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Abstract 

As decarbonization policies lead to the electrification of the transportation, buildings, and other 

end-use sectors, it will be necessary to expand distribution network capacities, at significant cost. 

Most US utilities currently recover both energy and network costs via time-invariant (flat) charges 

for kilowatt-hour (kWh) usage. While energy costs do vary with kWh usage, network costs vary 

instead with peak kilowatt (kW) demand, so recovering network costs via flat per-kWh charges 

can provide no incentives to shift peak demand to reduce the need for expensive network 

expansion. Time-of-use (TOU) tariffs that vary the cost per kWh to reflect changes in generation 

costs, for instance, give incentives to shift all electric vehicle (EV) charging to low-price periods, 

potentially raising kW demand in those periods and increasing network expansion costs. 

Efficiency (and, we will argue, equity) requires separating energy charges from network charges, 

with appropriate rate designs for each. Accordingly, this paper considers rate designs that 

unbundle energy and network charges and uses a realistic case study to investigate the 

implications of combining TOU energy charges with various network tariffs in the face of 

increased EV penetration. Our results provide support for the adoption in the US of ex-ante 

subscribed capacity tariffs (subscription charges), which have been used in Europe for many 

years. 
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1. Introduction 

While the average cost of generating electricity in the US has steadily declined since 2010, the 

cost of delivering electricity – via the transmission and distribution networks – has risen (Aniti, 

2021). Distribution and transmission network costs are expected to increase significantly in the 

future as wind, solar and storage replace fossil generation and as the transportation, buildings 

and other sectors are electrified to meet decarbonization commitments. In this paper, we focus 

on single-family residential distribution feeders, where there is relatively low diversity of 

customer loads compared to parts of the distribution network that host multiple housing types 

and customer classes (e.g., commercial and industrial).1 As the diversity of individual customer 

loads declines further, perhaps because EV penetration increases and many customers charge 

their EVs at the same time, the need for network capacity tends to increase faster than the total 

consumption of electrical energy.  In almost all US states, electric utilities recover distribution 

costs, along with energy costs, from residential and small commercial customers based on 

customers’ monthly electricity consumption, regardless of the timing of that consumption. We 

refer to these as flat volumetric tariffs. Yet many utilities’ distribution costs are fixed in the short 

run, reflecting past investments, and in the longer run are driven by the need to make 

incremental investments to handle periods of higher kW demand (Pérez-Arriaga et al., 2017). The 

factors that drive these costs are not reflected in flat volumetric tariffs.  

The impact of residential electric vehicle (EV) charging on low-voltage distribution grids under 

flat volumetric tariffs has been studied extensively. For example, Muratori (2018) discovers that 

even if system-wide impacts are small due to low overall EV penetration, clustered EV adoption 

may require widespread upgrades for distribution grid equipment like small-scale transformers. 

More recently, Needell et al. (2023) estimate electricity demand curves at high penetrations of 

EV and rooftop photovoltaic (PV) systems in New York, NY and Dallas, TX, finding that workplace 

 
1 Diversity is traditionally measured by the diversity factor (DF): the ratio of the sum of the non-coincident peak 
demands of a set of users to the peak in their total demand. This DF is equal to one if demands are perfectly 
correlated and higher otherwise. The higher the diversity factor is, roughly, the higher the total kWh consumption 
of that set of users that can be provided with a given network capacity. 

𝐷𝐹 =  
∑ max

𝑖∈𝑡
(𝐷𝑒𝑚𝑎𝑛𝑑𝑖,𝑗)𝑛

𝑗=1

max
𝑖∈𝑡

(∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑖,𝑗)𝑛
𝑗=1

  where n is the total number of users (indexed by j), and t is the set of timesteps. 
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charging and delayed overnight charging are effective strategies for reducing peak demand and 

the need for investment in distribution capacity. Gschwendtner et al. (2023) assess the impact 

on local system peak of plug-in behavior – when and for how long drivers decide to charge.  

While there is broad consensus that flat volumetric network tariffs are not cost-reflective (Pérez-

Arriaga et al., 2017) and discourage electrification (Schittekatte et al., 2023), regulatory 

commissions across the US have taken a range of approaches to designing alternative tariffs 

(described in detail in Appendix A). Most utilities have offered optional (opt-in) time-of-use (TOU) 

rates since the early 2000s. Customers who enroll in these TOU rates could save money by 

shifting their consumption to “off-peak” periods. However, as of 2021 only 9% of US residential 

customers were enrolled on TOU rates (Faruqui and Tang, 2023), even though 73% of residential 

customers have advanced meters capable of supporting such rates (US EIA, 2023), shown in 

Figure 1. To combat this trend, a small number of states has enacted policies to make TOU rates 

the default option (Kavulla, 2023). In all these states there is no retail competition, so the 

distribution utility is also the energy supplier, and the TOU rate bundles energy, distribution, and 

transmission costs. In several states, EV-specific TOU rates have been introduced. End users 

opting into these rates are often not required to enroll on a time-varying tariff for their remaining 

household demand, and in some cases, it is impossible for EV owners to pay more than the 

default flat volumetric rate.  

 

Figure 1: Smart meter deployment among US households (left) and default TOU rate adoption (right). Map at 
left from Kavulla (2023). Default TOU rates shown for each state’s largest distribution utility. 
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Default TOU rates foster electrification by signaling how the marginal cost of electricity 

generation varies within days and across seasons (see e.g., Schittekatte et al., 2022). In addition, 

at current EV adoption levels EV owners can pay less for charging than under flat volumetric rates, 

and other consumers would receive the indirect benefit of lower peak wholesale prices without 

bearing substantial costs of network expansion. A study by the California Public Utility 

Commission (CPUC) found that “the increase in electricity sales from electrification may outweigh 

the costs of distribution investments, causing a downward pressure on residential electricity 

rates compared to present rates,” a benefit to not just EV owners but all grid users (CPUC, 2023). 

However, when local concentrations of EVs rise and wholesale price patterns are poorly aligned 

with demands on distribution networks, TOU rates may increase network congestion. A per-kWh 

charge alone, even a time-differentiated one, provides no disincentive for consumers to limit 

their maximum instantaneous kW consumption. As consumers defer EV charging to off-peak 

hours, TOU rates may result in local demand peaks at the onset of off-peak periods similar to the 

impact of the time-varying rates for water heaters introduced in the 1970s. And because 

residential EV charging is such a large load compared to other household appliances, it is possible 

that the higher and more highly correlated loads from EV charging can exceed existing network 

capacity even at low EV adoption levels, leading to steeply rising costs for distribution network 

upgrades. Such a reduction in the diversity of loads would impact various portions of the 

distribution network hierarchy, including individual household service connections, single 

feeders, and multiple feeders aggregated at a substation – what Boiteux and Stasi (1964) refer to 

as the individual and semi-individual networks. After years of stagnant demand, utilities are now 

requesting regulatory approval for grid modernization projects that enable electrification in 

support of state decarbonization goals; for example, in September 2023, National Grid and 

Eversource in Massachusetts filed draft plans for peak load-related upgrades totaling $2B 

between 2023 and 2030 (National Grid, 2023; Eversource, 2023). Notably, these plans do not 

model or consider alternative rate structures, which could mitigate the need for the high levels 

of grid reinforcement proposed. 

In this paper, we study how to complement TOU energy charges with separate distribution 

network tariffs to deal with the problem of bunched EV charging in response to changes in energy 
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charges. We consider TOU network tariffs along with a selection of alternative tariff designs that 

have been implemented outside the US. To perform the analysis, we conduct a realistic case 

study using simulated residential load and driving profiles at increasing levels of EV adoption, 

calibrated for Massachusetts. We study three types of network tariffs – fixed, per-kWh, and 

capacity (per-kW) – and analyze the results of households minimizing their electricity costs. We 

consider three key metrics: annual peak demand, levelized cost of EV charging, and cost shifts 

between EV and non-EV households.  

We focus on the performance of alternative network tariffs combined with a TOU energy tariff 

because consumers react to the aggregate price. More complicated network tariffs beyond those 

tested here and load control programs have been proposed in the literature, but we restrict the 

scope of this study to relatively simple designs that have been implemented successfully in 

Europe (see Appendix A).  

Our results should make clear to utilities and their regulators the importance of separating 

network charges from TOU energy rates. A bundled TOU rate that covers both energy and 

network costs could in fact perform worse than bundled flat volumetric rates from a total system 

cost (energy plus network) perspective by requiring unnecessary network expansion. This 

recommendation is not exclusive to states with vertically integrated utilities but can equally be 

applied to states with unbundled tariffs (e.g. the three California IOUs) or retail competition.2 In 

the latter cases, while the separation between energy and network costs is inherent to the 

regulatory model, often flat or TOU volumetric tariffs are in place to recoup distribution costs.  

The problem of correlated charging demand is urgent even though at the national level EVs 

currently only make up about 1% of total light duty vehicles (AFDC, 2022), since adoption can be 

highly spatially concentrated. In California, EVs accounted for 19% of new light duty vehicles sold 

in 2022 (State of California, 2023). In some neighborhoods, an EV can be found charging in almost 

every garage. Thus, local network effects will be felt long before EVs have achieved a significant 

 
2 Today, 13 states and Washington, D.C. have full retail electricity competition (RESA, 2022).  
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share of the total vehicle fleet. The high adoption scenarios studied here may already reflect what 

is happening in small pockets of the distribution network. 

Steinbach and Blaschke (2023) identify a related equity issue if early EV adoption continues to be 

correlated with income. In the absence of tariff reform, higher-income individuals tend to have 

charging schedules that align with local network peaks, so their EV adoption will necessitate 

network upgrades paid for by all electricity consumers. 

Our main finding is that distribution network tariffs for which consumers subscribe to certain 

maximum kW demand levels, with some time differentiation, can be a pragmatic approach to 

better control the impacts of rising EV penetration on network costs. With EV adoption as low as 

15%, we observe new EV-driven peak demands. When paired with a TOU energy tariff, fixed and 

per-kWh distribution network tariffs fail to contain steep increases in network costs and benefit 

one customer group (EV households or non-EV households) at the expense of the other. While a 

network tariff levied ex-post on actual peak kW demand achieves the lowest distribution network 

cost, it is difficult to implement and does not provide customer protections against bill shocks. In 

contrast, a subscription charge performs reasonably well for all considered assessment criteria, 

offering a compromise between network costs, impacts on local distribution peaks, and tariff 

complexity. Whereas some tariff designs rely on perfectly rational consumer behavior to achieve 

their desired impact, a subscription charge is robust to heterogeneity in consumer reactions to 

the tariff; its performance on all criteria actually improves when a small portion of customers 

ignore price signals. Our sensitivity analyses indicate that time-differentiated subscription 

charges are less effective when heating electrification is considered, a topic for future work. 

