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Abstract

We study the problem of bidding in uniform price auctions, a widely used format in Treasury
auctions, emissions permit auctions, and energy markets. Although uniform price auctions are
non-truthful for bidders with quasilinear utility functions, several empirical findings suggest
that this auction format induces truthful bidding from the bidders. We attribute this difference
in theory and practice to the assumption of the behavioral model of the bidders. In this
pursuit, we study uniform price auctions in a repeated setting from the perspective of a single
value-maximizing buyer who aims to maximize their acquired cumulative value across T rounds,
subject to per-round return-on-investment (RoI) constraints. For a RoI-constrained and value-
maximizing buyer, we study a generalized version of the uniform bidding format, commonly used
in practice, which we term as m-uniform bidding. Under m-uniform bidding, the buyer submits
m pairs of bid and quantity values (bi, qi), demanding qi units at bid bi. To characterize the
optimal m-uniform bid, we introduce and study the notion of universally feasible (UF) bidding
policies, which are robust, meaning that RoI feasibility is obtained regardless of the competitors’
bids. We show that the optimal class of UF bidding policies is essentially a generalization of
truthful bidding policies, which depends only on the valuation curve of the bidder and target RoI,
irrespective of the bids submitted by competitors. To measure the performance of UF bidding
policies against the optimal bidding policy that is not necessarily UF, we introduce a metric
called the Price of Universal Feasibility (PoUF) and establish that PoUF is at most 2, irrespective
of m, and show that the upper bound is tight. We further compare the generalized m-uniform
bidding interface against the classical uniform bidding format under which m = 1, showing the
total value under m-uniform bidding increases at most by a factor of m. Numerical simulations
on semi-synthetic data demonstrate that UF bidding policies perform significantly better than
the derived theoretical bounds, and this, combined with their straightforward characterization,
makes them highly appealing in practice.

1 Introduction

We study uniform price auctions, a widely adopted multi-unit auction format in various domains,
including Treasury auctions, emissions permit auctions, and energy markets. In this auction, the
auctioneer offers K identical units of a commodity to a group of buyers (bidders), each of whom may
demand multiple units. The auctioneer collects bids from the participants, allocates the K units to
the K highest bids, and determines the per-unit auction clearing price, denoted as p, by setting it
equal to the Kth highest bid.

The practical appeal of this auction format often stems from a few key aspects: (i) its equitable
pricing, as the per-unit price remains the same among all successful bids (which is also necessary in
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certain cases since antitrust laws prohibit price discrimination in wholesale markets (Cramton and
Stoft, 2006)), (ii) reduction in market manipulation (Chari and Weber, 1992), and (iii) the perception
of simplified (truthful) bidding strategies (Friedman, 1959; Kahn et al., 2001; Klemperer, 2009).
While the first two assertions hold true, the last claim does not align with the classical quasilinear
utility behavior of bidders under which uniform price auctions are known to be non-truthful. Hence,
bidders are susceptible to demand reduction (Milgrom, 2004) and are more likely to bid strategically.
However, several empirical studies on bidding behaviors in uniform price auctions indicate that the
format induces truthful bidding (Cason and Plott, 1996; Hailu and Thoyer, 2010) and suppresses
demand reduction in the presence of a large number of bidders (Engelbrecht-Wiggans et al., 2006).
These empirical findings suggest that the conventional model of bidders’ behavior is not entirely
applicable in this context.

Traditional mechanism design has primarily focused on the agents whose utilities are quasilinear in
their payments, i.e., an agent’s utility linearly decreases in its payments. However, in several practical
scenarios, agents deviate significantly from such behavior. Such deviations may arise because agents
can have different disutility of the money spent, budget, or return-on-investment (RoI) constraints.
A particular category of non-quasilinear agents is value maximizers. As the name suggests, these
agents aim to maximize the value obtained in auctions subject to performance constraints (such as
RoI), resource constraints (such as budgets), or a combination of both. See Section 1.3 for more
details.

There are several contexts in which it is prudent to consider agents as value maximizers instead
of classical utility maximizers. For example, in microeconomic consumer choice theory, individuals
aim to maximize the value function (in consumer theory, the term utility function is used instead of
value function) subject to budget constraints (Mas-Colell et al., 1995, pp. 50). The concept of value
maximization has also gained considerable attention in recent times, particularly in the realm of
online advertising markets (for related citations, see Deng et al. (2020); Lucier et al. (2023); Balseiro
et al. (2021a); Deng et al. (2023b)). Here, advertisers strive to maximize their total value, such as
the number of clicks, while ensuring the average cost per click remains below a specified threshold.

We aim to leverage the notion of value maximizers to understand bidders’ behavior in uniform
price auctions. Formally, we posit that bidders in a uniform price auction aim to acquire the most
value while adhering to certain (soft) financial constraints. As we will explain in more detail later,
under this model, optimal bidding strategies for bidders possess a straightforward structure that can
be regarded as an extension of truthful bidding, thereby confirming the prevailing perceptions of
this auction format.

Bidding for Value Maximizing Buyers. In this work, as one of our modeling contributions,
we consider a repeated setting where in each round t ∈ [T ], a uniform price auction with K units is
conducted. In this context, we study the bidding problem from the perspective of a single bidder
who aims to maximize their cumulative value over T rounds, subject to per-round RoI constraints,
in which the ratio of per-unit acquired value to per-unit price should exceed a certain constant,
referred to as the “target RoI”.

Practical Bidding Interface: m-Uniform Bidding. With the objective of addressing
practical bidding interfaces, where each bidder submits a limited number of bid-quantity pairs rather
than a separate bid for each unit demanded (as illustrated in Fig. 1 for the New Zealand Emissions
Trading Scheme (NZ ETS)), we study a generalized version of the uniform bidding format (De Keijzer
et al., 2013; Birmpas et al., 2019) which we term as m-uniform bidding. In m-uniform bidding,
denoted as b := ⟨(b1, q1), . . . , (bm, qm)⟩ with b1 > b2 > . . . > bm, bidders bid b1 for the first q1 units,
b2 for the next q2 units, and so on.

Optimal Bidding Policies: Generalizing Truthful Bidding. Under this practical bidding
format, we aim to characterize an optimal class of (value-maximizing) RoI-feasible m-uniform bidding
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Figure 1: Bidding Interface for submitting one bid-quantity pair in NZ ETS Auctions. To submit
m bid-quantity pairs, the bidder needs to repeat the process m times. See more details at https:
//www.etsauctions.govt.nz/public/training/participate.

policies. Within this class, we require the policies to be universally feasible (UF); see Definition 2.
Under a UF policy, RoI feasibility is maintained even under arbitrary competing bids, providing
robustness to the bidding strategy. In sealed bid auctions, where individual bid data is kept private,
such a property is essential for formulating feasible bids with limited information about competitors.
Furthermore, it is also necesssary for designing online learning algorithms, ensuring that bidders can
submit RoI-feasible bids without knowledge of competitors’ bids. See Section 7 for more details.

1.1 Our Contributions

Optimal Universally Feasible Class of Bidding Policies. In Section 4, as our first result, we
show that the optimal class of UF bidding policies, denoted by P⋆

m, can be viewed as a natural
extension of truthful bidding, depending only on the bidder’s valuation vector [v1, v2, . . . , vK ] with
diminishing returns (i.e., v1 ≥ v2 ≥ . . . ≥ vK) and target RoI, γ:

Theorem 1.1 (Informal: Generalized Truthful Bidding). Let b = ⟨(b1, q1), . . . , (bm, qm)⟩ be a m-
uniform bidding policy, and define Qℓ =

∑ℓ
j=1 qj, ℓ ∈ [m], as the maximum number of demanded

units in the first ℓ bid-quantity pairs. The optimal UF class of all k-uniform bidding policies, where
k ∈ [m], denoted by P⋆

m, is given by:

P⋆
m =

{
b = ⟨(b1, q1), . . . , (bk, qk)⟩ : bℓ =

wQℓ

1 + γ
,∀ℓ ∈ [k],∀k ∈ [m]

}
.

Here wℓ =
1
ℓ

∑ℓ
j=1 vj is the average per-unit value of the first ℓ units.

The theorem demonstrates that once the bidder determines the quantities q1, . . . , qm, the best
action is to submit wQ1/(1 + γ) as the first bid, which represents the normalized average per-unit
value of the first Q1 = q1 units. Subsequently, for the second bid, one should submit wQ2/(1 + γ),
which is the normalized average per-unit value of the first Q2 = q1 + q2 units, and so forth. This
theorem, which further emphasizes the nested structure within the optimal UF bidding policies as
illustrated in Figure 2, reinforces the conventional wisdom that bidding in uniform price auctions
should follow a truthful pattern. Specifically, the optimal UF class of bidding policies depends solely
on the valuation vector [v1, . . . , vK ] and γ.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

w3/(1 + γ)

w7/(1 + γ)

w9/(1 + γ)

Figure 2: In the figure, we highlight the nested structure of the bidding policies in P⋆
m. Suppose that

K = 10 and m = 3. Consider the nested bidding policy b =
〈(

w3
1+γ , 3

)
,
(

w7
1+γ , 4

)
,
(

w9
1+γ , 2

)〉
∈ P⋆

m,

where we note that Q1 = 3, Q2 = 3 + 4 = 7 and Q3 = 3 + 4 + 2 = 9. The jth highest bid (i.e., bj) is
the average of the first Qj coordinates of the value vector (scaled by (1 + γ)).

Price of Universal Feasibility (RoI-Robustness). To characterize the optimal bidding
policies, we enforce the desirable property of the bidding policies being UF. This leads to robust
bidding policies that are RoI feasible regardless of the competing bids. However, one might be
curious about the cost incurred when enforcing the bidding policies to be UF. In Section 5, we
quantify this cost by introducing a concept called the price of universal feasibility, which is the
maximum ratio of the value obtained by an optimal bidding policy that is not necessarily UF to the
value of the optimal UF bidding policy. We show that:

Theorem 1.2 (Informal: Price of Universal Feasibility). The price of universal feasibility is upper
bounded by 2, and this bound is tight.

Generalized m-Uniform Bidding versus Classical Uniform Bidding (with m = 1). In
Section 6, we study the impact of generalizing the classical uniform bidding format, where the bidder
submits a single pair of bid and quantity. It is evident that by increasing the number of bid-quantity
pairs, as done in m-uniform bidding, one anticipates an increase in the bidder’s obtained value. In
this work, we characterize this gain and show that, in the best case, the value can exhibit linear
growth with respect to m. The main result of this section is:

Theorem 1.3 (Informal: m-Uniform Bidding versus Classical Uniform Bidding). For any m > 1,
the ratio of the optimal value under the optimal m-uniform bidding to that under the classical uniform
bidding (with m = 1) is upper-bounded by m, and this bound is tight.

Discussion on Learning to Bid. In Section 7, we discuss how the bidder can identify the
optimal (value-maximizing) bidding policy within the class P⋆

m. For a constant m, off-the-shelf
no-regret online learning algorithms can help identify the optimal policy efficiently. However, such
methods can become computationally intractable for a large value of m. To this end, we also propose
an efficient (polynomial time) method for identifying an (1−1/e)-approximate solution by leveraging
the structure of the bidding policies.

Numerical Simulations. In Section 8, we conduct numerical simulations on semi-synthetic data
generated from aggregate statistics of the past EU ETS auctions. We observe that the UF bidding
policies perform significantly better in practice than the theoretical bounds presented in Section 5
and Section 6. These experiments suggest that bidders can obtain near-optimal performance (in
terms of obtained value) while adhering to simple UF bidding strategies in uniform price auctions.

1.2 Key Technical Challenges

The core challenge in our work stems from the interdependence of the values obtained by the
constituent bid-quantity pairs in a m-uniform bidding policy. Recall that a m-uniform bidding
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policy consists of m bid-quantity pairs of the form (bi, qi). In the considered setting, the values
obtained by the individual bid-quantity pairs in the bidding policy are interdependent; i.e., even for
a fixed competing bid profile, the value obtained by any bid-quantity pair (bj , qj) depends on the
remaining m − 1 bid-quantity pairs in the policy. As a key technical contribution (see Lemma 3
and a stronger version in Lemma 8), we show that the value obtained by a m-uniform RoI feasible
bid (see definition in Section 2.1) can be expressed as the maximum of the value obtained by m
independent 1-uniform feasible bids (b′j , q

′
j). This result decouples the dependency equipping us to

approximate the value obtained by the optimal m-uniform UF policy using 1-uniform UF policies
as components; which is crucial for establishing the upper bounds in Section 5 and Section 6. In
Section 7, we utilize it to learn an efficient approximate optimal solution in the online setting.

The second key challenge lies in obtaining matching lower bounds for Theorem 1.2 and Theorem 1.3
(formally stated as Theorem 5.2 and Theorem 6.1 respectively). Formally, to demonstrate that the
ratio obtained for a problem instance is within an interval of a (small) δ from the upper bound, we
need to consider a problem instance with T = Θ(1/δm) auctions, each selling K = Θ(1/δm) units.
As the number of auctions and the number of bidding policies become exponentially large in m,
the construction of the problem instance and its analysis are quite non-trivial. The construction of
the problem instance crucially leverages the result describing the value obtained by 1-uniform bids
when compared with the optimal bidding policy (see Lemma 9 for the result and, Appendix B.2 and
Appendix B.3 for the construction of the problem instances).

1.3 Related Work

Value Maximizers and RoI Constraints. The concept of agents as value maximizers within
financial constraints is a well-established notion in microeconomic theory (Mas-Colell et al., 1995, pp.
50). In mechanism design literature, one of the earliest explorations of value-maximizing agents was
conducted by Wilkens et al. (2016). Their work primarily delved into the single-parameter setting,
characterizing truthful auctions for value maximizers. Similarly, Fadaei and Bichler (2016) and
Lu et al. (2023) studied truthful (approximate) revenue-maximizing mechanisms in combinatorial
markets tailored for such agents.

In recent years, there has been a surge of interest in RoI-constrained value maximizers, particularly
in the realms of autobidding and online advertising (Aggarwal et al., 2019; Balseiro et al., 2021a;
Deng et al., 2021; Balseiro et al., 2021b, 2022; Deng et al., 2023a,b; Golrezaei et al., 2023; Liaw et al.,
2023). See Golrezaei et al. (2021c) as one of the earliest studies on auction design for RoI-constrained
buyers, validating such soft financial constraints using data from online advertising auctions.

Our contribution to this body of research lies in the study of value-maximizing buyers in uniform
price auctions under RoI constraints. We demonstrate that these buyers can effectively employ
nested bidding strategies that depend only on their valuation vector.

Combinatorial Auctions. Our research contributes to the extensive body of literature
concerning combinatorial auctions, as evidenced by works by De Vries and Vohra (2003); Pekeč and
Rothkopf (2003); Blumrosen and Nisan (2007); Palacios-Huerta et al. (2022). In this work, we focus
on auctions for identical goods, which find widespread application in various practical scenarios,
including Treasury auctions (Garbade and Ingber, 2005; Binmore and Swierzbinski, 2000; Nyborg
et al., 2002), procurement auctions (Cramton and Ausubel, 2006), wholesale electricity markets
(Tierney et al., 2008; Fabra et al., 2006), and emissions permit auctions (Goulder and Schein, 2013;
Schmalensee and Stavins, 2017; Goldner et al., 2020). Several works have focused on designing
truthful multi-unit auctions (in a utility-maximizing sense) that achieve a good approximation
of social welfare and/or revenue (Dobzinski and Nisan, 2015; Dobzinski and Leme, 2014; Borgs
et al., 2005). Our work contributes to this literature by studying uniform price auctions from the
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perspective of bidding algorithms for value-maximizing buyers.
Bidding in Auctions and Auction Parameter Optimization. Traditionally, the prob-

lems of bidding in auctions and refining auction parameters have been studied under Bayesian
settings (Myerson, 1981; Hartline and Roughgarden, 2009; Beyhaghi et al., 2021; Riley and Samuel-
son, 1981). However, any bidder rarely has an exact characterization of the private valuations (or
other parameters) of its competitors (Wilson, 1985). Consequently, in recent years, there has been a
growing interest in studying these problems under data-driven settings, for both offline and online
contexts. Examples include Sandholm (2003) for automated mechanism design using valuation
samples, Roughgarden and Wang (2019); Derakhshan et al. (2022, 2021); Golrezaei et al. (2021a) for
using offline or online data to set reserve prices in VCG auctions, Balseiro et al. (2019) for online
problems in bidding in first-price auctions, and Golrezaei et al. (2021b) for optimizing boost values
of boosted second-price auctions using historical auction bids.

