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Abstract: Forestation is viewed as an important means of removing CO2 from the atmo-

sphere and thereby reducing net CO2 emissions. But how much CO2 can be removed, and at

what cost? Focusing on forested and forestable areas in South America, and using spatially

disaggregated data, we estimate a supply curve for forest-based atmospheric CO2 removal.

The supply curve traces out the marginal cost of removing a metric ton of CO2 as a function

of total annual CO2 removal. Each point on the curve corresponds to a speci�c location,

and accounts for land opportunity costs as well as costs of tree planting and maintenance.

We show that over a billion tons of CO2 can be removed annually via forestation at a cost

below $45 per ton, and about 2.5 billion tons can be removed at a cost below $90 per ton.

The supply curve applies to only South America, but with su�cient data could be extended

to the entire world.
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1 Introduction

Global CO2 emissions continue to rise. That may eventually change, but even with a substan-

tial decline in emissions, the atmospheric CO2 concentration will keep growing and remain

high for many years. That is why policy objectives have focused on net emissions, and the

need to remove CO2 from the atmosphere. But how? Planting trees (a�orestation and refor-

estation) might be seen as an obvious solution, but where and at what cost? Here we focus

on forested and forestable land in South America, and use spatially disaggregated data to

estimate a supply curve for forest-based atmospheric CO2 removal. The supply curve traces

out the marginal cost of removing a metric ton of CO2 as a function of total annual CO2

removal. Each point on the curve corresponds to a speci�c location, so our analysis tells us

where and how many trees can be planted, and at what cost.1

Before we explain our methodology, here are some very rough numbers to help set the

stage for our work:

1. Estimates vary depending on climate, the age and type of tree, and the local tree

density, but on average a mature (about 10 to 20 years old) hardwood tree will absorb

about 20 kg of CO2 per year.

2. Again, the numbers vary considerably depending on climate and type of tree, but on

average at least 500 trees can be grown and maintained on one hectare of land.2

3. How much land could potentially be forested? Using satellite data, a recent study

puts the global number of hectares that could be forested at about 1 billion. If we

take this number at face value, full forestation of all available land could remove about

1× 109 × 500× .02 = 10 Gt (billion tons) of CO2 per year from the atmosphere.3

4. Global CO2 emissions are currently around 40 Gt per year. Thus, we could potentially

reduce net emissions by about 25% by foresting all 1 billion hectares. That won't bring

the world to net zero, but 25% is a good start.

1There is considerable ongoing R&D focused on carbon removal and sequestration (CRS) technologies, but
those technologies are currently too expensive for practical use. See Pindyck (2022) and references therein.
Other land- and water-based plants, such as mangroves and kelp, can also absorb CO2, but compared to
trees, their potential for CO2 absorption is quite limited.

21 hectare = .01 square kilometers ≈ 2.47 acres.

3This estimate of 1 billion hectares is by Bastin et al. (2019). Also see references in Pindyck (2022).
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Figure 1: Net Annual Forest Loss. For each period the �gure shows estimates of annual
global deforestation, annual global gains in forest areas, and the net loss, all in millions
of hectares. During 2015�2020 annual deforestation was about 10 million hectares, but
this was partially o�set by 3.9 million hectares of forest gain, for a net annual loss of 6.1
million hectares. Source: United Nations' Food and Agriculture Organization (2020b) and
https://rainforests.mongabay.com/deforestation/.

So why don't we start planting large numbers of trees? Yes, it would take time, but after 10

years or so, net emissions could be substantially reduced.

We are indeed planting some trees, but cutting down many more. As shown in Figure 1,

during the period 2015 to 2020, there were about 10 million hectares per year of deforestation,

which was partly o�set by about 4 million hectares per year of forest gain, for an annual

net forest loss of about 6 million hectares. The rate of net forest loss has been changing

over time; as Figure 1 shows, it was greatest during the 1990s, declined through 2015, but

increased again during 2015�2020, largely because of a reduction in forest gain.

Deforestation occurs because land is valuable, and can be used for agriculture, cattle

grazing, mining, and other economic activities.4 And that is one of the main reasons why we

are not planting trees in su�cient number to have a signi�cant impact on net CO2 emissions.

Planting and maintaining trees requires valuable land, which can make it costly. The nature

and extent of these and other costs will be explored in this paper.

Suppose deforestation at recent rates continues. What impact would an ongoing loss

of, say, 6 million hectares per year have for CO2 emissions? Each year CO2 absorption is

4For a detailed discussion of deforestation in di�erent parts of the world, and recent research to better
understand the causes and e�ects of deforestation, see Balboni et al. (2023).
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reduced (i.e., net emissions are increased) by 6×106×500× .02 = .06 Gt per year, or about 1

Gt after 17 years. But net emissions actually increase by much more, because a tree contains

about 200 kg of carbon, which releases around 200× 3.67 ≈ 700 kg of CO2 when the fallen

tree decays or (more often) is burned. This in turn implies that an ongoing loss of 6 million

hectares per year would increase net CO2 emissions by 0.27 Gt per year, or about 1 Gt after

four years.5

Deforestation is a serious problem, but our focus is on forestation. How many hectares

can potentially be forested, and at what cost? There are estimates based on satellite data,

such as the 1-billion hectare estimate from Bastin et al. (2019) that we used above. These

macro-level estimates attempt to account for the land that is potentially forestable, but tell

us very little about forestation costs, which vary considerably across regions. The variation

is due to sharp regional di�erences in the current use of the land, and in rainfall and other

climatic factors that a�ect forest growth.

We address this problem at the micro level and develop a supply curve for forest-based

CO2 removal. The supply curve traces out the marginal cost of removing 1 ton of CO2 from

the atmosphere as a function of total annual CO2 removal, all by planting trees. Given data

limitations, we focus on forested and forestable areas in South America, which include the

Amazon rainforest (accounting for 13 percent of the world's total forest area), the Atlantic

forest, the Gran Chaco region, and areas of savanna and grassland. Although our study

is limited to South America, with su�cient data our methodology can be applied to other

regions, so that a complete global supply curve could be constructed.

We consider planting trees in areas that during the past 50 years were once densely

forested but have experienced forest loss, as well as areas that were never forested and may

instead have existed as savanna or grassland. However, some recent studies have suggested

that the forestation of areas that have never existed as forests can have negative environmen-

tal repercussions, and thus some have argued should be avoided.6 Flora and fauna that can

51 kg of carbon is equivalent to 3.67 kg of CO2 because of the two oxygen atoms connected to each
carbon atom. Tropical moist forests contain about 130 tons of carbon per hectare above ground (Figure 6 in
ForestPlots.net et al. (2021)). To add the belowground biomass, multiply the aboveground carbon stock by
1.26 (Mokany, Raison and Prokushkin, 2006). Tree density is in the range 550-650 trees/ha (ForestPlots.net
et al., 2021; Crowther et al., 2015). That leads to the average of 270 kg of carbon per tree. For temperate
deciduous and coniferous forests the carbon content is lower, so 200 kg is a conservative average number.
See Ramankutty et al. (2007). That CO2 enters the atmosphere fairly quickly, but to measure its impact on
temperature, we can �amortize� it over 10 years, so it is roughly equivalent to additional CO2 emissions of
700/10 = 70 kg of CO2 per year. See Amazon Fund (2010) and Franklin and Pindyck (2018). Adding that
to the 20 kg of lost absorption yields 90 kg of CO2 per year for each tree cut down, and with an average of
500 trees per hectare this implies an increase in net emissions of 6 × 106 × 500 × .09 = .27 Gt per year.

6See, for example, Pörtner et al. (2021) and Holl and Brancalion (2020).
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survive in a savanna, for example, might not be able to survive in a dense forest, so turning a

savanna into a forest could reduce biodiversity. We do not take a stand on this issue, but for

purposes of comparison, we also develop a supply curve that restricts potentially forestable

land to those areas that were previously forested.

Our analysis accounts for the three most important types of cost involved in forestation:

1. Opportunity cost of land. This varies greatly across locations, and is often the

largest cost component for forestation. Deforestation occurs because land has economic

value, and foresting a hectare of land means it cannot be used for other purposes.

2. Planting and maintenance costs. Planting a tree involves more than sticking an

acorn in the ground. It begins with planting and growing seedlings, and then replanting

those seedlings with fertilizer, water, and insect repellent. Later, the trees must be

protected from insects and pruned as they mature, and sometimes must be replanted.

Mature trees have ongoing maintenance costs, which includes continual addition of

fertilizer and insect repellent, and depending on the area, water.

3. Forest conservation costs. Later, mature trees must be protected from illegal log-

ging, which is a serious problem in much of the world. Monitoring and law enforcement

e�orts must be put in place in order to ensure forest conservation.

Based on these costs, we determine where and how many trees can feasibly be planted. We

mentioned that water is a critical input; indeed forestation in areas with limited rainfall is

usually prohibitively expensive, and most areas deemed suitable for forestation have consid-

erable rainfall. In developing a supply curve for South America, we consider areas where

precipitation patterns can potentially support forest growth.

As explained in more detail below, we begin by examining tree cover distributions and

precipitation patterns in tropical and subtropical regions worldwide, using a 0.5◦ × 0.5◦

resolution land grid. The objective is to determine where precipitation patterns make it

economical to plant trees and the number of trees that should be planted on each land grid

element. Turning to South America, we then estimate the land opportunity, tree planting

and forest conservation costs for each 0.5◦ × 0.5◦ resolution land grid element. Combining

this with estimates of the CO2 absorption rate per hectare and per tree, we compute the

marginal cost of a one-ton reduction in net CO2 emissions via forestation. Then, starting

with the lowest-cost opportunities for CO2 removal, we build up the supply curve.