This paper is organized as follows: Section 2 provides background on network tariff design and 

introduces our research contribution. Section 3 introduces the process for creating simulated 

load profiles and specifies the methodology employed. Section 4 presents the results and 

sensitivity analyses. Section 5 discusses the implications of the results for tariff development. 

Section 6 concludes and offers policy recommendations. 
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2. Literature Review and Contribution 

Distribution network tariff reform has gained attention in the academic community in recent 

years due to three major trends: the adoption of rooftop PV under net metering, residential 

electrification, and the roll-out of smart meters. 

First, under net metering, consumers who install solar PV systems are compensated for their 

generation at the full retail rate. Because almost all states with net metering currently recover 

both energy and network costs through bundled flat volumetric rates, this means that solar 

consumers can reduce the amount they pay not just for energy, but also for the network they 

continue to rely on. Because embedded network costs are largely unaffected by solar adoption, 

the result is an increase in the costs that must be covered from customers without PV systems 

(Johnson et al., 2017). Equity concerns with net metering have spurred network tariff reforms all 

over the globe (Simshauser 2016; Schittekatte et al., 2018; Costello and Hemphill, 2014). 

Second, under a flat volumetric residential tariff that recovers both energy and network costs, 

the per-kWh charge substantially exceeds the marginal cost of energy. This inefficiency serves to 

discourage the adoption of heat pumps and electric vehicles. For example, in Massachusetts 

today, it is cheaper to run a natural gas boiler than a heat pump at outdoor temperatures below 

35F (Michaels and Nachtrieb, 2022), and a customer who replaces their natural gas space heating 

with a cold climate heat pump (CCHP) system will likely pay more in annual energy costs, 

independent of the installed cost of the system itself (Sergici et al., 2023). When these devices 

(which can be scheduled) are adopted, tariffs without time differentiation make it more likely 

that they will contribute to increasing peak demand. 

Third, the roll-out of smart electricity meters has allowed utilities to collect electricity 

consumption data at hourly or sub-hourly intervals. Previous meter models rendered it 

impossible to determine the time of day when customers consumed electricity. Today, over 73% 

of US households are estimated to have a smart meter (Cooper et al., 2021). 

A central objective of tariff design is to provide good incentives for consumption while producing 

adequate revenue to recover the utility’s costs. Efficiency requires that a network tariff be 
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structured so that network users are charged according to the cost they impose on the system. 

This will provide incentives that limit overinvestment. In addition, network tariffs should be 

simple and predictable, non-discriminatory towards certain customer groups, and recover 

regulated costs. Passey et al. (2017) show that under flat network tariffs, the costs consumers 

pay rarely reflects the costs they impose on the system. This leads to inefficient incentives for 

grid usage and to cost shifts between grid users. 

In theory, the most efficient network tariff contains two parts: a forward-looking charge that 

reflects the long-run marginal cost of upgrading the network at each location and a 

complementary fixed charge to recover the residual costs of past network investments (Strbac 

and Mutale, 2005; Pérez-Arriaga et al., 2017).3 While there is consensus around this framework, 

there is considerable disagreement in the literature on how it should be interpreted to design 

network tariffs in practice.  

In one camp, acknowledging the difficulty of calculating location-specific long-run marginal costs, 

Borenstein et al. (2021) argue that because most network investments have already been made,4 

the most important network tariff revision consists of shifting the non-marginal costs of those 

prior investments from a flat volumetric charge to a fixed charge – see also Borenstein (2016) 

and Borenstein and Bushnell (2022). The authors model several scenarios in which the long-run 

marginal transmission and distribution costs are set to zero, effectively ignoring forward-looking 

distribution network costs. To improve equity and promote electrification, they argue for an 

income-graduated fixed charge (IGFC) similar to a progressive income tax. Drawing on this idea, 

the California state legislature passed a bill in 2022 that requires the CPUC to implement fixed 

charges based on customers’ income with at least three distinct tiers. In response, the California 

investor-owned utilities recently proposed rates with fixed charges ranging from $15 to $128 per 

 
3 The first paper that has a coherent discussion of distribution marginal costs is Boiteux and Stasi (1964), which 
proposes that customer charges reflect forward-looking network costs to "spread out the peak”" and “fill out the 
hollows.” 
4 For distribution networks, there are three kinds of incremental capital expenditures: replacement, reinforcement 
(e.g., to deal with increase in wildfires) and demand-driven. Demand-driven expansion costs should be priced based 
on the associated long-run marginal costs. 
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month, which have been the subject of fierce debate (Faruqui, 2023; Engstrom and Deehan, 

2023).  

Using smart meter data from 100,000 customers in the Chicago area, Burger et al. (2020) arrive 

at a similar recommendation: a two-part tariff with a per-kWh charge set equal to the social 

marginal cost of energy and an income-based fixed charge so that low-income customers pay less 

than under current flat volumetric rates. The authors also find a strong correlation between a 

customer’s peak demand and income. In order to overcome the administrative challenge of 

collecting income information,  Batlle et al. (2020) propose a residual cost allocation scheme 

whereby users would be charged according to their historical consumption, which can be a 

reliable proxy for household wealth (Borenstein et al., 2021). 

In the other camp, Pérez-Arriaga et al. (2017) adhere to an “efficient ideal” approach, proposing 

that forward-looking costs should be calculated precisely at each network node, which is only 

feasible since the deployment of advanced metering infrastructure. In the same spirit, Morell-

Dameto et al. (2023) combine a simple fixed charge to cover residuals costs with a highly spatially 

and temporally granular per-kWh component that reflects forward looking network expansion 

costs. Abdelmotteleb et al. (2018) recommend a fixed charge plus a peak-coincident network 

charge based on each customer’s demand during the annual peak hour at each network level. 

Using smart meter data from Danish consumers, Gunkel et al. (2023) advocate for a two-part 

tariff that includes an individual peak and a system-coincident peak charge. Winzer and Ludwig 

(2022) conduct an exercise in optimal tariff design and propose a grid-responsive tariff to 

alleviate network congestion, where devices would respond to real-time price signals. Finally, 

Govaerts et al. (2023) investigate the “Long-Run Incremental Cost” approach to optimally 

calibrate network tariffs. 

The papers in this second camp present innovative approaches that may inspire future regulatory 

proceedings, but their methods are far more advanced than those we examine here. Moreover, 

even if it were possible to accurately calculate forward-looking network expansion costs at each 

network node, regulators are likely to deem it unacceptable to break a decades-long norm of 

charging network users in the same customer class on the same tariff. On the other hand, the 



 10 

first camp largely ignores the likelihood of future network investments driven by highly 

correlated newly-electrified demand. Papers like Borenstein et al. (2021) effectively assume that 

all network investments have already been made and consumers must simply pay for them. The 

authors stress that flat volumetric network charges discourage electrification, but ignoring the 

effects of network tariff design on future network investment requirements would only be 

correct in a system with stagnant demand. Ignoring the incentive effects of alternative network 

tariffs is inappropriate in a world in which demand is projected to grow and massive grid 

expansion is forecasted to be necessary to meet decarbonization targets (International Energy 

Agency, 2023). Our approach and the recommendations that follow fall somewhere in between 

these two camps, mirroring recent pragmatic European network tariff design efforts. We focus 

on simple solutions that do not rely on precise forward-looking cost calculations but consider the 

possibility of distribution network upgrades driven by peak kW demands. 

There is a small body of literature that takes a similar approach. These studies predominantly 

address the distributional impacts of traditional network tariff approaches in light of consumer 

adoption of solar PV and battery storage. Schittekatte (2020) uses a bi-level optimization to 

simulate how consumers with the option to invest in distributed energy resources (DERs) like 

solar PV may respond to three different network tariff designs. Hoarau and Perez (2019) consider 

adoption of both DERs and EVs, ultimately concluding that the diffusion of EVs can help mitigate 

grid defection concerns, but that tariff structures that provide incentives for DER owners tend to 

be harmful for EV owners. Simshauser (2016) proposes a demand charge to mitigate cost shifts 

between solar and non-solar households in Queensland, Australia. Using electricity consumption 

data from two network operators in Great Britain, Küfeoğlu and Pollitt (2019) demonstrate that 

under current network tariff structures, EV adoption applies downward rate pressure on network 

charges (the opposite impact of PV adoption). These papers typically assume scenarios of flat 

load and revenue neutrality, where all network costs are sunk. They do not consider outcomes 

where customers increase net demand through heat pump and EV adoption, and where 

additional network investments are required to meet peak demand but can be avoided, reduced, 

or deferred through appropriate tariff design. The assumption of zero marginal demand-driven 



 11 

distribution cost does not align with utility planning to support end-use electrification of 

transportation, buildings and other sectors (National Grid, 2023; Eversource, 2023). 

The one recent exception is Hennig et al. (2022). The authors lay out a framework for assessing 

network tariff performance, focusing on cost efficiency, cost recovery, and implementation 

burden. In a case study, the authors test four network tariff designs under EV adoption, where 

the distribution utility upgrades distribution transformers once they reach 95% of their capacity. 

The case study illustrates how to use the framework in practice, but it uses a sample of only 50 

consumers in Germany and unfortunately considers network tariffs in isolation, with no analysis 

of the interaction between network and energy tariffs.  

This paper fills important gaps in the existing literature by simulating a realistic case study that 

1) focuses on the interaction between network and TOU energy tariffs on peak load under a 

growing EV load scenario, 2) analyzes impacts of rate design on incentives for electrification via 

a levelized cost of charging calculation, 3) evaluates the cost impacts of different tariff designs 

both on consumers with and without EVs, and 4) uses 400 individual household load profiles for 

Massachusetts. Our analysis is inspired by existing network tariff designs in Europe, which seem 

largely to have escaped the attention of regulators and analysts in the US. 

3. Methods 

In this section, we present a high-level summary of the methodology for our case study, 

calibrated on realistic Massachusetts residential electricity consumption and driving data. A full 

description of the approach can be found in Appendix B. Figure 2 illustrates the components of 

our approach, which we outline in the subsections below. 
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Figure 2: Methodology flowchart; ResStock is a database of synthetic hourly load profiles for representative US 
homes. NHTS is the National Household Travel Survey, in which respondents log their travel behavior. The 
processes covered in each numbered cluster are covered in their corresponding sections (3.1 – 3.3). 
 