In this line of work, the closest to our work is by Brânzei et al. (2023a); Galgana and Golrezaei
(2023). They designed the optimal bidding algorithms for agents with quasilinear utilities in multi-
unit uniform price and pay-as-bid auctions on the offline data and leveraged these offline algorithms
to obtain their online counterparts with no-regret property. In our work, as one of our focus, we also
design an optimal class of bidding policies in multi-unit uniform price auctions. However, as the
main difference, we focus on value-maximizing RoI-constrained buyers.

2 Model

We consider uniform price multi-unit auctions for identical items. There are n buyers (bidders)
indexed by i ∈ [n], and K identical items. Each bidder i has a fixed private value for each of the
items, denoted by vi ∈ RK

≥0. The valuations are assumed to be diminishing across the items, i.e.,
vi,1 ≥ vi,2 ≥ · · · ≥ vi,K . The maximum total demand, denoted by M ∈ [K], is then defined as
min{j ∈ [K − 1] : vj+1 = 0}. If such an index does not exist, we set M as K. For each bidder i with
valuation vector vi = [vi,1, vi,2, . . . , vi,K ], we define an average cumulative valuation vector as follows

wi = [wi,1, wi,2, . . . , wi,K ], where wi,j =
1

j

∑
ℓ≤j

vi,ℓ, ∀j ∈ [K] . (1)

As vi,1 ≥ vi,2 ≥ · · · ≥ vi,K , we also have wi,1 ≥ wi,2 ≥ · · · ≥ wi,K .

2.1 Uniform Price Auctions and Bidders’ Behaviour

Auction Format. Each bidder i submits a bid vector b ∈ RM
≥0. The bids submitted by other

bidders are denoted as β−i, and we define β := (b,β−i).

• Allocation Rule. The auctioneer collects the bids from all the bidders, sorts the bids in non-
increasing order, and allocates items to the bidders with the top K bids. That is, if bidder i has j
bids in the top K positions, they are allocated j items. We assume that the bidders submit bids
from a continuous space; hence, there are no ties almost surely.

• Payment Rule. The auctioneer follows the last-accepted-bid (LAB) payment rule (bidders pay the
Kth highest bid per unit). An alternative pricing rule is the first-rejected-bid (FRB) payment
rule (agents pay the (K + 1)th highest bid per unit). The per-unit price is also referred to as the
clearing price. In this work, we primarily focus on the LAB payment rule as it is more common in
practice and has more appealing properties (see Brânzei et al. (2023a)), but the results can be
extended for the FRB payment rule with careful modifications.
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For a bid profile let β, xi(β) and p(β) denote the number of units allocated to bidder i and the
clearing price respectively. So, the total value obtained, Vi(β), and total payments paid, Pi(β), is:

Vi(β) =
∑

j≤xi(β)

vi,j and Pi(β) = p(β) · xi(β) . (2)

Repeated Setting. In practice, several multi-unit auctions, such as emission permit auctions,
happen in a repeated fashion. Repeated auctions allow bidders to learn from the actions of all
participants in previous rounds and improve their bidding policy successively. In this work, we
primarily focus on this repeated setting. Formally, the auction described in the previous paragraph
takes place sequentially in T rounds indexed by t ∈ [T ]. Let βt

−i denote the bids submitted by
all bidders except bidder i in round t and β

−(j)
−i,t be the jth smallest winning bid in the absence of

bids from bidder i for round t. The bid history B−i = [β1
−i, . . . ,β

T
−i] contains bids submitted by

all bidders except bidder i for the past T auctions. In round t, suppose the bidder i submits a bid
bt and the bid profile is βt := (bt;βt

−i). Let xi(β
t) and p(βt) be the number of units allocated

to bidder i and the clearing price, respectively, in round t. Hence, the total value obtained is
Vi(β

t) =
∑

j≤xi(βt) vi,j , and total payment is Pi(β
t) = p(βt) · xi(βt).

Value Maximizing Bidders. The objective of the bidders is to maximize their individual
total value while adhering to a constraint that ensures the total value obtained is at least a constant
multiple of the payments made to acquire those items. This constraint can be equivalently expressed
as a return-on-investment (RoI) constraint. We assume that the target RoI (i.e., the multiplier),
denoted as γ ≥ 0, is both private and fixed for each bidder i. Formally, to derive an optimal bidding
policy, a value-maximizing bidder solves Problem (VM).

V ∗(B−i) = max
b∈RM

≥0

T∑
t=1

Vi(b;β
t
−i) (VM)

such that Vi(b;β
t
−i) ≥ (1 + γ)Pi(b;β

t
−i), ∀t ∈ [T ] .

Here, B−i = [βt
−i]t∈[T ]. If in round t, the RoI constraint is violated, we define Vi(b;β

t
−i) = −∞. We

say a bid vector is feasible if the RoI constraints hold true for each round.
In problem (VM), we enforce the RoI constraints for each auction individually rather than as

an aggregate constraint over T rounds, as is typically assumed in online ad auctions (Deng et al.,
2021, 2022; Feng et al., 2023). Lucier et al. (2023) consider constraints similar to us, i.e., the value
obtained is at least a constant times the payment in each auction for autobidders which they term as
marginal RoI (or value) constraint. In this work, we drop the prefix ‘marginal’ for the sake of brevity.
Trivially, if the constraints for (VM) hold true for each round, they also hold true in aggregate. The
rationale behind imposing constraints for each round is that, unlike ad auctions that often occur
simultaneously and frequently, multi-unit auctions in the context of Treasury and emission permit
auctions typically take place sequentially over much longer time horizons. It is therefore intuitive
that bidders aim to maintain profitability in each auction, rather than waiting for a potentially
indefinite period to cover their losses1.

We conclude this section by noting the resemblance between the offline optimization problem in
(VM) and those studied in Roughgarden and Wang (2019), Derakhshan et al. (2022), Galgana and
Golrezaei (2023), and Brânzei et al. (2023a). Roughgarden and Wang (2019) focus on optimizing

1Although EU ETS emission permit auctions are scheduled to occur regularly, regulations stipulate that an auction
may be canceled if the bidders’ demand falls short of the supply of permits or if the auction clearing price does not
meet the reserve prices (Regulations, 2019). Hence, the bidders are more likely to ensure feasibility in each round.
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reserve prices in VCG auctions with access to historical bid prices, while Brânzei et al. (2023a) and
Galgana and Golrezaei (2023) derive optimal bidding policies for quasilinear bidders in multi-unit
auctions with similar information available. Both studies demonstrate that efficiently solving the
problem and gaining insights into its structure in the offline setting is instrumental in designing
no-regret online learning algorithms. For a more in-depth exploration of leveraging offline algorithms
to create no-regret learning algorithms, we refer readers to Roughgarden and Wang (2019); Niazadeh
et al. (2022); Brânzei et al. (2023a).

2.2 Bidding in Uniform Price Auctions

Most of the research literature on multi-unit auctions assumes that bidders follow the standard
bidding format, wherein they submit a vector of individual bids, with each bid corresponding to
one unit (Brânzei et al., 2023a; Babaioff et al., 2023; Birmpas et al., 2019; Galgana and Golrezaei,
2023). In contrast, several works (e.g., (De Keijzer et al., 2013; Birmpas et al., 2019)) study uniform
bidding, bidders submit bids in the form of (b, q) pairs, where a bidder bids b for the first q items
and zero for the remaining units. For a bid-quantity pair, (b, q), we equivalently state that the bidder
has a demand q at bid b. We study a natural generalization of the uniform bidding policy, which we
term as m-uniform bidding, for any integer m ≥ 1.

Definition 1 (m-Uniform Bidding). For a fixed m ∈ Z>0,

• a m-uniform bid is characterized by m bid-quantity pairs, denoted as b := ⟨(b1, q1), . . . , (bm, qm)⟩,
where, without loss of generality, we assume that b1 > b2 > · · · > bm > 0 and qj > 0, j ∈ [m].

• We introduce the notation b[1 : ℓ] = ⟨(b1, q1), . . . , (bℓ, qℓ)⟩, for all ℓ < m, to represent the first ℓ
bid-quantity pairs within a m-uniform bid b = ⟨(b1, q1), . . . , (bm, qm)⟩.

• We further define Qj =
∑j

ℓ=1 qℓ for all j ∈ [m] as the total quantity demanded in the first j
bid-quantity pairs, with Q0 = 0, where we assume, without loss of generality, that Qm ≤ M .2

Note that any set of m bid-quantity pairs, such as b = ⟨(b1, q1), . . . , (bm, qm)⟩, can be equivalently
expressed as a vector. Therefore, we use a notation similar to that employed for bid vectors to
represent sets of bid-quantity pairs.

The m-uniform bidding format can be viewed as a special case of the bidding language for
product-mix auctions when only a single variety of goods is present (Klemperer, 2009). This format
is also described as the piece-wise linear bidding language in Nisan (2015). If m = M , the bidding
format is equivalent to standard bidding. However, in practice, bidders often submit only a few
bid-quantity pairs. For instance, in the EU ETS emission permit auctions for 2023, bidders submitted
an average of approximately 4.35 bid-quantity pairs per auction (EEX, 2023).

In fact, our generalization is motivated by practical settings, such as the aforementioned EU
ETS emission auctions and the Treasury auctions, where the number of individual units K can be
quite large. Submitting a bid vector listing bid values for each individual unit becomes prohibitive
in such cases. Similarly, using a single bid, as done in uniform bidding (which corresponds to a
1-uniform bidding policy), to represent the entire valuation curve can be misleading and restrictive,
particularly if the curve exhibits sharp decay across the items. Therefore, the m-uniform bidding
policies offer a flexible and computationally efficient approach for submitting bids, a method widely
utilized in practice (see an example in Fig. 1).

We illustrate how the auction works in the considered setting in Example 1.
2Suppose the bidder bids for, and wins more than M units. There is no additional value being allocated over M

units, but the total payment increases (assuming the clearing price is positive), potentially violating the RoI constraint.
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Example 1. Consider a single auction. There are n = 2 bidders and K = 5 identical items. The
valuations are: v1 = [6, 4, 3, 1, 1] and v2 = [5, 3, 1, 1, 0]. Both the bidders are value maximizers with
target RoI, γ1 = γ2 = 0. Suppose m = 2 and the bids submitted by the bidders are b1 = ⟨(5, 2), (3, 3)⟩
and b2 = ⟨(4, 2), (2, 2)⟩. The bids in sorted order are: [5, 5, 4, 4, 3, 3, 3, 2, 2]. So, bidder 1 is allocated
3 items, and bidder 2 gets 2 items. The market clearing price is 3. Hence, V1(β) = 6 + 4 + 3 =
13, V2(β) = 5 + 3 = 8, P1(β) = 3 · 3 = 9, and P2(β) = 2 · 3 = 6. Note that the RoI constraints for
both the bidders are satisfied.

2.3 Universally Feasible Bidding Policies

Our objective in this work is to design an optimal bidding strategy, maximizing value from the
perspective of a single bidder denoted as i. This bidding strategy should universally adhere to RoI
feasibility, as defined below:

Definition 2 (Universally Feasible). A m-uniform bidding policy, b = ⟨(b1, q1), . . . , (bm, qm)⟩, is
considered universally feasible (UF) if it remains feasible for all possible bid histories, B−i = [βt

−i]t∈[T ].
In other words, for any B−i, we have

Vi(b;β
t
−i) ≥ (1 + γ)Pi(b;β

t
−i), ∀t ∈ [T ] .

The collection of ALL UF k-uniform bidding policies, where k ∈ [m], is denoted as Pm. Note that
the set Pm is downward closed in the sense that for any k ≤ m, Pk ⊆ Pm.

Alternatively put, UF bidding policies ensure that the total value obtained in any single auction is
at least a constant (i.e., (1 + γ) ≥ 1) times the total payments for the auction. From the perspective
of the bidders, this property is mild, natural and necessary. This property is particularly appealing
because under UF bidding strategies, irrespective of the bids submitted by competitors, the bidder
consistently maintains RoI feasibility. There is also an inherent necessity for a UF policy class
because most sealed bid auctions do not disclose the individual bids ex post to protect sensitive
financial information and prevent bidding malpractices. Hence, bidders need to formulate feasible
bidding policies under limited information about the bids submitted by others. In addition, UF
bidding policies are necessary to design online learning algorithms for bidding, where the bidder
needs to submit a RoI feasible bid without having access to the competitors’ bids (see details in
Section 7). This property is essential because a causal, optimal, but non-UF bidding policy may be
infeasible in future rounds as highlighted in Example 2.

Example 2. Let K = 4, γ = 0, M = 3, m = 1, and v = [9, 5, 1], yielding an average cumulative
valuation vector w = [9, 7, 5]. This leads to possible UF bidding policies of (9, 1), (7, 2), and (5, 3).
Consider an online setting, i.e., the bidder has no information about any future competing bids. If the
competing bids in the first two rounds are β1

−i = [4, 4, 4, 4] and β2
−i = [7, 6.5, 5.5, 5.5], the total values

obtained by the UF bidding policies are 18, 28, and 15 respectively. Now, consider a non-UF bidding
policy: (6, 3), which is RoI feasible (for t = 1 and 2) and yields a value of 29 in the first two auctions,
surpassing all UF policies. However, if the bidder bids (6, 3) for t = 3 when β3

−i = [7, 5.5, 5.5, 5.5],
the total value obtained is 15 but the total payment is 18, violating RoI feasibility. This example also
illustrates that a non-UF policy can not be learnt in a natural (online) setting.

Having established the concept of UF bidding policies, we now focus on developing optimal UF
bidding policies for any m ∈ Z>0. These policies solve the following problem:

V ∗
m(B−i) = max

T∑
t=1

Vi(b;β
t
−i) (VM-unim)
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such that b = ⟨(b1, q1), . . . , (bk, qk)⟩ ∈ Pm and k ∈ [m] . (3)

Here, with a slight abuse of notation, we denote V ∗
m(B−i) as the maximum achievable value when

considering UF bidding policies in Pm, under the bid history, B−i. Observe that the optimal solution
to problem (VM-unim) is RoI feasible as b ∈ Pm. Let b∗

m(B−i) be a UF bidding policy in Pm that
achieves the maximum value. We are now equipped to define an optimal UF class.

Definition 3 (Optimal Universally Feasible Class). For any m ∈ Z>0, we define an optimal UF
class and denote it by P⋆

m ⊆ Pm. The optimal class P⋆
m has the following properties:

Property 1. For any B−i of arbitrary size, we have b∗
m(B−i) ∈ P⋆

m . If there are multiple
b∗
m(B−i), we require that at least one of such bidding policies is in P⋆

m.
Property 2. The optimal class P⋆

m is minimal in the downward closed manner, that is for any
k-uniform bid b ∈ P⋆

m where k ∈ [m], there exists a bid history, B−i = [βt
−i]t∈[T ], for which

• b is optimal, i.e.,
∑T

t=1 Vi(b;β
t
−i) ≥

∑T
t=1 Vi(b

′;βt
−i), ∀ b′ ∈ P⋆

m ;

• the value obtained under b and B−i is strictly larger than that under ANY k′-uniform bid
b′ ∈ P⋆

m and B−i where k′ ≤ k. That is,
∑T

t=1 Vi(b;β
t
−i) >

∑T
t=1 Vi(b

′;βt
−i), ∀ b′ ∈ P⋆

k \{b} .

