an intermediary policy is more evenly distributed across hours (Figure B.4).
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Figure B.5: Varying the Size of the Training Sample
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Note: Each point represents the mean renormalized R2 across all markets with a given policy and number of

years of training data, using the simulation methodology described in Section 4. Pre-collapsed data is unbalanced

across markets due to varying data availability and unbalanced across levels of the horizontal axis because, with

a temporally finite sample, fewer years can support larger training samples.

Figure B.5 presents the mean renormalized R2 across all market-years of five different TOU

policies while varying the size of the training sample. The horizontal axis denotes the number

of prior years that constitutes the training sample—note that our inclusion of all possible years

of test data causes the panel of results to be unbalanced (with smaller values on the horizontal

axis containing more R2 observations). Our main specification corresponds to a value of 3 along

the horizontal axis. We do not see a significant positive or negative trend in R2 from expanding

or contracting the number of years of training data around this point. We do see a decline after

8 years, but this excludes most potential years of test data, especially from CAISO and ERCOT

(which can respectively support at most 6 and 9 years of training in our data). Additionally, any

reasonable weighting of the training data would prioritize more recent information, so we do not

consider this a threat to our empirical strategy. Finally, we also notice that the most complex

policy studied (peak × weekend × month) improves both in absolute terms and relative to the

other policies significantly when moving from 1 to 4 years of pre-period data. This is because,

with few years of training data, large spikes in the observed prices can be extremely influential

on the policy price on particular tariff levels, causing overfitting. After enough years of data
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have been added, this policy is “smoothed” significantly, and more closely resembles the policy

prices from simpler policies (e.g., peak × weekend × season).

Figure B.6: R2 Coefficients from a Regression of Real-Time on Day-Ahead Prices
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Note: Each point represents the R2 from a regression of ISO-level real-time prices on day-ahead prices for PJM,

ISO-NE, NYISO, ERCOT, MISO, SPP, and CAISO over the period 2000-2020 (with data coverage varying as

described in Section 3).

Figure B.6 shows the R2 from regressions of ISO-level real-time prices on day-ahead prices.

These values are significantly below 1, which indicates that there is still significant variation in

real-time prices that cannot be predicted even a day in advance. As is visually apparent, certain

ISOs’ forward markets explain more of the variation in spot prices than others. For example,

SPP’s base load has a large wind generation share, which is difficult to predict, whereas ISO-NE

has larger nuclear and hydroelectric generation shares, which are more predictable. This may

partially explain differences in expected efficiency gains from CPP policies. There is typically a

small difference in mean between these two market prices—this is a risk premium. Our interest

is in whether or not day-ahead prices can accurately predict real-time prices, so, as long as this

risk premium is consistent in expectation, this is not an issue.
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Figure B.7: Real-Time Pricing with Price Caps – In-Sample Caps
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Note: Each point represents the equilibrium-basis renormalized R2 for real-time pricing with a given price cap in

a given market-year, using the simulation methodology described in Section 4. CAISO ends in 2015 and ERCOT

begins in 2014 due to data availability issues. Panels represent real-time pricing schedules with price caps set at

the 75th, 90th, 95th, and 99th percentiles of simulated equilibrium prices from the current year, respectively. A

version using out-of-sample price caps appears in Figure 8. A version using flat price caps appears in Appendix

Figure B.8.

Figure B.7 presents a variation on our analysis of real-time pricing with price caps, instead

defining price caps using percentiles of in-sample equilibrium prices. This is not achievable

in practice and therefore not as realistic possibility, unlike the results presented in Figure 8—

indeed, we are using information that the policymaker does not have access to in order to set

these caps. However, the use of this is that we have fixed the proportion of hours affected by the

price cap to be equal to exactly (100−x)% of hours in each panel. These four panels have mean

(median) R2 values of 0.605, 0.863, 0.937, and 0.981 (0.616, 0.888, 0.96, 0.994), respectively.

Based on this, we conclude that real-time pricing with price caps binding less than 10% of the

time still recover the overwhelming majority of deadweight loss compared to a flat baseline.
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Figure B.8: Real-Time Pricing with Price Caps – Flat Caps
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Note: Each point represents the equilibrium-basis renormalized R2 for real-time pricing with a given price cap in

a given market-year, using the simulation methodology described in Section 4. CAISO ends in 2015 and ERCOT

begins in 2014 due to data availability issues. A version using out-of-sample price caps appears in Figure 8. A

version using in-sample price caps appears in Appendix Figure B.7.

