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Abstract

We examine the impact of energy transition policies on the U.S. markets of three
critical minerals used for batteries, namely cobalt, lithium and nickel. To achieve
this, we estimate three Structural Vector Autoregressive models, disentangling sup-
ply and demand shocks at the aggregate and mineral-specific level. We then perform
a structural forecast analysis to study mineral price patterns under various demand
and supply scenarios up to 2030. Specifically, we investigate the implications of the
U.S. Inflation Reduction Act (IRA) and the associated policies aimed at boosting
the domestic production of these critical minerals, combining them with various
demand projections. Our findings suggest that, whereas cobalt and lithium prices
could decrease conditional on the successful implementation of energy transition
policies in the U.S., nickel price most likely will remain high.
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els, conditional forecasting, Inflation Reduction Act.
JEL Classification: C53, Q02, Q31, Q4, Q54

1 Acknowledgments

We thank Christopher R. Knittel and Robert Pindyck for insightful talks at CEEPR-
MIT, Emanuele Ciola, Nicola Comincioli, Daniele Valenti and Sergio Vergalli for useful
discussions at Fondazione Eni Enrico Mattei, Federico Giri and Riccardo (Jack) Lucchetti
from Universita Politecnica delle Marche for inviting us to hold a seminar and for the
valuable feedbacks, all the participants of the 2nd Workshop “Research Dialogues on the
Complexity of the Energy Transition” and of the 4th Italian Workshop of Econometrics
and Empirical Economics.

*Corresponding author. Contact information: filenia.romani@feem.it


mailto:ilenia.romani@feem.it

2 Introduction

To address the issue of global warming — and all the related risks in terms of economic
output reduction (Dell et al. 2014)), environment degradation (Piguet, [2022)) and world-
wide increase in migration flows (Marotzke et al., 2020) — there is widespread consensus
on the necessity to drastically reduce global greenhouse gas emissions. One of the chal-
lenges in fighting climate change is to limit the increase in global temperatures to no
more than 1.5°C, implying a consequent reduction of C'Oy emissions till the reach of net
zero by half century.

In order to achieve the Net Zero Emission (NZE) target by 2050, raw materials inputs
for the energy transition will need to increase by approximately five times. The shift
towards materials related to the energy transition is mainly triggered by clean energy
technologies, which require minerals and metals in much greater quantities than their
fossil fuels-based counterparts ]

Critical raw materials are becoming rapidly dominant in the development of different
technologies and several countries have already studied plans to secure access to them.
In fact, many of these resources are concentrated in few geographical areas, often subject
to geopolitical tensions and mostly in developing countries. Two notable policies for
boosting access to clean technologies are the U.S. 2022 Inflation Reduction Act, affecting
the entire North America with energy and climate subsidies, and the European 2023
Critical Raw Materials Act, aimed at increasing and diversifying the EU’s critical raw
materials supply] It is clear that governments have been acknowledging the importance
of mineral requirements for the energy transition, as well as of strengthening domestic
supply chains given the increasing dependence on foreign sources for many processed
versions of critical minerals. Focusing on the U.S., the White House has been favoring an
expansion of domestic mining, production, processing, and recycling of critical minerals
and materials Pl

Particular attention is devoted to a selection of battery minerals, namely cobalt,
lithium and nickel. These materials are key ingredients for the energy transition, as they
are extensively used in rechargeable lithium-ion batteries, and are strategic for the devel-
opment of electric vehicles (EVs) and grid-scale energy storage. Given their importance,
they are included in the U.S. classification of critical minerals by the U.S. Geological
Survey (USGS) and in the Inflation Reduction Act.

In this article, we want to investigate the impact that the energy transition will have
on the selected U.S. mineral markets in the forthcoming years. We focus on the three
aforementioned battery minerals and develop three separate structural VAR (SVAR)
models, one for each mineral market. The objective is to study the impact of selected
policies related to the energy transition, considered as a mix of mineral-specific demand
and supply shocks, on the future trajectories of minerals’ prices. In fact, for each battery
mineral market, we identify four separate structural shocks, distinguishing between aggre-
gate supply and demand shocks, concerning the whole U.S. business cycle, and between
mineral-specific supply and demand shocks, which are driven solely by the commodities’

TEA Report, “The Role of Critical Minerals in Clean Energy Transitions”.

2See H.R.5376 - Inflation Reduction Act of 2022, 117th Congress (2021-2022) for the U.S., while refer
to: proposal for a regulation of the European Parliament and of the Council establishing a framework
for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU)
168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/102, for the European case.

3U.S. Department of Energy, “America’s Strategy to Secure the Supply Chain for a Robust Clean
Energy Transition” and “Inflation Reduction Act - Energy Security and Climate Change Investments”.



market fundamentals.

The extreme importance of the nexus between energy shocks and economic activity
is well documented within the literature, usually with a focus on the oil market. Stud-
ies disentangling oil supply and demand shocks in the global economy employ different
identification schemes, such as exclusion restrictions (e.g. Kilian) 2009), sign restrictions
(e.g. [Baumeister and Peersman| 2013)), sign restrictions complemented with bounds on
the impact price elasticity of oil supply (e.g. Kilian and Murphy}, 2012) or with narra-
tive sign restrictions (as in |Antolin-Diaz et al. 2021). An alternative Bayesian approach
is proposed by Baumeister and Hamilton (2019), who impose priors on the structural
parameters rather than on the structural impulse responses.

On the contrary, focus on the relationship between the energy transition and critical
minerals is still limited, even if rapidly growing, due to the increasing relevance of the
topic (see e.g. Srivastava and Kumar, 2022, for a review on the topic). Narrowing the
focus down to minerals prices, Bastianin et al. (2023) assess the high degree of connected-
ness among the different markets of energy transition metals. |Boer et al.| (2023) develop
separate global SVAR models for selected battery minerals disentangling metal-specific
demand and supply shocks. They further study price trajectories within a structural sce-
nario analysis focusing on the material requirements of the energy transition. |Considine
et al| (2023) quantify the effects of shocks driven by selected critical mineral prices on
global oil price and macroeconomic variables, such as inflation.

Our article is the first to focus on the U.S. critical minerals market, and to consider
both mineral-specific and aggregate supply and demand shocks. In this regard, we are
able to advance a model particularly suitable for the evaluation of the U.S. policies of
the energy transition. In fact, we also conduct a structural forecast exercise to quantify
the effects of selected energy transition-related U.S. policies on the evolution of prices in
battery minerals markets.

By combining different policy analyses and comparing them with other institutions’
scenarios (i.e. S&P), we attempt to model the future impact of the energy transition
on the prices of the studied minerals. To do so, we condition forecasts of the selected
minerals prices on different sequences of structural shocks up to 2030. The comparison
of the different outcomes provides a useful indication of the range of possible future price
evolution under different policy mixes.

The rest of the article is structured as follows. Section [3| presents the dataset and
some stylized facts on the critical minerals markets. Section |4f describes the econometric
framework, with a focus on the identification of the model and structural forecasts. Sec-
tion [0 presents and discusses the empirical results. Section [6] concludes. An Appendix
completes the paper, divided in three sections. Appendix [A] further deepens the discus-
sion on the U.S. markets of cobalt, lithium and nickel, with a short historical account
of the price and production dynamics. Appendix [B| presents details on the selected U.S.
policies on critical minerals. Finally, Appendix [C| provides the results of some robustness
analyses.

3 Data

We focus on three metals, namely cobalt, lithium and nickel. These are all i) battery-
related materials, i7) classified by the U.S. Government as critical minerals and i) subject
of several U.S. policies aimed at securing domestic supply chains, IRA included.