In other words, Property 2 states that the k-uniform bid b is the unique optimal bidding policy
for the bid history B−i in the restricted class P⋆

k ⊆ P⋆
m. While Property 1 ensures that the class

P⋆
m contains the optimal UF bidding policy for any bid history, Property 2 implies that P⋆

m is the
minimal class satisfying this property, i.e., removing policies from P⋆

m may violate Property 1.

2.4 The Price of Universal Feasibility

While being UF is essential, such a requirement can come at a cost. To quantify this cost, denoted as
the ‘Price of Universal Feasibility’ or ‘PoUF’ for short, we consider the following strong benchmark.
Under the benchmark, similar to Problem (VM-unim), we aim to find a k-uniform bidding policy b,
where k ∈ [m], that maximizes the total value for a given bid history B−i. However, unlike Problem
(VM-unim), we do not require b to be UF; that is, we do not enforce b ∈ Pm. Instead, we only
require b to be RoI feasible under the bid history B−i.

Formally, our benchmark, denoted by V OPT
m (B−i), is given as

V OPT
m (B−i) = max

b

T∑
t=1

Vi(b;β
t
−i) (VM-optm)

such that Vi(b;β
t
−i) ≥ (1 + γ)Pi(b;β

t
−i), ∀t ∈ [T ]

and b = ⟨(b1, q1), . . . , (bk, qk)⟩ for some k ∈ [m] .

Let the optimal bidding policy be denoted as bOPT
m (B−i). We emphasize that bOPT

m (B−i) is not
necessarily feasible for any other bid history except B−i.

The Price of Universal Feasibility is then defined as

PoUFm := max
B−i

V OPT
m (B−i)

V ∗
m(B−i)

. (PoUF)

This metric is analogous to established metrics in mechanism design, such as the price of
anarchy (Koutsoupias and Papadimitriou, 1999), the price of stability (Anshelevich et al., 2008) to
measure the inefficiency of equilibrium, and the price of fairness (Bertsimas et al., 2011) to measure
the inefficiency due to fair division in resource allocation. Trivially, 1 ≤ PoUFm < ∞3.

3Suppose for some B−i, V OPT
m (B−i) = 0. By definition, V ∗

m(B−i) = 0. In this case, we define
V OPT
m (B−i)
V ∗
m(B−i)

= 0
0
= 1.
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2.5 Increasing the Number of Bid Quantity Pairs, m

In Section 2.2, we introduced m-uniform bidding and justified its preference over the (1-)uniform
bidding format. However, increasing the number of bid quantity pairs m can increase the complexity
of bidding (see our discussion in Section 7). Considering this, we aim to characterize the maximum
benefit of increasing the number of bid quantity pairs m, compared to the base case of m = 1.

To do so, we introduce the following two metrics

Ratio-unim := max
B−i

V ∗
m(B−i)

V ∗
1 (B−i)

, Ratio-optm := max
B−i

V OPT
m (B−i)

V OPT
1 (B−i)

. (4)

The first metric measures, in the best case, how much more value bidder i obtains by submitting
an optimal UF k-uniform bid where k ∈ [m], compared with that an optimal UF 1-uniform bid.
The second metric does a similar comparison without restricting the bids to be UF. By definition,
1 ≤ Ratio-unim,Ratio-optm < ∞.

3 Characterizing Universally Feasible Policy Classes

In this section, for any m, we characterize the universally feasible (UF) policy class Pm per Definition 2.
This characterization will then be used to establish the optimal UF policy class P⋆

m ⊆ Pm.
We start by generalizing the idea of underbidding (overbidding) in the m-uniform bidding setting

for multi-unit auctions. Recall that in single-item auctions, if the private value of the item by a
bidder is v, then a bid b is said to be an underbid (overbid) if b < v (b > v).

Definition 4 (m-uniform non-truthful bids). Let w and γ denote the average cumulative valuation
vector and the target RoI respectively. A m-uniform bid b = ⟨(b1, q1), . . . , (bm, qm)⟩

• is an underbid if

bj ≤
wQj

1 + γ
, ∀j ∈ [m] and ∃ℓ ∈ [m] such that bℓ <

wQℓ

1 + γ
.

• is an overbid if

∃ℓ ∈ [m] such that bℓ >
wQℓ

1 + γ
.

In other words, assuming that γ = 0, we define b = ⟨(b1, q1), . . . , (bm, qm)⟩ as an underbid if, for
all j ∈ [m], the bid bj is less than or equal to the average of the first Qj coordinates of the value
vector, denoted as wQj , and there exists ℓ ∈ [m] where the inequality is strict. Here, Qj =

∑
ℓ≤j qℓ

represents the maximum number of demanded units in the first j bids. Recall that for the value
vector [v1, v2, . . . , vK ], wj =

1
j

∑
ℓ≤j vℓ represents the average of the first j coordinates of v. Similarly,

the bid is an overbid if there exists some ℓ ∈ [m] such that bℓ is strictly greater than the average
of the first Qℓ coordinates of the value vector. Having defined the overbidding and underbidding
notions, we are ready to present the main result of this section:

Theorem 3.1. For any m, no overbidding is allowed in Pm. That is, the collection of all UF
k-uniform bidding policies, where k ∈ [m], per Definition 2 is given by

Pm =
{
b = ⟨(b1, q1), . . . , (bk, qk)⟩ : bℓ ≤

wQℓ

1 + γ
,∀ℓ ∈ [k],∀k ∈ [m]

}
.

The detailed proof is deferred to Appendix A.1. As a high-level idea, we show that overbidding
is not a UF bidding policy; hence, Pm ⊆ PNOB

m , the set of no-overbidding (NOB) policies. We
complete the proof by stating that every NOB policy is also UF.
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Figure 3: The solid line represents the average cumulative valuation curve and the dotted line
represents the valuation curve. The figure in the left (resp. right) illustrates underbidding (resp.
overbidding) for a 2-uniform bidding policy. The blue circles highlight the bids that are non-truthful
in this setting. Note that the notions of underbidding and overbidding in Definition 4 are defined with
respect to the average cumulative valuation curve and not the valuation curve. The valuation (and
average cumulative valuation) curve are linear in the figure for illustrative purposes only.

4 Characterizing Optimal Universally Feasible Policy Classes

Now that we have established the class of UF bidding policies, Pm, we proceed to design the optimal
subclass as described in Definition 3. The following theorem is the main result of this section. This
theorem shows that, in contrast to the UF class Pm, strategies involving underbidding are suboptimal
and hence are eliminated from the set P⋆

m.

Theorem 4.1 (The Optimal Universally Feasible Class). Let Pm ⊆ Pm be the class of bidding
policies obtained by removing the underbidding policies,

Pm =
{
b = ⟨(b1, q1), . . . , (bk, qk)⟩ : bℓ =

wQℓ

1 + γ
, ∀ℓ ∈ [k], ∀k ∈ [m]

}
.

Then, the optimal class of UF k-uniform bidding policies, where k ∈ [m], P⋆
m = Pm.

Theorem 4.1 shows that the policies in the optimal UF class have a nested structure illustrated
in Fig. 2 in the sense that the jth highest bid (i.e., bj) is the average of the first Qj coordinates of the
value vector (scaled by (1+ γ)). We refer to the bid in the form of b =

〈(
wQ1
1+γ , q1

)
, . . . ,

(
wQm
1+γ , qm

)〉
as a “nested” m-uniform bidding policy.

Another implication of Theorem 4.1 is that fixing Qj ’s uniquely determines the bidding policy. By
definition, for policies in the class P⋆

m, fixing Qj exactly determines bj = wQj/(1 + γ). Consequently,
the k-uniform bidding policy, where k ∈ [m], becomes uniquely identified. As we will elaborate in
later sections (refer to Section 7 for detailed explanations), this fact plays a crucial role in learning
the optimal UF bidding policy within P⋆

m on the fly as more data becomes available over time.

4.1 Proof of Theorem 4.1: The Optimal Universally Feasible Class

Recall from Definition 3 that the optimal UF class has two essential properties:
Property 1. It contains the optimal UF bidding policy for any B−i, and
Property 2. It is minimal in a downward closed sense to satisfy Property 1 (see Definition 3).
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Showing Property 1. We begin by establishing a general result regarding the monotonocity
of feasible bid vectors (not necessarily m-uniform bids) for value maximizing agents. As the result
holds for any bid vector, it is also true for m-uniform bids.

Lemma 1 (Monotonocity of feasible bids). Consider two sorted bid vectors: b = [b1, b2, . . . , bk]
and b′ = [b′1, b

′
2, . . . , b

′
k] such that bj ≥ b′j , ∀j ∈ [k]. Suppose b is RoI feasible for some fixed

B−i = [βt
−i]t∈[T ]. Then, for the given B−i, the value obtained by b is more than that by b′, that is,∑T

t=1 Vi(b;β
t
−i) ≥

∑T
t=1 Vi(b

′;βt
−i).

The proof of Lemma 1 is presented in Appendix A.2. We now leverage Lemma 1 to show Property
1. To do so, we will argue that underbidding is a weakly dominated bidding strategy, i.e., for every
underbid b (per Definition 4), there exists a non-underbidding (NUB) policy b′ ∈ Pm such that
for all bid histories, B−i = [βt

−i]t∈[T ],
∑T

t=1 Vi(b;β
t
−i) ≤

∑T
t=1 Vi(b

′;βt
−i). To show this, suppose

b = ⟨(b1, q1), . . . , (bk, qk)⟩, where k ∈ [m], is an underbid. Consider b′ = ⟨(b′1, q′1), . . . , (b′k, q′k)⟩ such
that q′j = qj and b′j =

wQj

1+γ ,∀j ∈ [k]. By Theorem 3.1, we establish that b,b′ ∈ Pm. Invoking
Lemma 1 completes the proof which shows that underbidding is a dominated strategy, and hence
such policies can be removed from Pm to obtain the class of nested m-uniform policies, Pm.

Showing Property 2. We will show that Pm satisfies Property 2 implying Pm = P⋆
m. We

claim that Pm satisfies the conditions (also described in Definition 3) and thus complete the proof.
For any k-uniform bid b ∈ P⋆

m, where k ∈ [m], there exists a bid history, B−i = [βt
−i]t∈[T ], for

which

• b is optimal, i.e.,
∑T

t=1 Vi(b;β
t
−i) ≥

∑T
t=1 Vi(b

′;βt
−i),∀ b′ ∈ P⋆

m,

• the value obtained under b and B−i is strictly larger than that under ANY k′-uniform bid
b′ ∈ P⋆

m and B−i where k′ ≤ k. That is,
∑T

t=1 Vi(b;β
t
−i) >

∑T
t=1 Vi(b

′;βt
−i),∀ b′ ∈ P⋆

k \{b} .

Our construction. To show the claim, fix any b ∈ Pm. Let b =
〈(wQ1

1+γ , q1
)
, . . . ,

(wQk
1+γ , qk

)〉
.

We construct the bid history, B−i(b) consisting of T = k rounds. In round t ∈ [k], for a sufficiently
small ϵ > 0 and C ≫ w1,

β
−(j)
−i,t (b) =

{
wQt+1

1+γ + ϵ, if 1 ≤ j ≤ Qt

C, if Qt < j ≤ K
, ∀t ∈ [k], Qt < M . (5)

If Qt = M , set β
−(j)
−i,t (b) = ϵ,∀j ∈ [K]. We illustrate an example of such a bid history in Table 1.

Note that for any (universally) feasible bidding policy, the maximum number of units that the
bidder can get allocated in round t is Qt. We claim that b =

〈(wQ1
1+γ , q1

)
, . . . ,

(wQk
1+γ , qk

)〉
is an optimal

bidding policy for B−i(b).
To see this, consider any round t. In this round, exactly Qt bids, namely b[1 : t], are higher than

the competing bids in B−i(b). As b ∈ Pm, it is UF. Hence, bidding b =
〈(wQ1

1+γ , q1
)
, . . . ,

(wQk
1+γ , qk

)〉
wins Qt units in round t,∀t ∈ [k]. So, it is an optimal bidding policy.

The proof of the second property is then completed by the following lemma.

Lemma 2. For any nested k-uniform bidding policy b ∈ Pm, let B−i(b) be the constructed com-
peting bids, presented in Eq. (5), then the value obtained under b and B−i(b) = [βt

−i(b)]t∈[T ] is
strictly larger than that under ANY k′-uniform bid b′ ∈ Pm and B−i(b) where k′ ≤ k. That is,∑T

t=1 Vi(b;β
t
−i(b)) >

∑T
t=1 Vi(b

′;βt
−i(b)), ∀ b′ ∈ Pk \ {b} .

We present the proof of Lemma 2 in Appendix A.3. The proof primarily uses the result from
Lemma 3 which warrants an in-depth discussion and hence presented separately.
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Table 1: Suppose M = 6,m = 3, γ = 0 and the average cumulative vector is w = [w1, w2, . . . , w6].
Consider the 3-uniform bid: b = ⟨(w2, 2), (w3, 1), (w5, 2)⟩. So, Q1 = 2, Q2 = 3 and Q3 = 5. The
constructed bid history B−i(b), presented in Eq. (5), is depicted below, where C ≫ w1 and ϵ > 0 is
a sufficiently small real number.

t = 1 t = 2 t = 3

C C C
C C w6 + ϵ
C C w6 + ϵ
C w4 + ϵ w6 + ϵ

w3 + ϵ w4 + ϵ w6 + ϵ
w3 + ϵ w4 + ϵ w6 + ϵ

5 Price of Universal Feasibility

In this section, we quantify the inefficiency caused by restricting the bidding policies to the optimal
UF class using the price of universal feasibility (PoUF) metric. Recall from Section 2.4 that PoUFm

is the ratio of the value obtained by an optimal feasible bidding policy for a given B−i and the value
obtained by an optimal universally feasible bidding policy in the worst case scenario.

We warm up by considering the case when the valuations are homogeneous (i.e., vi = v for all
i ∈ [M ]). The assumption that bidders have equal valuations for items in multi-unit auctions is
standard in several papers in literature (Brânzei et al., 2023b; Dobzinski et al., 2012; Borgs et al.,
2005). This setting is alternatively termed as linear multi-unit auctions as the total value obtained
is a linear function of the number of units obtained (Brânzei et al., 2023b).

Theorem 5.1. If the bidders have homogeneous valuations for the units (i.e., vi = v,∀i ∈ [M ]),
then, ∀m ∈ Z>0, PoUFm = 1. In other words, enforcing the bidding policies to be UF is lossless.

The proof is presented in Appendix A.4. If γ = 0, Theorem 5.1 implies that in the homogeneous
valuations setting, bidding truthfully is a weakly dominated strategy for value maximizing bidders,
reinforcing the notion of simplified bidding strategies in uniform price auctions in this case.

We now present the main result of this section:

Theorem 5.2 (Price of Universal Feasibility). For any m ∈ Z>0, PoUFm = maxB−i

V OPT
m (B−i)
V ∗
m(B−i)

≤
2− θ, where θ ∈ (0, 1] and the bound is tight. In other words,

• for all possible bid histories B−i = [βt
−i]t∈[T ], there exists a nested k-uniform bidding policy

b ∈ P⋆
m, where k ∈ [m], which attains at least half of the total value obtained by the optimal

bidding policy which is not necessarily UF. That is,
∑T

t=1 Vi(b;β
t
−i(b)) ≥ 1/2 · V OPT

m (B−i).

• Furthermore, there exists a bid history B−i = [βt
−i]t∈[T ] and valuation curve (equivalently

P⋆
m) such that, for the optimal policy in P⋆

m, the bound is tight. That is, for any choice of
δ ∈ (0, 1/2],

∑T
t=1 Vi(b;β

t
−i(b)) ≤ 1/(2− δ) · V OPT

m (B−i).

Theorem 5.2 implies that restricting the bidding policy to have the appealing property of being
UF has a bounded price and does not lead to an arbitrary loss in the obtained value. Additionally,
the factor of two loss under UF policies represents a worst-case scenario, and the setting in which it is
attained is quite non-trivial (see Appendix B.2). Thus, we expect the UF policies to be near-optimal
in practice, which is also corroborated by the numerical simulations in Section 8.
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5.1 Proof of Theorem 5.2: Price of Universal Feasibility

Here, we present only the proof of the upper bound on PoUFm. The tightness of the bound is
discussed in Appendix B.1 (for m = 1) and Appendix B.2 (for m ≥ 2).