3.1 Users and Behavior 

In order to assess the performance of different network tariff designs under increasing EV 

adoption, we must simulate how consumers will respond to the tariffs’ price signals. 

We obtain 400 synthetic load profiles from NREL’s ResStock database (Wilson et al., 2022), drawn 

randomly from single-family home archetypes in the state of Massachusetts and representative 

of the local diversity found on a typical distribution feeder. We treat as exogenous hourly energy 

consumption given by these profiles, broken out by end-use type (heating, appliances, lighting, 

etc.). Using the National Household Travel Survey (NHTS), we assign to each household a 

simulated driving profile that indicates when its EV is at home and how many miles it is driven 

per day. Travel patterns, especially miles driven per day, are relatively stable across the US 

(Federal Highway Administration, 2017). 
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3.2 Network Tariffs 

We test variations on three standard formats for network tariff design: fixed, per-kWh, and 

capacity (based on kW demand).5 Table 1 shows the key details of each tariff, with representative 

costs shown for 0% EV adoption. 

Table 1: Summary of network tariff designs under consideration 

Tariff Type Variant 
Number of 
Periods 

Cost at 0% EV Adoption Description 

Fixed – - $1131/year 
Each consumer pays the 
same amount regardless 
of consumption. 

Per-kWh 

Non-Time-
differentiated 
(Flat) 

1 $0.11/kWh all hours 
Per-kWh charge with no 
time variation. 

Time-
differentiated 
(TOU) 

2 (intraday) 
$0.08/kWh off-peak 
$0.16/kWh on-peak 

Per-kWh charge with time 
variation identical to the 
TOU energy component. 
The on-peak charge is set 
at two times the off-peak 
charge. 

Capacity 

Ex-post measured 
(demand charge) 

1 $170/kW-year 

Assessed based on the 
consumer’s maximum 
hourly demand during the 
entire year. 

Ex-post measured 
(demand charge) 

3  
(intraday) 

$30/kW off-peak 
$70/kW mid-peak 
$88/kW on-peak 

Assessed based on the 
consumer’s maximum 
hourly demand in each 
period during the entire 
year. 

Ex-post measured 
(demand charge) 

6 (intraday 
& seasonal) 

$46/kW on-peak (winter) 
$51/kW on-peak (non-winter) 
$38/kW mid-peak (winter) 
$42/kW mid-peak (non-winter) 
$16/kW off-peak (winter) 
$17/kW off-peak (non-winter) 

Assessed based on the 
consumer’s maximum 
hourly demand in each 
period during the season. 

Ex-ante contracted 
(subscription 
charge) 

6 (intraday 
& seasonal) 

$40/kW on-peak (winter) 
$43/kW on-peak (non-winter) 
$31/kW mid-peak (winter) 
$34/kW mid-peak (non-winter) 
$13/kW off-peak (winter) 
$14/kW off-peak (non-winter) 

Calculated by adding a 1 
kW buffer to the 
optimized load profiles 
under the ex-post 
measured capacity tariff. 

 
5 We model whole-house tariffs in which all residential load is subject to the tariff terms. In this way, the tariffs are 
“technology-agnostic,” unlike the EV-specific tariffs discussed in Appendix A. 



 14 

Below, we describe how tariff prices for each incremental adoption level are calculated. For all 

network tariff types, we assume the energy price to be exogenous and energy costs recovered 

via a simple two-part TOU rate, calculated using the same methodology as the two-part TOU 

network charge, calibrated under 0% EV adoption on a (flat) supply charge of $0.102/kWh. On-

peak energy hours are weekdays 8:00 AM – 8:59 PM. 

Fixed 

The fixed tariff is the total revenue requirement after equilibrium is reached to cover all capital 

and operating network costs (see Section 3.3) divided by the number of grid users (400). 

Per-kWh 

The 1-part per-kWh tariff is the total revenue requirement divided by aggregate annual 

consumption. The 2-part TOU per-kWh tariff mirrors National Grid’s G-3 rate. Peak hours are 

Monday through Friday 8:00 AM to 8:59 PM, and the on-peak rate is set at two times the off-

peak rate. Further details are provided in Appendix B. 

Capacity 

We test two types of capacity tariffs: ex-post measured (demand charge) and ex-ante contracted 

(subscription charge). 

Ex-Post Measured (Demand Charge) 

An ex-post measured capacity charge (also called a demand charge) involves measuring the 

maximum demand during the billing period. In practice, it is calculated either by 1) averaging 

several instantaneous demand readings during each hour and taking the maximum of those 

averages; or 2) taking the maximum instantaneous reading. In our case study, this 

implementation detail is not relevant because we work with hourly consumption data. 

We test three different demand charges: 1-part, 3-part, and 6-part (i.e., 3-part seasonal). For 

each tariff, the charge in each period is calculated by dividing a portion of the revenue 

requirement by the sum of each customer’s maximum demand in that period. We elaborate on 

the simple 1-part demand charge (which takes the maximum across all hours of the year) by 
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adding time differentiation. The key idea is that EV customers will minimize their costs by limiting 

their EV charging demand below their maximum non-EV demand in each period. A single period 

(e.g., all hours of the year) allows for more bandwidth to charge without incurring additional cost. 

Introducing additional periods results in a lower aggregate peak demand, as discussed in the 

results. For the 3-part demand charge, we define 3 periods: off-peak from 12:00 AM - 7:59 AM 

(plus weekends), on-peak from 8:00 AM to 8:59 PM (same on-peak period as the TOU energy 

component), and mid-peak from 9:00 PM - 11:59 PM. The 3-part seasonal demand charge 

maintains the three intraday periods from the 3-part tariff and adds the concept of seasonality. 

We define a “winter” period consisting of December - March and a non-winter period that 

contains all other months. Full implementation details can be found in Appendix B. 

Ex-Ante Contracted (Subscription Charge) 

Unlike a demand charge, in a subscription charge, the consumer selects a capacity level in 

advance. In practice, consumers often can change their subscribed level as often as monthly. This 

works similarly to an Internet plan where customers select their bandwidth from a menu of 

options. In some implementations, if the customer exceeds the subscribed level, its power is cut 

off; in other cases, a penalty charge is imposed. Customers can determine their contracted (i.e., 

subscribed) level by looking back at their historical consumption. As described in Appendix A, for 

many years subscription network charges have been in place in France, Spain, and Italy to recoup 

part of the network costs. 

To calculate the subscription tariff charges, we run the optimization under the 3-part seasonal 

demand charge, which provides customers’ maximum usage in each of the 6 periods.6 We 

calculate the subscription level as the maximum usage in each period plus a 1 kW buffer, rounded 

to the nearest whole kW value. This is meant to mirror the exercise a household would do to 

determine its subscription level (albeit with historical consumption data rather than perfect 

foresight), with the buffer representing a small amount of aversion to exceeding the historical 

peak values and incurring a penalty or lost load.7 When the subscription level for the different 

 
6 We also modeled 1- and 3-part subscription charges, which perform worse than the 3-part seasonal variant. To 
avoid obscuring our key recommendations, these are not discussed or presented in the Results section. 
7 Note that third parties such as retail suppliers could assist consumers with selecting the ideal subscription level. 
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periods is determined, we re-run the optimization but with a hard physical cap equal to the 

assigned subscription value per time period. Because it is not possible for a household to exceed 

its pre-subscribed value in our model, we do not define a penalty cost function.  

Note that in this run the optimized EV charging profile will be different than in the initial run to 

obtain the ideal subscription level because no extra distribution network costs are incurred to 

charge beyond the optimal demand level (under demand charges) up to the subscribed physical 

cap. For example, a customer whose maximum demand during the winter on-peak period under 

a demand charge is 3 kW would subscribe at 4 kW. If that customer purchases an EV, she will 

incur no additional distribution-related costs if the home’s total demand (inclusive of EV 

charging) does not exceed 4 kW. The buffer therefore allows EVs to charge optimally at a higher 

level than under a demand charge. The subscription cost (in $/kW) for each period is the share 

of the revenue requirement divided by the sum of subscription levels across all customers.  

Alternative approaches that were not pursued 

While many papers (Backe et al., 2020; Nouicer et al., 2023; Muratori and Rizzoni, 2015) consider 

top-down load control or load management programs to achieve peak demand savings, the 

complexity of actively managing load becomes significant at high EV adoption levels. 

Furthermore, distribution utilities have not historically adopted “non-wires” approaches that 

reduce peak demand; growing peak demand is often used as a justification for making capital 

investments (Werner and Jarvis, 2022). To make our recommendations relevant regardless of the 

willingness of utilities to engage in load management programs, we do not incorporate 

centralized control of charging activity. Rather, each household acts independently to minimize 

its costs, acting on the aggregate network and energy price signal. We recognize that the addition 

of targeted load control on top of well-designed tariffs could provide even more savings for 

customers and will address this question in ongoing and future work. Another alternative 

approach could be to slightly vary the timing of the TOU periods for different users to create 

heterogeneity in charging behavior. We do not pursue this idea here as it violates the non-

discriminatory principle. 
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3.3 Optimization and Key Metrics 

We vary the exogenous EV adoption level, using 5% adoption increments, and assume that each 

EV responds rationally to price signals when plugged in. We solve a mixed integer linear program 

for each household to minimize annual electricity costs (detailed in Appendix B). Consumers react 

to the aggregate price, including both energy and distribution network charges. 

We assume that the 400 households are electrically connected in the same neighborhood and 

distribution grid. Increases in their annual aggregated coincident peak demand lead to linearly-

increasing network costs (the revenue requirement), which are recuperated via the distribution 

network tariff. While we consider distribution at only one layer, in reality it is a cascade of layers 

(Morell-Dameto et al., 2023), with impacts aggregating up, correcting for increasing diversity 

through the entire distribution hierarchy (Boiteux and Stasi, 1964). The problem of correlated EV 

charging is especially apparent at the lowest distribution layers, especially residential feeders 

with low load diversity. If we considered more layers, the impact of correlated charging would be 

less pronounced; the higher you aggregate up the more you can leverage load diversity. In this 

way, our approach considers the “weakest link” of the cascade. 

For each incremental level of electrification, we first compute a naive solution where the tariff 

price levels are set to collect the revenue requirement at 0% EV adoption. Using the resulting 

annual peak demand from the naive run, we recalculate the tariff prices to recover the new 

revenue requirement. Equilibrium is reached when the household responses do not deviate from 

the previous iteration, and the full revenue requirement is collected. The revenue requirement 

is proportional to the annual system peak, described in (1). 