Similarly, Figure B.8 presents a variation of our real-time pricing with fixed-value price caps

set at $40, $50, $75, and $100. As Table B.1 shows, the distribution of prices varies significantly

across the years of our sample. Therefore, the proportion of hours in which the cap binds is

variable, as in Figure 8. Some market-years using the $40 cap result in negative R2 values—this

is because the cap is binding in many hours during those market-years (in some cases, the cap

is below the median price).

A11



Figure B.9: Simulated Prices with Various Load-Shifting Patterns - PJM - August 15, 2015
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Note: Each point represents an hourly simulated equilibrium price of electricity under true real-time pricing from

PJM on August 15, 2015. Different colors represent different shoulder substitution patterns, corresponding to

different estimates from the literature. Points in red represent observed wholesale prices directly from the data.

Figure B.9 shows a comparison of simulated real-time prices under different shoulder-

substitution patterns alongside observed wholesale prices from an example day. We find that

these simulated equilibrium prices broadly follow the observed wholesale price, and even more

so strongly bunch together with each other. These different calibrations typically diverge in

price more during periods of low demand and bunch more tightly in periods of high demand.

During those peak hours, any simulation that passes real-time prices onto retail consumers will

see a stark response to avoid progressing too far on the steep portion of the merit order curve.

Compared to the other calibrations, simulations using Jessoe and Rapson (2014) typically fall

on the opposite side of the the no-shoulder substitution (diagonal) case—this is because they

find that electricity in adjacent hours are complements, where the other studies found that

them to be substitutes.
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Table B.1: Percentiles of Simulated Equilibrium Prices

Market 75th 90th 95th 99th

PJM 35.83 47.92 55.13 57.17

ISO-NE 43.86 59.36 69.97 96.47

NYISO 41.11 60.1 71.77 79.07

ERCOT 28.35 36.71 42.27 51.9

MISO 29.82 37.89 44.7 51.95

SPP 27.91 33.8 39.19 55.07

CAISO 38.7 45.96 53.5 78.04

Note: Table shows the 75th, 90th, 95th, and 99th percentiles of simulated equilibrium prices averaged across the

years of our sample for each market in dollars per megawatt hour.

Table B.1 gives the mean across all years of the sample of the 75th, 90th, 95th, and 99th

percentiles of simulated equilibrium prices for each market. This (roughly) gives the average

value of the price caps being implemented in Figures 8 and B.7 for each market.
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C Appendix: Repeated Exhibits

Table C.1: ISO-level R2 from In-Sample Electricity Tariff Regressions, Part 1

Panel A: PJM

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . 0 0 0 0 0 0 0 0

Peak . . .261 .216 .206 .136 .171 .199 .127 .128

Peak x Weekend . . .291 .245 .240 .160 .192 .208 .143 .141

Peak x Season . . .277 .225 .216 .150 .185 .282 .207 .153

Peak x Weekend x Season . . .308 .257 .250 .177 .207 .291 .224 .168

Peak x Weekend x Month . . .365 .335 .437 .282 .263 .391 .370 .293

Hour x DoW x Month . . .601 .601 .665 .481 .490 .611 .558 .493

CPP, 20 Events . . .168 .123 .158 .305 .177 .172 .231 .259

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .092 .114 .120 .017 .050 .131 .075 .034 .041 .089