We begin by defining the following metric for any bid history, B−i = [βt
−i]t∈[T ],

PoUFm(B−i) :=
V OPT
m (B−i)

V ∗
m(B−i)

=
V OPT
m (B−i)

maxb∈P⋆
m

∑T
t=1 Vi(b,βt

−i)
. (6)

By definition, PoUFm = maxB−i PoUFm(B−i). We first establish upper bounds on PoUFm(B−i)
and then maximizing over B−i, we complete the proof.

Without loss of generality, let bOPT
m (B−i) = ⟨(b∗1, q∗1), . . . , (b∗m, q∗m)⟩ be the optimal solution

to Problem (VM-optm) for B−i = [βt
−i]t∈[T ] and define Q∗

ℓ =
∑

j≤ℓ q
∗
j . Suppose bOPT

m (B−i) is
allocated r∗t units in round t. For any j ∈ [m], let Tj be the set of rounds in which the least winning
bid is b∗j , i.e.,

Tj =
{
t ∈ [T ] : Q∗

j−1 < r∗t ≤ Q∗
j

}
. (7)

For any j ∈ [m], partition Tj into Tj,0 and Tj,1 such that Tj,0 is the set of rounds where the bidder
gets strictly less than Q∗

j units and Tj,1 is the set of rounds when she gets exactly Q∗
j units:

Tj,0 =
{
t ∈ [Tj ] : r

∗
t < Q∗

j

}
, Tj,1 =

{
t ∈ [Tj ] : r

∗
t = Q∗

j

}
. (8)

For any j ∈ [m], let

Q̂j =

{
max{r∗t : t ∈ Tj,0}, if Tj,0 ̸= ∅
Q∗

j if Tj,0 = ∅ .

In other words, Q̂j is the 2nd highest number of units allocated to bOPT
m (B−i) over the rounds in Tj .

Then, the result is obtained by showing the following claim.

Claim 1 (Upper Bound on PoUFm(B−i)). For any B−i, PoUFm(B−i) ≤ 2− θB−i , where

0 < θB−i ≤ θB−i := max
j∈[m]

W
Q̂j

WQ∗
j

≤ 1

Here, v = [1, v2, . . . , vM ] and Wj = 1 + v2 + · · · + vj . The exact characterization of θB−i is
presented in Appendix A.7. The upper bound, θB−i is the maximum ratio of the value obtained
from the first Q̂j units to that from the first Q∗

j units, where the maximum is taken over all j ∈ [m].
So, maximizing PoUFm(B−i) (equivalently minimizing θB−i) over all B−i, we get that PoUFm ≤

2− θ for θ = minB−i θB−i ∈ (0, 1], as desired.
Constructing a Restricted Class of UF Policies. Here, as a crucial part of the proof,

we construct a restricted class of UF policies, denoted by P⋆
m(B−i), where P⋆

m(B−i) ⊂ P⋆
m. This

construction serves two purposes. First, it reduces the search space for the optimal UF bidding
policy. Second, and more importantly, it enables us to establish a connection between the optimal UF
bidding policy and bOPT

m (B−i). In defining the restricted class, we use the quantities, {Q̂j , Q
∗
j}j∈[m]

as follows:

P⋆
m(B−i) =

{
b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ =

wQℓ

1 + γ
, Qℓ ∈ {Q̂ℓ, Q

∗
ℓ}, ∀ℓ ∈ [m]

}
. (9)
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Recall that any policy in P⋆
m with m bid-quantity pairs takes the form of b = ⟨(b1, q1), . . . , (bm, qm)⟩ :

bℓ =
wQℓ
1+γ ,∀ℓ ∈ [m]. The policies in P⋆

m(B−i) also have the same structure but as an important
difference, for any ℓ ∈ [m], we enforce Qℓ ∈ {Q̂ℓ, Q

∗
ℓ}. Observe that for any ℓ ∈ [m− 1], Qℓ ≤ Q∗

ℓ <

Q̂ℓ+1 ≤ Qℓ+1, where the first and third inequalities follow directly from the definition of Qℓ and the
second one follows from the definition of Q̂ℓ+1. So, Qℓ’s are distinct and ordered. Further observe
that the number of bidding policies in P⋆

m(B−i) is O(2m); significantly smaller than the number of
policies in P⋆

m, which is O(M
m
).

With the definition of the restricted class of UF policies, we have

PoUFm(B−i) =
V OPT
m (B−i)

maxb∈P⋆
m

∑T
t=1 Vi(b,βt

−i)
≤ V OPT

m (B−i)

maxb∈P⋆
m(B−i)

∑T
t=1 Vi(b,βt

−i)
. (10)

Value under the Optimal (Restricted) UF Policies. Here, we characterize the optimal
value under the optimal (restricted) UF policies; that is, maxb∈P⋆

m(B−i)

∑T
t=1 Vi(b,β

t
−i). To do so,

we establish an important relation between m-uniform and 1-uniform bidding policies, which is of
independent interest and is invoked several times in the paper. For a bid history B−i = [βt

−i]t∈[T ],
let Vi((b, q);β

t
−i) denote the value obtained under the 1-uniform bid (b, q) in round t.

Lemma 3. For any m ∈ Z>0, let b =
〈(

wQ1
1+γ , q1

)
, . . . ,

(
wQm
1+γ , qm

)〉
be a m-uniform UF bid and

Qℓ =
∑ℓ

j=1 qj. Then,

Vi(b;β
t
−i) = max

ℓ∈[m]
Vi

(( wQℓ

1 + γ
,Qℓ

)
,βt

−i

)
, ∀t ∈ [T ] .

We state and prove a stronger version of Lemma 3 in Appendix A.5. By Lemma 3, for any
b ∈ P⋆

m(B−i), we can express Vi(b,β
t
−i) as the maximum of the value obtained by m 1-uniform UF

bidding policies.
Let Vj,k be the time-average value obtained by bOPT

m (B−i) in the set of rounds in Tj,k (as defined
in Eq. (8)). Formally, ∀j ∈ [m], k ∈ {0, 1},

Vj,k =
1

|Tj,k|
∑
t∈Tj,k

Vi(b
OPT
m (B−i) ,β

t
−i) .

Note that Vj,1 = WQ∗
j

as Vj,1 = 1 + v2 + · · · + vQ∗
j

because in any t ∈ Tj,1, we have r∗t = Q∗
j .

Now, fix some b ∈ P⋆
m(B−i), where b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bℓ =

wQℓ
1+γ , and Qℓ ∈ {Q∗

ℓ , Q̂ℓ} for
any ℓ ∈ [m]. Given this bidding policy, define N∗, N̂ ⊆ [m] as

N∗ = {j : Qj = Q∗
j , j ∈ [m]} and N̂ = {j : Qj = Q̂j , j ∈ [m]} .

That is, N∗ (respectively, N̂) are the set of indices in b ∈ P⋆
m(B−i) under which we set Qj to Q∗

j

(respectively, Q̂j).
With these definitions, we are ready to express the value under b ∈ P⋆

m(B−i). By Lemma 3, for
any round t ∈ Tj , the value of b ∈ P⋆

m(B−i) can be written as the maximum of m 1-uniform bids(
wQℓ
1+γℓ

, Qℓ

)
, ℓ ∈ [m]:

Vi(b,β
t
−i) = max

ℓ∈[m]
Vi

(( wQℓ

1 + γ
,Qℓ

)
,βt

−i

)
≥ Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
, (11)
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=⇒
T∑
t=1

Vi(b,β
t
−i) ≥

∑
j∈N∗

∑
t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
+

∑
j∈N̂

∑
t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
. (12)

We then invoke the following lemma to compute
∑

t∈Tj
Vi

((
wQj

1+γ , Qj

)
,βt

−i

)
for any j ∈ [m].

Lemma 4. Let b ∈ P⋆
m(B−i), where b = ⟨(b1, q1), . . . , (bm, qm)⟩ : bj =

wQj

1+γ , and Qj ∈ {Q∗
j , Q̂j} for

any j ∈ [m]. For any j ∈ [m],

• if Qj = Q̂j (i.e., j ∈ N̂), we have∑
t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
≥ Vj,0|Tj,0|+W

Q̂j
|Tj,1| . (13)

• If Qj = Q∗
j (i.e., j ∈ N∗), we have∑

t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
≥ WQ∗

j
|Tj,1| . (14)

The proof of Lemma 4 is presented in Appendix A.6. Note that the lower bound in Eq. (12)
depends only on the choice of the partitions N∗ and N̂ . Substituting the lower bound from Lemma 4
in (10), we establish that for any (N∗, N̂),

PoUFm(B−i) ≤
V OPT
m (B−i)

maxb∈P⋆
m(B−i)

∑T
t=1 Vi(b;βt

−i)

≤ V OPT
m (B−i)∑

j∈N∗

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

) . (15)

To complete the claim, we establish an upper bound on (15) (equivalently on PoUFm(B−i)) by:

Lemma 5. For any B−i, let N∗
0 , N̂0 be the partition of [m] that minimizes RHS in Eq. (15). Then,

V OPT
m (B−i)∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

) ≤ 2− θB−i ,

where 0 < θB−i ≤ maxj∈[m]

W
Q̂j

WQ∗
j

≤ 1. So, PoUFm(B−i) ≤ 2− θB−i .

The proof of Lemma 5 is presented in Appendix A.7.

6 Increasing the Number of Bid Quantity Pairs

In this section, we study the impact of increasing the number of bid-quantity pairs on the total
value obtained compared to the base case when m = 1. Intuitively, a m-uniform policy is more
likely to get a higher value than a 1-uniform policy. We formalize this notion in this section
and prove that the increase is linear in m. Recall that in Section 2.5, we defined two metrics:
Ratio-unim := maxB−i

V ∗
m(B−i)

V ∗
1 (B−i)

and Ratio-optm := maxB−i

V OPT
m (B−i)

V OPT
1 (B−i)

. We now present the main
result of this section.

17



Theorem 6.1 (Impact of increasing m). For any m ≥ 2, 1 ≤ Ratio-unim,Ratio-optm < m .

• In other words, for any given bid history, the optimal (UF) 1-uniform bidding policy obtains at
least (1/m)th of the value obtained by the optimal (UF) k-uniform bidding policy, where k ∈ [m].

• Furthermore, the upper bound is tight, i.e., for any δ ∈ (0, 1/2], there exists a bid history, B−i and a
valuation curve such that V ∗

1 (B−i) = 1/(m−δ)·V ∗
m(B−i) and V OPT

1 (B−i) = 1/(m−δ)·V OPT
m (B−i).

The proof of the upper bound is presented in Appendix A.8 and the tightness of the bound is
discussed in Appendix B.3.

We finally present a result relating the inefficiency caused by restricting the policies to be
UF (Theorem 5.2) and that caused by restricting to only 1-uniform bidding policies (Theorem 6.1).

Theorem 6.2. For any m ∈ Z>0, 1 ≤ maxB−i

V OPT
m (B−i)
V ∗
1 (B−i)

< 2m .

• Put differently, for any bid history, the value obtained by the optimal 1-uniform UF bidding policy
is at least (1/2m)th of the value obtained by the optimal k-uniform bidding policy, where k ∈ [m],
which is not necessarily UF.

• Moreover, the upper bound is tight, that is, for any δ ∈ (0, 1/2], there exists a B−i and valuation
curve such that V ∗

1 (B−i) = 1/(2m− δ) · V OPT
m (B−i).

The lower bound holds trivially as V OPT
m (B−i) ≥ V OPT

1 (B−i) ≥ V ∗
1 (B−i) for any B−i. To obtain

the upper bound, observe that by Theorem 5.2 for m = 1 and Theorem 6.1, we get

max
B−i

V OPT
m (B−i)

V ∗
1 (B−i)

≤ max
B−i

V OPT
m (B−i)

V OPT
1 (B−i)

·max
B−i

V OPT
1 (B−i)

V ∗
1 (B−i)

= Ratio-optm · PoUF1 < 2m.

The tightness of the bound is presented in Appendix B.4. To understand the implication of the
theorem, recall that we introduce inefficiency due to two factors: (i) restricting the bids to be UF
and (ii) choosing the number of bid-quantity pairs in the bidding policy. Theorem 6.2 (specifically
the tightness of the upper bound) suggests that the effects of both the inefficiencies are decoupled.

7 Identifying the Optimal Universally Feasible Policy

In the previous sections, we characterized the optimal class of m-uniform UF bidding policies and
showed that the class has a good performance while adhering to UF property. In this section, we
discuss the problem of learning the optimal UF policy on the fly as the bidder participates in auctions
over time.

Formally, consider a repeated setting where in every round t, the seller announces the auction for
K identical items. The bidder submits a bid bt ∈ P⋆

m with no knowledge about the bids submitted
by the competitors for round t. The seller collects the bids from all the bidders, βt

−i, and allocates
the items to the bidders with the top K bids by setting the Kth highest bid as the clearing price.

As before, we consider the problem from the perspective of a single RoI-constrained, value-
maximizing bidder. Our goal is then to design no-regret (sublinear regret) learning algorithms for
bidding, where the regret is the difference between the value under the optimal UF policy in P⋆

m

and what the bidder earns:

Regret(T ) = max
b∈P⋆

m

T∑
t=1

Vi(b,β
t
−i)−

T∑
t=1

E
[
Vi(b

t,βt
−i)

]
,
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where the expectation is with respect to any randomness in the learning algorithm. To design a
no-regret learning policy, when the number of bid-quantity pairs m is small, which is typically the
case in practice, one can leverage existing learning algorithms such as Hedge (Freund and Schapire,
1997) (for the full information setting)4 and the EXP3 algorithm (Auer et al., 1995) (for the bandit
setting), leading to a regret of Regret(T ) = Õ(M

√
T ) and Õ(M

1+0.5m√
T ), respectively, where

Õ(·) hides the logarithmic factors. Hence, from the results of Theorem 6.1, we observe that increasing
the number of bids from 1 to any general m can increase the total value obtained by at most a factor
linear in m but the number of rounds required to identify such a policy can grow exponentially in m.
Each bidding policy in P⋆

m can be viewed as an expert in the Hedge and EXP3 algorithm. As m is a
constant, the number of experts, which is O(M

m
), is also small.

For the case when m is large, the aforementioned learning algorithms are not practically appealing.
Nevertheless, we design a method to obtain an approximately optimal nested m-uniform bidding
policy. The design of this algorithm is based on the following direct corollary of Lemma 3:

Corollary 7.1. For any B−i = [βt
−i]t∈[T ], we have

max
b∈P⋆

m

T∑
t=1

Vi(b,β
t
−i) = max

S⊆[M ]:|S|≤m

T∑
t=1

max
ℓ∈S

Vi

((
wℓ

1 + γ
, ℓ

)
,βt

−i

)
.

The proof of Corollary 7.1 is presented in Appendix A.9. This corollary shows that the offline
problem of identifying the optimal UF bidding policy can be viewed as maximizing a certain mono-
tone submodular function of the form: ft(S) = maxℓ∈S Vi

((
wℓ
1+γ , ℓ

)
,βt

−i

)
, subject to cardinality

constraints. The submodularity of ft follows directly from Cornuéjols et al. (1983, Theorem 9.1).
With this observation, one can employ algorithms for online submodular optimization under cardi-
nality constraint to obtain sublinear (1− 1/e)-approximate regret of the order Õ(mM

√
T ) in the

full information setting and Õ(mM
5/3

T 2/3) in the bandit setting (Niazadeh et al., 2022).

8 Numerical Simulations

In this section, we conduct numerical experiments to study the results of this work in practice.
Specifically, we investigate two key metrics that measure the performance of UF bidding policies:
V OPT
m (B−i)
V ∗
m(B−i)

(proxy for PoUFm) and V ∗
m(B−i)

V ∗
1 (B−i)

(proxy for Ratio-unim) as a function of m. Recall that,
PoUFm < 2, irrespective of m (Theorem 5.2), and Ratio-unim < m (Theorem 6.1).