We estimate three SVAR models — one for each mineral of interest — based on yearly
data. For each SVAR model, we collect four variables, namely y,; = [z:, T, Ggt, Dol
where t = 1,...,T denotes the time index and g = 1,...,3 selects the mineral of in-
terest among cobalt, lithium and nickel. The variables x; and m; are the U.S. industrial
production growth and the inflation rate, respectively, whereas g,; expresses the percent
change in U.S. production of mineral g and p,; its corresponding U.S. real price. We also
include an exogenous variable, z}, namely the world industrial production index (WIP)
with the exclusion of the American one, in order to isolate the U.S. economy from the
other ones. The U.S. does not export a significant amount of the analyzed commodities.
For instance, in 2022 U.S. total exports accounted for only 2.9%, 2.01% and 0.95% of the
global consumption of cobalt, lithium and nickel, respectively. Nevertheless, the U.S. is
76% import-reliant for cobalt, 56% for nickel and 25% for lithium, which highlights the
importance of accounting for the global business cycle/]]

The variables are constructed from the following annual time series spanning from
1958 to 2022. We collect the U.S. Industrial Production index from OECD and construct
x as the first difference of log-transformed series.ﬂ Similarly, to construct =y we aggregate
the log-differenced Industrial Production indexes of all the countries considered in the
WIP index developed in |Baumeister and Hamilton (2019)), with the exception of the
U.S., and use the same weighting scheme.ﬁ U.S. inflation is obtained as the log-difference
of the Consumer Price Index, also used to deflate mineral pricesﬂ The variables g,
and p, . are the log-differenced transformations of the production and price of cobalt,
lithium and nickel. The production and price series are sourced from the USGS (see [Kelly
et al [2005). Note that for cobalt and nickel we consider both primary and secondary
production. Moreover, data are incomplete for the lithium production series, since USGS
withholds some in order to avoid disclosing company proprietary data. We therefore
proxy missing U.S. production levels by subtracting imports and adding exports to the
domestic lithium consumption. The reliability of this method is confirmed by checking
the obtained variable against the one of Miatto et al.| (2020)), providing a complete dataset
for the American lithium market.

Table in Section [A] of the Appendix reports the summary statistics of the key
variables, both in levels and log differences. The choice of using log-differenced series is
justified by the need to rule out unit roots (see Table [A2]in Section [A] of the Appendix,
showing that most of them are non-stationary in levels and all of them are stationary
when considered in differences) and to obtain direct estimates of minerals elasticities.

Figures [1] and [2| plot the time series of production and prices, respectively, both in
levels and in logarithmic transformation. From these figures we can infer patterns and
highlights about the history of these markets in the U.S., which is briefly outlined in
Section [A] of the Appendix. What emerges is a price scenario characterized by spikes
and high volatility, which clearly constitute an issue in terms of affordability, i.e. the
provision of resources at stable prices (see [Yergin, 2006, for a detailed discussion).

1Data come from [USGS (2023). The specification without the inclusion of the exogenous variable
provides similar results. However, including global industrial production as a control helps in identifying
the shocks.

>Source: https://data.oecd.org/industry/industrial-production.htm.

6We refer the reader to Appendix E of [Baumeister and Hamilton (2019) for the list of included
countries and to the OECD Composite Leading Indicators for the weights, available at: https://www.
oecd.org/sdd/leading-indicators/oecd-composite-leading-indicators-clis.htm.

“CPI, all items for the United States: https://fred.stlouisfed.org/series/CPIAUCSL.
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Figure 1: U.S. production of cobalt, lithium and nickel, expressed in levels, metric tons
(left panel) and log difference (right panel)
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Figure 2: U.S. real prices of cobalt, lithium and nickel, expressed in levels (left panel)
and log difference (right panel)

4 Econometric framework

To disentangle the shocks driving minerals production and price dynamics, we rely on a
model which builds on — and extends — the standard three variables commodity market
SVAR model including commodity-specific production, its price and real economic ac-
tivity (see, e.g. Kilian) 2009). A specification of this kind is adopted also by |Kilian and
Murphy| (2012) for the oil market, which allows to disentangle oil supply shock, aggre-
gate demand shock and oil-specific demand shock by assuming the sign of each variable
response to every structural shock. We follow the authors by complementing short-run
sign restrictions with elasticity bounds, but enhance the model with the inclusion of U.S.
inflation. This allows us to distinguish between aggregate demand and supply shocks
instead of modeling a generic economic activity shockﬁ A similar assumption is adopted,
in the context of energy shocks, in (Casoli et al.| (2022).

To the best of our knowledge, only [Boer et al.| (2023) has built a SVAR model for
specific critical minerals’ global market fundamentals, namely for cobalt, copper, lithium
and nickel. Their specification differs from ours in that they do not include inflation
but a generic other commodity price as an anchor variable, and identification is achieved
without the inclusion of elasticity bounds.

Our analysis consists in the estimation of three mineral-specific SVAR models and a
consequent exercise of structural forecasting.ﬂ Considering mineral g, a VAR model in

8This shock is sometimes called an aggregate demand shock, but this definition is misleading since
by the only inclusion of economic activity it is hard to establish if such shock is in fact determined by
aggregate supply or demand factors.

9We acknowledge the market interconnections among the different battery minerals, as documented



its reduced-form representation of order p = [ can be written as:

l
Ygt = Hg + Z Bg,lyg,tfl + 0g$;,t + Ug.t, (1)
p=1

Yoo (nX1) g :(nx1)  Byp:(nxn) O, (nxm)  ap,:(mx1)  ug.:(nx1).

As shown in Section [3| the vector y,; collects the n = 4 endogenous variables of the
system and zj, the m = 1 exogenous ones. B,; are the matrices of lagged coefficients
and wu,, collects white noise error terms such that E(ug,) = 0 and E(ug,u ;) = Q.
These shocks lack a structural interpretation, implying that additional information is
required to retrieve economically meaningful shocks.

Specifically, the structural representation of the VAR in Equation is given by:

l
Ay oYgr = g + Z AgiYgi-1+ Cyyy + Vg4, (2)
p=1

where A;éag = g, A;éAM = By, A;éCg =0, and Ay'v,; = uy,. The impact multiplier
matrix A;é contains the contemporaneous effects of the structural shocks v,; on each
endogenous variable of the system. The vector of serially and mutually uncorrelated
structural shocks implies a diagonal variance matrix such that E(vg,v,,) = ., which
is further normalized to be an identity matrix.

Under appropriate restrictions on A;é, it is possible to achieve identification of the
model and therefore to get economically interpretable structural shocks. Once vy, is
identified, it is straightforward to compute the impulse response functions and historical
decompositions by writing the Vector Moving Average representation of the model. At
this point, the structural forecasts are simply constructed as a forward iteration in time of
the historical decompositions, conditional on some hypothetical future events (see [Kilian
and Lutkepohl, [2017)).

Conditional forecasts are a key tool for policymakers to predict and compare possible
future outcomes under hypothetical scenarios. For example, they can be used to study
the path of selected variables under different policy regimes or to fix a policy target and
observe the responses of the system. A unified framework exploring conditional forecast-
ing (i.e. imposing given dynamics to the structural shocks) and structural scenarios (i.e.
conditioning together the path of one or more variables and a combination of structural
shocks) is provided in |Antolin-Diaz et al.| (2021); Chan et al.| (2023). The idea of imposing
a path on the observables dates back to Waggoner and Zha| (1999)), whereas the approach
of conditioning on future sequences of structural shocks is based on Baumeister and Kil-
ian| (2014). Within this work, we will focus on the latter procedure, that is, conditioning
on shocks. It is relevant to stress that, unlike the conventional forecasts, structural or
conditional forecasting do not aim at predicting the most likely outcome given the infor-
mation set, but rather at studying possible paths under the hypothesis that some specific
structural shocks are allowed to deviate from the unconditional distribution.

in |Bastianin et al.| (2023), but prefer to focus on separate models. Estimating a single large SVAR
model would imply increasing the number of endogenous variables and related parameters, which we
find hazardous given the relatively short sample.

0Tn our analysis, we set p = 1 in all the three models, as suggested by the Schwarz Bayesian and
Hannan-Quinn Information Criteria.