Peak x Weekend .108 .136 .143 .029 .057 .153 .085 .039 .052 .105

Peak x Season .125 .125 .137 .050 .070 .150 .089 .054 .048 .100

Peak x Weekend x Season .143 .149 .160 .067 .078 .172 .101 .061 .059 .115

Peak x Weekend x Month .206 .236 .204 .187 .246 .232 .150 .240 .086 .208

Hour x DoW x Month .411 .437 .398 .349 .444 .500 .356 .361 .312 .453

CPP, 20 Events .360 .308 .349 .493 .382 .193 .263 .365 .174 .143

Panel B: ISO-NE

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . 0 0 0 0 0 0 0 0

Peak . . .131 .130 .130 .099 .189 .119 .092 .097

Peak x Weekend . . .135 .141 .136 .110 .199 .125 .096 .106

Peak x Season . . .147 .146 .134 .103 .201 .230 .236 .102

Peak x Weekend x Season . . .151 .158 .141 .116 .212 .237 .240 .116

Peak x Weekend x Month . . .248 .258 .488 .164 .340 .414 .437 .286

Hour x DoW x Month . . .453 .460 .646 .351 .516 .554 .576 .470

CPP, 20 Events . . .281 .365 .172 .305 .197 .266 .224 .274

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .067 .076 .031 .02 .029 .029 .032 .015 .029 .050

Peak x Weekend .074 .081 .034 .028 .032 .036 .033 .019 .032 .053

Peak x Season .068 .084 .106 .169 .117 .032 .083 .048 .126 .082

Peak x Weekend x Season .075 .089 .110 .179 .121 .039 .088 .053 .132 .085

Peak x Weekend x Month .252 .243 .257 .478 .461 .128 .260 .208 .259 .242

Hour x DoW x Month .402 .443 .385 .572 .581 .334 .382 .349 .401 .412

CPP, 20 Events .371 .280 .323 .321 .264 .314 .392 .344 .336 .318

Note: Cells of this table present R2 values for regressions of the hourly ISO-average price of electricity observed

in the wholesale market in a given year (given by the column) and a given set of independent variables which

define a time-of-use or critical-peak price schedule (given by the row).
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Table C.1: ISO-level R2 from In-Sample Electricity Tariff Regressions, Part 2

Panel C: NYISO

Pricing Scheme 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff 0 0 0 0 0 0 0 0 0 0 0

Peak .069 .070 .072 .138 .204 .088 .089 .102 .087 .074 .072

Peak x Weekend .072 .080 .087 .147 .219 .096 .105 .111 .090 .081 .077

Peak x Season .073 .087 .081 .140 .212 .098 .095 .105 .157 .145 .078

Peak x Weekend x Season .076 .098 .099 .150 .227 .106 .113 .116 .161 .153 .085

Peak x Weekend x Month .142 .184 .235 .307 .295 .295 .179 .147 .296 .261 .184

Hour x DoW x Month .327 .357 .417 .494 .530 .480 .364 .340 .454 .459 .393

CPP, 20 Events .303 .386 .279 .218 .211 .247 .408 .291 .207 .168 .209

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .053 .057 .049 .021 .041 .042 .054 .031 .061 .067

Peak x Weekend .060 .066 .056 .035 .048 .047 .060 .033 .067 .074

Peak x Season .059 .062 .057 .110 .081 .046 .067 .045 .088 .076

Peak x Weekend x Season .066 .073 .064 .128 .089 .051 .075 .049 .097 .084

Peak x Weekend x Month .139 .125 .164 .373 .401 .117 .136 .219 .197 .234

Hour x DoW x Month .337 .338 .314 .482 .551 .334 .345 .351 .378 .433

CPP, 20 Events .316 .317 .396 .434 .291 .241 .250 .347 .232 .236

Panel D: ERCOT

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . . . . . . .

Peak . . . . . . . . . .

Peak x Weekend . . . . . . . . . .

Peak x Season . . . . . . . . . .

Peak x Weekend x Season . . . . . . . . . .

Peak x Weekend x Month . . . . . . . . . .

Hour x DoW x Month . . . . . . . . . .

CPP, 20 Events . . . . . . . . . .

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .014 .025 .016 .004 .027 .050 .037 .020 .009 .032

Peak x Weekend .017 .026 .017 .006 .028 .050 .039 .021 .010 .032

Peak x Season .030 .028 .023 .006 .045 .061 .046 .028 .019 .035

Peak x Weekend x Season .037 .032 .025 .008 .046 .064 .050 .030 .024 .039

Peak x Weekend x Month .138 .048 .043 .020 .086 .101 .070 .063 .097 .086

Hour x DoW x Month .361 .264 .317 .256 .310 .312 .289 .268 .280 .319

CPP, 20 Events .345 .317 .208 .035 .275 .291 .282 .266 .485 .349

Note: Cells of this table present R2 values for regressions of the hourly ISO-average price of electricity observed

in the wholesale market in a given year (given by the column) and a given set of independent variables which

define a time-of-use or critical-peak price schedule (given by the row).
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Table C.1: ISO-level R2 from In-Sample Electricity Tariff Regressions, Part 3