Of course forestation can have di�erent objectives, and much of it is done to produce

timber and other wood products. Timber producers plant trees, cut them down at or before
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maturity, plant new ones, and so on, with the total number of trees roughly constant over

time. Hence we ignore timber production and focus on forestation with the objective of

removing atmospheric CO2.

In the next section we brie�y review the prior literature on the use of forestation to

absorb CO2. In Section 3 we provide an overview of the sources and coverage of our data.

In Section 4 we show how the data are used to identify areas with high precipitation and

potential for increased tree cover. In Section 5 we present our estimates of land opportunity,

tree planting and forest conservation costs in di�erent locations. In Section 6 we use these

results to build a supply curve for forest-based CO2 removal. We examine the sensitivity of

our results to certain assumptions in Section 7, and discuss policy implications of our results,

caveats, and suggestions for further work in Section 8.

2 Related Studies versus Our Approach

We are not the �rst to address the potential of forestation for atmospheric CO2 removal, but

other studies have typically been at a macro level using models that simulate the aggregate

response of abatement suppliers to variable carbon prices. Some studies have used regression

models to forecast global forest sector mitigation potential and costs (Busch et al. (2019)),

or an optimal control model of the global timber market (Austin et al. (2020)), sometimes

combined with an integrated assessment climate-economy model (Favero, Mendelsohn and

Sohngen (2017)). Here we brie�y summarize a few of the macro level studies of forestation

that have appeared recently, and explain the need for a micro level study like ours.

Favero, Mendelsohn and Sohngen (2017) combined two large models, a �global dynamic

forest model� and a �global mitigation model� (an integrated assessment model) to study

whether to use forestland for biomass burning or for carbon storage given alternative carbon

price paths. Their model explores the dynamics of woody biomass and forest carbon se-

questration demand and supply over time, and determines an optimal amount of forestland

in each carbon price scenario, the mix of managed versus natural forest, and how planting,

rotation length, and management intensity should be adjusted on managed forestland. Their

results generally support the potential of forestation for reducing net CO2 emissions.

Busch et al. (2019) used a regression model to estimate how forestation responds to

changes in agricultural prices, using data on spatially disaggregated forest cover gain over the

two years 2000 and 2010. The dependent variable is the fraction of a cell area that undergoes

a non-forest to forest transition, and the main independent variable is the 30-year present

value of the maximum potential revenue stream were the land used for agriculture, which
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they treat as the land use opportunity cost. Assuming forestation occurs if the carbon price

exceeds this opportunity cost, they replace the potential agricultural revenue by a carbon

price incentive variable, and trace out marginal cost curves for forestation by projecting areas

that would undergo forestation at varying carbon prices. They then simulate forestation (and

resulting CO2 removal) during 2020 to 2050 from alternative carbon prices.7

Austin et al. (2020) estimated forestation costs using an optimal control model of the

global timber market to simulate how forests and forest management change over time be-

cause of both ecological and market forces. Higher timber prices incentivize more mitigation

via rotation and other forest management activities. The authors considered forest regener-

ation costs and land rental costs, but their focus was on forest management, so theirs is a

global model that is not speci�c to any biome or geography.

Two recent studies also support the view that the conservation and restoration of forests

can contribute to carbon sequestration. Mo et al. (2023) and Walker et al. (2022), respec-

tively, estimate that the total global carbon stock for living tree biomass (above and below

ground) is currently 217 and 224 Gt of carbon below its full potential, of which 123 and

152 Gt can be attributed to tropical regions. Their estimates are based on the carbon stock

that would exist under current climate conditions in the �hypothetical absence of human

in�uence.� The global carbon stock for living tree biomass takes into account overall car-

bon gains (e.g., forest growth) and losses (e.g., forest �res) over time. Averaging these two

studies, tropical forests worldwide can store an additional 138 Gt C. If that 138 Gt C mate-

rializes over 50 years, global annual CO2 removal from natural forest growth (absent �human

in�uence�) could reach (138× 3.67)/50 = 10 Gt CO2.

These and related macro-level studies are useful in that they provide an overview of

forestation potential and its relation to agricultural revenues and price incentives. But they

lack the granular detail needed to show where forestation is best targeted, and at what

cost. Land opportunity and tree planting costs vary considerably across regions, as does

precipitation. Thus much can be gained by a more micro level approach to the use of

forestation for CO2 removal. To show why, Figure 2 presents one of our main results � a

supply curve for forest-based atmospheric CO2 removal in South America. The curve shows

the marginal cost of removing (via forestation) one ton of CO2 as a function of total forest-

based annual CO2 removal. Each point on the curve corresponds to a 0.5◦ × 0.5◦ resolution

land grid element.

Point A on the curve shows the lowest cost ($23 per ton) at which CO2 can be removed

7Their land opportunity cost re�ects agricultural revenues but ignores costs. Other variables in their
model are site characteristics such as slope, elevation, distance from cities, and initial forest cover.
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Figure 2: Supply curve for forest-based atmospheric CO2 removal in South America. The
curve shows the marginal cost (in 2020 US dollars) of removing one ton of CO2 per year as
a function of total forest-based CO2 removal. Each point on the curve corresponds to a land
grid element.

from the atmosphere by planting and maintaining trees in South America. It applies to a

land grid element in the Amazon forest of Brazil, state of Pará, at location (-57.75◦ longitude,

1.25◦ latitude). This is the lowest-cost location in part because of plentiful rainfall, but also

because of relatively low tree planting and land opportunity costs.8

Point B is also in the Amazon forest of Brazil, state of Pará, but now at location (-49.25◦,

-4.25◦). As at Point A, here rainfall is plentiful, but tree planting costs are higher, so the

cost of removing CO2 is $30 per ton. Point C is in the Amazon forest of Brazil, state of

Mato Grosso, at location (-53.75◦, -14.75◦). Land opportunity costs are higher so the cost

of removing CO2 is $40 per ton. Finally, Point D, at the top of the curve, is in the Brazilian

Cerrado at location (-49.75◦, -20.25◦). This area is largely savanna, with lower forestation

potential and higher land opportunity costs, so the cost of removing CO2 is about $90 per

ton. (Details regarding points A, B, C and D are in the Appendix in Table A1.)

Figure 2 shows that regional variations in the marginal cost of forestation are large.

The cost breakdown also varies regionally. Table A1 shows that the land opportunity cost

accounts for about half of full marginal cost at Point A on the supply curve, but about 75%

8There are 160 land grid elements with the same $23 per ton marginal cost spread across 8 Amazon
countries. They are all on the short horizontal line that begins at Point A.
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at Point D. That is why we work at the spatially disaggregated level of 0.5◦×0.5◦ resolution

land grid elements, and account for regional variations in rainfall, forestation costs, tree

densities, and CO2 absorption rates.

3 Data

Our supply curve applies to all forested and forestable areas in South America. To build

the curve we must determine where it is economical to plant trees, how many trees can be

planted (say, per hectare), and the full cost of planting and maintaining those trees. Table

A2 shows summary statistics for some of the key variables, and Table A3 summarizes the

input data and corresponding web-based data sources.

3.1 Climate, vegetation, and borders

Given the importance of water, we �rst examine tree cover distributions and rainfall patterns

in tropical and subtropical regions around the world. The objective is to determine the

relationship between tree cover and precipitation. Precipitation is described by a combined

measure of average rainfall volume and average dry season intensity (the di�erence between

precipitation and evapotranspiration). From the observed relationship, we determine the

areas in South America where precipitation patterns can support forest growth.

Annual tree cover data were extracted from the publicly available website of Moderate

Resolution Imaging Spectroradiometer/Vegetation Continuous Fields (MODIS/VCF), and

monthly precipitation data were extracted from the publicly available website of Climatic

Research Unit Gridded Time Series (CRU/TS).9 Monthly precipitation data are available at

0.5◦ resolution (approximately 50 km latitude and longitude, i.e., 2,500 km2 = 250,000 ha),

while the annual tree cover data from MODIS/VCF are available at a 250-meter resolution

(0.0625 km2 = 6.25 ha).10 To ensure that the tree cover and precipitation data apply to the

same time periods and land grid elements, annual values of rainfall volume and dry season

9MODIS is a satellite-based sensor used for earth and climate measurements, and MODIS/VCF contains
annual tree cover data (with years beginning on day 65, i.e., from March through February). MODIS/VCF
provides a global representation of surface vegetation cover at a 250-meter spatial resolution, and has three
ground cover components: percent tree cover, percent non-tree cover, and percent non-vegetated (DiMiceli
et al. (2020)). The CRU/TS product is a widely used climate dataset with a 0.5◦ latitude by 0.5◦ longitude
grid over all land domains of the world except Antarctica, derived by the interpolation of monthly climate
anomalies from extensive networks of weather station observations (Harris et al. (2020)).

10One degree latitude or longitude near the equator is equivalent to 111 km, so one degree in the tropics
is approximately 100 km, and 0.5◦ resolution is 50 km.
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intensity were computed from March through February, and tree cover values were sampled

at the centroid of each corresponding precipitation land grid element.

Using the tree cover data from MODIS/VCF, we also derive the relationships between

percent tree cover, tree density (stems per hectare), and CO2 absorption rates in the tropics.

Estimates of tree densities were obtained from ForestPlots.net et al. (2021) and Crowther

et al. (2015). Estimates of carbon gains and CO2 absorption rates were obtained from

ForestPlots.net et al. (2021), Busch et al. (2019) and Mokany, Raison and Prokushkin (2006).