Denoting with M, ; the dynamic multipliers for a g mineral, i.e. the impulse responses
at a specific forecast horizon ¢, with + = 1.... h, it is possible to write the projection in
the future of a variable as the sum of two components:

0o h—1 0o
Yg,t+h = E My ivgtsn—i = E Mg ivgtn—i+ E Mg iV t+n—i (3)
i=0 i=0 i=h

in which the first term relates to the effect of future shocks from time ¢t+1 to t4+h and the
second to past shocks.[l;r] Since the latter term is already known at time ¢, the common
practice when computing conditional forecasts is to set it at zero, whereas the former
term of Equation (3|) reflects the forecast of y, ., at time ¢ and can be used to construct
different forecast scenarios. The starting point is to define a “baseline scenario”, which
corresponds to the point unconditional forecast and is simply obtained by setting all the
structural shocks from vy ;41 to vg 4 to zero. The intuition is that their unconditional
expectation is zero by definition. Then, point conditional forecasts are created by feeding
in a sequence of future structural shocks which deviate from zero. The sequences of
structural shocks we input in the conditional forecast are specific to the energy transition
and related U.S. policies (see Section . After hypothesizing specific shock sequences,
we check how they will contribute to the future path of a generic endogenous variable
relative to the baseline scenario. The difference between the two paths provides the effect
of energy transition shocks in the forthcoming years.

4.1 Identification

Within our model, we disentangle four different structural shocks for each mineral market:
mineral-specific supply and demand shocks, and aggregate supply and demand shocks.
Given the low frequency of our data, we prefer to depart from recursive identification
approaches and rely on static sign restrictions to identify the three SVAR models in
F_7] This approach, developed by |[Canova and De Nicolo| (2002); Faust (1998); |Uhlig
(2005) implies to: i) set the expected signs of the coefficients in the structural impact
multiplier matrix, grounded on economic theory; ii) obtain many candidates for this
matrix (note that sign restrictions allows to achieve set — and not point — identification)
and 7i7) retain only the set of solutions that provide a matrix A;(l) coherent with the
specified sign restrictions. Specifically, in our case the algorithm keeps drawing models
until 100 admissible draws are reached. Note that our model is not fully identified, as
some impact responses are left unrestricted without any sign specification.

Furthermore, following Kilian and Murphy| (2012, [2014), we combine sign restrictions
with bounds on the magnitude of the short-run mineral supply and demand elasticities.

Estimation of conventional sign restricted models and models mixing zero and sign
restrictions — which we use in some robustness exercises — is based on the algorithms
proposed by |Arias et al| (2018); [Rubio-Ramirez et al/ (2010)[7]

Within our identification strategy, the four shocks have the following effects.

"Note that M, o = A;(l).

12\We remind that imposing zero restrictions in the production equation implies a vertical supply curve
at the first horizon. Although this is plausible in determined settings — for instance with monthly data
— we believe that a similar assumption is too strong to hold for an entire year.

13We refer the reader to Kilian and Liitkepohl| (2017); Lucchetti| (2015) for technicalities of the com-
putational workflow.



Mineral-specific supply shock: a positive mineral-specific supply shock will by con-
struction increase that mineral’s production and decrease its price. At the same
time, it instantaneously increases the domestic industrial production, while the
impact on U.S. inflation is left unrestricted;

U.S. aggregate demand shock: this positive shock is driven by unexpected variations
in the American business cycle driven by the demand side, hence affecting the
demand for all commodities. A positive aggregate demand shock stimulates U.S.
industrial production, mineral production, domestic real price of the mineral and
inflation;

mineral-specific demand shock: a positive demand shock specific to the mineral’s
market raises on impact the real price of that mineral and stimulates its production.
Further, it decreases industrial production, as standard within the energy shocks
literature. This restriction implies that the mineral-specific demand shock is driven
by a speculative component (see Kilian and Murphy, 2014). The impact on U.S.
inflation is left unrestricted, both to maintain a more agnostic perspective and
because, unlike crude oil, the three analyzed mineral prices have a negligible weight
in the total Consumer Price Index. This choice is coherent with the results of
Considine et al.| (2023)), finding that a positive shock to critical mineral prices does
not have a significant impact on U.S. inflation;

U.S. aggregate supply shock: this is defined as an unexpected positive shock raising
U.S. industrial production and lowering domestic inflation. Decreasing inflation
also reduces the mineral price, whereas we do not assume any restriction in the
impact response of mineral production. In fact, decreasing mineral prices should
discourage suppliers to increase production, but at the same time, the industrial
production stimulus could push the production of individual commodities.

The set of imposed sign restrictions is summarized in Table [I]

Table 1: Identification strategy with sign restrictions

Variables Mineral specific supply shock Aggregate demand shock Mineral specific demand shock Aggregate supply shock
Mineral production + + +

Industrial production + + +

Real price of mineral + + -

Inflation +

Furthermore, we combine these restrictions with short-term bounds on the elasticity
of minerals demand and supply. This further narrows down the range of admissible
structural models, helping in achieving economically meaningful structural shocks. )
[4,0]1,3
[A;i,é]s,:%’
that is the ratio between the mineral production response to a mli]neral-speciﬁc demand
[A, 0l
[A35]3,1
the mineral production response to a mineral-specific supply shock and the price response
to the same shock, is the impact elasticity of mineral g demand with respect to its price.

The bounds we impose on these short-run elasticities are at the same time econom-
ically plausible and, given the limited amount of literature on the topic, relatively soft.

A survey by Dahl (2020) reports that an average of the estimated values of the short-run

The impact elasticity of mineral g supply with respect to its price is defined as

shock and the price response to the same shock. Conversely, , the ratio between



demand elasticity of cobalt is —0.165, of lithium —0.540, of nickel —0.032. Boer et al.
(2023) document a short-run global supply elasticity of cobalt is 0.4, of lithium 1.7, of
nickel 0.7. We adopt a conservative approach in imposing short-run supply elasticity to
be lower than 1 and short-run demand elasticity to be greater than —1.

4.2 Conditional forecasting

The final step is to model the future impact of the energy transition on the prices of the
minerals of interest.

In terms of modeling the energy transition, we depart from Boer et al. (2023), who
consider mineral consumption scenarios as given, and then find a series of exogenous
mineral-specific demand shocks that match those scenarios. We decide to follow an al-
ternative approach. Specifically, this is necessary because their study is about global
mineral markets, and hence the authors can make the assumption of equality between
global consumption and production. Within our U.S. model, we prefer to acknowledge
the role of imports and exports, hence using consumption scenarios for determining pro-
duction paths becomes less trivial. Moreover, we consider structural forecasts on the
assumption that the energy transition will be driven by demand and supply structural
shocks. While |Boer et al. (2023 acknowledge that the global energy transition can be
considered as a result of a shock on the demand side, we believe that, from a country
perspective, it originates from a combination of demand and production pushed shocks.
In fact, the U.S. is developing a massive effort to expand domestic supply precisely to
decrease foreign dependence, within a broader plan of industrial policies.

We employ different strategies for constructing future paths of demand and supply
shocks up to 2030. They are based on hypothetical sequences reflecting thought exper-
iments, backed as much as possible with empirical evidence (either from the authors’
calculations, or referring to other sources’ forecasts). Specifically, we ask ourselves what
would happen to mineral prices if mineral demand shocks impacted prices themselves
more or less strongly, and supply shocks increased domestic minerals’ production just
enough to alleviate import dependency, versus the IRA-induced stronger increase in pro-
duction.