Dataset and Parameters. We conduct our simulations for the EU ETS emission permit
auction data for 2022 and 2023. However, only aggregate statistics of the submitted bids is publicly
available for privacy reasons. Hence, we synthesize individual level bid data from these available
statistics. The exact procedure to reconstruct the bid data is presented in Appendix C.1. The
bids are normalised to be in [0, 1]. We sample the values from the Unif[0, 1] distribution. In each
simulation, we sample T ∼ Unif[100, 300] auctions and let M ∼ Unif[10, 80]. We solve (VM-unim)
by formulating it as an integer linear program (ILP) by Corollary 7.1. As computing (VM-optm)
can be non-trivial, we obtain an uniform upper bound for V OPT

m (B−i). The ILP and the uniform
upper bound for V OPT

m (B−i) is presented in Appendix C.2. We vary m = 1 to m = 10 and average
over 100 simulations. The results are plotted in Fig. 4.

Price of Universal Feasibility. The simulations (i.e., the left plot of Fig. 4) show that (the
upper bound for) V OPT

m (B−i)
V ∗
m(B−i)

rapidly decays to 1 with increase in m. Specifically, for m ≥ 4, the

4In the full information setting, based on the received feedback, the bidder can compute Vi(b,β
t
−i) for all b ∈ P⋆

m.
In the bandit setting, the bidder gets information about her own allocation, i.e., Vi(b

t,βt
−i) only.
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Figure 4: The left (resp. right) figure corresponds to V OPT
m (B−i)
V ∗
m(B−i)

(resp. V ∗
m(B−i)

V ∗
1 (B−i)

) as a function of m.
The shaded area denotes the uncertainty of one standard deviation on either side.

ratio of the value obtained by the optimal bidding policy (not necessarily UF) to that by UF bidding
policies is ∼ 1.05 indicating that the UF policies are near-optimal. Interestingly, this threshold value
of m aligns with the average number of bid-quantity pairs submitted by bidders in the actual EU
ETS auctions during this time frame (4.35 for 2023 and 3.89 for 2022) (EEX, 2023).

Increasing the Number of Bid Quantity Pairs. From the right plot of Fig. 4, we observe
that the empirical values of V ∗

m(B−i)
V ∗
1 (B−i)

is significantly better than the worst-case bound m (Theorem 6.1).
In fact, the gain obtained by increasing the number of bid-quantity pairs plateaus after m = 4
and even for m = 10, the ratio of the value obtained by a 10-uniform bidding policy to a classical
(1-)uniform bidding policy is ∼ 1.25. Both the results indicate that UF bidding policies with small
values of m are practically optimal.

9 Conclusion and Open Problems

We studied uniform price auctions, widely used in various markets. While these auctions offer fair
pricing, bidder behavior may deviate from theoretical predictions. We examine how bidders, seeking
to maximize value while meeting RoI constraints, behave in these auctions. Our study characterizes
the optimal bidding policies that maintain universal RoI feasibility regardless of competitors’ bids,
showing that this class depends solely on the bidders’ valuations and RoI parameters. We also
quantify the cost of enforcing the universal RoI feasibility property and explore the benefits of
increasing the number of bid-quantity pairs. Additionally, we discussed methods for identifying
optimal bidding policies and address challenges in scenarios with a large number of bid-quantity
pairs. Furthemore, we conducted numerical simulations that show the universally feasible bidding
policies perform substantially better than the theoretical results presented in this study.

Our study opens the door to several intriguing areas of interest for further exploration. First,
analyzing discriminatory price auctions, also known as “pay-as-bid” auctions, could shed light on
bidding strategies under this alternative auction framework. Second, introducing both RoI and
budgetary constraints would offer a more realistic model of bidder behavior in practical scenarios
where bidders may have financial limitations beyond just RoI considerations. Lastly, the extension
of our findings to scenarios involving non-identical items, such as those encountered in combinatorial
auctions, might provide valuable insights into more complex auction environments where items
possess diverse characteristics and values.
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A Omitted Proofs

A.1 Proof of Theorem 3.1

Define the following class of no-overbidding (NOB) bidding policies containing upto m bid-quantity
pairs:

PNOB
m :=

{
b = ⟨(b1, q1), . . . , (bk, qk)⟩ : bℓ ≤

wQℓ

1 + γ
,∀ℓ ∈ [k],∀k ∈ [m]

}
.

We first show that Pm ⊆ PNOB
m , and then complete the proof by showing PNOB

m ⊆ Pm.
Proof of Pm ⊆ PNOB

m . We start by presenting a lemma about the bidder’s per unit payments,
which we will also use to prove several other results.

Lemma 6 (Per-unit Payments). Suppose the bidder bids b = ⟨(b1, q1), . . . , (bm, qm)⟩. Recall that
Qj =

∑j
ℓ=1 qℓ, ∀j ∈ [m]. Recall that, β−(j)

−i,t is the jth smallest winning bid in the absence of bids

from bidder i for round t. If j = 0, β−(j)
−i,t = 0 and j ≥ K, β−(j)

−i,t = ∞. Then, the per-unit payments
by the bidder in round t is

p(βt) =


0, if xi(βt) = 0

bℓ, if Qℓ−1 < xi(β
t) < Qℓ

min(bℓ,β
−(Qℓ+1)
−i,t ), if xi(βt) = Qℓ

. (16)

The proof of Lemma 6 is presented in Appendix A.1.1.

Observation 1. Overbidding is not an universally feasible bidding policy. To see this, let b =
⟨(b1, q1), . . . , (bℓ, qℓ), . . . , (bm, qm)⟩ be an overbid such that bℓ > wQℓ

/(1 + γ). Now, consider a bid
history with a single round (i.e., T = 1) in which the individual bids are:

β
−(j)
−i,1 =

{
ϵ, if 1 ≤ j ≤ Qℓ

C, if Qℓ < j ≤ K
,

where ϵ ∼ 0 and C ≫ w1. Submitting b gets allocated Qℓ units and from Lemma 6, we conclude that
the clearing price of auction is bℓ. As bℓ > wQℓ

/(1 + γ) by assumption, the RoI constraint is violated.

As overbidding is not UF, every UF bidding policy is a NOB bidding policy, i.e., Pm ⊆ PNOB
m .

Proof of PNOB
m ⊆ Pm. We now prove that the converse is also true, i.e., every NOB bidding

policy is also UF. To show this, fix any arbitrary bid history, B−i = [βt
−i]t∈[T ], and consider any

b = ⟨(b1, q1), . . . , (bk, qk)⟩ ∈ PNOB
m where k ∈ [m]. Suppose in round t, bidding b wins xi(β

t) units.
So, from Lemma 6, if xi(βt) = 0, trivially, Pi(β

t) = 0 = Vi(β
t). If Qℓ−1 < xi(β

t) ≤ Qℓ, for some ℓ,

Pi(β
t) = xi(β

t) · p(βt) ≤ xi(β
t) · bℓ ≤ xi(β

t) ·
wQℓ

1 + γ
≤ xi(β

t) ·
wxi(βt)

1 + γ
=

Vi(β
t)

1 + γ
.

The first inequality holds true because bidders’ per-unit payment is at most their least winning
bid (individual rationality of the auction format), the second is true by definition, and the third is
true because the wj is non-decreasing in j and xi(β

t) ≤ Qℓ. As the choice of bid history B−i, round
t, and bidding policy b, was arbitrary, we conclude that every bid in PNOB

m is UF, i.e., PNOB
m ⊆ Pm,

which completes the proof.

26



A.1.1 Proof of Lemma 6

Consider the following three cases:

1. If xi(βt) = 0, trivially, p(βt) = 0.

2. Let Qℓ−1 < xi(β
t) < Qℓ. Let b be the last accepted bid after including b, i.e., βt = (b,βt

−i).

Then bℓ
(a)

≥ b
(b)

≥ bℓ.

I. (a) holds true because the bidder is allocated at least one unit for bid bℓ and

II. (b) is correct because she does not acquire at least one unit for bid bℓ. Hence, p(βt) = bℓ.

3. Suppose xi(β
t) = Qℓ. If bℓ > β

−(Qℓ+1)
−i,t , then p(βt) = β

−(Qℓ+1)
−i,t . However, if bℓ ≤ β

−(Qℓ+1)
−i,t ,

p(βt) = bℓ. So, p(βt) = min(bℓ,β
−(Qℓ+1)
−i,t ).

A.2 Proof of Lemma 1

Let βt = (b,βt
−i) and β′t = (b′,βt

−i). Recall that b = [b1, b2, . . . , bk] and b′ = [b′1, b
′
2, . . . , b

′
k] such

that bj ≥ b′j , ∀j ∈ [k]. Furthermore, by assumption, b is RoI feasible for B−i = [βt
−i]t∈[T ].

We first prove that b′ is also feasible for the fixed bid history, B−i. Contrary to our claim,
suppose b′ is infeasible. Then, there must exist a round t in which b′ is allocated r′t units with
clearing price p(β′t) such that the RoI constraint is violated:

(1 + γ)p(β′t) > wr′t
. (17)

For the same round t, suppose b is allocated rt units. By definition of allocation rule and payment
rule, the units allocated and the clearing price obtained in an auction are weakly increasing in bids,
so r′t ≤ rt and p(β′t) ≤ p(βt). As b is feasible,

(1 + γ)p(βt) ≤ wrt . (18)

Combining Equations (17) and (18), we have

(1 + γ)p(βt) ≤ wrt

(a)

≤ wr′t
< (1 + γ)p(β′t) =⇒ p(βt) < p(β′t).

which is a contradiction. Here (a) is true as wj is non-increasing in j and r′t ≤ rt. So, b′ is feasible.
To prove monotonocity, consider any round t. By definition of the allocation rule, the value

obtained in an auction is weakly increasing in the bids submitted. As b and b′ are both feasible, the
RoI constraints are valid for both. So, Vi(b;β

t
−i) ≥ Vi(b

′;βt
−i). Summing over all rounds, we get

the desired result.

A.3 Proof of Lemma 2

Fix any k-uniform bid b ∈ Pm. Recall the constructed bid history, B−i(b), for which b is an optimal
bidding policy in Pm. For sake of completeness, we present it again. We constructed a bid history
with T = k rounds. In round t ∈ [k], for a sufficiently small ϵ > 0 and C ≫ w1,

β
−(j)
−i,t (b) =

{
wQt+1

1+γ + ϵ, if 1 ≤ j ≤ Qt

C, if Qt < j ≤ K
, ∀t ∈ [k] .
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If Qt = M , we set β
−(j)
−i,t (b) to ϵ for any j ∈ [K]. We proved that b ∈ Pm is an optimal bidding

policy for B−i(b). Furthermore, we also showed that b obtains the maximum number of units that
can be allocated to the bidder in every round.

We now show that the value obtained under the k-uniform bid b and B−i(b) is strictly larger
than that under ANY other k1-uniform bid b′ ∈ Pm and B−i(b) where k1 ≤ k. That is,

T∑
t=1

Vi(b;β
t
−i) >

T∑
t=1

Vi(b
′;βt

−i), ∀ b′ ∈ Pk \ {b} .

We show the result by contradiction. Contrary to our claim, suppose that there exists an optimal

k1-uniform bid, b′ ̸= b. Let b′ =
〈(wQ′

1
1+γ , q

′
1

)
, . . . ,

(wQ′
k1

1+γ , q′k1

)〉
∈ Pk \ {b} and define Q′

j =
∑

ℓ≤j q
′
ℓ.

Let S = {Q′
j : j ∈ [m]}. As b′ is UF, invoking Lemma 3, we get that for any round t:

Vi(b
′;βt

−i) = max
ℓ∈[k1]

Vi

(( wQ′
ℓ

1 + γ
,Q′

ℓ

)
;βt

−i

)
. (19)

We show that for each of the k rounds in B−i(b), a unique bidding policy of the form:
(wQ′

ℓ
1+γ , Q

′
ℓ

)
maximizes the value obtained for that round. So, if k1 < k, then clearly b′ is suboptimal as there
will be at least one round in which b′ will not achieve the same value as b. So, assume that k1 = k.
As the RHS of (19) is a maximum over k1 = k entities, it can be uniquely identified. Thus, b′ is
uniquely determined.

To see this, consider any round t. For a policy
(wQ′

ℓ
1+γ , Q

′
ℓ

)
to win at least 1 unit, it has to be

higher than the least winning competing bid. So,
wQ′

ℓ
1+γ >

wQt+1

1+γ + ϵ =⇒ Q′
ℓ ≤ Qt. By assumption,

b′ obtains the same value as b in round t. To win Qt units in round t, the demand should be for at
least Qt units. So, Q′

ℓ ≥ Qt =⇒ Q′
ℓ = Qt =⇒ Qt ∈ S. As t was chosen arbitrarily, Qt ∈ S,∀t ∈ [k].

Now, observe that fixing Qt’s uniquely determines b′, implying b = b′, which is a contradiction. So,
the k-uniform bid b is the unique optimal bidding policy for B−i(b) in P⋆

k ⊆ P⋆
m.

A.4 Proof of Theorem 5.1

Suppose the bidder values each unit equally (i.e., vi = v for all i ∈ [M ]). We first compute the
optimal UF bidding policy and repeat the exercise by removing the UF condition. We show that the
optimal policy in both the cases are identical and thus complete the proof.

Optimal Universally Feasible Bidding Policy. Fix some m ∈ Z>0. As vi = v for all i ∈ [M ],
wi = v for all i ∈ [M ]. So,

P⋆
m =

{( v

1 + γ
, q
)
: q ∈ [M ]

}
. (20)

As the bid value remains the same for all q ∈ [M ], to maximize value, the bidder must select the
policy with highest demand, hence the optimal UF bidding policy is (v/(1 + γ),M).

Removing the Universal Feasibility Condition. Here, we characterize the optimal non-UF
bidding policy bOPT

m (B−i) and show that it is (v/(1 + γ),M) for any B−i = [βt
−i]t∈[T ]. To do so, we

present the following lemma which relates the the number of units allocated to the optimal bidding
policy, bOPT

m (B−i) and 1-uniform UF bidding policies.

Lemma 7. For any B−i, let bOPT
m (B−i) = ⟨(b∗1, q∗1), . . . , (b∗m, q∗m)⟩ be the optimal solution to Problem

(VM-optm). Recall Q∗
j =

∑
ℓ≤j q

∗
ℓ where under bOPT

m (B−i) and B−i, r∗t units is allocated to the
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bidder in round t, for t ∈ [T ]. For any t ∈ [T ], the 1-uniform bid
(wr∗t
1+γ , r

∗
t

)
is allocated exactly r∗t

units.

We state and prove a stronger version of Lemma 7 as Lemma 9 in Appendix A.6.1.
Suppose the bidder is allocated r∗t units any round t ∈ [T ] under bOPT

m (B−i) and B−i.
Then, by Lemma 7, the bidding policy

(wr∗t
1+γ , r

∗
t

)
=

(
v

1+γ , r
∗
t

)
obtains r∗t units in round t. By

Lemma 1 (monotonocity of feasible bids),
(

v
1+γ ,M

)
wins at least r∗t units in round t. As t was

chosen arbitrarily, we conclude that
(

v
1+γ ,M

)
wins at least r∗t units in every round t implying

that
(

v
1+γ ,M

)
obtains at least V OPT

m (B−i). Trivially, the value obtained by
(

v
1+γ ,M

)
is at most

V OPT
m (B−i). So, bidding

(
v

1+γ ,M
)

obtains V OPT
m (B−i) for the bid history B−i. Combining with

the results from the previous paragraph, we conclude that PoUFm = 1,∀m ∈ Z>0.

A.5 Proof of Lemma 3 and its Stronger Version (Lemma 8)

To show Lemma 3, we will verify a stronger version of the lemma (Lemma 8 stated below) that has
a similar statement, but does not require the bid to be UF.