In particular, Figure 6 in ForestPlots.net et al. (2021) and Figure 1 in Crowther et al. (2015)

show that the average tree density in tropical moist forests worldwide is about 600 trees per

hectare. These estimates were used to determine the average CO2 absorption rate per tree

in South America's tropical and subtropical regions (Section 4.3).

To work at the spatially disaggregated level of land grid elements, we must delineate the

borders of di�erent biomes, and the borders of the countries (or states) where these biomes

are located. The Amazon forest includes territory belonging to nine nations, with about

60% in Brazil, 13% in Peru, 10% in Colombia, and smaller amounts in six other countries.

The Atlantic forest includes territory belonging to three nations, with 92% in Brazil, 6%

in Paraguay, and 2% in Argentina. The Gran Chaco region is in three countries, with just

above half in Argentina, a third in Paraguay, and the remainder in Bolivia. The borders

of the Amazon rainforest were obtained from the Brazilian Institute for Space Research

(INPE), the borders of the Atlantic forest and Gran Chaco region were obtained from the

MapBiomas Project (http://mapbiomas.org), the borders of South American countries were

obtained from the Global Administrative Database (GADM), and the borders of Brazilian

states came from the Brazilian Institute of Geography and Statistics (IBGE).

3.2 Economic data

Land opportunity cost is particularly important. Most land that is not forested (or was defor-

ested) is used to produce food products in three general ways: grow and harvest temporary

crops (e.g., soy, corn and other grains, and vegetables); grow and harvest permanent crops

(largely tree-growing crops such as apples, avocados, co�ee and palm); and raise livestock

for meat and milk. Farmers incur operating and overhead expenses, so land opportunity

costs should not be confused with gross production values. If land is currently being used for

agricultural purposes, its opportunity cost is just gross revenue minus total operating costs,

where the latter excludes rents or other costs associated with the use of the land.

Land opportunity costs in Brazil for the most important temporary crops (soy and corn),
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permanent crops (co�ee and oranges) and livestock (bovine meat and milk) were obtained by

request from the Brazilian Confederation of Agriculture and Livestock (CNA).11 The CNA

collects data on agricultural production costs by conducting meetings with fatmers, input

providers, and technical experts in Brazilian states and cities. From these meetings, the CNA

derives information about agricultural production costs, including the opportunity cost of

land, for agricultural activities in di�erent regions. The land opportunity costs that we use

here were derived by the CNA through the consensus reached among meeting participants

(most often based on rental contracts through which farmers rented land) during 2018-2020.

Brazil has 26 states and one federal district, which are grouped into �ve major regions

with di�erent natural, economic and social characteristics, as shown in Figure 3.12 We do

not have data on land opportunity costs in all Brazilian states, but only for several states

in each region. Using that data, we estimated the land opportunity costs for each Brazilian

state as the average rental value for each agricultural activity in the corresponding region.

Some regions are more attractive for agriculture than others, due to di�erences in climate,

terrain, and proximity to markets. For South American countries other than Brazil, we

use the average land opportunity costs in the Brazilian regions closest to their frontiers.

Table A4 shows land opportunity costs for each agricultural activity in each Brazilian region

and in other South American countries in 2018-2020. We use these numbers to derive land

opportunity costs for each land grid element, as explained in Section 5.1.

Land opportunity costs have grown steadily over the past few decades, and we assume

they will continue to grow over the next 50 years at a rate equal to the Brazilian gross

agricultural production value growth rate over 2010 to 2020. Gross production values for

temporary and permanent crops in each Brazilian state were obtained from the Brazilian In-

stitute of Geography and Statistics (IBGE), and gross production values of livestock (bovine

meat and milk) in each state were obtained from the Brazilian Ministry of Agriculture and

Livestock (MAPA). The average growth rate for both was 4% per year.

Tree planting and maintenance costs depend on the choice of forest recovery technique,

11These products are respectively responsible for 62%, 50% and 60% of the gross production values of all
temporary crops, permanent crops and livestock in Brazil.

12The North (N) covers more than 40% of Brazilian territory, including the largest portion of Amazon
rainforest, but accounts for a small proportion of the nation's population and economic output. The North-
east (NE) is the driest and hottest, and accounts for nearly 20% of Brazil's land area and more than 25% of
the population. The Central-West (CW) region covers roughly 25% of Brazil's land area, including forested
valleys, semiarid highlands, and vast wetlands, and accounts for a small proportion of the population. The
Southeast (SE) covers 10% of Brazil's territory, but has 40% of its population and the greatest concentration
of industrial and agricultural production. The South (S) is the smallest region, and its diversi�ed economy
includes manufacturing, agriculture and services.
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Figure 3: The Brazilian territory, 26 states and one federal district, grouped into �ve regions:
North (N); Northeast (NE); Central-West (CW); Southeast (SE); and South (S).

which in turn depends on such factors as soil degradation, work scale, possibility of mecha-

nization, and, most importantly, tree cover. Kishinami and Watanabe Jr. (2016) and Benini

and Adeodato (2017) provide estimates of tree planting and maintenance costs for the most

widely used forest recovery techniques. As explained in Section 5.2, we use these estimates

to determine planting and maintenance costs for each land grid element.

Forest conservation costs depend on governments' conservation policies and budgets.

Cunha et al. (2016) and Assunção, Gandour and Rocha (2023) provide estimates for the

forest conservation costs incurred by Brazil from 2000 to 2014. As explained in Section 5.3,

we use these estimates to derive the forest conservation cost numbers used in our model.

The land areas used for growing temporary and permanent crops in each Brazilian

state were obtained from the Brazilian Institute of Geography and Statistics (IBGE), and

the land areas used for raising livestock were obtained from the MapBiomas Project (see

http://mapbiomas.org). The land areas used for growing temporary and permanent crops

and raising livestock in each South American country were obtained from the United Na-

tions' Food and Agriculture Organization. (In Section 6, we discuss the planted and pasture

areas in di�erent Brazilian states and South American countries.)

4 Forestation Targets

Tree growth requires large amounts of water, which in many parts of the world is expensive,

making forestation uneconomical. Thus, we need to determine the areas where precipitation
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patterns make it economical to plant new trees, and the number of trees that could be

planted in each 0.5◦ resolution land grid element.

4.1 Where to plant trees

Given the importance of water, we look for areas where precipitation patterns support forest

growth. We start by investigating the relationship between tree cover and precipitation

patterns in tropical and subtropical regions around the world, in order to draw insights that

help de�ne the economically e�cient forestation target zone in South America.

Several studies have examined the relationship between tree cover and precipitation pat-

terns, with the latter described by a measure of rainfall volume (the mean annual pre-

cipitation, MAP) and dry season intensity (the mean maximum cumulative water de�cit

MMCWD).13 Hirota et al. (2011) found that the relationship between mean annual precipi-

tation (MAP) and tree cover is highly nonlinear; tree cover does not increase steadily with

rainfall, but instead is constrained to ranges that could be identi�ed as treeless (0 to 5% tree

cover), savanna (around 20%) or tropical forest (around 80%). It is rare for tree cover to

remain between 40 and 60% over a sustained period, consistent with the view that feedback

loops (including �re spread feedbacks) tend to move the ecosystem closer to either the forest

or savanna state.14 Zemp et al. (2017) examined how MAP and MMCWD a�ect tree cover,

and found two tree-cover states in the tropics, an intermediate state (5 to 55%) comprising

deciduous forests, shrubs and herbaceous plants, and a high tree cover state (above 55%)

corresponding to evergreen forests. Suppl. Figure 1 in Zemp et al. (2017) illustrates how

tropical forests can be found in areas where MAP > 1,000 mm/yr or dry season intensity

MMCWD < 400 (mm/yr). Our results are consistent with these earlier studies.

We use tree cover data from MODIS/VCF to estimate probability distributions of tree

cover in tropical and subtropical regions of South America (SAM), Africa (AFR) and Asia

and Oceania (AOC). We then use precipitation data from CRU/TS to investigate the re-

lationships between tree cover and rainfall volume, and between tree cover and dry season

intensity, both worldwide. For each 0.5◦ resolution land grid element with latitudes in

[−35,+15], we collected time series of yearly tree cover (from 2001 to 2018) and monthly

13The maximum cumulative water de�cit (MCWD) is the maximum value of the monthly accumulated
water de�cit (i.e., di�erence between precipitation and evapotranspiration) reached on a given piece of land
in a given year. The details of the MCWD calculation is described in Aragão et al. (2007). The annual
precipitation (AP) and maximum cumulative water de�cit (MCWD) are calculated for several years and
averaged to yield the means (MAP and MMCWD).

14Fire spread depends on a continuous grass layer, so that the higher the tree cover is, the lower the �re
spread is (i.e., the more �re-resilient the forest is), and vice-versa (Staver, Archibald and Levin (2011)).
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Figure 4: Probability distributions of the average tree cover from 2001 to 2018 in tropical and
subtropical regions of South America (SAM), Africa (AFR), and Asia and Oceania (AOC).
Note the peaks at low (10 to 30%) and high (70 to 80%) tree cover, corresponding to savanna
and fully forested, respectively.

rainfall (from March 2001 to February 2019), and calculated the mean annual precipitation

(MAP), mean maximum cumulative water de�cit (MMCWD) and average tree cover (ATC)

over 2001�2018. There are 8009 land grid elements over these latitudes worldwide, giving

us 8009 samples of MAP, MMCWD and ATC. From these samples, we obtained kernel den-

sity estimates of tree cover distributions for these three continents, and joint probability

distributions of ATC, MAP, and MMCWD worldwide.15

Figure 4 shows the probability distributions of average tree cover (ATC) in SAM, AFR,

and AOC. The distributions di�er across these three continents, but they all have peaks

at the characteristic tree cover of forest (around 75%) or savanna (around 20%). This

is consistent with models of forest evolution that show how low and high tree cover are

stable equilibria.16 Figures 5a and 5b show kernel density estimates of the joint probability

distributions for ATC and MAP, and for ATC and MMCWD, again using worldwide data,

but now combining SAM, AFR, and AOC. In these two-dimensional graphs, the magnitude of

the probability density is shown by the darkness of the shading. As with Figure 4, this graph

15Silverman (1986) shows that for a Gaussian kernel and most unimodal and bimodal underlying distribu-
tions, the optimal window width is h = 0.9 × A× n−1/5, where A = min (standard deviation, interquartile
range/1.34), and n is the sample size. We used two kernel smoothing functions in R, geom_density and
stat_density2d, with the normal kernel functions and bandwidth suggested by Silverman (1986). Land grids
in the treeless state (0-5%) were removed to avoid distortions caused by human activity and habitation.