We build specific scenarios to address those questions, and feed them into Equation
(3) as future flow shocks (of supply or demand), while setting all other future structural
shocks equal to their zero expected value. The cases we consider are listed below.

a) Historical demand increase: to reconstruct the energy transition dynamics which
lead to positive mineral-specific demand shocks, we select the sequence of shocks of
the years 2010-2015 and suppose that the same path will continue in the following
years.

b) Higher demand increase: we assume that the biggest demand increase will happen
in the following two years, hence we modify the previous scenario by imposing a
higher increase in 2023 and 2024, setting their growth rates equal to the average of
the last five years’ price growth.

c) Ambitious supply increase: we compute the expected increase in domestic minerals’
production driven by government funding. In order to map the U.S. extraction and
processing projects of cobalt, lithium and nickel that will be developed in the years
to come, we review their development studies and releases. We compile a list of



these projects, which highlights the target year and the targeted annual production
(see the policy analysis in Appendix [B| for more details). By cumulating each
mineral’s annual exceptional production across projects, we calibrate the expected
supply shock matching with the desired production driven by public policies up to
2030.

d) Lower supply increase: we conjecture the expected increase in U.S. production
driven by the government’s stated goal of import independency. Official U.S. doc-
uments define import reliance as imports (M) being greater than 50 percent of
annual consumption (C'), for most of the minerals designated as critical, including
cobalt, lithium and nickel. Considering this approximation: C' = P+ (M — X)) (con-
sumption equals the sum of domestic production and net imports) and that imports
cannot exceed 50 percent of the consumption, we calculate the new production ca-
pacity necessary to maintain the same level of consumption P* = C' — (M* — X),
with M* = C'/2. In this manner we are able to compute an approximation of the
production increase which would allow the U.S. to stop being import reliant. We
therefore compute a supply shock compatible with this production approximation.

We compare each conditional forecast obtained with the five hypotheses listed above with
a benchmark scenario, defined from S&P Global Market Intelligence['] Specifically, we
use the U.S. price forecasts for lithium (2023-2027) and cobalt (2023-2030) concerning the
demand in passenger plug-in electric vehicles. Note that the demand for passenger plug-in
electric vehicles accounted for more than 70% of the overall total battery demand in the
last two years. As for nickel, we consider the primary nickel prices forecasts (2023-2030).

5 Empirical results

5.1 Impulse responses

In this section we illustrate the structural impulse responses of the minerals’ real prices
and production, as well as the CPI and the industrial production of the U.S., to each
structural shock. Figures[3] [dland [5]report the cumulated responses of all the 100 accepted
models identified by sign restrictions and elasticity bounds, for cobalt, lithium and nickel
markets respectively.

A mineral-specific supply shock (first columns of Figures and [5]) positively affects
mineral production, with no persistent effects for all the three markets. Conversely, this
shock has a negative and persistent effect on mineral prices of lithium and nickel, while
for cobalt the effect vanishes after 3 years . All the three mineral supply shocks positively
affect industrial production, but the effect reverts to zero after one year for a substantial
number of models. The effect of a positive and unexpected supply shock on the Consumer
Price Index, which is left unrestricted, is uncertain for all the three markets.

Aggregate demand shocks (second columns of aforementioned figures) have positive
impacts on both market-specific and aggregate variables. The effect on cobalt production
reverts to zero after three years, whereas it is still persistent after 5 years for cobalt prices.
The effects on lithium and nickel production and price is less persistent and becomes
indistinguishable from zero after 1 year. As expected, in all the three cases the effects of
increasing aggregate demand on CPI are very persistent for all the accepted models.

4Data accessed in January 2023.
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Mineral-specific demand shocks (third columns of Figures to display stronger and
more persistent effects on the prices rather than the production of all the three minerals.
The effect on industrial production becomes insignificant right after the first horizon,
while the effect on CPI is unclear.

Finally, an aggregate supply shock (displayed on the fourth column of each figure)
positively affects industrial production while decreasing the CPI. For each market, we do
not detect a clear effect on mineral production, while the effect on prices is negative and
not particularly persistent.

Comparing the effects of different shocks on minerals production, it emerges that ag-
gregate demand shock is the major driver in the cobalt and lithium markets, while nickel
production is equally affected by mineral-specific supply shocks. This reflects nickel’s
importance as a strategic commodity in a multitude of industries, with a well developed
and long-established market. On the contrary, U.S. lithium and cobalt markets have
historically been more marginal and are thus more subject to broad macroeconomic con-
ditions. Looking at metals prices, mineral-specific and aggregate demand shocks, together
with mineral-specific supply shocks, are all equally important drivers for the dynamics of
cobalt prices, whereas lithium and nickel prices are particularly and persistently affected
by own market specific supply shocks.

M5 -> cobat_prod 1D -> cobal_prod

S > Ig_usip D> W_usip D> 16_usip 25> 1d_usip

S -> cobalt_price 2D -> cobal_price MO > cobalt_prce 25> cobaltprice:

s> colld 20> il D> cplld 5> coild

Figure 3: Cumulated Impulse Response Functions for cobalt

Notes: MS, AD, MD and AS denote a mineral-specific supply shock, an aggregate demand shock, a mineral-specific
demand shock and an aggregate supply shock, respectively. The variables cobalt_prod, 1d_usip, cobalt_price and
cpi_1d represent cobalt production growth, the growth rate of U.S. industrial production, cobalt price growth and U.S.
inflation. The above definitions hold also for Figures @ and EL with the required modifications for price and production
labels.
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MS -> fthium_prod 2D > Ithium_prod MD > fithum_prod 25> liium_prod

S > Ig_usip D> d_usip D > 16_usip 25> 1d_usip

15 -> Ithium_price 2D -> lttium_prce D > Ithum_price A5 > ithum_price

lags

S > colld 0> il D > cpila 5> cpild

Figure 4: Cumulated Impulse Response Functions for lithium

1S -> nickel_prod 2D -> rickel_prod M -> nickel_prod 25> ickel_prod

1S -> lg_usip D> ld_uslp D > 1g_usp 45> 1dusip

M5 -> nickelprice: MD > ickel_price 25 > rickel_price

S > g 0> i D> cpild

Figure 5: Cumulated Impulse Response Functions for nickel
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Finally, from the impact responses of each mineral production and price to mineral-
specific shocks, we can compute the short-run supply and demand price elasticities. The
results are reported in Figure [6] where it is shown that the three minerals markets do not
exhibit strong differences in terms of estimated supply elasticities, whereas elasticities of
demand vary across markets. The medians of the short-run supply elasticities are 0.512,
0.526 and 0.504 and the ones of the short-run demand elasticities are —0.610, —0.442 and
—0.487 for cobalt, lithium and nickel, respectively. These elasticities imply quite elastic
supply curves if compared with those of markets of other energy commodities such as
crude oil.

0.5 —

-0.5 F . .
+

Cobalt Lithium Nickel Cobalt Lithium Nickel
Elasticity of supply Elasticity of demand

Figure 6: Short-run demand and supply elasticities: cobalt, lithium and nickel prices

Notes: The box represents the middle 50 percent of the data, while each whisker extends for 1.5 times the interquartile
range. The median is represented by the line, while the mean by the red “+” .

5.2 Robustness analysis

The results reported above can be compared with those of some robustness checks in
which we change the sample period, the included variables or the identification scheme in
order to assess the validity of our main specification. In the first exercise, we substitute
the American Industrial Production Index with U.S. GDP, which is a broader measure of
economic activity.ﬁ The second robustness exercise focuses on a relaxed version of the
identification strategy presented in Section 4] Table [I which consists in the same sign
restrictions set without the inclusion of elasticity bounds. The third analysis restricts the
time interval by focusing only on the last 50 years (i.e. 1972 to 2022). This sub-sample
includes the period in which the first oil shocks were affecting the U.S. economy, but
discharges the precedent years in which the overall economic context was particularly
different. The fourth robustness analysis considers a model without the inclusion of the
inflation variable and adopts the sign restrictions identification strategy reported in Table
, in line with Kilian and Murphy (2012).

15Sources: World Bank and OECD National Accounts data files: https://data.worldbank.org/
indicator/NY.GDP.MKTP.CD and https://stats.oecd.org/index.aspx?queryid=60705.
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Table 2: Alternative identification strategy: sign restrictions, three-variables model with-
out U.S. inflation

Variables Mineral specific supply shock Aggregate demand shock Mineral specific demand shock
Mineral production + + +
Industrial production + + _
Real price of mineral - + +

This specification implies that a positive mineral-specific supply shock instantaneously
increases that mineral production, decreases its price, and increases industrial production;
a positive aggregate demand shock, affecting the demand for all the commodities, raises
minerals’ production, stimulates industrial production and increases the real price of
minerals on impact; finally, a positive mineral-specific demand shock raises the real price
of that mineral and stimulates its production, but lowers industrial production.