𝑅𝑒𝑣𝑅𝑒𝑞 =  𝐵𝑁𝐶 +  𝐿𝑅𝑀𝐶 ∙  (𝑆𝑃𝑡  −  𝑆𝑃0)    (1) 

LRMC is the long-run marginal cost of expanding the network, set at $50/kW for the low-cost 

network expansion scenario and $150/kW for the high-cost network expansion scenario.8 These 

values are taken from studies commissioned by the CPUC on the avoided cost of distributed 

energy resources  (Energy+Environmental Economics, 2022) and the distribution cost impacts of 

 
8 Both values are annualized over the lifetime of the equipment entered into service. 
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transportation electrification (Cutter et al., 2021). We treat these values as representative 

endpoints of a cost spectrum, rather than exact predictions. The baseline network cost (BNC) is 

defined as the product of the annual aggregate consumption at 0% adoption times Eversource’s 

flat volumetric network charge in Eastern Massachusetts as of August 2023 ($0.11845/kWh) 

(Eversource, 2023).  We assume that all distribution network costs are allocated to the flat 

volumetric network charge. 𝑆𝑃𝑡 is the aggregate system peak for the electrification level t and 

𝑆𝑃0 is the aggregate system peak at 0% electrification. 

We assess each tariff design based on three metrics: peak demand (which is linearly associated 

with total network costs), cost impacts for EV households, and cost impacts for non-EV 

households. EV charging costs determine whether and how much customers will save compared 

to fuel costs with an internal combustion engine vehicle. Non-EV household costs capture the 

distributional impacts of each tariff option and indicate whether each will be acceptable from an 

equity perspective, especially when considering that EV adoption until now has correlated 

strongly with income (Lee et al., 2019). Ideally, only EV households should pay the incremental 

network costs due to increased EV adoption. Yet in practice and in our simulations distribution 

network tariffs reflect not only forward-looking costs but also sunk costs of prior investments 

(BNC here). The implications are discussed further in Section 5.2. 

We compute the following statistics for each tariff and at 5% incremental levels of EV adoption. 

We specify a brief description and equation for each (2-4). 

Annual peak: the maximum hourly demand for the aggregated load over all consumers, 

measured in kW: 

𝑚𝑎𝑥𝑖∈{1,..,8760} (𝐴𝑔𝑔𝐷𝑒𝑚𝑎𝑛𝑑𝑖)     (2) 

where 𝐴𝑔𝑔𝐷𝑒𝑚𝑎𝑛𝑑𝑖 is the sum of all individual demands in hour 𝑖 

Levelized charging cost: the average cost paid by EV households for EV charging, calculated as 

the total incremental EV-driven costs divided by total incremental EV-driven consumption, 

measured in $/kWh: 

∑ 𝐸𝑉𝑗(𝐶𝑜𝑠𝑡𝐸𝑉,𝑗  −  𝐶𝑜𝑠𝑡𝑁𝑜𝐸𝑉,𝑗)𝑛=400
𝑗  / ∑ 𝐸𝑉𝑗(𝐶𝑜𝑛𝑠𝐸𝑉,𝑗  −  𝐶𝑜𝑛𝑠𝑁𝑜𝐸𝑉,𝑗)𝑛=400

𝑗   (3) 
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where 𝐸𝑉𝑗 is 1 if the household has an EV and 0 otherwise 

Distributional impact: the average percentage change in network cost (NWCost) paid by non-EV 

households compared to a scenario of flat volumetric network and energy tariffs at 0% EV 

adoption, i.e. the “status quo” (SQ), measured in $/year/household: 

(∑ (1 − 𝐸𝑉𝑗)(𝑁𝑊𝐶𝑜𝑠𝑡𝑗  −  𝑁𝑊𝐶𝑜𝑠𝑡𝑆𝑄,𝑗
𝑛=400
𝑗 )/𝑁𝑊𝐶𝑜𝑠𝑡𝑆𝑄,𝑗) / ∑ (1 − 𝐸𝑉𝑗)𝑛=400

𝑗       (4) 

Under the assumptions outlined in this section, we isolate the impact of network tariff design on 

each of these key metrics, while capturing how charging incentives are determined by the 

interaction of the TOU energy tariff and network tariff design. 

It is worth discussing briefly how these metrics relate to consumer welfare. We assume that there 

is no welfare loss from deferring EV charging to a later hour as long as the vehicle has sufficient 

charge by departure time to fulfill that day’s driving needs. Using this assumption, consumer 

welfare is negatively related to total electricity cost. Since we assume EV adoption to be 

exogeneous, the absolute value of the network tariff charge has a limited impact on our 

computed metrics. Rather, the design of the network charge drives the results. We discuss this 

further in Section 5.2.  

4. Results 

This section is divided into two subsections. First, we present results for each key metric above. 

We include two cases for each metric to represent a range of possible incremental investment 

costs (LRMC); low ($50/kW) and high ($150/kW). Second, we perform sensitivity analyses to 

consider how the tariffs perform under different energy pricing plans, consumer behavior, and 

concurrent adoption of heat pump systems. 

4.1 Evaluation of Tariffs Against Key Metrics 

We first discuss the results for the growth in annual peak under the different network tariff 

designs. We then analyze the levelized charging cost for EV households. Finally, we discuss 

distributional impacts. 
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4.1.1 Annual Peak 

Figure 3 shows the annual coincident peak demand for each tariff at 5% adoption increments. 

The annual peak is identical for both LRMC cases because only relative price differences impact 

a household’s response, not the absolute value of the LRMC. The fixed, 1-part per-kWh and 2-

part TOU per-kWh tariffs produce the same result because the network tariff either has no impact 

on or magnifies the price differential in the energy tariff. 

 

Figure 3: Annual peak demand at 5% EV adoption increments for seven network tariffs tested (left), with 0 – 30% 

adoption highlighted (right). The fixed, 1-part per-kWh, and 2-part TOU per-kWh tariffs all produce the same 

aggregate peak demand because the network tariff either reinforces or has no distortionary effect on the energy 

tariff. As early as 15% adoption, network tariff designs that fail to mitigate the correlated response to the off-peak 

energy window diverge from capacity tariffs. 

This energy price differential results in all EVs charging at the charger’s full capacity at the start 

of the off-peak period. For the fixed, 1-part per-kWh, and 2-part TOU per-kWh tariffs, as early as 

15% EV adoption this new EV-driven peak exceeds the historically most important early-evening 

peak driven by (exogenous) non-EV demand, as shown in Figure 4.9 In contrast, under the 

capacity tariffs charging is limited to a level such that the aggregate of EV and non-EV demand 

stays beneath the maximum non-EV demand in that period to avoid incurring additional network 

 
9 It is worth noting that because customers react to the aggregate price, the fact that the energy and network charges 
have the same on- and off-peak hours is not relevant. Even if the off-peak blocks did not overlap, rational EV owners 
would wait until the hour with the lowest combined price, producing the same “snapback” effect. 
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cost. In this way, even though we still observe an EV-driven peak under the capacity tariffs, the 

peak is reduced. For example, at 50% EV adoption, the annual peak under the 3-part seasonal 

demand charge (1,179 kW) is 20% higher than the baseline (displayed as a dotted black line in 

Figure 3), compared to 60% higher (1,572 kW) for the fixed, 1-part per-kWh, and 2-part TOU per-

kWh tariffs. We also observe that adding more time periods to the demand charge improves its 

ability to mitigate peak impacts and thus to defer network upgrades. Under the subscription 

charge, we lose a portion of peak demand mitigation in exchange for easier implementation due 

to the 1 kW subscription buffer. However, overall, the subscription charge performs significantly 

better than fixed or per-kWh network tariffs. 

 
Figure 4: Hourly aggregated demand during the annual peak day at 0, 5, 10, 15 and 20% EV adoption under the 

fixed network tariff. In each case, EVs respond to the start of the off-peak period in the energy tariff; at early levels 

of adoption the EV-driven peak does not exceed the early-evening peak from non-EV household electricity 

consumption. 

4.1.2 Levelized charging cost for EV Households 

Figure 5 shows the average levelized charging costs for EV owners. Almost all EV households can 

achieve the minimum charging cost. This means that they adhere perfectly to price signals and 

fulfill their driving needs without either exceeding their pre-EV peak demand in each demand 

period (for capacity tariffs) and charge nearly entirely during the off-peak period. This result is 

likely an overestimation due to our assumption of perfect ability of end users to forecast their 

individual peak usage. The result for the subscription charge provides a more realistic estimate 

because customers would know their subscription level in advance and then program EV charging 

to stay beneath that limit. 
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Figure 5: Levelized charging costs for EV owners for low (left) and high (right) LRMC cases. Under the fixed and 

demand charges, EV customer’ costs are nearly equivalent to the off-peak energy price because they can fulfill 

their charging needs without increasing peak demand or charging during the on-peak energy window. 

What is clear from these results is that per-kWh network tariffs perform poorly from a levelized 

charging cost perspective. The average EV in our sample consumes 3,075 kWh annually. When 

the network revenue requirement is collected using per-kWh tariffs, EV households contribute 

more to cost recovery than under other tariff designs. Introducing TOU per-kWh network tariffs 

helps to some extent to lower the levelized costs of charging, but they remain significantly higher 

than under the other alternative network tariff designs. The slight upward curve of the per-kWh 

tariffs under the high LRMC case reflects the fact that the revenue requirement (driven by peak 

demand) is growing faster than aggregate electricity consumption. The opposite occurs in the 

low LRMC case. 

4.1.3 Difference in Network Costs for Non-EV Households 

Figure 6 shows the change in annual network costs paid by non-EV households under the 

different network tariff designs. Positive values reflect cost increases and negative values 

represent savings compared to network costs under 0% EV adoption with flat volumetric energy 

and network tariffs. We focus on network costs because those are non-optional. A consumer 

whose energy tariff costs increase under a TOU plan might be able to switch to a flat volumetric 

rate, something we expect to occur in practice, though we do not model this possibility. 
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Figure 6: Change in annual network costs for non-EV households for the low (left) and high (right) LRMC cases. 

An (undifferentiated) fixed tariff performs the worst at all EV adoption levels, as all new peak-

related costs that are entirely driven by EV charging are shared equally among all households. 

Importantly these peak-related costs are high under fixed charges (see Figure 3), as no incentive 

is provided to schedule EV charging to limit the overall local peak. The 1-part per-kWh tariff 

performs best, as EV owners have no mechanism to reduce their network costs by shifting 

demand to off-peak hours. While the subscription tariff results in higher revenue collection from 

electrified households compared to the 3-part and 3-part seasonal demand charges, this benefit 

to non-electrified households is offset partially by the higher annual peak under the subscription. 