Panel E: MISO

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . 0 0 0 0 0 0

Peak . . . . .240 .203 .220 .221 .209 .197

Peak x Weekend . . . . .298 .244 .265 .259 .230 .217

Peak x Season . . . . .247 .211 .228 .248 .253 .211

Peak x Weekend x Season . . . . .309 .253 .276 .287 .275 .232

Peak x Weekend x Month . . . . .418 .321 .320 .385 .323 .315

Hour x DoW x Month . . . . .623 .554 .567 .630 .533 .557

CPP, 20 Events . . . . .199 .208 .132 .150 .124 .148

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .140 .077 .114 .058 .144 .164 .132 .090 .052 .098

Peak x Weekend .157 .086 .132 .072 .164 .192 .148 .106 .063 .113

Peak x Season .157 .086 .127 .068 .153 .188 .152 .100 .055 .107

Peak x Weekend x Season .173 .097 .147 .082 .173 .217 .169 .116 .066 .122

Peak x Weekend x Month .225 .154 .174 .149 .259 .363 .198 .174 .094 .194

Hour x DoW x Month .463 .370 .397 .398 .470 .583 .415 .389 .313 .422

CPP, 20 Events .203 .243 .136 .268 .184 .243 .198 .205 .204 .153

Panel F: SPP

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . . . 0 0 0 0

Peak . . . . . . .204 .189 .096 .145

Peak x Weekend . . . . . . .214 .205 .108 .155

Peak x Season . . . . . . .212 .301 .133 .160

Peak x Weekend x Season . . . . . . .223 .317 .146 .170

Peak x Weekend x Month . . . . . . .260 .508 .202 .296

Hour x DoW x Month . . . . . . .560 .731 .451 .558

CPP, 20 Events . . . . . . .127 .114 .116 .099

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .163 .176 .170 .019 .029 .029 .034 .024 .028 .065

Peak x Weekend .170 .184 .182 .021 .030 .030 .034 .025 .030 .068

Peak x Season .229 .196 .188 .021 .031 .031 .038 .025 .033 .068

Peak x Weekend x Season .236 .204 .203 .023 .032 .032 .038 .028 .035 .072

Peak x Weekend x Month .332 .312 .257 .036 .047 .061 .050 .044 .041 .114

Hour x DoW x Month .568 .547 .512 .289 .326 .286 .273 .263 .284 .328

CPP, 20 Events .112 .144 .094 .113 .075 .113 .077 .097 .083 .125

Note: Cells of this table present R2 values for regressions of the hourly ISO-average price of electricity observed

in the wholesale market in a given year (given by the column) and a given set of independent variables which

define a time-of-use or critical-peak price schedule (given by the row).
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Table C.1: ISO-level R2 from In-Sample Electricity Tariff Regressions, Part 4

Panel G: CAISO

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . . . . . 0 0

Peak . . . . . . . . .036 .039

Peak x Weekend . . . . . . . . .037 .040

Peak x Season . . . . . . . . .056 .045

Peak x Weekend x Season . . . . . . . . .058 .047

Peak x Weekend x Month . . . . . . . . .080 .064

Hour x DoW x Month . . . . . . . . .345 .306

CPP, 20 Events . . . . . . . . .155 .101

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 . . . . .

Peak .029 .027 .027 .035 .016 . . . . .

Peak x Weekend .030 .027 .029 .038 .016 . . . . .

Peak x Season .034 .032 .037 .043 .021 . . . . .

Peak x Weekend x Season .036 .032 .039 .046 .023 . . . . .

Peak x Weekend x Month .060 .058 .061 .090 .047 . . . . .

Hour x DoW x Month .310 .271 .292 .331 .273 . . . . .

CPP, 20 Events .082 .152 .103 .101 .128 . . . . .