Finally, as a last robustness check, we consider the model developed in |Boer et al.
(2023) by replacing the inflation variable with an additional commodity price which
should behave as an “anchor”. The intuition is that the domestic real price of this
commodity is contemporaneously affected by aggregate demand shocks, but not by the
mineral-specific supply and demand shocks. In other words, the selected commodity is
not a substitute good for the critical minerals under study. By combining zero and sign
restrictions as presented in Table [3] this specification does not assume any sign on the
impact of a mineral-specific demand shock on industrial production, which is left unre-
stricted. We select as potential anchor variables the U.S. domestic prices of cotton, sugar
and wheat, sourced from [MacDonald and Meyer| (2018]).

Table 3: Alternative identification strategy: mix of sign and zero restrictions, four-
variables model without U.S. inflation and with cotton price as anchor variable

Variables Mineral specific supply shock Aggregate demand shock Mineral specific demand shock ~ Anchor shock (residual)

Mineral production f } f

Industrial production + +
Real price of mineral - } f
Real price of anchor 0 + 0 +

We report the results obtained with each robustness exercise in Figures [CI] IC3]
[C4] and [CH] of Section [C] of Appendix C. These figures focus on the lithium market only
and display the responses of mineral’s production and price to all the structural shocks
of interest[19]

Overall, the identification strategy we propose appears robust to each additional anal-
ysis. In particular, Figure shows that substituting the Industrial Production Index
with GDP results in a slightly better identification of the aggregate supply shock on
lithium price. However, we find that with the baseline specification we obtain a narrower
set of responses of lithium price and production to mineral-specific supply and mineral-
specific demand shocks, which are the main focus of this analysis. As for the second
robustness exercise, relaxing the additional constraint on short-run elasticities, we find
that the main differences compared to the baseline results are, as expected, on the re-
sponses of lithium production to mineral-specific supply and demand shocks, which are
enclosed in a narrower set. We therefore conclude that the inclusion of elasticity bounds
enhances the identification of the structural shocks. As reported in Figure the other

16Results concerning cobalt and nickel alternative models are available from the authors upon request.
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responses are in line with the main results. Figure shows that no particular differ-
ences emerge when restricting the sample, with the exception of a sharper identification
of the effect of a mineral-specific supply shock on lithium price. In Figure [C4] in which
we compare the baseline specification with an alternative model excluding inflation, we
can assess the importance of disentangling aggregate supply and demand shocks for the
U.S. economy. In fact, with the specification including three variables we cannot properly
infer the nature of an economic activity shock, thus obtaining interesting comparative
results[”"| First, with the baseline specification we better identify the effect of an aggre-
gate demand shock on lithium production, while the alternative model without inflation
restricts the set of admissible responses of lithium price. Second, the response of lithium
price to mineral-specific demand shocks identified with the alternative model presented in
Table [2| is permanent and positive, whereas the baseline results become more uncertain
after 3 years. Third, the inclusion of inflation in the model and the disaggregation of
economic activity shock into demand and supply-driven components improves the iden-
tification of mineral-specific supply shocks, especially for what concerns the response of
price. Finally, we compare impulse responses obtained with the baseline model and the
one inspired from Boer et al.| (2023 in which identification of the structural shocks is
reached with the inclusion of an anchor variable. Figure shows that, using cotton
price as anchor variable, the resulting responses of lithium production and prices to all
the structural shocks are consistent with those referring to the main model [’ Neverthe-
less, we note that with our specification a mineral-specific demand shock has a positive
effect on prices that is absorbed only after 3 years, whereas in model identified following
Table |3| the price response becomes immediately uncertain.

Since the results are robust to the several alternative specifications presented, we
proceed with the rest of the analysis focusing on the baseline model.

5.3 Historical decompositions

As common among practitioners, we perform the historical decompositions considering
the single impulse response functions that minimize the distance to the pointwise me-
dian (see Fry and Pagan, 2011). We therefore analyze the closest-to-median historical
decomposition, that is the cumulative effect of all structural shocks on minerals price and
production growth over time. The outcome is displayed in Figure [7] depicting the single
structural shocks contributions to the selected variables as colored histograms and the
stochastic component of the variables as continuous lines.

17For the sake of simplicity, the shock is denoted as an aggregate demand shock (AD) as often assumed
within the literature.
18Results obtained using wheat and sugar prices report negligible differences.
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(a) Historical decompositions of cobalt price (left) and production (right) rates of growth

HD for lithium_price (draw 3) HD for lithium_prod (draw 69)

1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017

MS == AS 3 MS == AS =3
AD lithium_price (stoch. component) AD lithium_prod (stoch. component)
MD 3 MD 3

(b) Historical decompositions of lithium price (left) and production (right) rates of growth

HD for nickel_price (draw 35) HD for nickel_prod (draw 36)

1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017

1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012 2017

MS = AS 3 MS AS 3
AD =l nickel_price (stoch. component) AD Em nickel_prod (stoch. component)
MD MD

(c) Historical decompositions of nickel price (left) and production (right) rates of growth
Figure 7: Historical decompositions of minerals’ prices and production

Notes: MS, AD, MD and AS denote a mineral-specific supply shock, an aggregate demand shock, a mineral-specific
demand shock and an aggregate supply shock, respectively. The variables cobalt_price , lithium_price and
nickel_price represent the price growth of the three minerals, while cobalt_prod, lithium_prod and nickel_prod their

production growth.

The evolution of the mineral markets and the main historical events highlighted in
Appendix [A] provide interesting information to understand the prices and production

historical decompositions.
The left-hand side of Figure[7a] represents the closest-to-median historical decomposi-
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tion of the cobalt U.S. price growth. Overall, mineral-specific supply and demand shocks
are the most important drivers of price growth dynamics. Aggregate demand shocks are
also crucial especially in explaining some of the price drops (e.g. the 2008 negative peak),
whereas the role of aggregate supply shocks is marginal for the whole analyzed sampleF_g]
Moreover, in recent times the role of mineral-specific supply shocks in explaining price
peaks has slightly increased, whereas in the past aggregate demand shocks were relatively
more important. This reflects the fact that the U.S. supply of cobalt was entirely based
on secondary materials production until recent years, and more importantly that previ-
ous price drops and spikes were mainly driven by events happening in the Democratic
Republic of Congo (e.g. the DRC cobalt crisis in 1975), a dominant cobalt producer
worldwide as highlighted in Appendix [A] The right-hand side of Figure [7a] represents
instead the historical decomposition of the U.S. cobalt production growth. In this case,
aggregate supply shocks are the predominant driver of cobalt production growth for the
whole sample.

The left-hand side of Figure [7h]depicts the historical decomposition of the U.S. lithium
price growth. While in the past aggregate demand shocks were positively contributing
to lithium price growth, the low domestic lithium-specific demand was balancing this
upward push. This is observed from the beginning of the sample to the 1990s, when the
U.S. was the leading producer and user of lithium worldwide (see Appendix . As for
cobalt, also in the lithium case aggregate supply shocks contribution is almost negligible
to explain price growth, while more important in explaining production growth (right
panel). The most recent upward trends in price growth are associated with mineral-
specific demand shocks, in line with the increased interest towards lithium-ion batteries
during the last years. In terms of production growth, it emerges the important role of
aggregate demand shocks. The U.S. lithium production declined notably starting from
the 1980s and throughout all the 1990s, not because of a lithium supply shock but rather
due to industrial policies shifting the production to countries with cheaper labor (e.g.
Chile).

Figure [7¢| represents the historical decompositions of the nickel price (left-hand side)
and production growth (right-hand side). Overall, price and production growth fluctua-
tions are driven by a balanced mix of shocks. A detailed explanation of the U.S. nickel
market main episodes is reported in Appendix [A] where it is outlined that the price
peak registered in 1987-88 is a combination of increased demand for stainless steel and
a drop of production. This is consistent with the results of the historical decomposition,
which relates the price growth sudden increment to a combination of aggregate demand,
nickel demand and nickel supply shocks. Looking at the production growth historical
decomposition, the most interesting result is the irrelevance of mineral-specific supply
shocks in explaining the overall dynamics from 1999 to 2012. This period coincides with
the years in which the U.S. has not produced any primary nickel. Starting from 2013,
corresponding to the start of production in the nickel-copper Eagle Mine, mineral specific
supply shocks gain more importance.