This metric is highly sensitive to the assumed cost of network expansion. At $50/kW, the average 

non-electrified household saves money under both per-kWh tariffs at all levels of EV adoption. 

In other words, EV owners are cross-subsidizing non-EV owners. At $150/kW, this is only true at 

low EV adoption levels before a new EV-driven peak triggers network upgrades.  

4.2 Sensitivity Analyses 

We conduct three types of sensitivity analysis. First, we suppose some EV owners charge upon 

returning home, ignoring the price signals. Next, we test the impacts of using another energy 

tariff instead of a TOU rate. Finally, we explore the concurrent electrification of heating and 

transportation. 
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4.2.1 Price-Insensitive Charging Behavior 

We first consider that a small portion (30%) of EV drivers ignore the tariff price signals and charge 

immediately upon returning home. We examine the impact on annual peak demand in Figure 7. 

As above, the annual peak values are the same in both LRMC cases. 

 

Figure 7: Annual peak demand for base case (100% compliance, left) and with 70% compliance (right) among EV 

owners to tariff price signals. When a small number of EV owners deviate from rational behavior, the aggregate 

peak demand is lower than when all EV owners respond rationally in a correlated manner. 

We obtain the surprising result that when 30% of EV owners ignore the price signal and charge 

immediately upon arrival home, the annual network peak is lower than when all EV owners 

comply. This reflects the fact that with 100% price sensitivity, all owners charge at the same time. 

If a portion of EV owners charge immediately on returning home rather than delaying until lower-

priced hours, this introduces diversity that reduces aggregate peak demand. The benefits of 

capacity charges are not dependent on all consumers responding to them. 

4.2.2 Varying the Energy Tariff 

So far, all network tariffs have been combined with a simple two-part TOU energy tariff. While 

recent US tariff reforms indicate a trend towards TOU pricing, there are still many states where 

flat volumetric tariffs are the norm. In contrast, in states with retail competition, some retailers 

have begun to offer dynamic energy tariffs that pass through wholesale electricity prices. In this 

sensitivity analysis, we explore these two extremes of the energy tariff spectrum. 
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On one end of the spectrum, we test a variant with a flat volumetric network tariff and flat 

volumetric energy charge, as is common in most of the US today, which we label the “Status 

Quo.”10 On the other end of the spectrum, we consider a scenario where customers are exposed 

to the wholesale energy price. We use hourly day-ahead prices at the ISO New England hub for 

the year 2018 combined with the 3-part seasonal subscription network tariff, labeled 

“Subscription LMP.” Figure 8 shows the annual peak for the original tariffs plus the two additional 

scenarios. 

 
Figure 8: Annual peak demand with additional two scenarios representing the ends of the energy tariff design 

spectrum: dynamic (Subscription LMP) and flat volumetric (Status Quo). 

First, we comment on the Status Quo scenario. Paradoxically, beyond 40% EV adoption, the 

Status Quo scenario performs the best among all network tariffs for annual peak. With                                                                                                                                                                                                                                                                                                                                                                                                 

flat volumetric energy and network tariffs, there is no incentive to delay charging. Every vehicle 

therefore charges upon arriving at home. Differences in arrival times add diversity, and peak 

aggregate demand is lower than the correlated “snapback” we observe with a TOU energy rate.  

Second, at low adoption rates, the Subscription LMP scenario with a dynamic energy tariff 

produces a lower annual peak than any network tariff with TOU energy pricing. This reflects the 

fact that the lowest prices in the day-ahead wholesale market typically occur during overnight 

 
10 Note that there is also a variant where a consumer could opt into a flat volumetric energy tariff with a competitive 
retailer but still be subject to a time-varying and/or capacity-based network tariff. We did not model that scenario 
here. 
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hours, when household non-EV demand is low. However, beyond 40% EV adoption, the 

Subscription LMP performs worse than any capacity charge, and by 100% EV adoption even 

performs worse than the fixed tariff. When the day-ahead wholesale price is passed through 

directly, all EV owners, with perfect foresight, defer charging until the lowest price hour. With a 

TOU energy tariff, some EVs have not yet arrived home at the start of the off-peak window, so 

charging is more spread out in time. It is important to note, however, that we do not model the 

feedback between EV load shifting and wholesale prices. At high EV penetration, if all charging 

occurred in a single hour, the wholesale price in that hour would increase. We discuss this 

limitation of our study in Section 5.2.  

Interestingly, the Status Quo tariff also performs the best in terms of change in network costs for 

non-EV households, as illustrated in Figure 9. While EV owners contribute the same amount to 

network costs under the Status Quo as under the 1-part per-kWh network tariff scenario (paired 

with a TOU energy tariff), the Status Quo has a lower annual peak (and therefore lower revenue 

requirement), so non-EV households pay less. 

 
Figure 9: Change in network cost under all tariff scenarios. The Status Quo tariff performs best because EV 

households have no opportunity to reduce costs by shifting demand, resulting in more revenue collected. 

This begs the question: if the Status Quo tariff performs so well, then why move away from it? 

As Figure 10 shows, the Status Quo tariff has one major drawback: the effect on the levelized 

cost of charging. When EV households have no opportunity to save money by shifting charging 
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demand, they pay the highest price among all scenarios at almost all EV adoption levels. The 

Status Quo represents an unstable equilibrium. While it produces a favorable global outcome 

(lowest network costs), EV drivers will opt for TOU rates when available because the potential 

for savings is considerable, as shown by Borlaug et al. (2020). The availability of that option will 

likely increase EV adoption. And while some utilities may believe that they can achieve demand 

shifting using only behavioral nudges, Bailey et al. (2023) show that when financial incentives are 

removed, the timing of charging reverts to the original schedule (i.e., charging immediately upon 

returning home).  

 
Figure 10: Levelized charging cost under all tariff scenarios. The Status Quo performs worst at almost all levels of 

EV adoption for both LRMC cases. 

4.2.3 Concurrent Heating and Transportation Electrification 

Finally, we consider how each network tariff performs when households adopt not only EVs but 

also air-source heat pumps (CCHP). While the economics of heating electrification in 

Massachusetts are not as favorable as for transportation, significant state and federal incentives 

are expected to produce strong uptake (ISO New England, 2023a). Heat pumps represent a 

significant load that is highly correlated with temperature, especially during winter in cold 

regions. 

To simulate this scenario, for each household that is assigned an EV, we replace their original 

hourly load profile with one that includes a CCHP system where the existing heating system 
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serves a backup. Like the rest of the non-EV household load, the heat pump demand is treated 

as exogenous, even though some time-shifting is possible in practice. While it is unlikely that heat 

pump adoption would overlap perfectly with EV adoption (Davis, 2023), it is reasonable to 

assume a substantial overlap. Figure 11 compares the annual peak under each tariff for the “EV 

Only” case (left) and “EV + HP” case (right). 

 

Figure 11: Annual peak demand under all tariffs with EV adoption only (left) compared to concurrent adoption of 

EVs and heat pumps (right). 

We observe that when concurrent heat pump adoption is considered, capacity network tariffs 

still produce a significant improvement over fixed and per-kWh tariffs. However, even the most 

effective network tariff yields a significant increase in peak demand: 42% at 50% adoption and 

96% at 100% adoption of EVs and CCHPs. 

5. Discussion 

In this section, we first provide a brief assessment of the results. Next, we make 

recommendations for network tariff implementation based on our case study. Finally, we discuss 

limitations to our approach. 

5.1 Overall Assessment and Recommendation 

Table 2 provides a summary of the key metrics for each network tariff for the low and high LRMC 

cases at 50% EV adoption (with no heat pump adoption) assuming a TOU energy tariff. According 
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to ISO New England’s 2023 Transportation Electrification Forecast, this milestone is expected to 

be reached by 2035 (ISO New England, 2023b). Note that 50% adoption in concentrated areas of 

the grid, which is relevant for these results, can happen a lot earlier than overall 50% adoption. 

Table 2: Key metrics for each network tariff at 50% EV adoption under low and high LRMC 

The results in Table 2 indicate a tradeoff among assessment criteria. Whereas the fixed tariff 

performs best in levelized charging cost, it shifts costs to non-EV owners and performs worst in 

network costs for them. The reverse is true for per-kWh network tariffs. Capacity-based tariffs 

(demand and subscription charges) offer a compromise, providing a significant reduction in 

levelized charging cost compared to the per-kWh tariffs while increasing network costs for non-

EV owners by only a modest amount compared to the fixed network tariff. While we do not 

observe an outcome in which costs decrease for both EV and non-EV households compared to 

the status quo, capacity-based tariffs most closely approach this outcome, demonstrating that 

incentivizing electrification (a priority for many US states) need not be pursued at the expense of 

broader affordability goals.  

The 3-part seasonal demand charge achieves the lowest annual peak and levelized cost. 

However, the subscription charge (which does not perform badly on any of the key criteria) offers 

implementation advantages over demand charges, as discussed below. As Public Utility 

Commissions attempt to balance stakeholder interests in promoting electrification, a tariff design 

that does not create big winners or losers may be the most palatable.  
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US utilities that have pushed back against time-varying rates often cite customer confusion and 

expected bill impacts as the reason for their opposition. Because utilities are penalized for 

customer confusion and bill shocks, utilities are likely to oppose complicated tariff designs. 

Hennig et al. (2022) acknowledge this fact, including “simplicity” and “implementation burden” 

as core criteria for network tariff assessment. There are also experimental studies that show that 

at some point increasing tariff complexity blunts impacts on consumer behavior (Jacobsen and 

Stewart, 2022). 

Nothing in everyday consumer spending resembles an ex-post measured capacity charge. For 

customers accustomed to paying flat volumetric charges and unaware of their consumption at 

any given moment, the concept of being charged based on their maximum demand may be an 

unacceptably large change. Under demand charges, customers are often not shielded from risk; 

accidentally running multiple appliances concurrently for a few minutes could result in hundreds 

of dollars in incurred costs. A demand charge also suffers from the opposite problem; for 

knowledgeable customers who set a high demand early in a billing period, there may be no 

incentive to manage demand for the remainder of the period. 

Thus, while the 3-part seasonal demand charge does well in our simulations, consumers may 

resist it, and regulators may be averse to implementing it. A subscription charge overcomes these 

problems in several ways. First, a subscription charge has a cognitive advantage; it gets 

consumers’ attention and makes optimization easier. If a customer must subscribe in advance 

and is prompted to resubscribe from time to time – e.g., with estimated savings and a default 

option to continue at the same level – it forces them to think about how they can minimize costs. 