Lemma 8. Fix a bid history B−i = [βt
−i]t∈[T ]. For B−i, let Vi((b, q);β

t
−i) denote the value obtained

by bidding (b, q) in round t. For any m ∈ Z>0, let b = ⟨(b1, q1), . . . , (bm, qm)⟩ be a feasible (not
necessarily UF) m-uniform bid for B−i. Then, we have

Vi(b;β
t
−i) = max

ℓ∈[m]
Vi((bℓ, Qℓ);β

t
−i), ∀t ∈ [T ] ,

where we recall that Qℓ =
∑ℓ

j=1 qj.

Proof. Proof of Lemma 8. We prove the lemma via induction on m. The base case is m = 1 for
which the result is trivially true. Now assume that the result holds for any m-uniform bid for a fixed
bid history B−i = [βt

−i]t∈[T ]. We will then show that the result holds for any m+ 1-uniform bid and
the same B−i.

Consider the case for a m+ 1-uniform bid b = ⟨(b1, q1), . . . , (bm, qm), (bm+1, qm+1)⟩. We know
by assumption that b is feasible for B−i. Suppose that by bidding b, the bidder is allocated rt units
in round t. There are two cases: (a) rt ≤ Qm and (b) rt > Qm.

Case I. rt ≤ Qm. In this case, we have

Vi(b;β
t
−i) = Vi(b[1 : m];βt

−i) . (21)

Claim 2. The bid-quantity pair (bm+1, Qm+1) is feasible for B−i and for any t ∈ [T ], Vi(b;β
t
−i) ≥

Vi((bm+1, Qm+1);β
t
−i).

Proof. Proof of Claim 2. By assumption, b is feasible, the total demand of b and (bm+1, Qm+1) are
equal and b(j) ≥ bm+1, ∀j ∈ [Qm+1], where b(j) denotes the bid value in jth position in the sorted
bid vector. So, by Lemma 1, (bm+1, Qm+1) is feasible and Vi(b,β

t
−i) ≥ Vi((bm+1, Qm+1),β

t
−i).

Hence, by Claim 2 and Eq. (21),

Vi(b;β
t
−i) = max

{
Vi(b[1 : m];βt

−i), Vi((bm+1, Qm+1);β
t
−i)

}
. (22)

29



Case II. rt > Qm. As rt > Qm, bm+1 is the least winning bid which implies bm+1 ≥ β
−(rt)
−i,t . So,

(bm+1, Qm+1) is allocated at least rt units which implies Vi((bm+1, Qm+1),β
t
−i) ≥ Vi(b,β

t
−i). By

Claim 2, we also have Vi(b,β
t
−i) ≥ Vi((bm+1, Qm+1),β

t
−i). Hence,

Vi(b;β
t
−i) = Vi((bm+1, Qm+1);β

t
−i) . (23)

As rt > Qm, (bm+1, Qm+1) is allocated at least Qm + 1 units, whereas b[1 : m] has demand
for (hence, can be allocated) at most Qm units. So,

Vi(b;β
t
−i) ≥ Vi(b[1 : m];βt

−i)

=⇒ Vi(b;β
t
−i) = max

{
Vi(b[1 : m];βt

−i), Vi((bm+1, Qm+1);β
t
−i)

}
. (24)

For both Case I and Case II, we get the same result (cf. (22) and (24)). Hence,

Vi(b;β
t
−i) = max

{
Vi(b[1 : m];βt

−i), Vi((bm+1, Qm+1);β
t
−i)

}
(a)
= max

{
max
ℓ∈[m]

Vi((bℓ, Qℓ);β
t
−i), Vi((bm+1, Qm+1);β

t
−i)

}
= max

ℓ∈[m+1]
Vi((bℓ, Qℓ);β

t
−i) ,

where (a) holds as b[1 : ℓ] is feasible for ∀ℓ ∈ [m+1], and then applying the induction hypothesis on
m, we conclude the proof.

A.6 Proof of Lemma 4

To prove this result, we use the following key lemma that compares allocations under bOPT
m (B−i)

and 1-uniform UF bidding policies. The proof of this lemma is presented in Appendix A.6.1.

Lemma 9. For any B−i, let bOPT
m (B−i) = ⟨(b∗1, q∗1), . . . , (b∗m, q∗m)⟩ be the optimal solution to Problem

(VM-optm). Recall Q∗
j =

∑
ℓ≤j q

∗
ℓ where under bOPT

m (B−i) and B−i, r∗t units is allocated to the
bidder in round t, for t ∈ [T ].

1. For any t ∈ [T ] and q ≤ r∗t , the 1-uniform bid
(

wq

1+γ , q
)

is allocated exactly q units.

2. For any j ∈ [m], let Tj ⊆ [T ], defined in Eq. (7), be the rounds in which b∗j is the least winning
bid. Suppose that ∃t ∈ Tj such that r∗t < Q∗

j . Then in any t′ ∈ Tj in which bOPT
m (B−i) is

allocated less than r∗t units, i.e., r∗t′ ≤ r∗t , the 1-uniform bidding policy
(wr∗t
1+γ , r

∗
t

)
is allocated

at least r∗t′ units.

With this lemma, we are ready to show the result.
Case I: Qj = Q̂j. By assumption, Qj = Q̂j ≤ Q∗

j . So, for any t ∈ Tj,1, invoking Lemma 9 (1)

with q = Q̂j , we conclude that
(w

Q̂j

1+γ , Q̂j

)
is allocated exactly Q̂j units. Summing over all rounds in

Tj,1, ∑
t∈Tj,1

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
= W

Q̂j
|Tj,1| . (25)

Now, suppose Tj,0 ̸= ∅. By definition, Q̂j < Q∗
j . Also, Q̂j ≥ r∗s for any s ∈ Tj,0 by definition.

So, for any s ∈ Tj,0, invoking Lemma 9 (2) with r∗t = Q̂j , we conclude that
(w

Q̂j

1+γ , Q̂j

)
is allocated
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at least r∗s units. Hence, summing over all rounds,
(w

Q̂j

1+γ , Q̂j

)
gets at least the value obtained by

bOPT
m (B−i) over the rounds in Tj,0. So,∑

t∈Tj,0

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
≥

∑
t∈Tj,0

Vi

(
bOPT
m (B−i) ,β

t
−i

)
= Vj,0|Tj,0| . (26)

If Tj,0 = ∅, the lower bound is trivially true. Combining Eq. (25) and (26), for Qj = Q̂j ,∑
t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
≥ Vj,0|Tj,0|+W

Q̂j
|Tj,1| . (27)

Case II: Qj = Q∗
j . So, for any t ∈ Tj,1, using Lemma 9 (1) with q = Q∗

j , we get that
(wQ∗

j

1+γ , Q
∗
j

)
is allocated exactly Q∗

j units, which is the same as the allocation for bOPT
m (B−i). Summing over all

rounds in Tj,1, ∑
t∈Tj,1

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
= WQ∗

j
|Tj,1| . (28)

For the rounds in Tj,0, trivially,∑
t∈Tj,0

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
≥ 0 . (29)

Combining Eq. (28) and (29), for Qj = Q∗
j ,∑

t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
≥ WQ∗

j
|Tj,1| . (30)

A.6.1 Proof of Lemma 9

(1) First we show that for any t ∈ [T ] and q ≤ r∗t , the 1-uniform bid
(

wq

1+γ , q
)

is allocated exactly q

units. As
(

wq

1+γ , q
)
∈ P⋆

1 , it is universally feasible. By assumption, bOPT
m (B−i) is allocated r∗t units

in round t. Let βt = (bOPT
m (B−i) ,β

t
−i). Recall that, β−(j)

−i,t is the jth smallest winning bid in the
absence of bids from bidder i for round t. If r∗t = 0, the result is vacuously true. Suppose r∗t > 0,
then

β
−(q)
−i,t ≤ β

−(r∗t )
−i,t ≤ p(βt) ≤

wr∗t

1 + γ
≤ wq

1 + γ
,

where the first inequality holds by definition of β−(j)
−i,t and our assumption that q ≤ r∗t . For the

second inequality, let Q∗
ℓ−1 < r∗t ≤ Q∗

ℓ . By Lemma 6,

1. If p(βt) = b∗ℓ , we have p(βt) ≥ β
−(r∗t )
−i,t as b∗ℓ is allocated r∗t units.

2. If p(βt) = β
−(Q∗

ℓ+1)
−i,t , we have r∗t = Q∗

ℓ and by definition of β−(j)
−i,t , p(βt) = β

−(Q∗
ℓ+1)

−i,t ≥ β
−(r∗t )
−i,t .
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The third is true as RoI constraints are satisfied by bOPT
m (B−i) for round t, and fourth is true as wj

is a non-decreasing function of j and q ≤ r∗t . From the first and last expressions, β−(q)
−i,t ≤ wq

1+γ which

implies that
(

wq

1+γ , q
)

is allocated at least q units in round t. Moreover,
(

wq

1+γ , q
)

can be allocated at

most q units. Combining both, gives the desired result that the 1-uniform bid
(

wq

1+γ , q
)

is allocated
exactly q units.

(2) For any j ∈ [m], let Tj ⊆ [T ], defined in Eq. (7), be the rounds in which b∗j is the least winning
bid. Suppose that ∃t ∈ Tj such that r∗t < Q∗

j . Then, we wil show that in any t′ ∈ Tj in which

bOPT
m (B−i) is allocated less than r∗t units, i.e., r∗t′ ≤ r∗t , the 1-uniform bidding policy

(wr∗t
1+γ , r

∗
t

)
is

allocated at least r∗t′ units.
Observe that

(wr∗t
1+γ , r

∗
t

)
∈ P⋆

1 , so it is UF. If r∗t = 0, the result is trivially true. Fix any j ∈ [m]

and consider the set of rounds in Tj . As r∗t < Q∗
j , by Lemma 6, p(βt) = b∗j . So, for any t′ ∈ Tj such

that r∗t′ ≤ r∗t ,

β
−(r∗

t′ )

−i,t′ ≤ b∗j ≤
wr∗t

1 + γ
.

Here, the first inequality holds as b∗j is the least winning bid for round t′ and the second one holds
as RoI constraints are valid for bOPT

m (B−i) for round t. From the first and the last expressions, we
conclude that

(wr∗t
1+γ , r

∗
t

)
is allocated at least r∗t′ units.

A.7 Proof of Lemma 5

From Eq. (12) of the main text, for any b ∈ P⋆
m(B−i), we have:

T∑
t=1

Vi(b,β
t
−i) ≥

∑
j∈N∗

∑
t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
+

∑
j∈N̂

∑
t∈Tj

Vi

(( wQj

1 + γ
,Qj

)
,βt

−i

)
.

Substituting the lower bounds from Lemma 4,

T∑
t=1

Vi(b,β
t
−i) ≥

∑
j∈N∗

(
WQ∗

j
|Tj,1|

)
+

∑
j∈N̂

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
. (31)

which gives:

PoUFm(B−i) ≤
V OPT
m (B−i)

maxb∈P⋆
m(B−i)

∑T
t=1 Vi(b;βt

−i)

(31)
≤ V OPT

m (B−i)∑
j∈N∗

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

) . (32)

Let N∗
0 , N̂0 be the partition of [m] that minimizes the RHS of (32). Then,

V OPT
m (B−i) =

T∑
t=1

1∑
ℓ=0

Vj,ℓ|Tj,ℓ| =
∑
j∈N∗

0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
+

∑
j∈N̂0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
.

(33)
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Consider a partition of [m] that differs from the maximizing partition (N∗
0 , N̂0) by exactly one

element, i.e., for some a ∈ N̂0, consider the following partition: (N∗
0 ∪ {a}, N̂0 \ {a}). By definition,∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+

∑
j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
≥

∑
j∈N∗

0∪{a}

(
WQ∗

j
|Tj,1|

)
+

∑
j∈N̂0\{a}

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
=⇒ Va,0|Ta,0|+W

Q̂a
|Ta,1| ≥ WQ∗

a
|Ta,1| . (34)

Now, for some b ∈ N∗
0 , consider the following partition: (N∗

0 \ {b}, N̂0 ∪ {b}). By definition,∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+

∑
j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
≥

∑
j∈N∗

0 \{b}

(
WQ∗

j
|Tj,1|

)
+

∑
j∈N̂0∪{b}

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
=⇒ WQ∗

b
|Tb,1| −W

Q̂b
|Tb,1| ≥ Vb,0|Tb,0| . (35)

Plugging in the values,

PoUFm(B−i)
(33)
≤

∑
j∈N∗

0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
(34)
≤

∑
j∈N∗

0

(
Vj,0|Tj,0|+WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
2Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
(35)
≤

∑
j∈N∗

0

(
2WQ∗

j
|Tj,1| −W

Q̂j
|Tj,1|

)
+
∑

j∈N̂0

(
2Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
=

2
{∑

j∈N∗
0
WQ∗

j
|Tj,1|+

∑
j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)}
−
∑m

j=1WQ̂j
|Tj,1|∑

j∈N∗
0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
= 2− θB−i ,

where

0 < θB−i =

∑m
j=1WQ̂j

|Tj,1|∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
Vj,0|Tj,0|+W

Q̂j
|Tj,1|

)
(34)
≤

∑m
j=1WQ̂j

|Tj,1|∑
j∈N∗

0

(
WQ∗

j
|Tj,1|

)
+
∑

j∈N̂0

(
WQ∗

j
|Tj,1|

)
=

∑m
j=1WQ̂j

|Tj,1|∑m
j=1WQ∗

j
|Tj,1|

(a)

≤ max
j∈[m]

W
Q̂j

WQ∗
j

≤ 1 ,

and (a) follows from Fact 1.

Fact 1 (Williamson and Shmoys (2011, pp. 25)). For positive numbers a1, . . . , ak and b1, . . . , bk,∑k
j=1 aj∑k
j=1 bj

≤ max
j∈[m]

aj
bj

.
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Finally,

PoUFm = max
B−i

PoUFm(B−i) ≤ 2−min
B−i

θB−i =: 2− θ,

where θ = minB−i θB−i ∈ (0, 1].

A.8 Proof of Theorem 6.1

We define the following metrics for any B−i:

Ratio-unim(B−i) :=
V ∗
m(B−i)

V ∗
1 (B−i)

, and Ratio-optm(B−i) :=
V OPT
m (B−i)

V OPT
1 (B−i)

.

So, Ratio-unim = maxB−i Ratio-unim(B−i) and Ratio-optm = maxB−i Ratio-optm(B−i).
We first derive bounds on Ratio-unim(B−i) and Ratio-optm(B−i) and then maximizing over
all B−i, we get the desired result. Note that the lower bound for Ratio-unim(B−i) holds true
as P⋆

1 ⊆ P⋆
m and the lower bound for Ratio-optm(B−i) holds true by definition of the Problem

(VM-optm).

Claim 3 (Upper bound on Ratio-unim(B−i) and Ratio-optm(B−i)). For any fixed B−i and
m ≥ 2, Ratio-unim(B−i) < m and Ratio-optm(B−i) < m.

A.8.1 Bound for Ratio-optm(B−i).

Fix some bid history B−i = [βt
−i]t∈[T ]. To show the upper bound, without loss of generality, assume

bOPT
m (B−i) = ⟨(b1, q1), . . . , (bm, qm)⟩. So, by invoking Lemma 8 (as bOPT

m (B−i) is feasible),

V OPT
m (B−i) =

T∑
t=1

Vi(b
OPT
m (B−i) ;β

t
−i) =

T∑
t=1

max
j∈[m]

Vi((bj , Qj);β
t
−i) .

Fact 2. Let a1, . . . , am ≥ 0, then maxj∈[m] aj <
∑m

j=1 aj unless ∃k ∈ [m] such that aj = 0,∀j ̸= k.