Finally, some considerations hold for all the three mineral markets, as they are re-
lated to U.S. economic conditions in general. Specifically, we observe price and production
growth drops after 9/11/2001, especially in the case of lithium and nickel markets. These
drops presumably reflect the high uncertainty characterizing the period and are explained,

19 As shown in Figures and |5} the effect of aggregate supply shocks on minerals production is not
properly identified. Therefore, we center our discussion on the other structural shocks and acknowledge
the fact that this residual may capture other external factors.
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with the exception of cobalt market, by aggregate demand shocks in a considerable por-
tion. Aggregate demand shocks also play a relevant role in explaining the 2007-8 financial
crisis, accompanied with a drop in both production (especially lithium and nickel) and
prices (mostly cobalt and nickel). Aggregate demand shocks contribute to lower prices
and production growth also in 2020, due to Covid-19 trade and production restrictions.

5.4 Structural forecasts

As anticipated in Section [4.2] we can construct conditional point forecasts corresponding
to particular hypothetical scenarios.

As discussed, it is convenient to define a baseline forecast (i.e. the unconditional
forecast in which all future structural shocks are set to zero) and plot the difference
between each conditional forecast and the baseline scenario. In Figure [§ we plot the
percent deviations from the baseline forecast for scenarios a to d up to 2030, as outlined
in Section [4.2] for cobalt, lithium and nickel prices growth. Positive demand shocks
clearly imply an immediate price growth increase, while positive supply shocks lead to
decreasing prices. By construction, demand scenarios (a and b) lead to similar results in
terms of forecast variations among mineral prices, while production scenarios (¢ and d)
produce results which differ across the three selected markets. Specifically, lithium price
growth deviation is remarkably different with respect of nickel’s; with the former being
considerably affected in both scenarios and the latter only slightly. This result reflects
the strong emphasis that the strategic U.S. policies for the energy transition are placing
on lithium in particular. For instance, as reported in Appendix [B] out of the 11 projects
selected for this analysis, 7 are focused on lithium production. Nickel is quite at the
opposite side of the spectrum: the U.S. is already producing important quantities of this
mineral (especially from secondary production), reason for which government policies are
not particularly targeting production increments (scenario c), nor a strong increase is
needed in order to reduce the domestic import dependency (scenario d).

Additionally, Figure [9] illustrates different combinations of supply and demand sce-
narios. Specifically, the increase in production driven by U.S. policies such as the IRA is
matched with historic or higher demand increases (left panel). In parallel, the increase in
production necessary to address the issue of import dependency is matched with historic
or higher demand increases (right panel). The effect on prices of the production increase
resulting from IRA policies is particularly pronounced for lithium and cobalt, which ex-
hibit negative percentage changes in prices with both historic (top-left quadrant) and
high (bottom-left quadrant) demand increases. Instead, nickel price’s growth fluctuates
more around zero. As already anticipated, this suggests that neither the goal of import-
independence, nor the IRA-related policies are strong enough to drive nickel’s price down.
For all the minerals, the impact on price growth is almost negligible when production in-
creases just enough to alleviate import dependency and demand increases more than the
historical trend (bottom-right quadrant). This means that these two hypothetical shocks
balance each other. By contrast, the production increase driven by import independency
coupled with lower demand growth (top-right quadrant) drives nickel’s price up in 2023
(mostly due to the demand increase scenario), while it lowers the prices of cobalt and
mostly of lithium.

18



Historic di d increase

Higher d d increase

Cobalt
s— |_ithium
1r bl 1r Nickel |

= = datal
____""\_%

Percent
)
I
1
1
1
[}
1
1
I
L}
1
Percent
o

2 L L L L 2 L L L L
2020 2022 2024 2026 2028 2030 2020 2022 2024 2026 2028 2030

5 Production increase scenario (IRA) Pr ion increase scenario (Import Dependency)

Percent
IS)
]
1
1
1

€
151
O () pmm———
@
o

2 L L L L 2 L L L L
2020 2022 2024 2026 2028 2030 2020 2022 2024 2026 2028 2030

Figure 8: Forecast scenarios for minerals’ prices: percent deviations from baseline fore-
cast.
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Figure 9: Combinations of forecast scenarios for minerals’ prices: percent deviations from
baseline forecast

Finally, Figure displays the historical series along with the structural forecasts
up to 2030 for the prices of the three minerals. The left panel presents the projections
based on individual scenarios, namely (@) historical demand increase, (b) higher demand
increase, (c) increasing production driven by U.S. government policies such as the IRA,
and (d) increasing production driven by the goal of achieving import independence. Both
demand scenarios result in peaking prices, particularly pronounced in the case of lithium.
Specifically, with the higher demand increase scenario, lithium price “explodes”. This is
caused by the fact that lithium price in the most recent years (i.e. 2021 and 2022, when
the conditional forecast begins) is already exhibiting an exploding behavior, reaching un-
precedented levels. Supply scenarios also have particularly pronounced effects on lithium
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prices, pushing them close to zero, and to a lesser extent on cobalt prices. Nickel price,
instead, is less affected by production scenarios, due to the marginal attention the U.S.
government is devoting to this market development.

Despite considering these scenarios in isolation presents an interesting picture, a more
realistic situation would involve a combination of supply and demand forces. For instance,
a significant supply increase without a corresponding demand request is unlikely For this
reason, the right panel of Figure|10|displays combinations of demand and supply scenarios
together as already presented in Figure [9] and compares the different matches with the
S&P projections. In the case of cobalt market, supply rather than demand scenarios
have the most significant effect on price, which, as a consequence, keep decreasing quite
steadily, especially with IRA-driven production. Lithium price, already peaking in 2022,
has an extended peak in 2023, particularly pronounced in the case of higher demand
and IRA-driven supply scenario, and reverts to more credible levels starting from the
subsequent year. This is likely explained by the fact that, according to the funded
projects, additional lithium domestic production will not start until 2024. In contrast,
as predicted, the structural forecast of nickel prices is only moderately influenced by
supply scenarios. Given that the additional investment in the domestic production of the
mineral is quite restricted in both the IRA- and import-independency-driven production
scenarios, nickel price exhibits a path which follows more the demand-side scenarios.

Our structural forecasts are remarkably different from the S&P projections. It is
important to stress that S&P scenarios are unconditional, and hereby aim to offer the
price path which is most likely to happen in the future. Therefore, these forecasts provide
a suitable benchmark for comparing what would happen in the business-as-usual case
versus a successful implementation of the U.S. balanced policy mix targeting the energy
transition. Specifically, the implementation of the listed policies would keep the price of
cobalt and lithium relatively low in the forthcoming years. Instead, nickel price would
increase more with respect to the unconditional forecast, reflecting the lower interest in
financing development projects for this market.
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6 Concluding remarks

In this study, we have delved into the dynamics of some critical raw materials’ markets —
specifically cobalt, lithium, and nickel — within the evolving energy transition landscape
of the United States. The urgency to address global warming, environmental degrada-
tion, and greenhouse gas emissions, as well as the ambitious goal of achieving Net Zero
Emissions by 2050, has driven a significant surge in the demand for raw materials cru-
cial for clean energy technologies. This shift towards greener alternatives is contingent
on securing a sustainable supply of selected minerals and metals, thus driving the U.S.
government to a strategic implementation of ad hoc policies. Among these, of particular
relevance is the 2022 Inflation Reduction Act (IRA), which demonstrates the U.S. com-
mitment to strengthening domestic production and diversifying supply chains for critical
minerals through expanded mining, production, processing, and recycling.