When the demand charge just gets buried in the tariff, they may not focus their attention on the 

optimization. Second, the structure is similar to popular phone and internet plans, whereby 

customers pay for a maximum level of service that cannot be exceeded without incurring 

penalties. A familiarity with these types of plans will help explain the logic of subscription charges 

and ease the transition to new network tariffs. Third, a subscription can be implemented in a way 

that protects consumers from high bills. For example, smart meters can be programmed such 

that if instantaneous demand exceeds the subscribed level, the meter is temporarily 

disconnected. This immediate feedback will help coach customers to not turn on high-power 
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devices simultaneously or to purchase devices that make it possible to program which appliances 

get turned off first (Mou et al., 2017).11 If meters are tripped frequently due to exceeding the 

subscription level and customers want to increase their subscription, they may do so for the 

following billing period. Fourth, a subscription offers more bill certainty, which is important for 

customers on tight monthly budgets. Even without perfect foresight, customers can better 

predict their costs using their ex-ante contracted value compared with an ex-post charge. There 

are several variants of subscription charges (i.e., “smart subscriptions”) that could be used in a 

transitional period, for example starting out using a soft cap with a small penalty fee calculated 

as a function of when the subscription value is exceeded, eventually shifting to a hard cap (DNV-

GL 2019). Fifth and last, customers signing up for certain levels of maximum demand they want 

to have access to better aligns the horizon of consumer decisions with the horizon of network 

planning, i.e., subscription plans can help utilities to plan future networks. 

These benefits help explain why several EU member states have already adopted subscription 

charges. A 2023 report by the EU Agency for the Cooperation of Energy Regulators (ACER) on 

network tariffs highlights examples from Italy, Portugal, Spain, and Slovenia, among others, and 

recommends a “gradual move to increasingly power-based distribution tariffs to recover those 

costs which show correlation with contracted or peak capacity” (ACER, 2023, p. 72). Because of 

extensive retail competition, European countries tend to have unbundled electricity bills, 

whereby different cost categories are broken out line-by-line. This makes it easier to implement 

a subscription charge for just the distribution network portion of the bill; however, there is no 

reason why US states without retail competition could not unbundle their electricity bills as well. 

In states and countries with retail competition, the distribution (wires) provider could help 

educate customers on selecting the proper subscription level.  

Reforming network tariffs is not motivated solely by reducing costs. In a 2022 letter to Congress, 

US electric utilities warned of a critical shortage in both labor and equipment (the latter due to 

supply chain disruptions) to meet basic quality of service standards. This problem will only grow 

as utilities face an estimated $1 trillion of upgrades to support aggressive electrification targets 

 
11 One such device – called a “smart splitter” – allows customers to connect a washing machine and EV charging 
cable to the same 240V breaker slot (NeoCharge, 2023) and prevents them from being on simultaneously. 
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(along with routine replacement of aging infrastructure) (NEMA, 2023). If demand due to 

electrification grows rapidly, workforce shortages will not only be a barrier to basic reliability but 

also to achieving climate goals. Utilities will be forced to either undertake involuntary 

curtailments or block customers from installing technologies like heat pumps and residential EV 

chargers. While a subscription network tariff does not obviate the need for network upgrades, 

our case study showed that it can significantly delay increases in annual peak loads, so that 

network investments can be spread out over time. 

Finally, our results also indicate the limitations of even relatively granular network charges 

coupled with TOU energy charges (and later real-time pricing). When considering the concurrent 

electrification of home heating and transportation, we observe a significant increase in aggregate 

peak demand. If we relax some of our network tariff design principles (i.e., simplicity, non-

discrimination, and existing widespread implementation), there are several alternatives to the 

network tariffs tested in our case study. These include daily capacity charges, auctions for 

network capacity (Morell-Dameto et al., 2023), supplementary load control, and price setting 

based on equilibria estimations. Yet moving from the flat volumetric tariffs ubiquitous today in 

the US to these advanced and untested approaches would likely face significant resistance from 

utilities and regulators. In the near term, simple network tariff designs like those implemented in 

Europe are effective at limiting peak demand growth. They also offer a bridge to the 

complementary measures that will become necessary as we reach higher levels of EV adoption 

and more volatile wholesale prices. 

5.2 Limitations of Our Approach 

Here we outline five key limitations in our case study. 

First, we do not calibrate the levels of the network charges to actual forward-looking network 

costs. Our case study focuses on the incentives driven by tariff structures and/or time-variation; 

under our assumption of rational price responsiveness, the absolute magnitude of each tariff 

does not impact customers’ load shapes, only relative prices. Yet these will matter for 

distributional impacts and incentives to electrify. In future work, a two-part network tariff can be 
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considered consisting of a capacity charge based on forward looking costs and (differentiated) 

fixed charges to collect the residual part of network costs and mitigate distribution impacts. 

Second, we treat EV adoption and energy prices as exogeneous. For the former, we might expect 

adoption to be a function of the levelized cost of charging, at least to some extent. However, we 

know that other factors, including purchase incentives, availability of public charging, and 

gasoline prices have a larger impact on adoption than electricity cost (Bushnell et al., 2022). For 

the latter, it is possible that the correlated response of flexible loads like EVs and heat pumps 

would impact wholesale electricity prices and thus affect TOU and dynamic retail energy rates. 

In any case, flexible loads like EV charging would continue to react to relative price differences, 

so the risk of a highly correlated response would persist even if wholesale and retail energy prices 

are endogenous in practice. 

Fourth, we assume all EV charging occurs at home with Level 2 chargers, even though one might 

see a mix of charger types in the future. According to a survey by Dunckley (2018), 80% of 

charging occurs at home, with the remaining 20% at workplace and public stations. Our case 

study therefore represents a sort of worst-case scenario; non-residential charging would likely 

help reduce coincident peak demand in the evening by shifting charging activity to daytime hours, 

as shown by Needell et al. (2023). Furthermore, in urban areas or places with a high proportion 

of rental properties, it is unlikely that all residents would be able to install dedicated charging 

stations at home. Our case study considers a suburban or rural residential feeder where homes 

have off-street parking12 and sufficient electric panel capacity to install a Level 2 EV charger. An 

important extension of our research is examining residential charging in urban settings where 

alternative charging methods exist. In addition, the implications of charging of delivery trucks 

and other fleets deserves study. 

Fifth, we assume that non-EV load is unaffected by changes in network tariffs, but we would 

expect actual consumers to shift demand to reduce costs, especially with regard to heat pump 

operation. However, it is useful to consider the purely inelastic case, as it captures the most 

 
12 According to the American Housing Survey, 63% of all housing units have a garage or carport (US Cencus Bureau, 
2015). 
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extreme distributional impacts for customers who have not yet purchased EVs. This is the same 

reason we chose to apply the alternative tariffs to the entire population rather than only EV 

customers. 

Sixth, we associate only a single EV with each house. It is likely that some multi-vehicle 

households will purchase a second EV before all households have their first. We will address this 

possibility in future work, although we expect that capacity-based tariffs will perform similarly 

given that each home’s demand or subscription charge is based on its aggregate demand. 

6. Conclusions, Policy Recommendations, and Future Work 

We see a range of approaches undertaken by regulatory commissions in their design of network 

tariffs motivated by increasing electrification and adoption of distributed generation. Whereas 

Europe has experience with several advanced network tariffs with capacity-based charges, the 

US's first step away from flat volumetric tariffs has been towards simple TOU pricing to recover 

both energy and network costs. While TOU pricing encourages the adoption of EVs and other 

technologies that can schedule demand to take advantage of low-price periods, as adoption of 

these technologies increases, their highly correlated responses to price signals tends to increase 

peak loads and network costs. It will be essential to separate network and energy tariffs and to 

implement a demand charge or subscription to provide incentives to control network costs. 

Based on our modeling results, we find that without such tariffs, correlated EV charging becomes 

a serious issue even at low adoption levels, with newly created demand peaks at 15% adoption. 

This is even more concerning when considering that EV adoption is highly clustered spatially and 

will not proceed uniformly across a distribution utility’s service territory.  

Our results indicate a tradeoff between reducing costs for EV owners (through fixed and capacity-

based network tariffs) and non-EV owners (through per-kWh network tariffs). Per-kWh network 

charges lead to high charging costs and lack a price signal to limit aggregated demand peaks. 

While fixed network charges foster electrification by lowering the cost of charging, they shift 

costs from EV owners to others and again lack a mechanism to mitigate peak demand. Demand 

charges perform well but are difficult to implement, especially when transitioning from flat 
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volumetric tariffs. Taking all this into account, we propose a 3-part seasonal subscription network 

tariff as a pragmatic compromise that performs relatively well on all dimensions. 

A well-designed subscription tariff has the potential to 1) mitigate the need for local capacity 

upgrades, especially at early adoption levels, 2) reduce the cost burden on non-EV households, 

and 3) provide low levelized charging costs for EV owners, a key motivator for EV adoption. The 

use of special TOU rates to promote EV adoption by US utilities today will yield worse results 

once low adoption levels are surpassed, which is likely to occur soon in some neighborhoods. 

Our sensitivity analyses indicate that simple network tariffs are less effective when dynamic, real-

time energy prices, which economists generally favor, and heating electrification are considered.  

With real-time energy pricing, at high EV adoption levels, a subscription charge yields a similar 

annual peak as under a fixed network tariff. And when EV and heat pump adoption proceed in 

lock step, we observe rapid increases in peak demand. In future work, we will investigate how 

simple network tariff design can be supplemented with innovative solutions to further mitigate 

these problems. 
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Appendix A: Network Tariff Design in Practice 

We first describe the current European practices, then we focus on the US context. 

A.1 Europe’s Approach to Network Tariff Design 

Since the advent of smart meters, Europe has been a pioneer in network tariff design, 

implementing several innovative approaches to allocating distribution network costs and sending 

efficient price signals. Until recently, these efforts had not been coordinated at an EU level but 

were instead spearheaded by individual member states. 

Regulation (EU) 2019/943 mandates that EU member states implement cost-reflective 

distribution network tariffs, which implies that future network costs need to be reflected to the 

grid users through the tariff. ACER (2023) reports that already 25 of the 27 assessed EU member 

States had some form of capacity distribution network charge in place (based on the maximum 

capacity in kW measured or kW contracted, with or without time-differentiation). As there are 

many nuances, it is hard to verify where households, connected to the lowest voltage level, are 

still facing more simplified distribution network charges. These simplified rates typically consist 

of flat volumetric charge and a fixed charge. At the time of writing, based on the analysis of ACER 

(2023), we estimate that at least in one third of the Member State’  households are facing some 

sort of capacity-based and/or TOU per-kWh network charges. We highlight four examples below. 