16See, e.g., Hirota et al. (2011), Zemp et al. (2017), Staal et al. (2018) and Franklin and Pindyck (2018).
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Figure 5: Bivariate probability distributions among the 18-year averages of tree cover, annual
precipitation and maximum cumulative water de�cit (2001-2018). The magnitude of the
probability density is shown by the darkness of the shading.

show that the characteristic tree cover of forest and savanna dominate. But the graph also

shows that high tree cover can be found in areas where MAP > 1,000 mm/yr or MMCWD

< 400 (mm/yr). Likewise, low tree cover is found in areas with low annual precipitation

and/or high maximum water de�cits. Thus, these precipitation conditions are necessary for

the development and sustainability of dense tropical forests.

We therefore take the forestation target zone in South America to be those areas with

mean annual precipitation at or above 1,000 mm/yr and mean maximum cumulative water

de�cit at or below 400 mm/yr. The forestation target zone is shown in Figure 6.

4.2 Target tree cover and forestation potential

We now estimate the forestation potential for each land grid candidate for forestation in the

target zone. We base the forestation potential on the characteristic tree cover of the biome

that previously existed in each land grid element. Thus, for land grids that during the past

50 years were once densely forested but have experienced forest loss, including areas of the

Amazon rainforest, Atlantic forest and Gran Chaco region, we use the tree cover target of

75%, which is the characteristic tree cover of forest, and we assume this target can be reached

and maintained over the long run. In areas that were never densely forested, going from a

low tree cover (e.g., 20%) to 75% may not be feasible over the long run. Figure 4 shows that

the tree cover rarely remains between 40 and 60% over a sustained period. Thus, for land

grids that are in the target zone but existed as savanna (e.g., Cerrado) or grassland (e.g.,
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Figure 6: Forestation target zone in South America: The areas where precipitation patterns
support forest growth (i.e., MAP ≥ 1,000 and MMCWD ≤ 400 mm/yr) are in blue.

Pampas), we use a tree cover target of 40%. This is higher than the characteristic tree cover

of savanna, but below the unstable range of 40-60%.17

The forestation potential for each land grid candidate for forestation is just the di�erence

between the target tree cover (either 75% or 40%) and the current tree cover. Figure 7 shows

the average tree cover observed from remote sensing (MODIS/ VCF) in 2016-2018, and the

forestation potential calculated for each land grid candidate for forestation. We treat a land

area with 75% tree cover as �fully forested.�

4.3 Tree density, CO2 absorption rate, and forestable area

A single tree can absorb 10 to 40 kg of CO2 per year, depending on climate and the age

and type of tree, so to estimate the average CO2 absorption rate for a land grid element,

we must account for the variety of trees it contains. Organic carbon accumulates in above

and below ground biomass. Patterns of above ground biomass (stems, bark, branches) are

reasonably well understood, whereas knowledge of below ground biomass (roots) is limited,

mostly because it is di�cult to observe and measure root biomass. Most often, the below

ground biomass is expressed as a fraction of the above ground biomass using �root-to-shoot�

ratios. A root-to-shoot ratio is the amount of plant tissue with supportive functions (root

17The 40% target might be reached by foresting part of a land grid above 40% (e.g., by creating forest
parks with 75% tree cover) and part below, averaging 40%.
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Figure 7: Current tree cover (2016-2018) and forestation potential over the forestation target
zone. Each pixel represents a 0.5◦ resolution land grid element.

biomass) divided by the amount of plant tissue with growth function (shoot biomass).18

To estimate the CO2 absorption rate per tree, we start with the above ground biomass

(AGB). For 20-30 year old trees in tropical moist forests, the average carbon stock accu-

mulation above ground is about 2.4 tons of carbon per hectare per year.19 For the below

ground biomass (BGB), we use the root-shoot ratio of 0.26.20 Multiplying the above ground

biomass by 1.26, we �nd the total carbon stock accumulation (above and below ground) is

3.0 tons of carbon per hectare per year, or 3.0 × 3.67 = 11 tons of CO2. Given an average

tree density of 600 trees per hectare (Section 3.1), we estimate the average CO2 absorption

rate to be 11, 000/600 = 18.333 kg CO2 per tree per year. These estimates apply to trees in

tropical moist forests; we use them here because our forestation target zone consists of areas

in South America where precipitation patterns are similar to those in tropical forests.

For the characteristic tree cover of forest (75%) and 600 trees per hectare, a one percentage

point increase in tree cover means going from, say, 40% to 41% tree cover, with an upper

limit of 75%. A fully forested hectare has 600 trees, so a 1 percentage point increase means

planting 600/75 = 8 new trees. We assume that these 8 trees are planted so as to allow the

e�ective combination of agriculture and trees, while occupying an area of 8/600 = 1/75 =

18Root and shoot biomass are estimated via sampling methods, as discussed in Mokany, Raison and
Prokushkin (2006), who also provide a review of the root-shoot ratios for major terrestrial biomes.

19See, e.g., ForestPlots.net et al. (2021) and Busch et al. (2019).

20Here we follow Harris et al. (2012) and Busch and Engelmann (2015). This estimate is based on a regres-
sion model of root biomass (y) as a function of shoot biomass (x), using data from forests and woodlands,
which resulted in y = 0.26x, with R2 = 0.78. See Figure 3 in Mokany, Raison and Prokushkin (2006).
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0.01333 hectare.21 This is the agricultural area that will be lost for forest growth. Then, for

a land grid with 250,000 hectares, a 1 percentage point increase in tree cover means planting

8 × 250, 000 = 2 million trees over an area of 0.01333 × 250, 000 = 3,333 hectares, and will

increase the CO2 absorption rate by 2, 000, 000× 18.333 = 36,667 tons of CO2 per year.

The potentially forestable area in a geographic unit is the sum of the forestable areas in

all land grids inside the unit's borders. Take, for example, two land grids, X and Y, where

X has 55% tree cover so its forestation potential is 75% − 55% = 20%, and Y has 30% tree

cover so its forestation potential is 45%. The forestation potential of these two land grids

combined is 20+45 = 65 percentage points. Multiplying that sum by the increase in forested

area from a 1 percentage point increase in tree cover (3,333 hectares) yields a potentially

forestable area of 65× 3, 333 = 216,645 hectares. Multiplying that area by the average tree

density of 600 trees per hectare, the number of trees that can be added to these two land

grids is 216, 645× 600 = 130 million trees.

Summing the forestation potential over all land grid elements inside the forestation target

zone (see Figure 7b) yields 68,400 percentage points. Multiplying that sum by the increase

in forested area from a 1 percentage point increase in tree cover (3,333 hectares), we �nd the

potentially forestable area in South America's tropical and subtropical regions is 68, 400 ×
3, 333 = 228 million hectares. With 600 trees per hectare, the total number of trees that can

potentially be added to the forestation target zone is 228 million ×600 = 137 billion trees.

The potentially forestable area in each Brazilian state or South American country may

be higher or lower than the sum of the areas used for temporary crops, permanent crops

and livestock. It will be higher, for example, if a large area has been deforested for wood as

opposed to any agricultural activity. It will be lower if the area is not completely inside the

target zone.

5 Forestation Costs

In this section we estimate the land opportunity, tree planting and forest conservation costs

for each land grid element in the forestation target zone. These costs vary over the life cycle

of the forest. Land opportunity costs grow as food demand grows, and tree planting costs

are concentrated during the �rst few years of forestation when new trees are planted, and

21This assumes an agroforestry system where trees or shrubs are grown around or among crops or pasture-
land. The target tree density of 600 trees per hectare implies on a tree spacing of (0.01)0.5/(6000.5) = 4.082
meters, so each tree occupies 4.0822 = 16.663 m2, and 8 trees occupy 8×16.663 = 133.3 m2 = 0.01333 hectare.
For more information on agroforestry systems, see https://www.fao.org/forestry/agroforestry/80338/en/.
For the potential use of agroforestry in Brazil, see Gusson et al. (2023).
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then become smaller. However, we treat the CO2 absorption rate as constant, so to estimate

the marginal cost of absorbing a ton of CO2 we want to smooth out these costs over time.

Using a 50-year time horizon, we smooth out these costs by �rst calculating the 50-year

present value of each �ow of cost, and then converting these present values into 50-year

annualized costs. In what follows we do this using an annual discount rate of 5%, which is

approximately the average long term real interest rate on Brazilian government bonds over

the last 20 years. For comparison, we also develop a supply curve using a discount rate of

2.5%, based on survey results in Pindyck (2019).