Note: Cells of this table present R2 values for regressions of the hourly ISO-average price of electricity observed

in the wholesale market in a given year (given by the column) and a given set of independent variables which

define a time-of-use or critical-peak price schedule (given by the row).
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Table C.2: Node-Level R2 from Electricity Tariff Regressions, Part 1

Panel A: PJM

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . 0 0 0 0 0 0 0 0

Peak . . .228 .166 .153 .103 .113 .130 .087 .080

Peak x Weekend . . .254 .189 .179 .121 .127 .136 .098 .088

Peak x Season . . .244 .173 .160 .113 .122 .185 .140 .096

Peak x Weekend x Season . . .270 .199 .186 .133 .136 .191 .152 .105

Hour x DoW x Month . . .527 .451 .487 .362 .324 .400 .378 .306

County . . .000 .016 .004 .001 .003 .006 .005 .003

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .067 .081 .059 .013 .031 .062 .042 .022 .023 .025

Peak x Weekend .079 .096 .071 .023 .035 .072 .047 .026 .028 .030

Peak x Season .093 .088 .068 .038 .041 .070 .049 .035 .027 .028

Peak x Weekend x Season .105 .105 .079 .051 .046 .081 .056 .039 .033 .033

Hour x DoW x Month .300 .308 .195 .271 .262 .235 .196 .230 .172 .128

County .002 .001 .001 .000 .000 .000 .000 .000 .000 .000

Panel B: ISO-NE

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . 0 0 0 0 0 0 0 0

Peak . . .120 .123 .111 .083 .148 .113 .091 .093

Peak x Weekend . . .124 .133 .116 .092 .156 .119 .094 .102

Peak x Season . . .134 .138 .115 .086 .158 .219 .230 .097

Peak x Weekend x Season . . .139 .149 .121 .097 .167 .225 .234 .111

Hour x DoW x Month . . .416 .435 .552 .294 .405 .527 .564 .451

County . . .001 .000 .001 .001 .002 .001 .000 .000

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .065 .068 .030 .020 .028 .028 .030 .014 .028 .048

Peak x Weekend .071 .072 .034 .028 .031 .036 .031 .019 .031 .051

Peak x Season .066 .074 .104 .164 .115 .031 .077 .047 .123 .080

Peak x Weekend x Season .072 .079 .108 .174 .119 .039 .082 .052 .129 .083

Hour x DoW x Month .386 .393 .378 .563 .575 .328 .357 .340 .392 .399

County .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Note: Cells of this table present in-sample R2 values for regressions of the hourly price of electricity observed in

each node in the wholesale market in a given year (given by the column) and a given set of independent variables

which define a time-of-use price schedule (given by the row).
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Table C.2: Node-Level R2 from Electricity Tariff Regressions, Part 2

Panel C: NYISO

Pricing Scheme 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff 0 0 0 0 0 0 0 0 0 0 0

Peak .042 .051 .055 .087 .117 .054 .058 .064 .038 .041 .045

Peak x Weekend .044 .058 .067 .092 .125 .059 .068 .070 .040 .045 .048

Peak x Season .044 .064 .062 .088 .121 .060 .062 .066 .070 .080 .049

Peak x Weekend x Season .046 .073 .076 .094 .130 .065 .074 .072 .072 .085 .053

Hour x DoW x Month .199 .263 .320 .311 .304 .294 .236 .213 .202 .254 .246

County .001 .002 .001 .001 .000 .001 .003 .001 .000 .001 .001

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .035 .036 .028 .017 .026 .020 .031 .021 .024 .027

Peak x Weekend .040 .043 .032 .028 .031 .023 .034 .023 .027 .029

Peak x Season .039 .040 .032 .088 .052 .023 .039 .031 .035 .030

Peak x Weekend x Season .044 .047 .037 .103 .057 .025 .043 .034 .039 .033

Hour x DoW x Month .223 .217 .178 .387 .355 .161 .199 .240 .151 .171

County .001 .001 .001 .000 .001 .000 .001 .000 .001 .002

Panel D: ERCOT

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . . . . . . .

Peak . . . . . . . . . .

Peak x Weekend . . . . . . . . . .

Peak x Season . . . . . . . . . .

Peak x Weekend x Season . . . . . . . . . .

Hour x DoW x Month . . . . . . . . . .

County . . . . . . . . . .