In Spain, the distribution network tariff for residential consumers consists of both TOU per-kWh 

and TOU capacity components. The per-kWh component has 3 periods per day, with tariff levels 

ranging from 0.1 euro/kWh (off-peak) to 2.9 euro/kWh (on-peak). For the capacity component, 

consumers subscribe ex-ante to a desired level during two periods: on-peak and off-peak. 

In France, residential consumers have access to a regulated rate with a per-kWh and capacity 

component. For the capacity component, consumers subscribe ex-ante up to a capacity level, 

and the price per kW goes down with more kWs contracted (i.e., declining block). For the per-

kWh component, consumers can choose between a flat volumetric tariff, a simple two-part TOU 

tariff, and a dynamic tariff that resembles a critical peak rate where the DSO announces one day 

prior whether it is a critical, peak, or off-peak day. 
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Italy’s regulated network tariff for residential consumer’s is similar to France’s except it does not 

have a per-kWh component and the price per contracted kW does not change as the contracted 

amount grows. 

Finally, the Flanders region in Belgium recently reformed its previously flat volumetric network 

tariff. The new tariff consists of a small flat volumetric charge plus a capacity charge based on 

each consumer’s 15-minute maximum demand in each month. 

These four regulated network tariffs in Europe provide inspiration for possible alternatives to the 

flat volumetric tariffs prevalent today in the US. While it is difficult to assess which one performs 

the best, and each country faces a unique set of challenges related to its clean energy transition, 

it is telling that all tariffs include a deterrent to maximum power consumption in the form of a 

capacity charge (either ex-ante or ex-post). 

A.2 US Approaches 

While over 73% of residential consumers have meters capable of time-varying rates (Cooper et 

al., 2021), the vast majority of US residential consumers pay a flat volumetric rate for their 

network costs (Faruqui and Tang, 2023). Many US utilities offer voluntary or mandatory capacity-

based tariffs for commercial and industrial customers. However, these rates are not available to 

residential customers, and in contrast to Europe, capacity charges are almost wholly absent from 

residential network tariffs. Yet, there has been progress away from flat volumetric tariffs in 

recent years in a handful of states. Here, we highlight two types of tariffs that have recently 

gained momentum in the US: default TOU tariffs and EV-specific tariffs. 

Default Time of Use 

In 2020, California became the first US state to institute default TOU rates for all residential 

customers, with network and supply costs combined into a single, time-differentiated per-kWh 

charge. Customers were shifted to either a 2-part or 3-part TOU rate; the timing of each period 

and the ratio of on-peak to off-peak price varied according to location and distribution utility. 

Those who wanted to remain on a flat volumetric rate needed to explicitly request to opt out. All 

new residential accounts starting in October 2020 have been placed on the TOU rate.  
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Other states have followed California’s lead. After a multi-year Advanced Rate Design 

proceeding, in May 2023 Hawaii’s PUC ordered the utility (Hawaiian Electric) to implement a 

default TOU rate by July 1, 2024. The TOU roll-out will be paired with a fixed charge reform 

intended to shift some of the utility’s fixed costs to a non-variable charge and the introduction of 

a “grid access” fee proportional to each customer’s monthly maximum demand. This grid access 

fee is, as far as the authors are aware, the first instance of a demand charge being used for a 

default residential tariff in the US. 

In Missouri, regulators recently approved a default TOU rate with an unprecedented 5:1 peak to 

off-peak ratio for customers of the distribution utility Evergy. In Michigan, DTE Energy rolled out 

a more modest default TOU rate in March 2023 (1.5:1 ratio), and Xcel Energy in Colorado has 

plans to do the same once advanced metering infrastructure is fully deployed. Table A.1 shows 

all default TOU rates currently approved in the US. It is noteworthy that no state with retail choice 

has yet implemented default TOU rates for network cost recovery. All examples except for Hawaii 

include network and energy costs bundled as a single per-kWh charge. 

Table A.1: Default TOU rates approved in the US.  For California, rates displayed are for PG&E’s default TOU plan 

 

State Utility TOU Periods Per-kWh charges Status 

Hawaii 
Hawaiian 
Electric 

Super off-peak: 9am – 5pm 
Off-peak: 9pm – 9am 
On-peak: 5pm – 9pm 

Specific prices will be determined 
in future rate cases but must 
adhere to a 3:2:1 ratio for on-
peak: off-peak: super off-peak. 
There will also be a grid access 
chart similar to capacity charges in 
Europe, but the amount is as yet 
unspecified. 

Approved by PUC; 
set to take effect 
by July 1, 2024 

California 
PG&E 
SDG&E 
SCE 

Off-peak: 8pm – 5pm 
On-peak: 5pm – 8pm 

$0.38/kWh off-peak 
$0.42/kWh on-peak (Oct - May) 
$0.51/kWh on-peak (June - Sept) 

Currently active 

Colorado Xcel Energy 
Off-peak: 7pm – 1pm 
Mid-peak: 1pm – 3pm  
On-peak: 3pm – 7pm 

$0.11/kWh off-peak 
$0.19/kWh mid-peak 
$0.27/kWh on-peak 

Currently active 

Missouri Evergy 
Off-peak: 8pm – 4pm 
On-peak: 4pm – 8pm (Jun 
– Sep) 

$0.09/kWh off-peak 
$0.38/kWh on-peak 

Set to take effect 
November 2023  

Michigan DTE Energy 
Off-peak: 7pm – 3pm 
On-peak: 3pm – 7pm 

$0.15/kWh off-peak 
$0.16/kWh on-peak (Oct – May) 
$0.21/kWh on-peak (June – Sept) 

Active 
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These new rates are undoubtedly an improvement over flat volumetric tariffs. Consumers will 

finally receive price signals that dispel “the basic lie to retail consumers that every kilowatt-hour 

costs the same regardless of the time of day or the season of the year” (Trabish, 2023). But the 

issue with the default TOU rates implemented to date is that they bundle the distribution, 

transmission, and generation costs into a single charge.  

EV-Specific Residential Tariffs 

As an alternative or complement to whole-home TOU rates, some US utilities have also begun to 

offer tariffs specifically targeted at EV owners. These tariffs allow EV owners to save money by 

shifting their charging demand to off-peak hours or allowing the utility to curtail charging during 

critical periods. The EV owners are often not required to enroll on a time-varying tariff for their 

remaining household demand, and in some cases, it is impossible for EV owners to pay more 

compared to the default flat volumetric rate. We review a selection of these dedicated EV rates 

here, shown in Table A.2. 

Table A.2: Examples of EV-specific residential tariffs in the US 

State Utility Details 
Minnesota Xcel Energy Unlimited charging between 9pm and 9am for a flat fee of $42.50/month 

Massachusetts MMWEC $6/month credit for EV drivers that agree to limit charging to 1.25 kW 
between 5-9pm on weekdays 

New Jersey PSEG Ex-post credit of $0.105/kWh credit for off-peak charging (between 9pm 
– 7am M-F), as measured by a compatible smart Level 2 charger 

California Sonoma Clean 
Power 

One-time $250 enrollment bonus plus $5/month in exchange for EV 
owners’ authorization to curtail charging for up to 120 hours per year 

 

A 2019 report by the Smart Electric Power Alliance (2019) estimated that across 20 utilities, 21% 

of eligible EV customers were enrolled on a specialized EV Rate. The report demonstrated that 

participation increases significantly when the rate is marketed by utilities and connected to EV 

purchase incentives. The Vermont utility Green Mountain Power offers a free Level 2 charger 

with the purchase of any electric vehicle. Customers claiming this incentive are required to enroll 

on one of two EV rates: a TOU rate with an off-peak period between 9pm – 9am on weekdays 

and a managed charging rate where the utility is allowed to curtail charging up to 5 times per 
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month. Green Mountain Power reported that 80% of customers purchasing EVs claimed the free 

charger incentive and enrolled on one of the EV rates (Green Mountain Power, 2021).   
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Appendix B: Addendum to Methodology 

B.1 Home Load Profiles 

We obtain synthetic hourly residential load profiles from NREL’s ResStock database (Wilson et 

al., 2022). ResStock simulates end use residential energy demand for representative building 

types, calibrated against actual building performance. In this paper, we choose a diverse sample 

of 400 single-family detached houses in Massachusetts; each home has a unique hourly load 

profile for the actual meteorological weather year 2018. We use measure package 0 (“baseline”) 

for all households. In the sensitivity analysis described in Section 4.3.2, we use measure package 

5 (“Heat pumps, min-efficiency, existing heating as backup”) for households that are assigned a 

heat pump system. The homes do not have either battery storage or solar photovoltaic panels. 

Figure B.1 shows the distribution of annual consumption and annual peak demand values for the 

houses in our sample (under measure package 0). 

Figure B.1: Distribution of annual consumption (kWh) and peak demand (kW) for 400 single-family ResStock 
homes used in our study. 

B.2 Constructing Annual EV Consumption Profiles 

We use the National Household Travel Survey (NHTS) to generate annual vehicle usage profiles 

for each house. The NHTS is conducted by the US Department of Transportation every 5 years; 

respondents are asked to log every trip in a 24-hour period, starting at 4:00 AM local time and 

ending at 3:59 AM local time the next day. For each trip, the respondent includes the trip 

purpose, arrival and departure time, number of miles traveled, and start and end location 

(Federal Highway Administration, 2017). Starting with the raw NHTS trip data, we obtain, for each 

unique vehicle, a parameter profile that contains the earliest home departure hour, the latest 
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home arrival hour, and the total number of miles driven in the 24-hour period. These parameters 

signify when the vehicle is expected to be plugged in at home and the amount of electricity 

required to restore the battery’s state of charge. 

Because the NHTS survey is not longitudinal (i.e., each survey response covers only a single day 

of travel behavior), we use the following procedure to translate the survey responses to annual 

usage profiles. We require an annual profile because we are interested in not only peak demand 

during certain representative days but also annual cost impacts: 

1. For each ResStock household, we filter the summarized NHTS data for vehicles associated 

with households of the same income level and number of occupants. 

2. Using the NHTS trip weights, we randomly select one weekend and one weekday 

parameter profile to associate with the household. These profiles provide the inputs 

(departure hour, arrival hour, and miles traveled) to convert from deterministic survey 

responses to pseudo-random travel profiles. 

3. For each house, we create weekend and weekday normal distributions centered at the 

actual number of miles driven with a standard deviation equal to 10% of the number of 

miles driven. We also create discrete distributions for weekend and weekday arrival and 

departure hours shown in Figure B.2. 