5.1 Land opportunity costs

Land is used to grow temporary crops, grow permanent crops, or raise livestock, so there are

three possible values for the land opportunity cost. We estimate the land opportunity cost

for each agricultural activity in each Brazilian region and in other South American countries.

As explained earlier, Brazil has �ve regions, some of which are more attractive for agri-

culture than others. Of these regions, the North has the lowest land opportunity costs for

all three agricultural activities, and the South has the highest costs for temporary crops and

livestock (3.6 and 2.5 times as large as in the North, respectively). Land opportunity cost

data are unavailable for other South American countries, so we use the average cost in the

Brazilian regions closest to their frontiers. (Brazil accounts for 67% of the entire potentially

forestable area of South America.) We assume that land opportunity costs will continue to

grow over the next 50 years at the 4% growth rate of the Brazilian gross value of agricultural

production from 2010 to 2020.

From the data for 2018-2020 (Table A4), we calculate the 50-year present values for

the land opportunity cost for each agricultural activity in the Brazilian regions and South

American countries covered by the forestation target zone, and convert these present values

into 50-year annualized costs. Table 1 shows the annual land opportunity cost for each

agricultural activity in the forestation target zone.22

To illustrate, consider a land grid element with 55% tree cover in the North region of

Brazil's Amazon forest, which is partially used for raising livestock, so its land opportunity

cost is $131 per hectare per year (Table 1). What is the land opportunity cost of increasing

the tree cover to its potential of 75%? A land grid element comprises 250,000 hectares, so a 1

22The 50-year present value of an annuity of $1, discounted at 5%, is (1−(1+5%)−50)/5% = 18.25593. The
50-year present value of a growing annuity that begins at $1 but increases at a 4% annual rate, discounted
at 5%, is (1 − (1 + 4%)50 × (1 + 5%)−50)/(5% − 4%) = 38.02707. Thus, Table 1 was derived by multiplying
each entry of Table A4 by 38.02707/18.25593 = 2.083.
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Table 1: Annual land opportunity costs for temporary crops, permanent crops and livestock
in the Brazilian regions and South American countries covered by the forestation target zone
(2020 US dollars per hectare).

Geographic unit Temporary
crops
(US$/(ha yr))

Permanent
crops
(US$/(ha yr))

Livestock:
bovine
(US$/(ha yr))

Brazilian region:
South (S) 596 614 467

Southeast (SE) 246 717 312
Central-West (CW) 246 717 240
Northeast (NE) 362 935 196

North (N) 242 304 131
Argentina 596 614 467
Bolivia 244 510 185
Colombia 242 304 131
Ecuador 242 304 131
French Guiana 242 304 131
Guyana 242 304 131
Paraguay 421 666 353
Peru 242 304 131
Suriname 242 304 131
Uruguay 596 614 467
Venezuela 242 304 131

percentage point increase in tree cover requires 8×250, 000 = 2 million new trees, occupying

1.33% of 250,000 = 3,333 hectares, which can no longer be used for agriculture. The 20%

increase in tree cover requires 20×2, 000, 000 = 40 million trees over an area of 20×3, 333 =

66,660 hectares, so the land opportunity cost is 131× 66, 660 = $8.7 million per year.

5.2 Tree planting and maintenance costs

The costs of planting and maintaining trees depend on the choice of forest recovery tech-

nique, which in turn depends on such factors as soil degradation, work scale, possibility of

mechanization, access, and � most importantly � current tree cover. Di�erent forest recovery

techniques imply di�erent activities and inputs, and thus di�erent costs. These activities

and inputs may also vary for the same forest recovery technique, depending on existing

conditions (e.g., degraded soil, problematic access, etc.).

Benini and Adeodato (2017) and Kishinami and Watanabe Jr. (2016) provide cost es-

timates for the three most widely used forest recovery techniques, based on the range of
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activities and input requirements. The techniques are: (i) �facilitating natural regenera-

tion,� which involves controlling land degradation, enabling the spontaneous restoration of

native species, and increasing species richness; (ii) �enhancing tree density and enrichening,�

which involves planting a large number of trees so as to increase tree density and improve

species diversity; and (iii) �total planting,� the most expensive technique, which consists of

direct planting of seeds and seedlings.

�Facilitating natural regeneration� is most economical for land grids with high tree cover

(55-65%), �enhancing tree density and enrichening� is frequently used for land grids with

medium tree cover (30-55%), typically on the margins of remnant forest areas and in large

clearings, and �total planting� is usually most appropriate for land grids with low tree cover

(5-30%). Economies of scale make it uneconomical to plant small numbers of trees, so we

only consider areas where the forestation potential is at least 10%. Land grid elements where

the current tree cover is below 5% are too di�cult or expensive to forest (e.g., in urban and

industrial areas, or in areas of lakes, rivers, and degraded and rocky soil), and are ignored.

Because we work at the spatially disaggregated level of land grid elements, we assume forest

recovery takes place in contiguous areas of 250,000 hectares.23

From the present value estimates in Benini and Adeodato (2017), we calculate the average

tree planting cost per hectare for each forest recovery technique in the Amazon and Atlantic

forests. Tree planting costs depend on the number of trees planted, so we estimate the

average cost per tree by dividing the per hectare cost by the average number of trees added

to each hectare, which in turn is 8 times the di�erence between the target tree cover (either

75% or 40%) and its midrange tree cover.24 We convert these present values (per tree) into

50-year annualized costs. Table 2 shows the tree planting cost present values and 50-year

annualized costs for di�erent forest recover techniques and biomes.

Let's return to our example of a land grid element in the northern of Brazil, with 55% tree

23According to Kishinami and Watanabe Jr. (2016), the forest recovery technique �facilitating natural
regeneration� requires a high density of regenerative trees (mainly of pioneering species), and is recommended
for areas with canopy cover of 50 to 80%, and the forest recovery technique �enhancing tree density and
enrichening� is recommended for areas with a moderate density of natural regeneration, with canopies varying
between 30 to 60%. Other factors also a�ect the choice of forest recovery technique (e.g., soil degradation,
possibility of mechanization, etc.). In the absence of �eld speci�c data, we use the tree cover intervals of
55-65% for facilitating natural regeneration, 30-55% for enhancing tree density and enrichening, and 5-30%
for total planting. Forest areas with tree cover greater than 65% are left for (passive) natural regeneration.

24The midrange tree cover for the forest recovery techniques of facilitating natural regeneration, enhancing
tree density and enrichening, and total planting are, respectively, (55% + 65%)/2 = 60%, (30% + 55%)/2 =
42.5%, and (5% + 30%)/2 = 17.5%. Recall that each 1 percentage point increase in tree cover requires 8
trees per hectare (and 8 × 250, 000 = 2 million trees per land grid element). Note that the number of trees
actually planted may exceed the number added because some trees die and must be replanted.
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Table 2: Tree planting cost present values and 50-year annualized costs for di�erent forest
recovery techniques and biomes (2020 US dollars).

Biome and forest recovery
technique

Present values Annualized costs

(US$/ha (*)) (US$/tree) (US$/(tree yr))
Amazon rainforest, Atlantic
forest, Gran Chaco region:
Facilitating natural regeneration 420 3.50 0.192

Enhancing tree density/enrichening 1,100 4.23 0.232
Total planting (seeds and seedlings) 2,700 5.87 0.322
Savannas and grasslands:
Total planting (seeds and seedlings) 1,440 8.00 0.438

(*) Average tree planting costs per hectare in the Amazon and Atlantic forests were obtained from Benini
and Adeodato (2017). For areas of savanna and grassland, where the tree cover target is 40%, we take the
tree planting cost per hectare as (40/75) of the value for areas of forest, where the target is 75%.

cover. The forest recovery technique for that land grid is �facilitating natural regeneration,�

for which the annualized tree planting cost is $0.192 per tree per year (Table 2). The 20%

increase in tree cover requires planting 20×2, 000, 000 = 40 million trees, so the tree planting

cost is 40, 000, 000× 0.192 = $7.7 million per year.

5.3 Forest conservation costs

We utilize data from the Brazilian government's budgeted forest conservation policies from

2000 to 2014. Those data show that Brazil's substantial reduction in annual forest loss

after 2004 was accompanied by an increase in forest conservation expenditures. From 2005

to 2014, Brazil spent on average $1.1 billion per year on forest conservation at the federal

level (44% more than it spent from 2001 to 2004),25 while the annual forest loss dropped

by about 40% (Cunha et al., 2016). Taking all forested areas in the Brazilian Amazon

and Atlantic forests (340 million hectares), the annual forest conservation cost was about

(1.1× 109)/(340× 106) = $3.20 per hectare per year over 2005-2014.

To be conservative, we assume that successful forest conservation requires $4.00 per

hectare per year. Thus, the conservation of existing forest areas in the Amazon rainforest,

Atlantic forest, and Gran Chaco region (about 550 million hectares) requires an expendi-

ture of $2.2 billion per year. Adding the potentially forestable area of 228 million hectares

(Section 4.3), successful forest conservation will require $3.1 billion per year. Returning to

25Amazon monitoring and law enforcement e�orts alone have amounted to about $620 million per year
over that period (Assunção, Gandour and Rocha (2023)).
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our example of a land grid element in the northern of Brazil, with 55% tree cover, livestock

as the agricultural activity, and where a 20% increase in tree cover requires 20× 2, 000, 000

= 40 million trees, which will occupy 20 × 3, 333 = 66,660 hectares, the increase in forest

conservation cost will be 4× 66, 660 = $0.3 million per year.

To summarize this example, the total annualized forestation cost to reach and maintain

a target tree cover of 75% is the sum of $8.7 million (land opportunity cost), $7.7 million

(tree planting cost) and $0.3 million (forest conservation cost), which comes to $16.7 million.