Consider the two following cases:
Case 1. Suppose, ∃t ∈ [T ] such that maxj∈[m] Vi((bj , Qj);β

t
−i) <

∑m
j=1 Vi((bj , Qj);β

t
−i). Then,

V OPT
m (B−i) <

T∑
t=1

m∑
j=1

Vi((bj , Qj);β
t
−i)

=
m∑
j=1

T∑
t=1

Vi((bj , Qj);β
t
−i)

≤
m∑
j=1

max
b

T∑
t=1

Vi(b;β
t
−i) = mV OPT

1 (B−i) (36)

where in Eq. (36), the maximum is taken over all 1-uniform feasible bidding policies for B−i.
Case 2. Suppose for all t ∈ [T ], maxj∈[m] Vi((bj , Qj);β

t
−i) =

∑m
j=1 Vi((bj , Qj);β

t
−i) and define

k = argmaxj∈[m] Vi((bj , Qj);β
t
−i). So,

V OPT
m (B−i) =

T∑
t=1

Vi((bk, Qk);β
t
−i) ≤ max

b

T∑
t=1

Vi(b;β
t
−i) = V OPT

1 (B−i) . (37)
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In Eq. (37), the maximum is taken over all 1-uniform feasible bidding policies for B−i. By Prob-
lem (VM-optm), V OPT

m (B−i) ≥ V OPT
1 (B−i). So, in Case 2, V OPT

m (B−i) = V OPT
1 (B−i). From

the two cases, we conclude that V OPT
m (B−i)

V OPT
1 (B−i)

< m for any B−i. Maximizing over all B−i, we get the
desired result.

A.8.2 Bounds on Ratio-unim(B−i).

Fix a bid history B−i = [βt
−i]t∈[T ]. To show the upper bound, without loss of generality, assume

b∗
m(B−i) =

〈(
wQ1
1+γ , q1

)
, . . . ,

(
wQm
1+γ , qm

)〉
. So, by invoking Lemma 3,

V ∗
m(B−i) =

T∑
t=1

Vi(b
∗
m(B−i),β

t
−i) =

T∑
t=1

max
j∈[m]

Vi

(( wQj

1 + γ
,Qj

)
;βt

−i

)
.

Henceforth, the proof proceeds identical to that for establishing the upper bound for Ratio-optm(B−i),
with the exception that in Eq. (36) and Eq. (37), the maximum is taken over the UF bidding policies
in P⋆

1 , instead of all feasible bidding policies. Thus, we conclude that V ∗
m(B−i)

V ∗
1 (B−i)

< m. Maximizing over
all B−i, we get the desired result.

A.9 Proof of Corollary 7.1

Let b =
〈(wQ1

1+γ , q1
)
, . . . ,

(wQk
1+γ , qk

)〉
be a nested UF policy in P⋆

m where k ∈ [m]. Hence, for any
B−i = [βt

−i]t∈[T ], by Lemma 3, we have

max
b∈P⋆

m

T∑
t=1

Vi(b,β
t
−i) = max

b∈P⋆
m

T∑
t=1

Vi

(〈( wQ1

1 + γ
, q1

)
, . . . ,

( wQk

1 + γ
, qk

)〉
,βt

−i

)
= max

b∈P⋆
m

T∑
t=1

max
ℓ∈[k]

Vi

(( wQℓ

1 + γ
,Qℓ

)
,βt

−i

)
= max

S⊆[M ]:|S|≤m

T∑
t=1

max
ℓ∈S

Vi

(( wℓ

1 + γ
, ℓ
)
,βt

−i

)
.

B Tight Lower Bounds

B.1 Tight Lower Bound for Theorem 5.2 (For m = 1)

In this section, we construct a bid history, B−i and valuation curve v (equivalently the P⋆
m) for

which the upper bound on PoUFm, presented in Theorem 5.2, is tight. Recall that for any choice of
B−i, PoUFm(B−i) ≤ 2− θB−i , where θB−i ≤ maxj∈[m](WQ̂j

/WQ∗
j
). To minimize θB−i , we choose a

valuation curve that is very weakly decreasing. We then set the competing bids such that Q̂j ≪ Q∗
j

for all j ∈ [m]. Finally, we determine the values of |Tj,0| and |Tj,1| for which the upper bound is tight.
See the definition of these quantities in Section 5.1, where the first part of the theorem is proven.

We present the case when m = 1 below. The case for m ≥ 2 is deferred to Appendix B.2.
Although the main idea for both the cases are the same, for m ≥ 2, the construction is more involved,
and hence presented separately (see details in Appendix B.2). Formally, for any δ ∈ (0, 1/2], we
design a bid history, B−i, and valuation vector, v for which PoUF1 ≥ 2− δ.

35



Let M = 2 ⌈1/δ⌉. Suppose v = [1, v, · · · , v] ∈ RM , target RoI γ = 0 and v = 1 − 4ϵ where
ϵ = δ−1/M

4(1−1/M)
< δ

4 . Observe that ϵ ∈ (0, 1/8) as δ ≤ 1/2. Let T = M and K = M + 1. The bid
history is defined as:

β
−(j)
−i,t =


1− ϵ, if t ≤ M − 1 and j = 1

C, if t ≤ M − 1 and 2 ≤ j ≤ K

ϵ, if t = M and 1 ≤ j ≤ K

,

where C ≫ w1. The bid history is presented in Table 2.

Table 2: Bid history, B−i, that achieves the 2-approximation asymptotically for m = 1. Here C ≫ w1

and ϵ > 0 is a small real number.

t = 1 t = 2 · · · t = M − 1 t = M

C C · · · C ϵ
...

... · · ·
...

...

C C · · · C
...

1− ϵ 1− ϵ · · · 1− ϵ ϵ

Notice that the constructed B−i contains M − 1 rounds with high competition (where the bidder
can acquire at most 1 unit), while there is one round with minimal competition, allowing the bidder
to obtain any desired number of units. In such instances, 1-uniform UF bidding policies of the
form (wq, q) do not perform well universally on all rounds. This is because under the 1-uniform UF
bidding policies of the form (wq, q), as q increases, despite the increasing demand (i.e., q), the bid
value wq decreases, thereby reducing the likelihood of acquiring a higher number of units.

Computing V OPT
1 (B−i). Note that no feasible bidding policy can be allocated more than 1

unit in the first M − 1 rounds and M units in the final round. We claim that bOPT
1 (B−i) = (1,M).

Observe that bOPT
1 (B−i) is allocated 1 unit in each of the first M − 1 rounds and M units in the

final round. Hence, it is allocated the maximum number of units possible. To verify that bOPT
1 (B−i)

is feasible, notice that for ∀t ∈ [M − 1], p(βt) = 1 ≤ w1 = 1. For round t = M , as K > M ,
p(βt) = ϵ ≤ 1− 4ϵ < wM = λ · 1 + (1− λ) · (1− 4ϵ) where λ = 1/M , implying that bOPT

1 (B−i) is
feasible. So, V OPT

1 (B−i) = M + v(M − 1).
Computing the optimal policy in P⋆

1 . Here, we argue that the optimal policy in P⋆
1 is

(w1, 1) = (1, 1). Observe that the policy (1, 1) is allocated 1 unit in each round. Hence, it obtains a
total value of M .

As β
−(1)
−i,t = 1− ϵ > 1− 2ϵ = w2, for t = 1, 2, . . . ,M − 1, bidding (wq, q) for q ≥ 2 does not get

any value in the first M − 1 rounds. Bidding (wq, q) gets exactly q units in round M as wq > ϵ for
any q ≥ 2. So, for 2 ≤ q ≤ M , the total value obtained by bidding (wq, q) is 1+ (q− 1)v < q. Hence,
V ∗
1 (B−i) = M , which is the value obtained by the UF bid (w1, 1). So,

PoUF1 ≥
V OPT
1 (B−i)

V ∗
1 (B−i)

=
M + v(M − 1)

M
=

2M − 1− 4ϵ(M − 1)

M
= 2− δ .

36



B.2 Tight Lower Bound for Theorem 5.2 (For m ≥ 2)

In this section, we design a bid history B−i and valuation vector, v such that for any δ ∈ (0, 1/2],
PoUFm ≥ 2− δ. By definition, for any B−i and m ≥ 2,

PoUFm ≥ V OPT
m (B−i)

V ∗
m(B−i)

>
V OPT
m (B−i)

mV ∗
1 (B−i)

, (38)

where the second inequality follows directly from the bounds on Ratio-unim(B−i) (see details in
Appendix A.8). So, instead of computing V ∗

m(B−i) directly which can be non-trivial, we obtain
V ∗
1 (B−i) and show that the bound is tight.

B.2.1 Construction of B−i.

We first decide all the parameters.

• Fix m ≥ 2 and any integer N ≥ 2
⌈
1
δ

⌉
.

• Let M = N2m−1. Consider T = N2m−1 rounds and K = N2m−1 + 1 units in each auction.

• Let ϵ′ = mδ/(2m−1)−1/N
2(1−1/N) < δ

2 ≤ 1
4 . Set ϵ such that ϵ′ = ϵN2m−1(N2m−1 + 1).

Consider a valuation vector v = [1, v, · · · , v] such that v = 1− 2ϵ′, and target RoI γ = 0. Partition
the N2m−1 rounds into 2m partitions such that the first partition has 1 round and the jth partition
has N j−1 − N j−2 rounds for 2 ≤ j ≤ 2m. Each partition has identical competing bid profile
submitted by other bidders. In particular,

1. The first partition (containing one round) has all the bids submitted by others as wN2m−1+1+ ϵ.

2. If j > 1 and j is odd, for the jth partition (of size N j−1 − N j−2), the smallest N2m−j + 1
winning competing bids are wN2m−j+1 + ϵ and the remaining bids are C ≫ w1.

3. If j > 1 and j is even, for the jth partition (of size N j−1 −N j−2), the smallest N2m−j winning
competing bids are wN2m−j+1 + ϵ and the remaining bids are C ≫ w1.

We present an example for such a bid history in Table 3.

Table 3: Example of bid history, B−i achieving 2-approximation asymptotically for m = 2. Each
round in the same partition has identical competing bid profile. Total number of units in each
auction is K = N3 + 1.

Partition 1 Partition 2 Partition 3 Partition 4
t = 1 t ∈ [2, N ] t ∈ [N + 1, N2] t ∈ [N2 + 1, N3]

0 bids are C N3 −N2 + 1 bids are C N3 −N bids are C N3 bids are C
N3 + 1 bids are wN3+1 + ϵ N2 bids are wN2+1 + ϵ N + 1 bids are wN+1 + ϵ 1 bid is w2 + ϵ

B.2.2 Computing bOPT
m (B−i).

We make the following claim about the optimal m-uniform bidding policy for the constructed B−i.
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Lemma 10. For the aforementioned B−i, bOPT
m (B−i) = ⟨(b1, q1), . . . , (bm, qm)⟩ where

(bj , qj) =

{
(1, N) , if j = 1(
wN2j−2 , N2j−1 −N2j−3

)
, if 2 ≤ j ≤ m.

(39)

Furthermore,

V OPT
m (B−i) = N2m−1 + (2m− 1)(N2m−1 −N2m−2)v .

Proof. Proof. We begin by a crucial observation that the bid history does not allow obtaining more
than N2m−j units in the jth partition irrespective of the number of bids submitted by the bidder. To
verify this, note that, the maximum number of units that can be allocated to any bidding policy in
the jth partition is either N2m−j or N2m−j + 1 (depending on if j is even or odd). Suppose contrary
to our claim, the bidder is allocated N2m−j + 1 units in the some round t in the jth partition by
bidding some b. Let βt = (b,βt

−i) be the complete bid profile. So, p(βt) ≥ wN2m−j+1 + ϵ but
xi(β

t) = N2m−j + 1 indicating that the RoI constraint is violated, which verifies our claim.
So, the total number of units, Ntotal, that can be obtained by the bidder across the auctions is:

Ntotal ≤ N2m−1 +
2m∑
j=2

N2m−j(N j−1 −N j−2) = 2mN2m−1 − (2m− 1)N2m−2 =: Nmax.

Now, we compute the the number of units obtained by bidding bOPT
m (B−i) and show that it is

allocated Nmax units across all the auctions, demonstrating that it is the optimal bidding strategy.
Consider any auction in the jth partition. The lowest winning bid in the bid profile is wN2m−j+1+ϵ.

Note that the unique bid values (ignoring the quantity for the sake of brevity) in bOPT
m (B−i) are

b = {1, wN2 , . . . , wN2m−2}. We claim that the winning bid values of bOPT
m (B−i) in the jth partition

are b̂ = {1, wN2 , . . . , wN2m+2⌊−j/2⌋}. This is true because the least bid value in b̂ is greater than
wNm−j+1 + ϵ, i.e.,

wN2m+2⌊−j/2⌋ − (wN2m−j+1 + ϵ) ≥ wN2m−j − (wN2m−j+1 + ϵ)

=
1− v

N2m−j(N2m−j + 1)
− ϵ =

2ϵN2m−1(N2m−1 + 1)

N2m−j(N2m−j + 1)
− ϵ ≥ ϵ > 0 .

Let Nj denote the number of units allocated to bOPT
m (B−i) in each auction in the jth partition.

There are two cases:

(a) for j odd, recall that for the jth partition (of size N j−1 − N j−2), the smallest N2m−j + 1
winning competing bids are wN2m−j+1 + ϵ and the remaining bids are C ≫ w1. Then,

Nj = N +

m− j−1
2∑

ℓ=2

(N2ℓ−1 −N2ℓ−3) = N2m−j .

(b) For j even, recall that for the jth partition (of size N j−1−N j−2), the smallest N2m−j winning
competing bids are wN2m−j+1 + ϵ and the remaining bids are C ≫ w1.

Nj = min

N2m−j , N +

m+1− j
2∑

ℓ=2

(N2ℓ−1 −N2ℓ−3)

 = min{N2m−j , N2m−j+1} = N2m−j .
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Here, the minimum is taken over two quantities as the first quantity is the number of finite competing
bids in any round t in the jth partition and the second quantity represents the total demand of the
winning bids in bOPT

m (B−i). So, the total number of units obtained across all rounds:

N(bOPT
m (B−i)) = N2m−1 +

2m∑
j=2

N2m−j(N j−1 −N j−2) = 2mN2m−1 − (2m− 1)N2m−2.

As this is the maximum number of units that can be obtained by the bidder, bOPT
m (B−i) is optimal.

The total value obtained by bidding bOPT
m (B−i) is

V OPT
m (B−i) = 1 + (N2m−1 − 1)v +

2m∑
j=2

(N j−1 −N j−2)(1 + (N2m−j − 1)v)

= N2m−1 + (2m− 1)(N2m−1 −N2m−2)v .

B.2.3 Computing V ∗
1 (B−i)

Recall that we chose to compute V ∗
1 (B−i) and then invoke the bounds on Ratio-unim(B−i), instead

of directly evaluating V ∗
m(B−i).

Lemma 11. For the aforementioned B−i, b∗
1(B−i) = (1, 1) and V ∗

1 (B−i) = N2m−1.

Proof. Proof. The basic idea is to enumerate the total units (value) that can be obtained by bidding
(wq, q) for q ∈ [N2m−1] and then finding the maximum of those values. As q can be exponential in
m, we exploit the structure of the bid history to compute the objective in an efficient manner.

Suppose q = 1. The maximum number of units (value) that can be obtained by bidding (1, 1) is
trivially N2m−1, So, (1, 1) obtains a total value N2m−1.

Suppose q ≥ 2. Furthermore, assume N2m−j < q ≤ N2m−j+1, for some 2 ≤ j ≤ 2m. Consider
any bid of the form (wq, q). Bidding (wq, q) does not obtain any units in the partitions indexed
by j, j + 1, . . . , 2m as wq is strictly less than the least winning competing bids in those partitions,
i.e., wq ≤ wN2m−j+1 < wN2m−ℓ+1 + ϵ, for any ℓ ∈ {j, j + 1, . . . , 2m}. So, if N2m−j < q ≤ N2m−j+1,
(wq, q) gets no units in

2m∑
ℓ=j

N ℓ−1 −N ℓ−2 = N2m−1 −N j−2 auctions.

In the remaining N j−2 auctions it can win at most q units. So, the maximum value obtained by
(wq, q) for any given q ≥ 2 is

N j−2(1 + (q − 1)v) ≤ N j−2(1 + (N2m−j+1 − 1)v) = N j−2 + (N2m−1 −N j−2)v < N2m−1,

where the last inequality holds as v < 1. Hence, b∗
1(B−i) = (1, 1) and V ∗

1 (B−i) = N2m−1.