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .014 .017 .012 .004 .019 .025 .012 .013 .010 .016

Peak x Weekend .016 .018 .014 .005 .019 .026 .013 .013 .011 .017

Peak x Season .030 .019 .017 .005 .031 .031 .015 .018 .020 .018

Peak x Weekend x Season .035 .022 .019 .007 .032 .033 .016 .019 .023 .020

Hour x DoW x Month .341 .179 .242 .217 .212 .158 .093 .165 .269 .162

County .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Note: Cells of this table present in-sample R2 values for regressions of the hourly price of electricity observed in

each node in the wholesale market in a given year (given by the column) and a given set of independent variables

which define a time-of-use price schedule (given by the row).
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Table C.2: Node-Level R2 from Electricity Tariff Regressions, Part 3

Panel E: MISO

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . 0 0 0 0 0 0

Peak . . . . .166 .126 .138 .164 .107 .099

Peak x Weekend . . . . .207 .152 .166 .191 .118 .108

Peak x Season . . . . .171 .131 .143 .186 .129 .106

Peak x Weekend x Season . . . . .214 .157 .173 .214 .141 .116

Hour x DoW x Month . . . . .430 .344 .355 .466 .274 .279

County . . . . .000 .001 .001 .000 .000 .000

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .070 .038 .041 .028 .044 .057 .044 .041 .028 .028

Peak x Weekend .078 .043 .048 .034 .050 .066 .049 .048 .034 .032

Peak x Season .078 .043 .046 .032 .047 .065 .050 .045 .03 .031

Peak x Weekend x Season .086 .048 .053 .039 .053 .075 .056 .053 .036 .035

Hour x DoW x Month .231 .183 .143 .188 .144 .200 .138 .177 .168 .121

County .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

Panel F: SPP

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . . . 0 0 0 0

Peak . . . . . . .056 .097 .037 .066

Peak x Weekend . . . . . . .059 .106 .042 .071

Peak x Season . . . . . . .058 .156 .052 .073

Peak x Weekend x Season . . . . . . .061 .164 .057 .077

Hour x DoW x Month . . . . . . .154 .379 .175 .255

County . . . . . . .000 .000 .000 .000

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 0 0 0 0 0

Peak .102 .084 .092 .016 .023 .021 .022 .016 .019 .031

Peak x Weekend .107 .087 .098 .018 .024 .022 .022 .018 .020 .033

Peak x Season .144 .093 .102 .018 .024 .022 .025 .018 .023 .033

Peak x Weekend x Season .148 .097 .110 .019 .025 .023 .025 .019 .024 .035

Hour x DoW x Month .356 .259 .276 .244 .248 .206 .179 .181 .193 .159

County .001 .000 .000 .000 .000 .000 .000 .000 .000 .000

Note: Cells of this table present in-sample R2 values for regressions of the hourly price of electricity observed in

each node in the wholesale market in a given year (given by the column) and a given set of independent variables

which define a time-of-use price schedule (given by the row).
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Table C.2: Node-Level R2 from Electricity Tariff Regressions, Part 4

Panel G: CAISO

Pricing Scheme 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Flat Tariff . . . . . . . . 0 0

Peak . . . . . . . . .024 .033

Peak x Weekend . . . . . . . . .025 .034

Peak x Season . . . . . . . . .039 .037

Peak x Weekend x Season . . . . . . . . .040 .039

Hour x DoW x Month . . . . . . . . .236 .256

County . . . . . . . . .

Pricing Scheme 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Flat Tariff 0 0 0 0 0 . . . . .

Peak .024 .013 .015 .025 .010 . . . . .

Peak x Weekend .025 .013 .017 .027 .010 . . . . .

Peak x Season .029 .016 .021 .032 .014 . . . . .

Peak x Weekend x Season .030 .016 .023 .034 .015 . . . . .

Hour x DoW x Month .258 .132 .168 .241 .174 . . . . .

County . . . . . . . .

Note: Cells of this table present in-sample R2 values for regressions of the hourly price of electricity observed in

each node in the wholesale market in a given year (given by the column) and a given set of independent variables

which define a time-of-use price schedule (given by the row).
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Figure C.1: Locational Pricing - ISO-NE
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Figure C.2: Locational Pricing - NYISO
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Figure C.3: Locational Pricing - ERCOT
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Figure C.4: Locational Pricing - MISO
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Figure C.5: Locational Pricing - SPP
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