The resulting increase in annual CO2 absorption is 20 ×36, 667 = 0.73 Mt CO2. Thus, the

cost per ton of CO2 removed is 16.7/0.73 = $23, which corresponds to Point A in Figure 2.

6 A Supply Curve for Forest-Based CO2 Removal

For every land grid element in the forestation target zone, we consider increasing its current

tree cover up to its target level (75% or 40%). We have data on the current tree cover

(through remote sensing), target tree cover, forestation potential and CO2 absorption rate

(Section 4), and land opportunity, tree planting and forest conservation costs (Section 5),

but to determine the land opportunity cost for each land grid element we need to know which

agricultural activity is performed in that element.

Planted and pasture areas in the forestation target zone are not georeferenced, so we

do not know which activity is performed in each land grid element. However, we do know

the planted and pasture areas in each Brazilian state and South American country,from

which we calculate the percentages currently used for temporary crops, permanent crops

and livestock. We use these percentages to estimate the potentially forestable area for each

agricultural activity, as shown in Table A5, and the land opportunity cost for each land grid

element. (For example, from the last row of Table A5, we estimate that for Venezuela the

potentially forestable area from livestock is 6, 840, 000× 87% = 5,950,800 hectares.)

6.1 Land use

For each geographic unit (Brazilian state or South America country), we estimate the area

that can be forested from each agricultural activity by multiplying the potentially forestable

area by the percentage of area currently used for each activity. For example, from the �rst

row of Table A5, we estimate that for Brazil, state of Paraná (Brazil-PR), the potentially

forestable areas from temporary crops, permanent crops and livestock are respectively 8.714
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(= 0.80× 10.892), 0.109 (= 0.01× 10.892), and 2.069 (= 0.19× 10.892) million hectares.26

Starting with all 0.5◦ resolution land grid elements inside the target zone with current

tree cover above 5% (i.e., not in areas of lakes, rivers, and degraded and rocky soil), we

remove those with forestation potential below 10% to account for economies of scale. (Later,

for comparison, we also estimate a supply curve that includes all land grid elements with any

forestation potential.) We assume each land grid element is being used for the agricultural

activity with lowest land opportunity cost (Table 1), and pick the element with the lowest

total forestation cost per ton of CO2 removed. We call this the proposed land use conversion.

It turns out that the land grid element with minimum total forestation cost per ton of CO2

removed is in the Amazon forest of Brazil, state of Pará (Brazil-PA), with 55% tree cover,

where the activity with lowest land opportunity cost is livestock. This is point A in Figure 2.27

We calculate the increase in forested area from the proposed land use conversion, and

check whether it is less than the available area (in a state or country) for the lowest land

opportunity cost agricultural activity. If it is, we perform the land use conversion and update

the potentially forestable area. If it is not, we convert only the area that is available, and

shift the geographic unit's agricultural activity to the next lowest cost activity. For example,

for Point A (land grid element with 55% tree cover in the Amazon forest of Brazil-PA), the

increase in forested area from the proposed conversion is (75− 55)× 3, 333 = 0.067 million

hectares, the lowest land opportunity cost activity is livestock (Table 1), and the potentially

forestable area from livestock is 0.91×19.569 = 17.808 million hectares (Table A5). Because

the potentially forestable area from livestock exceeds the increase in forested area from the

proposed land use conversion (17.808 > 0.067), we perform the conversion, and update the

potentially forestable area (to 17.808− 0.067 = 17.741 million hectares). Later, as we move

along the supply curve, when Brazil-PA's potentially forestable area for the livestock activity

has been depleted, we shift its remaining land grid elements to the next lowest cost activity,

temporary crops, for which the potentially forestable area is 0.06 × 19.569 = 1.174 million

hectares (Table A5).28

26Recall that the potentially forestable area in a geographic unit may be higher or lower than the sum of
the areas currently used for temporary crops, permanent crops and livestock (Section 4.3). The potentially
forestable area in Brazil-PR is lower than the sum of these areas: 10.892 < 10.741 + 0.121 + 2.626 = 13.488.

27There are 160 land grid elements with the same (minimum) total forestation cost per tCO2 removed, all
in countries with the lowest land opportunity costs (northern region of Brazil, Colombia, Ecuador, French
Guiana, Guyana, Peru, Suriname and Venezuela), restored using the cheapest forest recovery technique
(facilitating natural regeneration; for land grids with tree cover in the interval 55-65%).

28That happens at point (522 MM tCO2, $29.8/ tCO2) of the supply curve (Figure 8), when the 451th land
grid element is selected for forestation (156th in Brazil-PA), which has 25% tree cover, and the increase in
forested area from the proposed land use conversion is (75− 25)× 3, 333 = 0.167 million hectares. After the
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We then pick the next land grid element with lowest total forestation cost per ton of

CO2 removed, and repeat the above steps until all land grid elements in the target zone have

been forested (from their current tree covers up to their target levels), and the remaining

forestable area from each agricultural activity in each geographic unit is reduced to zero.

6.2 The supply curve

There are 3,662 land grid elements inside the forestation target zone, from which 3,545

have current tree cover between 5 and 100%. From these 3,545 land grid elements, 1,784

have forestation potential below 10% (either already fully forested or with low forestation

potential). Thus, there are 3,545 � 1,784 = 1,761 land grids candidates for forestation. After

going through the above steps for the entire forestation target zone, a total of 1,761 land grid

elements were completely forested (either at 75% or 40% tree cover), and the total forested

area reached 228 million hectares (equal to the potentially forestable area shown in Section

4.3). The number of new trees planted reached 137 billion.

Figure 8 shows the resulting supply curve for forest-based CO2 removal. Each point on

the curve shows the cost per ton of CO2 removed for a land grid element in the forestation

target zone as a function of total annual CO2 removal. The �gure shows that a carbon price

at or below $20/tCO2 will have no impact on forest-based CO2 sequestration, a carbon price

of $45/tCO2 can induce the sequestration of 1.5 Gt of CO2 per year, and a carbon price of

$90/tCO2 can induce the sequestration of 2.5 Gt of CO2 per year.

Figures 9a, 9b and 9c show the �rst 100, 880 and 1,761 land grid elements selected for

forestation, and Figures 9d, 9e and 9f show the tree cover evolution after the forestation

of these land grid elements. Reductions in agricultural land need not imply higher food

prices. Di�erent Brazilian regions and South American countries have di�erent agricultural

productivities, so reductions in agricultural areas can be compensated for by the adoption

of best production practices.

7 Sensitivity of Results and Policy Implications

Our results show that in South America alone, about 1.5 Gt of CO2 can be removed annually

via forestation at a cost of $45 per ton, and about 2.5 Gt can be removed at a cost of $90

forestation of 155 land grid elements in Brazil-PA, the remaining forestable area from the livestock activity
is just 0.072 million hectares, which is smaller than the increase in forested area from the proposed land use
conversion, so we perform the conversion only for the area that is available (0.072 million hectares), and shift
Brazil-PA's remaining land grid elements to the next lowest cost activity, temporary crops.
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Figure 8: Supply curve for forest-based atmospheric CO2 removal in South America. The
curve shows the marginal cost of removing one ton of CO2 as a function of total tree-based
annual CO2 removal. Each point corresponds to a land grid element in the target zone.

per ton. Given that global annual CO2 emissions are about 40 Gt, removing 2.5 Gt would

reduce net emissions by about 6 percent. But this reduction is not cheap. Removing 2.5 Gt

at a cost of $90 per ton implies an annual expenditure of $225 billion. On the other hand,

if payments are based on marginal cost (e.g., $23 per ton for Point A), the total annual

expenditure to remove 2.5 Gt, found by integrating the area under the supply curve from 0

to 2.5 Gt, would be $110 billion.

That expenditure and resulting CO2 absorption applies to South America. By how much

could net CO2 emissions be reduced worldwide, and at what cost? South America accounts

for about 21% of the world's forested area (Food and Agriculture Organization (2020a)),

and about 23% of the world's forestable area (228 million hectares divided by the 1 billion

hectares from Bastin et al. (2019)). If we assume the distributions of tree cover, precipitation,

and costs in the rest of the world are similar to those in South America and scale up the

supply curve accordingly, we could remove about 4 × 2.5 = 10 Gt of CO2 annually, which

amounts to reducing net global emissions by 25 percent. That reduction would cost about

10 × 90 = $900 billion annually if payments were $90 per ton, or 4 × 110 = $440 billion

annually if payments were at marginal cost. The $900 and $440 billion values respectively

amount to about 4 and 2 percent of US GDP, and about 0.9 and 0.5 percent of world GDP.
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(c) First 1,761 land grids.
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(e) After 880 land grids.
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(f) After 1,761 land grids.

Figure 9: Land grid elements selected for forestation and the respective tree cover evolution.
Each pixel represents a 0.5◦ resolution land grid element.

Alternatively, removing only 6 Gt of CO2 annually worldwide (corresponding to 1.5 Gt

in South America), would cost about 6 × 45 = $270 billion annually at a cost of $45 per

ton, or 4× 51 = $204 billion annually if payments are at marginal cost. (The integral of the

supply curve from 0 to 1.5 Gt is $51 billion.) The $270 and $204 billion amount to about

0.3% and 0.2% of world GDP, respectively � still signi�cant, but probably more feasible.

These numbers correspond to our �base case� supply curve, for which we made several

assumptions. In particular, we used a discount rate of 5% to capitalize �ows of expenditures;

we assumed that all previously forested and unforested land could potentially be forested;

and we excluded land grid elements with forestation potential below 10% (on the grounds

that scale economies make foresting these locations uneconomical). Here we examine the

sensitivity of our results to these assumptions by calculating three alternative supply curves.