Within this context, we have developed three distinct Structural Vector Autoregres-
sive models, one for each mineral market, to assess the impact of energy transition-related
policies on each mineral price. We have identified four distinct structural shocks, differen-
tiating between mineral-specific supply shocks, aggregate demand shocks, mineral-specific
demand shocks and aggregate supply shocks. To the best of our knowledge, this is the first
structural exploration of the U.S. critical minerals market, accounting for both mineral-
specific and aggregate economic shocks. We have also conducted a structural forecasting
exercise, quantifying the effects of selected energy transition-related U.S. policies on the
trajectory of battery mineral prices. Our forecasts are conditioned on various sequences
of structural shocks up to 2030, corresponding to defined scenarios, providing a com-
prehensive spectrum of potential futures. Specifically, we have examined four different
scenarios, and some combinations of them: (a) historical demand increase, (b) higher
demand increase, (¢) increasing production driven by U.S. government policies, e.g. the
IRA, and (d) increasing production driven by the goal of achieving import independence.

Our research yields two key takeaways. Firstly, different mineral markets exhibit
distinct dynamics, emphasizing the need to treat them as separate entities rather than a
homogeneous group. Secondly, different policy combinations lead to heterogeneous price
patterns over the forthcoming years. Our price forecasts are, by definition, conditional
on the chosen scenarios. This follows from the definition of a structural forecast, which
can be framed in the form of: “what would happen, if...?” and therefore does not provide
the most likely outcome. For example, if the U.S. experiences an increase in demand
which follows the historical trends, coupled by the ambitious production boost driven by
U.S. public investments, prices of cobalt and lithium will decrease steadily. Conversely,
nickel price is expected to remain high. This reflects the aim of U.S. policies, focused
on strengthening the domestic production of cobalt and lithium, whereas less effort is
devoted to nickel market expansion.

More research effort should be invested around the development of country-specific
scenarios. In fact, most of the studies — including IEA technical reports — provide demand
(and to a lesser extent, supply) estimations only at the global level (Calvo and Valerol,
2022; |Hund et al) 2023). Moreover, we acknowledge the importance of focusing on
conditional forecasts targeting specific national policies, thus providing a useful tool for
the evaluation of government strategies.

As the U.S. navigates the path toward cleaner energy, the insights around price dy-
namics gained from this study could provide valuable guidance for policymakers and
industry stakeholders.
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A Descriptive statistics

Table Al: Summary statistics for the U.S. market variables

Level Log Difference
Variable Mean Median  S.D. Min Max Mean Median S.D. Min Max
USIP 65.31 61.20 26.86 20.17 102.20  0.03 0.03 0.04 -0.12 0.11
WIP minus USIP 44.34 48.98 18.75 7.916 71.161 0.034 0.03 0.052 -0.11 0.26
Cobalt prod. 1518.00  1580.00  1014.00 89.00 3510.00  0.00 0.01 030 -1.43 1.08
Lithium prod. 2460.00  2036.00  1569.00 329.00 5448.00  0.01 0.02 030 -0.87 0.77
Nickel prod. 71679.00 62100.00 37898.00 17420.00 155100.00  0.03 0.03 0.15 -0.34 0.43
Cobalt price 196.10 152.30 116.40 95.07 734.30 0.01 -0.03 0.32 -0.81 0.78
Lithium price 32.34 30.35 16.50 7.48 126.40 0.01 0.00 024 -1.13 1.00
Nickel price 52.05 47.27 21.44 24.51 159.70 0.00 -0.02  0.25 -0.58 1.02

Notes: Industrial production (for both U.S. and the entire world) is an index set at 100 in 2017. Minerals’ production
data are expressed in metric tons, while price data in dollar per ton, inflation adjusted.

Table A2: Test statistics (first line) and associated P-values (second line) of the Aug-
mented Dickey-Fuller unit root test.

Variable Level Log Difference

ADF C ADF CT ADF CTT ADF C ADF CT ADF CTT

USIP -1.13 -2.88 -1.70 -6.07 -7.08 -7.02
0.71 0.17 0.91 0.00 0.00 0.00
WIP minus USIP -2.29 -1.65 -3.22 -5.04 -3.00 -0.09
0.18 0.77 0.20 0.00 0.13 0.99
Cobalt prod. -0.88 -3.38 -2.67 -4.63 -4.62 -4.82
0.80 0.05 0.47 0.00 0.00 0.00
Lithium prod. -1.72 -2.69 -0.12 -8.62 -8.53 -7.29
0.42 0.24 1.00 0.00 0.00 0.00
Nickel prod. -0.56 -2.46 -3.51 -8.12 -8.09 -6.98
0.88 0.35 0.11 0.00 0.00 0.00
Cobalt price -3.93 -3.91 -4.19 -7.50 -7.44 -4.23
0.00 0.01 0.02 0.00 0.00 0.02
Lithium price -0.21 0.74 -0.12 -2.94 -3.34 -5.32
0.93 1.00 1.00 0.04 0.06 0.00
Nickel price -3.04 -3.25 -3.96 -4.24 -4.21 -4.21
0.03 0.08 0.04 0.00 0.00 0.02

Notes: The test is performed with inclusion of a constant (ADF C), constant and trend (ADF CT) and constant and
quadratic trend (ADF CTT) testing down from 12 lags, for the seven level variables and the first differences of the
natural log values.

We present a brief historical account of the evolution of U.S. production and price
patterns of cobalt, lithium and nickel through time, in order to provide additional context
for Figures [I] and [2] as well as the historical decompositions in Section [5.3]

Regarding cobalt, the U.S. has not produced primary cobalt since 1972, when the
Missouri lead belt mines were shut down, until 2013, when the nickel-copper Eagle Mine in
Michigan began production. The positive trend displayed in the aforementioned Figures
relates to cobalt secondary (scrap) materials production, which accounts for most of the
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U.S. cobalt production. From a pricing perspective, it is fundamental to keep in mind that
the Democratic Republic of Congo (DRC) is the dominant producer, and, historically,
prices have been influenced by political and civil events in this country. The “cobalt
crisis” begun in 1975, the civil unrest in 1991, and the concerns about cobalt supply in
1996 all contributed to the several observed price spikes. A quick price collapse occurred
in 2002-03 due to lower demand given weak economic conditions and high uncertainty
following 9/11, as well as increased production in the previous years. In 2004, a decrease
in cobalt production caused a new price peak. The last huge negative peaks happened
in 2008-09 and 2019, driven by the increased demand for lithium-ion batteries, political
instability in DRC, global financial turmoils, and the Covid-19 outbreak (only concerning
the second peak). The current situation shows prices peaking right in 2022, due to
an increasing demand. According to Benchmark Mineral Intelligence, cobalt market
conditions have been weakening throughout 2023, with the growing global production
(especially in DRC and Indonesia) contributing to lower prices@ For what concerns the
current U.S. cobalt production, cobalt-bearing nickel has been produced in Michigan, and
nickel-copper-cobalt concentrates in Missouri. In October 2022, commissioning began at
a cobalt-copper-gold mine and mill in Idaho, where cobalt concentrate was expected be
the principal product, but the operations were halted in April 2023, presumably due to
the declining prices.

For what concerns lithium, the U.S. has been producing the metal since 1898 and was
among the dominant producers up to the 1990s, when new significant operations came
online in Chile and Argentina. Lithium demand was very low until the potential use of
lithium in batteries for electric vehicles was first discussed in the 1970s, causing prices
to begin rising, albeit only slightlyY| After 2010, when lithium’s use in battery applica-
tions greatly increased, prices have been trending upward, with a particularly steep pace
in recent years. In terms of production, the United States went from being the largest
primary producer and user of lithium in the world, to relying on imports of lithium in
chemicals and industrial products (notice the significant decline in domestic production
starting in the 1980s). This shift did not occur due to the exhaustion of domestic lithium
resources but rather as a direct consequence of U.S. corporations’ decision to move pro-
duction to countries with cheaper labor and more relaxed environmental regulations, such
as Argentina (Miatto et al., [2020). As of today, there is only one active lithium mine in
the U.S., that is the Silver Peak Mine in Nevada. However, other companies are starting
exploring lithium deposits in the U.S. and could potentially ramp up production in the
future, especially thanks to the opportunity offered by geothermal brines.