4. For each day of the year, we sample a departure hour and arrival hour from the 

appropriate discrete distribution and sample the daily mileage from the appropriate 

normal distribution (weekend or weekday). 

5. We convert daily miles driven to electricity consumption using the regression computed 

by Yuksel and Michalek (2015). We use the average temperature during hours that the 

vehicle is not at home on the given travel day. The difference in energy efficiency 

throughout the year is due to both the temperature impacts on battery chemistry and 

cabin heating and air conditioning. 
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Figure B.2: Discrete distribution used to select departure and arrival hour each day. The numbers in the boxes 
represent the offset (in hours) from the selected NHTS profile parameter. The percentages below the boxes reflect 
the probability of drawing from each box. 

After this procedure, each household has a unique and uncorrelated vehicle usage profile that 

indicates when the vehicle is home versus away, and the daily electricity consumption due to 

driving. 

For any house where meeting the annual charging need is infeasible (i.e., the car is not plugged 

in long enough at home to avoid depleting the battery), we assume that house does not purchase 

an EV, a design choice that aligns with the approach by Wei et al. (2021) 

B.3 Tariff Price Calculations 

In this subsection, we provide additional detail on the calculation of tariff prices for 2-part TOU 

per-kWh and capacity tariffs. 

2-part TOU Per-kWh Tariff 

Eqs. B1–B2 indicate how the 2-part per-kWh prices are calculated, using the revenue requirement 

as specified in Section 3.3. The on-peak price is set at two times the off-peak price to mirror 

National Grid’s G-3 rate. 

𝑅𝑒𝑣𝑅𝑒𝑞 =  𝐶𝑜𝑛𝑠𝑜𝑓𝑓−𝑝𝑒𝑎𝑘  ∗ 𝑅𝑎𝑡𝑒𝑜𝑓𝑓−𝑝𝑒𝑎𝑘  +  𝐶𝑜𝑛𝑠𝑜𝑛−𝑝𝑒𝑎𝑘  ∗  2 ∗ 𝑅𝑎𝑡𝑒𝑜𝑓𝑓−𝑝𝑒𝑎𝑘    (B1) 

𝑅𝑎𝑡𝑒𝑜𝑛−𝑝𝑒𝑎𝑘 =  2 ∗  𝑅𝑎𝑡𝑒𝑜𝑓𝑓−𝑝𝑒𝑎𝑘      (B2) 
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where 𝐶𝑜𝑛𝑠𝑝 is the aggregate off-peak consumption during period p and 𝑅𝑎𝑡𝑒𝑝 is the per-kWh 

charge ($/kWh) during period p.  

Demand Charges 

The 1-part ex-post measured capacity tariff (i.e., 1-part demand-charge) is computed by dividing 

the total revenue requirement by the sum of each household’s maximum annual demand.  

𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑟𝑔𝑒 =  𝑅𝑒𝑣𝑅𝑒𝑞 / ∑ 𝑚𝑎𝑥𝑖∈{1,..,8760}(𝑑𝑒𝑚𝑎𝑛𝑑𝑗,𝑖)
𝑛=400
𝑗   (B3) 

where 𝑑𝑒𝑚𝑎𝑛𝑑𝑗,𝑖 is household j’s total demand in hour i. The resulting 1-part DemandCharge 

has the units of $/kW; each customer’s total network cost is that value multiplied by their annual 

maximum demand. 

In multi-part demand charges, we introduce time differentiation, both intra-day and seasonal. 

Under the 3-part non-seasonal capacity tariff, households pay a separate charge for their 

maximum annual demand in each of three periods: 

● On-peak: weekdays 8:00 AM – 8:59 PM 

● Mid-peak: weekdays 9:00 PM – 11:59 PM 

● Off-peak: weekdays 12:00 AM – 7:59 AM and weekends 

To calculate the price for each period, we use the same methodology as the 1-part demand 

charge but divide the revenue requirement in a 3:2:1 ratio to each of the periods: in other words, 

we collect one half of the revenue requirement from the on-peak period, one third from the mid-

peak, and one sixth from the off-peak. Within each window, the same equation is used; the 

portion of the revenue requirement is divided by the sum of each customer’s maximum demand 

value within the relevant window, shown in Eqs. B4 – B6. 

𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑜𝑛−𝑝𝑒𝑎𝑘  =
1

2
𝑅𝑒𝑣𝑅𝑒𝑞 / ∑ 𝑚𝑎𝑥𝑖∈{1,..,8760},𝑖∈{𝑜𝑛−𝑝𝑒𝑎𝑘}(𝑑𝑒𝑚𝑎𝑛𝑑𝑗,𝑖)

𝑛=400
𝑗   (B4) 

𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑚𝑖𝑑−𝑝𝑒𝑎𝑘  =
1

3
𝑅𝑒𝑣𝑅𝑒𝑞 / ∑ 𝑚𝑎𝑥𝑖∈{1,..,8760},𝑖∈{𝑚𝑖𝑑−𝑝𝑒𝑎𝑘}(𝑑𝑒𝑚𝑎𝑛𝑑𝑗,𝑖)𝑛=400

𝑗  (B5) 
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𝐷𝑒𝑚𝑎𝑛𝑑𝐶ℎ𝑎𝑟𝑔𝑒𝑜𝑓𝑓−𝑝𝑒𝑎𝑘  =
1

6
𝑅𝑒𝑣𝑅𝑒𝑞 / ∑ 𝑚𝑎𝑥𝑖∈{1,..,8760},𝑖∈{𝑜𝑓𝑓−𝑝𝑒𝑎𝑘}(𝑑𝑒𝑚𝑎𝑛𝑑𝑗,𝑖)𝑛=400

𝑗  (B6) 

Under the 3-part seasonal capacity tariff, we maintain the three intra-day periods and add a 

seasonal component. Demand charges for the “winter” period (December through March) 

recuperate one half of the revenue requirement, and demand charges for the “non-winter” 

period (April through November) recuperate the other half. Customers are assessed two on-peak, 

mid-peak, and off-peak charges, one applying to the winter period and another for the non-

winter period. To calculate the tariff levels, we use the same methodology as for the 3-part 

demand charge. Within each seasonal window, the same 3:2:1 ratio is applied to allocate costs 

to the on-peak, mid-peak, and off-peak windows. The equations are not shown but mirror those 

in (B4 – B6). 

Subscription Charge 

To calculate the subscription charges, we first compute each household’s subscription level in 

each period as outlined in Section 3.2. We then use the same 3:2:1 allocation ratio for on-peak, 

mid-peak, and off-peak and assign one half of the revenue requirement to the winter season and 

one half to the non-winter season. The charge in each period p is calculated using (B7). 

𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝐶ℎ𝑎𝑟𝑔𝑒𝑝  = 𝐾 ∗ 𝑅𝑒𝑣𝑅𝑒𝑞 / ∑ 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑗,𝑝
𝑛=400
𝑗   (B7) 

Where K is the cost allocation factor (e.g., one half) and 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑗,𝑝 is the pre-subscribed 

capacity level for household j in period p.  

B.4 Electrification Order 

The order in which houses are selected for electrification is random and proceeds cumulatively. 

In other words, all EV households in the 5% electrification scenario remain EV households in the 

10% scenario.  

B.5 Calculating Optimal Charging Behavior 

For each house in the aggregation, we solve a mixed integer linear program, where the objective 

is to minimize total electricity cost over one year, inclusive of both energy and network charges. 
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We consider non-EV load (including heat pump load) to be completely inelastic and assume that 

each EV responds rationally to price signals when plugged in, with perfect foresight. We assign 

an EV battery capacity to each household (either 40, 60, 90, or 120 kWh) according to the 

minimum capacity that fulfills its maximum daily electricity consumption plus a 20% buffer. This 

assignment captures the expectation that households that drive short distances are more likely 

to buy EVs with smaller batteries, which have lower associated capital costs. 

The objective function for each household is defined as: 

𝑚𝑖𝑛  ∑ {(𝑐𝑖 + 𝐴𝑖) ∙ (𝑁𝑖 + 𝐸𝑖)} + ∑ {𝑚𝑎𝑥𝑖 ((𝑐𝑖 + 𝐴𝑖) ∙ 𝐵𝑖,𝑝) ∙ 𝐷𝐶𝑝}𝑝
8760
𝑖 + ∑ (𝑚𝑎𝑥𝑠𝑜𝑐 − 𝑠𝑜𝑐𝑖 )8760

𝑖 ∙ 1𝑒 − 4 (B8) 

where 

● ci is the charging value for each hour i (the decision variable) 

● Ai is the non-EV load for each hour i 

● Ni is the per-kWh network tariff (in $/kWh) for each hour i 

● Ei is the per-kWh energy tariff (in $/kWh) for each hour i 

● DCp is the demand charge for each demand period p 

● Bi,p is a binary variable that indicates whether an hour i is part of a demand period p 

● maxsoc is the battery’s capacity 

● soci is the energy in the EV battery for each hour i 

The last part of the objective function ensures that EVs charge as early as possible such that the 

cost of charging does not increase. This is achieved by assessing a small penalty function (several 

orders of magnitude smaller than the per-kWh or capacity charges) for any hour when the battery 

is not fully charged. The model is subject to the following constraints: 

 𝑚𝑖𝑛𝑠𝑜𝑐 ≤ 𝑠𝑜𝑐𝑖  ≤  𝑚𝑎𝑥𝑠𝑜𝑐     (B9) 

0 ≤ 𝑐𝑖  ≤ 7.2       (B10) 

𝑐𝑖  ≤  𝑉𝑆𝑖  ∙ 1𝑒6        (B11) 
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𝑠𝑜𝑐𝑖  =  𝑠𝑜𝑐𝑖−1  +  (𝑐𝑖  −  𝑑𝑐ℎ𝑖)     (B12) 

The first constraint (B9) ensures that the battery’s state of charge never goes above the battery’s 

capacity or below a minimum state of charge, set at 20% of the capacity. The second constraint 

(B10) limits EV charging to the power of a standard Level 2 residential charger (30A, 240V); 

charging cannot be negative. The third constraint (B11) guarantees that the car can only charge 

when the vehicle is at home; VSi is a binary status variable equal to 1 when the vehicle is at home 

and equal to 0 when the vehicle is away from home. Finally, the fourth constraint (B12) specifies 

that at each hour, the state of charge of the battery is equal to its state of charge in the previous 

time step plus the net charging value; dchi is the amount of energy discharged by the battery, set 

equal to the full day’s electricity consumption in the hour the vehicle departs home (in order to 

ensure that the vehicle is sufficiently charged before departure). 
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