The results are shown in Figure 10, where SC1 is the base case supply curve shown in

Figure 8. SC2 is the supply curve that results when the discount rate is lowered from 5% to

2.5%, and is very close to the base case curve. The reason is that lowering the discount rate

raises the present value of the �ow of expenditures, but lowers the corresponding annualized

costs, leaving the annual expenditures nearly unchanged.

To generate SC3, we assumed that only land that had been previously forested during the
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Figure 10: Supply curves for forest-based atmospheric CO2 removal in South America. Each
curve shows the marginal cost of removing one ton of CO2 as a function of total tree-based
annual CO2 removal: SC1 (black) is the base case supply curve described above. SC2 is
the supply curve for a 2.5% discount rate (instead of 5%). SC3 (blue) is the supply curve
that only includes areas that were previously forested, and SC4 (green) is the curve that
results if we include all land grids with any forestation potential (instead of only those with
forestation potential above 10%).

past 50 years could be reforested now, and excluded land that was never forested but instead

existed as savanna or grassland. (Some have argued that foresting areas that never existed

as forests could have negative environmental repercussions, such as reducing biodiversity,

and thus should be avoided.) As one would expect, SC3 is well above SC1, and in fact the

maximum feasible CO2 absorption is 2 Gt, at a cost of about $85 per ton. It may indeed be

the case that foresting land that had previously existed as savanna or grassland could reduce

biodiversity (we take no stand on this), but excluding such land is expensive.

Finally, to generate SC4 we included all land grids with any forestation potential, instead

of only including those with forestation potential above 10%. Including these additional land

grids lowers the supply curve, but the di�erence is small, and is only noticeable when the

total annual CO2 absorption is above 1.7 Gt. (At a total of 2 Gt, for example, the di�erence

in marginal cost is less than $5 per ton.)

With the exception of excluding land that was never forested (SC3), our results are not

very sensitive to these assumptions. But of course there are other assumptions and estimates
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that could be tested. Examples include the numbers that went into our calculation of the

per-tree CO2 absorption rate, the potential tree density per hectare, and our assumptions

regarding land opportunity costs in countries other than Brazil. We leave this for further

work, although we think it is unlikely that (reasonable) changes in these assumptions would

have much impact on the supply curve.

8 Conclusions

Forestation is viewed as an important means of removing CO2 from the atmosphere and

thereby reducing net CO2 emissions. But where should trees be planted, how many should

be planted, and at what cost? Given a price of carbon, how much CO2 can be removed?

We addressed these questions by developing a supply curve for forest-based CO2 removal in

South America. Our supply curve traces out the marginal cost of removing a ton of CO2 as

a function of total annual CO2 removal. We use data on tree cover and precipitation at the

spatially disaggregated level of 0.5◦ × 0.5◦ resolution land grid elements. Each point on the

curve corresponds to a speci�c location (grid element), and accounts for land opportunity

costs as well as costs of tree planting and maintenance. We show that over a billion tons

of CO2 can be removed annually via forestation at a cost below $45 per ton, and about 2.5

billion tons can be removed at a cost below $90 per ton.

The supply curve applies to only South America, but with su�cient data could be ex-

tended to the entire world. If the rest of the world looks like South America (in terms of its

potential for forestation), and our supply curve were scaled up accordingly, a considerable

amount of CO2 could in principle be removed from the atmosphere via forestation. But

doing so would be costly. For example, reducing net CO2 emissions by 25% via forestation

would cost something around $1 trillion annually, which is about 1 percent of world GDP.

One could take issue with several aspects of our analysis. First, we have e�ectively

assumed that trees last forever, which is clearly not the case. When trees die, the carbon

they have sequestered will be released back into the atmosphere as CO2. Thus, it might

seem that planting trees cannot sequester CO2 over the long run because those trees will

eventually die. But the key is �eventually.� Trees can live for a few hundred years, so trees

planted now will sequester CO2 for many years before those trees will have to be replanted.

(Recall that our supply curve is based on a 50-year time horizon.)

We have ignored potential demand shifts and innovations in agriculture and in forestry

that might occur over the next 50 years. If consumers' food preferences shift from meat to

grains and vegetables, so that less land is used for livestock and more for temporary and
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permanent crops, land opportunity costs will change, and may not grow at the assumed rate

of 4% per year. Likewise, innovation may lead to reductions in tree planting and maintenance

costs. We have no way to predict such changes.

We have also ignored other bene�ts that forestation can provide, such as water recycling,

erosion control, and short-term climate regulation. These bene�ts have external economic

value, and from a public policy perspective should a�ect the supply curve by reducing the

�full� marginal cost of CO2 removal. Lastly, we have not addressed the cost of maintaining

existing forest areas, so as to reduce CO2 emissions from deforestation.

Because data limitations have limited our analysis to South America, this paper might be

viewed as a �proof of concept.� With su�cient data, however, our method can be extended

to forests and forestation in other continents. Doing so requires identifying the climate and

precipitation patterns adequate for other biomes, and de�ning the respective target zones,

tree cover targets, quantities and types of trees, carbon gains and economic costs.
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Table A1: Details regarding Points A, B, C, and D on the supply curve in Figure 2.

Point Model outputs Calculations
A Location: Amazon forest of Brazil.

Coordinates: (-57.75◦ long, 1.25◦ lat).
Initial tree cover: 55.0%.
Forestation potential: 20.0%.
Agricultural activity: Livestock.
Land area converted to forest: 66,667 ha.
∆CO2 absorption rate: 0.73 MtCO2/yr.
Total forestation cost: US$ 16.7 MM/yr.
Cost per tCO2 removed: US$ 23.

Trees planted = 20.0× 2 MM = 40.0 MM. Land
area converted to forest = 20.0 × 3, 333.333 =
66,667 ha. ∆CO2 absorption rate = 20.0 ×
36, 667 = 0.73 MtCO2/yr (Section 4.3). Land
opportunity cost = 131 × 66, 667 = $8.7 MM/yr
(Table 1). Tree planting cost = 40, 000, 000 ×
0.192 = $7.7 MM/yr (Table 2). Forest conser-
vation cost = 4 × 66, 667 = $0.3 MM/yr (Sec-
tion 5.3). Total forestation cost = $(8.7 + 7.7
+ 0.3 = 16.7) MM/yr. Cost per tCO2 removed
= 16.7/0.73 = $23.

B Location: Amazon forest of Brazil.
Coordinates: (-49.25◦ long, -4.25◦ lat).
Initial tree cover: 23.667%.
Forestation potential: 51.333%.
Agricultural activity: Livestock.
Land area converted to forest: 171,111 ha.
∆CO2 absorption rate: 1.88 MtCO2/yr.
Total forestation cost: US$ 56.1 MM/yr.
Cost per tCO2 removed: US$ 30.

Trees planted = 51.333× 2 MM = 102.666
MM. Land area converted to forest = 51.333 ×
3, 333.333 = 171,110 ha. ∆CO2 absorption rate
= 51.333 × 36, 667 = 1.88 MtCO2/yr (Section
4.3). Land opportunity cost = 131 × 171, 110 =
$22.4 MM/yr (Table 1). Tree planting cost
= 102, 666, 000 × 0.322 = $33.1 MM/yr (Table
2). Forest conservation cost = 4 × 171, 110 =
$0.7 MM/yr (Section 5.3). Total forestation cost
= $(22.4 + 33.1 + 0.7 = 56.2) MM/yr. Cost per
tCO2 removed = 56.2/1.88 = $30.

C Location: : Amazon forest of Brazil.
Coordinates: (-53.75◦ long, -14.75◦ lat).
Initial tree cover: 29.333%.
Forestation potential: 45.667%.
Agricultural activity: Temporary crops.
Land area converted to forest: 152,222 ha.
∆CO2 absorption rate: 1.67 MtCO2/yr.
Total forestation cost: US$ 67.4 MM/yr.
Cost per tCO2 removed: US$ 40.

Trees planted = 45.667× 2 MM = 91.334
MM. Land area converted to forest = 45.667 ×
3, 333.333 = 152,223 ha. ∆CO2 absorption rate
= 45.667 × 36, 667 = 1.67 MtCO2/yr (Section
4.3). Land opportunity cost = 246 × 152, 223 =
$37.4 MM/yr (Table 1). Tree planting cost
= 91, 334, 000× 0.322 = $29.4 MM/yr (Table 2).
Forest conservation cost = 4 × 152, 223 = $0.6
MM/yr (Section 5.3). Total forestation cost =
$(37.4 + 29.4 + 0.6 = 67.4) MM/yr. Cost per
tCO2 removed = 67.4/1.67 = $40.

D Location: Brazilian savanna (Cerrado).
Coordinates: (-49.75◦ long, -20.25◦ lat).
Initial tree cover: 18.0%.
Forestation potential: 22.0%.
Agricultural activity: Permanent crops.
Land area converted to forest: 73,333 ha.
∆CO2 absorption rate: 0.81 MtCO2/yr.
Total forestation cost: US$ 72.1 MM/yr.
Cost per tCO2 removed: US$ 89.

Trees planted = 22.0× 2 MM = 44.0 MM. Land
area converted to forest = 22.0 × 3, 333.333 =
73,333 ha. ∆CO2 absorption rate = 22.0 ×
36, 667 = 0.81 MtCO2/yr (Section 4.3). Land
opportunity cost = 717×73, 333 = $52.6 MM/yr
(Table 1). Tree planting cost = 44, 000, 000 ×
0.438 = $19.3 MM/yr (Table 2). Forest conser-
vation cost = 4×73, 333 = $0.3 MM/yr (Section
5.3). Total forestation cost = $(52.6 + 19.3 +
0.3 = 72.2) MM/yr. Cost per tCO2 removed
= 72.2/0.81 = $89.
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Table A2: Summary statistics for key variables that a�ect the supply curve (*). Monetary
values are in 2020 US dollars.