In contrast to cobalt and lithium, nickel is produced in larger quantities in the United
States. It is important to consider that nickel, besides being a key metal in the energy
transition, is also a critical commodity for a broader set of applications, including its use
as a fundamental resource in wartime. In fact, nickel is employed to produce super-alloys
for engines propelling jet aircraft, guided missiles, and some space vehicles, as well as
high-performance batteries. Consequently, during war periods (e.g. the Korean Con-
flict), U.S. nickel happened to be under government allocation, resulting in a relatively

20Benchmark Mineral Intelligence, 2023 in review: https://source.benchmarkminerals.com/
article/cobalt-price-rout-deepens-in-2023-as-oversupply-weak-ncm-demand-looms-2023-in-review?
mc_cid=2a16054797&mc_e1d=99397ec972

#!Before that, lithium was mainly used as an additive in the aluminium smelting process, as an
ingredient in pharmaceutical products to treat manic depression, and in the manufacture of high-strength
glass-ceramic products.
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flat price trend (e.g. during 1953-1961). Domestic production has historically followed
an upward trend, thanks to the continuous opening of new production facilities, which
has also helped to keep prices relatively low and stable over time. However, in 1987-1988,
increased demand for stainless steel, coupled with a decrease in production, caused a
sudden increase in prices. Subsequently, increased production of both primary and sec-
ondary (scrap) nickel during the following years, due to the discovery of new deposits and
the development of novel technologies, kept prices stable and low. However, from 1999 to
2012, U.S. primary production of nickel was zero, with all the reported production result-
ing from secondary (scrap) materials. During this period of stagnating production, prices
peaked especially in 2007-09 when increasing global production of stainless steel created
a temporary nickel supply deficit. After 2012, the U.S. resumed nickel production, thanks
to the opening of a greenfield underground operation in Michigan (the nickel-copper Ea-
gle Mine, which was further expanded in 2019). Nevertheless, prices peaked again in
2021. In terms of future developments, an important project is currently approaching
the environmental review and permitting phase. A new underground mine would extract
nickel ore in Minnesota, which would then be processed in another new plant in North
Dakota.

B US policies on critical minerals

The Inflation Reduction Act (IRA) represents the largest federal response to climate
change to date. The whole energy sector is potentially affected by IRA incentives, from
the mining of raw materials, to end-users purchasing EVs. In many instances, IRA
extended and expanded existing programs (e.g. the Department of Energy’s Loan Guar-
antee Program or the Defense Production Act). In some cases, it introduced entirely
new programs. Among the fiscal costs of the climate-related provisions ($392 Billion),
2/3 will be in the form of tax credit, and the remaining 1/3 will be direct expenditures.
Tax credits include investments in clean electricity generation and storage, clean energy
and efficiency incentives for individuals, clean vehicles, and clean energy manufactur-
ing. Direct expenditures will cover energy loans and initiatives for energy efficiency and
industrial decarbonization.

The IRA will have direct and indirect impacts on the domestic mining landscape.
On the one hand, a direct push will come from subsidies and production incentives (e.g.
Minerals Security Partnership, Infrastructure Law). On the other hand, support for
clean energy and national EV manufacturing is also contingent on using at least par-
tially US-made minerals, battery components, and vehicles themselves. This market pull
mechanism will indirectly influence domestic production.

One notable example of market pull mechanism is the provision of clean vehicle tax
credits (Section 13401). The IRA allows taxpayers to claim credits up to $7,500 for
purchasing a new electric or hydrogen fuel cell vehicle, subject to several specific con-
ditions. These conditions include the requirement that the final assembly of the vehicle
takes place in North America, and a portion of both the critical minerals and the battery
components must originate from North America, with this share escalating over time
after 2024.@ This creates a pathway for growing EV demand (and consequently, demand
for critical minerals), while also necessitating an increased use of domestically sourced

22Tn the case of critical minerals, after 2026, 80% of their market value in the EV battery has to be
extracted or processed in the U.S. or any of the 20 free-trade countries.
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critical minerals in the batteries of such EVs.
Among the direct incentives, we highlight the following:

e Advanced manufacturing production credit (Section 13502). Starting from 2023,
this provides a 10% tax credit on production costs to any miner/producer of critical
minerals in the United States. The Congressional Budget Office (CBO) estimated
that this tax credit will result in tax expenditures of approximately $30 billion.

e Up to $500 million for the “Enhanced use” of the Defense Production Act (DPA) to
strengthen the U.S. supply chain of critical minerals. This enables the Department
of Defense to use DPA funds to support: (1) feasibility studies for mature mining,
beneficiation, and value-added processing projects; (2) by-product and co-product
production at existing mining, mine waste reclamation, and other industrial facil-
ities; and (3) mining, beneficiation, and value-added processing modernization to
increase productivity, environmental sustainability, and workforce safety.

e Additional $40 billion to the Department of Energy (DOE) Loan Guarantee Pro-
gram, to accelerate the deployment of innovative clean-energy projects, including
critical minerals projects and processing. The Loan Programme Office (LPO) has
already facilitated the deployment of innovative clean energy, advanced transporta-
tion, and tribal energy projects, having closed more than $30 billion of deals over
the past decade.

The IRA is coupled with the grants provided through the bipartisan Infrastructure
Investment and Jobs Act (P.L.117-58), mostly known as Bipartisan Infrastructure Law.
Specifically, the DOE has selected more than 20 projects to receive almost $3 billion in
total funding through the BIL - Battery Materials Processing and Battery Manufacturing,
“to make more batteries and components in America, bolster domestic supply chains,
create good-paying jobs, and help lower costs for families”.

With this in mind, we selected projects under development in the U.S. that received
significant public funding from the programs described above. The underlying rationale
is that these projects became feasible specifically thanks to the U.S. government’s sup-
port, and by aggregating their expected production, we gain insight into the promised
production increase for constructing an IRA-centered scenario.

Out of a total of 182 projects being developed (note, not already operating) in the U.S.
related to the EV supply chain (Turner, 2022), we selected 32 that involve the extraction
or processing (note, not recycling) of either cobalt, lithium or nickel. Among these, 11
received either public funding or public support (for example, directly mentioned in the
DOE’s “Securing a Made in America Supply Chain for Critical Minerals” document).
The majority of the selected projects concerned lithium production, with 2 dedicated to
cobalt, and 2 to nickel. The full list is reported in Table
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C Robustness checks

2D -> ikhum_prod MD > Ietium_prod

(a) Shocks impacts on lithium production

13

M5 -> ithum _price 2D > Ithum_price MO > ithium_price > tum._price

(b) Shocks impacts on lithium price

Figure C1: Cumulated IRFs, lithium market, identification strategy with U.S. GDP
instead of Industrial Production Index

2D -> ithum_prod MD > Ietium_prod 25> lthium._prod

(a) Shocks impacts on lithium production.

S -> Ithum _price 4D -> Ithium_price MO -> ithium_price 45> litium_price

(b) Shocks impacts on lithium price

Figure C2: Cumulated IRFs, lithium market, identification strategy without elasticity
bounds
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D -> Ithium_price D > ithium_price 25> lthium_price:

(b) Shocks impacts on lithium price

Figure C3: Cumulated IRFs, lithium market, identification strategy with shorter time
interval (1972-2022)

MS > lithium_prod AD > lithium_prod MD -> lithium_prod

lags

(a) Mineral supply, aggregate demand and mineral demand shocks on lithium production

M -> lithium_price AD -> lithium_price MD -> lithium_price

lags

(b) Mineral supply, aggregate demand and mineral demand shocks on lithium price

Figure C4: Cumulated IRFs, lithium market, identification strategy: sign restrictions,
three-variables model without U.S. inflation
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min_supply -> lithium_prod US_AD > lithium_prod min_demand -> lithium_prod

lags

(a) Mineral supply, aggregate demand and mineral demand shocks on lithium production

min_supply -> lithium_price US_AD -> lithium_price min_demand -> lithium_price

lags lags lags

(b) Mineral supply, aggregate demand and mineral demand shocks on lithium price

Figure C5: Cumulated IRFs, lithium market, identification strategy: mix of sign and zero
restrictions, four-variables model without U.S. inflation and with cotton price as anchor
variable
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