Hence, from Lemma 10, Lemma 11 and Eq. (38)

PoUFm >
V OPT
m (B−i)

mV ∗
1 (B−i)

=
N2m−1 + (2m− 1)(N2m−1 −N2m−2)v

mN2m−1

=
2mN2m−1 − (2m− 1)N2m−2 − 2ϵ′(2m− 1)(N2m−1 −N2m−2)

mN2m−1
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= 2− 2m− 1

m

( 1

N
+ 2ϵ′

(
1− 1

N

))
= 2− δ ,

where the last step follows by substituting the value of ϵ′ and thus concludes the proof.

B.3 Tight Lower Bound for Theorem 6.1

In this section, we construct a bid history B−i and valuation vector, v such that for any δ ∈ (0, 1/2],
Ratio-optm ≥ m− δ and Ratio-unim ≥ m− δ. The same example serves both the purposes.

B.3.1 Construction of B−i.

We first decide all the parameters.

• Fix m ≥ 2 and any integer N ≥
⌈
m
δ

⌉
.

• Let M = Nm−1. Consider T = Nm−1 rounds and K = Nm−1 units in each auction.

• Let ϵ′ = δ/(m−1)−1/N
2(1−1/N) < δ

2(m−1) ≤
1
4 . Set ϵ such that ϵ′ = ϵNm−1(Nm−1 + 1).

Let the valuation vector be v = [1, v, · · · , v] such that v = 1 − 2ϵ′, and target RoI, γ = 0.
Partition the Nm−1 rounds into m partitions such that the first partition has 1 round and the jth

partition has N j−1 −N j−2 rounds for 2 ≤ j ≤ m. Each partition has identical competing bid profile
submitted by the other bidders. In particular,

1. The first partition (containing one round) has all the competing bids to be wNm−1+1 + ϵ.

2. For 2 ≤ j ≤ m, the jth partition (of size N j−1 − N j−2), the smallest Nm−j + 1 competing
winning bids are wNm−j+1 + ϵ and the remaining bids are C ≫ w1.

We present an example for such a bid history in Table 4.

Table 4: Example of bid history, B−i achieving 4-approximation asymptotically for m = 4. Each
round in the same partition has identical competing bid profile. Total number of units in each
auction is K = N3.

Partition 1 Partition 2 Partition 3 Partition 4
t = 1 t ∈ [2, N ] t ∈ [N + 1, N2] t ∈ [N2 + 1, N3]

0 bids are C N3 −N2 − 1 bids are C N3 −N − 1 bids are C N3 − 2 bids are C
N3 bids are wN3+1 + ϵ N2 + 1 bids are wN2+1 + ϵ N + 1 bids are wN+1 + ϵ 2 bids are w2 + ϵ

B.3.2 Identifying bOPT
m (B−i) (equivalently b∗

m(B−i))

We make the following claim about the optimal m-uniform (UF) bidding policy for B−i.

Lemma 12. For the aforementioned B−i, bOPT
m (B−i) = b∗

m(B−i) = ⟨(b1, q1), . . . , (bm, qm)⟩ where

(bj , qj) =

{
(1, 1) , if j = 1(
wNj−1 , N j−1 −N j−2

)
, if 2 ≤ j ≤ m

. (40)

Furthermore,

V OPT
m (B−i) = V ∗

m(B−i) = Nm−1 + (m− 1)(Nm−1 −Nm−2)v .
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Proof. Proof. We begin by a crucial observation that the bid history does not allow obtaining more
than Nm−j units in the jth partition irrespective of the number of bids submitted by the bidder.
To verify this, suppose contrary to our claim, that the bidder is allocated Nm−j + 1 units in the
some round t in the jth partition by bidding some b. Let βt = (b,βt

−i) be the complete bid profile.
Hence, p(βt) ≥ wNm−j+1 + ϵ but xi(β

t) = Nm−j + 1 indicating that the RoI constraint is violated
which verifies our claim.

So, the total number of units, Ntotal, that can be obtained by the bidder across the auctions is:

Ntotal ≤ Nm−1 +

m∑
j=2

Nm−j(N j−1 −N j−2) = mNm−1 − (m− 1)Nm−2 := Nmax.

Now, we compute the number of units obtained by bidding bOPT
m (B−i) and show that it

is allocated Nmax units across all the auctions, showing that it is the optimal bidding strategy.
Moreover, bOPT

m (B−i) also exhibits a nested structure indicating that it is also UF which implies
that bOPT

m (B−i) = b∗
m(B−i). Hence, the feasibility of bOPT

m (B−i) is satisfied.
To show bOPT

m (B−i) is optimal, consider any auction in the jth partition. The lowest winning
competing bid is wNm−j+1 + ϵ. Note that the unique bid values (ignoring the quantity for the sake
of brevity) in bOPT

m (B−i), provided in Eq. (40), are b = {1, wN , . . . , wNm−1}. We claim that the
winning bid values of bOPT

m (B−i) in the jth partition are b̂ = {1, wN , . . . , wNm−j}. Again recall
that for 2 ≤ j ≤ m, for the jth partition (of size N j−1 −N j−2), the smallest Nm−j + 1 competing
winning bids are wNm−j+1 + ϵ and the remaining bids are C ≫ w1. And here, the least bid value in
b̂ is greater than wNm−j+1 + ϵ, i.e.,

wNm−j − (wNm−j+1 + ϵ) =
1− v

Nm−j(Nm−j + 1)
− ϵ =

2ϵNm−1(Nm−1 + 1)

Nm−j(Nm−j + 1)
− ϵ ≥ ϵ > 0 .

Moreover, observe that the bidder is allocated the maximum number of units demanded for
each of the bid value in b̂. So, the number of units in each auction in the jth partition by bidding
bOPT
m (B−i) is

Nj = 1 +

m−j+1∑
ℓ=2

(N ℓ−1 −N ℓ−2) = Nm−j .

Hence, the total number of units obtained across all rounds:

N(bOPT
m (B−i)) = Nm−1 +

m∑
j=2

Nm−j(N j−1 −N j−2) = mNm−1 − (m− 1)Nm−2 = Nmax.

As this is the maximum number of units that can be obtained by the bidder, bOPT
m (B−i) is optimal.

The total value obtained by bidding bOPT
m (B−i) is given by

V OPT
m (B−i) = 1 + (Nm−1 − 1)v +

m∑
j=2

(N j−1 −N j−2)(1 + (Nm−j − 1)v)

= Nm−1 + (m− 1)(Nm−1 −Nm−2)v .
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B.3.3 Computing bOPT
1 (B−i) (equivalently b∗

1(B−i)).

In this section, we identify the optimal 1-uniform bidding (UF) policy for the bid history, B−i.

Lemma 13. For the constructed B−i, bOPT
1 (B−i) = b∗

1(B−i) = (1, 1) and V OPT
1 (B−i) = V ∗

1 (B−i) =
Nm−1.

Proof. We use a standard divide-and-conquer strategy to find the optimal 1-uniform bidding policy.
In particular, we study the following problem: for a fixed q, what is the optimal value of b? As q
can be exponential in m, we exploit the structure of the bid history to compute the objective in an
efficient manner.

Suppose q = 1. The maximum number of units (value) that can be obtained by bidding (b, 1) is
trivially Nm−1. Setting b = 1 achieves this upper bound. So, (1, 1) obtains a total value Nm−1.

Suppose q ≥ 2. Furthermore, assume Nm−j < q ≤ Nm−j+1, for some 2 ≤ j ≤ m.

• We first show that b > wNm−j+1 + ϵ is not a feasible bid value for chosen values of q. Suppose
b > wNm−j+1 + ϵ. Consider any round t in the partition j. Observe that bidding (b, q) obtains
q ≥ Nm−j + 1 units in this round as b > wNm−j+1 + ϵ, which is the least winning competing
bid. Then, the clearing price is at least wNm−j+1 + ϵ (which is the least winning competing
bid for that round) but it is allocated exactly Nm−j + 1 units. Hence, the RoI constraint is
violated.

• Next, we show that if b < wNm−j+1 + ϵ, the bidder is not allocated any units in several rounds.
Specifically, if b < wNm−j+1 + ϵ, then (b, q) is not allocated any units in the partitions indexed
by j, j + 1, . . . ,m as b is strictly less than least winning competing bid.

So, if Nm−j < q ≤ Nm−j+1, the optimal bidding policy (b, q) gets no units in
m∑
ℓ=j

N ℓ−1 −N ℓ−2 = Nm−1 −N j−2 auctions. (41)

In the remaining N j−2 auctions it can win at most q units. So, the maximum value obtained by
the optimal bidding policy (b, q) for any given q ≥ 2 is

N j−2(1 + (q − 1)v) ≤ N j−2(1 + (Nm−j+1 − 1)v) = N j−2 + (Nm−1 −N j−2)v < Nm−1,

where the last inequality holds as v < 1. Hence, bOPT
1 (B−i) = (1, 1). Moreover, observe that

bOPT
1 (B−i) ∈ P⋆

1 , so bOPT
1 (B−i) = b∗

1(B−i) and V OPT
1 (B−i) = V ∗

1 (B−i) = Nm−1.

Substituting values from Lemma 12, and Lemma 13

Ratio-optm ≥ Ratio-optm(B−i) =
V OPT
m (B−i)

V OPT
1 (B−i)

=
Nm−1 + (m− 1)(Nm−1 −Nm−2)v

Nm−1

=
mNm−1 − (m− 1)Nm−2 − 2ϵ′(m− 1)(Nm−1 −Nm−2)

Nm−1

= m− (m− 1)
( 1

N
+ 2ϵ′

(
1− 1

N

))
= m− δ ,

where the last step follows by substituting the value of ϵ′ and thus concludes the proof. Similar
analysis for Ratio-unim also yields Ratio-unim ≥ m− δ.
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B.4 Tight Lower Bound for Theorem 6.2

In this section, we present a bid history B−i and valuation vector, v such that for any δ ∈ (0, 1/2],
V OPT
m (B−i)
V ∗
1 (B−i)

> 2m− δ. Recall that for showing tightness of the bound for Theorem 5.2 for any general

m, we computed a lower bound to PoUFm of the form V OPT
m (B−i)
mV ∗

1 (B−i)
. We consider a valuation curve

and a bid history that has a structure identical to the one presented in Appendix B.2 but with the
following modified parameters,

• Fix m ≥ 2 and any integer N ≥ 2
⌈
2m
δ

⌉
.

• Let M = N2m−1. Consider T = N2m−1 rounds and K = N2m−1 + 1 units in each auction.

• Let ϵ′ = δ/(2m−1)−1/N
2(1−1/N) < δ

2 ≤ 1
4 . Set ϵ such that ϵ′ = ϵN2m−1(N2m−1 + 1).

Consider a valuation vector v = [1, v, · · · , v] such that v = 1 − 2ϵ′, and target RoI γ = 0.
Substituting the values from Lemma 10 and Lemma 11,

max
B−i

V OPT
m (B−i)

V ∗
1 (B−i)

≥ V OPT
m (B−i)

V ∗
1 (B−i)

=
N2m−1 + (2m− 1)(N2m−1 −N2m−2)v

N2m−1

=
2mN2m−1 − (2m− 1)N2m−2 − 2ϵ′(2m− 1)(N2m−1 −N2m−2)

N2m−1

= 2m− (2m− 1)
( 1

N
+ 2ϵ′

(
1− 1

N

))
= 2m− δ ,

where the last step follows by substituting the value of ϵ′ and thus concludes the proof.

C Simulation Details

C.1 Reconstructing Individual Bid Data

We obtained the publicly available auction data for Tmax = 443 EU ETS emission permit auctions
held in 2022 and 2023 (EEX, 2023). For each auction indexed by t ∈ [Tmax], we have the following
relevant information: the minimum bid (btmin), the maximum bid (btmax), the average of the bids (btavg),
the median of the bids (btmed), and the number of bid-quantity pairs submitted (nt

sub). We normalized
the bids to be in [0, 1]. For all rounds t, btavg ≈ btmed (linear regression yields coefficient 1.01 and
intercept −0.008).

Upon further investigation, we observed that, except a few, a significant number of auctions had
either btmin ≈ btavg ≪ btmax (Type I) or btmin ≪ btavg ≈ btmax (Type II). As btavg ≈ btmed,∀t, we deduce
that for Type I, most of the bids are concentrated in the interval [btmin, 2b

t
avg− btmin] whereas for Type

II, most of the bids are in the interval [2btavg − btmax, b
t
max]. We posit that for Type I (resp. Type II)

auctions, f ∈ (0, 1) fraction of the bids (nt
sub) are in [btmin, 2b

t
avg − btmin] (resp. [2btavg − btmax, b

t
max])

and the 1 − f fraction of bids are in [2btavg − btmin, b
t
max] (resp. [btmin, 2b

t
avg − btmax]). If for Type I

(resp. Type II) auctions, 2btavg > btmin + btmax (resp. 2btavg < btmin + btmax), we assume that all the bids
are uniformly present in the interval [btmin, b

t
max]. With these assumptions, we generate individual

bid data for each auction by sampling uniformly from these intervals.
After generating the individual bid data, we compute the metrics for the reconstructed bids

(say b̂tavg) for each auction and reject those with a relative error of at least δ (tolerance). For our
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simulations, we set δ = 0.05. We perform a grid search for f to maximize the number of auctions
where the metrics of the reconstructed data are within δ relative error of the actual metrics, and
obtain that f = 0.97. Following this pre-processing, we have reconstructed individual bid data for
T = 341 auctions. This reconstructed data is used in our simulations in Section 8.

C.2 Formulating the Integer Linear Program

Characterizing (VM-unim). By Corollary 7.1, we have that for any B−i = [βt
−i]t∈[T ],

max
b∈P⋆

m

T∑
t=1

Vi(b,β
t
−i) = max

S⊆[M ]:|S|≤m

T∑
t=1

max
ℓ∈S

Vi

((
wℓ

1 + γ
, ℓ

)
,βt

−i

)
.

Let vj,t = Vi

((
wj

1+γ , j
)
,βt

−i

)
, i.e., the value obtained by bidding

(
wj

1+γ , j
)

in round t for any

j ∈ [M ] and t ∈ [T ]. Then, (VM-unim) can be equivalently formulated as:

max

T∑
t=1

M∑
j=1

vj,t · yj,t (VM-unim-ILP)

such that
M∑
j=1

yj,t = 1, ∀t ∈ [T ]

yj,t ≤ xj , ∀t ∈ [T ], j ∈ [M ]

M∑
j=1

xj ≤ m,

xj , yj,t ∈ {0, 1}. ∀t ∈ [T ], j ∈ [M ]

We note that the formulation in Eq. (VM-unim-ILP) is a special case of the m-facility location
problem (Cornuéjols et al., 1983) and is identical to the float maximization problem in bank
accounts (Cornuéjols et al., 1977; Williamson and Shmoys, 2011, pp. 47). Both the problems are not
known to have any polynomial time algorithm that results in an exact optimal solution.

An Uniform Upper Bound for V OPT
m (B−i) . For any bid history, B−i = [βt

−i]t∈[T ], suppose

bOPT
m (B−i) is allocated rt units in any round t. Then, by Lemma 9 (1), we know that

(
wrt
1+γ , rt

)
also gets rt units in round t. So,

Vi(b
OPT
m (B−i) ;β

t
−i) = Vi

(( wrt

1 + γ
, rt

)
;βt

−i

)
≤ max

b∈P⋆
1

Vi(b;β
t
−i)

=⇒ V OPT
m (B−i) =

T∑
t=1

Vi(b
OPT
m (B−i) ;β

t
−i) ≤

T∑
t=1

max
b∈P⋆

1

Vi(b;β
t
−i) =

T∑
t=1

max
j∈[M ]

vj,t,

which is the optimal objective value of (VM-unim-ILP), when solved without the cardinality con-
straints, i.e.,

∑M
j=1 xj ≤ m.
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