Variable Minimum Median Mean Maximum Std Dev
Mean annual precipitation
(mm/yr)

0 1620 1626 7435 848

Mean maximum cumulative
water de�cit (mm/yr)

0 268 335 1188 274

Average tree cover (%) 0 27 37 84 29
GPV for temporary crops
(US$/ ha)

319 848 992 2457 724

GPV for permanent crops
(US$/ ha)

399 2242 2434 6254 1990

GPV for livestock
(US$/ ha)

51 126 464 6067 2240

LOC for temporay crops
(US$/ ha)

116 118 155 286 66

LOC for permanent crops
(US$/ ha)

146 344 322 449 122

LOC for livestock
(US$/ ha)

63 94 112 224 58

(*) GPV stands for Gross Production Value; LOC stands for Land Opportunity Cost.
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Table A3: Input data and corresponding web-based data sources.

Data type Source
Monthly precipitation data world-
wide from Mar/2001 to Feb/2018 at
0.5◦ resolution (CRU/TS).

Climatic Research Unit, accessed on 2024-02-24 through the link:
https://crudata.uea.ac.uk/cru/data/hrg/.

Tree cover data worldwide from
Mar/2001 to Feb/2018 at 250-meter
spatial resolution (MODIS/VCF).

Moderate Resolution Imaging Spectroradiometer/Vegetation
Continuous Fields, accessed on 2024-02-24 through the link:
https://lpdaac.usgs.gov/products/mod44bv006/.

Tree densities, carbon gains and CO2

absorption rates in the tropics.
Crowther et al. (2015), Busch et al. (2019), ForestPlots.net et al.
(2021), and Mokany, Raison and Prokushkin (2006).

Geographic borders of the Amazon
forest.

Brazilian Institute for Space Research, accessed on 2024-02-24
through the link: http://terrabrasilis.dpi.inpe.br/en/download-
2/.

Geographic borders of the Atlantic
forest and Gran Chaco region.

MapBiomas Project, Annual Series of Land Use
and Land Cover Maps of Brazil (Collections 2.0
and 4.0), accessed on 2024-02-24 through the link:
https://code.earthengine.google.com/?accept_repo=
users%2Fmapbiomas%2Fuser-toolkit&scriptPath=users
%2Fmapbiomas%2Fuser-toolkit%3Amapbiomas-user-toolkit-
lulc.js.

Geographic borders of South Ameri-
can countries.

Database of Global Administrative Areas, accessed on 2024-02-24
through the link: https://gadm.org/download_country.html.

Geographic borders of Brazilian
states.

Brazilian Institute of Geography and Statis-
tics, accessed on 2024-02-24 through the link:
https://www.ibge.gov.br/geociencias/organizacao-do-
territorio/malhas-territoriais/15774-malhas.html.

Land opportunity costs for tempo-
rary crops, permanent crops and live-
stock in Brazil.

Obtained by request from the Brazilian Confederation of Agri-
culture and Livestock (CNA): https://cnabrasil.org.br/.

Tree planting costs. Kishinami and Watanabe Jr. (2016) and Benini and Adeodato
(2017).

Forest conservation costs. Cunha et al. (2016) and Assunção, Gandour and Rocha (2023).
Gross production values for tempo-
rary and permanent crops in Brazil,
and the respective planted areas.

Brazilian Institute of Geography and Statis-
tics, accessed on 2024-02-24 through the link:
https://www.ibge.gov.br/estatisticas/economicas/agricultura-
e-pecuaria/9117-producao-agricola-municipal-culturas-
temporarias-e-permanentes.html?=&t=resultados.

Gross production values for livestock
in Brazil.

Brazilian Ministry of Agriculture and Live-
stock, accessed on 2024-02-24 through the link:
https://www.gov.br/agricultura/pt-br/assuntos/politica-
agricola/valor-bruto-da-producao-agropecuaria-vbp.

Pasture areas for livestock grazing in
Brazil.

MapBiomas Project, accessed on 2024-02-24 through the link:
https://plataforma.brasil.mapbiomas.org.

Planted and pasture areas for tem-
porary crops, temporary meadows
and pastures, permanent crops, and
permanent meadows and pastures in
South America.

United Nations' Food and Agriculture Organiza-
tion, accessed on 2024-02-24 through the link:
https://www.fao.org/faostat/en/#data/RL.
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Table A4: Land opportunity costs in the Brazilian regions and South American countries
covered by the forestation target zone (*). Data from 2018-2020 (2020 US dollars).

Geographic unit Temp. crops
(US$/(ha yr))

Perm. crops
(US$/(ha yr))

Livestock
(US$/(ha yr))

Brazil
South (S) 286 295 224

Southeast (SE) 118 344 150
Central-West (CW) 118 344 115
Northeast (NE) 174 449 94

North (N) 116 146 63
Argentina 286 295 224
Bolivia 117 245 89
Colombia 116 146 63
Ecuador 116 146 63
French Guiana 116 146 63
Guyana 116 146 63
Paraguay 202 320 170
Peru 116 146 63
Suriname 116 146 63
Uruguay 286 295 224
Venezuela 116 146 63

(*) For South American countries other than Brazil, because of the lack of appropriate cost data, we use
the average land opportunity costs for temporary crops, permanent crops and livestock observed in the
Brazilian regions closest to their frontiers.

36



Table A5: Planted, pasture, and potentially forestable areas in the Brazilian states and South
American countries covered by the forestation target zone. Values in thousand hectares.

Geographic unit Planted and pasture areas in 2020 Potentially forestable
Temp. crops Perm. crops Livestock area ('000 ha)
('000 ha (%)) ('000 ha (%)) ('000 ha (%))

Brazil
South (S)

PR 10,741 (80%) 121 (1%) 2,626 (19%) 10,892
RS 9,373 (94%) 159 (2%) 393 (4%) 10,618
SC 1,436 (62%) 76 (3%) 791 (34%) 3,240

Southeast (SE)
ES 80 (3%) 485 (19%) 1,979 (78%) 3,033
MG 4,640 (18%) 1,193 (5%) 19,320 (77%) 9,134
RJ 76 (4%) 35 (2%) 1,884 (94%) 1,849
SP 8,068 (61%) 795 (6%) 4,353 (33%) 12,456

Central-West (CW)
GO 6,900 (35%) 41 (0%) 13,015 (65%) 1,520
MS 5,947 (30%) 10 (0%) 13,871 (70%) 13,321
MT 17,150 (45%) 39 (0%) 20,935 (55%) 36,552

Northeast (NE)
AL 420 (22%) 47 (3%) 1,404 (75%) 710
BA 3,229 (16%) 907 (5%) 15,932 (79%) 3,048
MA 1,700 (19%) 19 (0%) 7,217 (81%) 3,681
PB 337 (21%) 32 (2%) 1,224 (77%) 102
PE 704 (20%) 92 (3%) 2,770 (78%) 573
RN 245 (28%) 82 (9%) 564 (63%) 158
SE 219 (13%) 60 (4%) 1,377 (83%) 523

North (N)
AC 70 (3%) 12 (1%) 2,192 (96%) 814
AM 102 (4%) 21 (1%) 2,649 (96%) 3,347
AP 36 (13%) 3 (1%) 235 (86%) 2,038
PA 1,364 (6%) 652 (3%) 21,477 (91%) 19,569
RO 722 (8%) 92 (1%) 8,749 (91%) 6,919
RR 84 (8%) 10 (1%) 1,026 (92%) 2,279
TO 1,547 (20%) 5 (0%) 6,113 (80%) 5,344

Brazil (Subtotal) 77,965 (33%) 5,431 (2%) 154,487 (65%) 151,721
Argentina 39,744 (34%) 1,068 (1%) 74,681 (65%) 16,136
Bolivia 3,121 (9%) 251 (1%) 33,000 (91%) 13,724
Colombia 1,850 (4%) 2,505 (6%) 39,504 (90%) 10,006
Ecuador 823 (16%) 1,443 (28%) 2,939 (56%) 2,318
French Guiana 11 (37%) 6 (18%) 14 (45%) 331
Guyana 370 (37%) 28 (3%) 594 (60%) 3,467
Paraguay 4,262 (26%) 90 (1%) 11,985 (73%) 13,332
Peru 909 (4%) 2,262 (10%) 18,800 (86%) 3,529
Suriname 53 (72%) 5 (7%) 16 (22%) 1,298
Uruguay 1,827 (13%) 39 (0%) 12,000 (87%) 5,223
Venezuela 1,950 (9%) 700 (3%) 18,200 (87%) 6,840
Total 132,885 (26%) 13,827 (3%) 366,220 (71%) 227,924

37



MIT CEEPR Working Paper Series 
is published by the MIT Center for Energy 
and Environmental Policy Research from 
submissions by affiliated researchers.
For inquiries and/or for permission to 
reproduce material in this working paper, 
please contact:

General inquiries: ceepr@mit.edu
Media inquiries: ceepr-media@mit.edu

Copyright © 2024
Massachusetts Institute of Technology

Contact.



MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MIT Center for Energy and  
Environmental Policy Research 
Massachusetts Institute of Technology
77 Massachusetts Avenue, E19-411
Cambridge, MA  02139-4307
USA

ceepr.mit.edu

http://ceepr.mit.edu

