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A. Technical Foundation of the Techno-Economic Analysis 
The technical underpinnings of the proposed techno-economic performance assessment 

framework are associated with a fixed-scale configuration of various integrated process units 

found in the pertinent literature as various process units illustrated below (Figure A-1).  

 

Figure A-1: Simplified illustration of the structure of a composite technical process system 
model. 

The design concept underlying the ammonia process system under consideration is 

aligned with the well-known Linde Ammonia Concept (LAC) (Amhamed et al., 2022). The 

advantage of this process design (as opposed to the Kellog-Braun approach) is that the air 

separation unit is separate from the SMR process, reducing the capacity requirements of the 

SMR equipment and thus reducing the overall cost. LAC is also easy to simulate as each 

process block/unit can be treated isolated. 

 The rest of this section is dedicated to explaining how we combined these process 

blocks/units in an integrated process system configuration and formed the requisite technical 

foundations of this study. 

Table A-1: Nomenclature in this SI A. 

Variable Description Units 

𝜼𝑨𝑬𝑪 Electrolysis efficiency, LHV basis H2 LHV 

𝒉𝑯𝟐

𝑳𝑯𝑽 Hydrogen LHV kWh/kg 

𝑴. 𝑯𝟐
 Hydrogen production flowrate Tonnes per day 

(TPD) 
𝑴. 𝑵𝑯𝟑

 Ammonia production flowrate TPD 

𝑹𝑪𝑶𝟐
 CCS CO2 Capture rate w%/w% 

𝒉𝑵𝑮
𝑳𝑯𝑽 Natural gas LHV MJ/kg 

𝑴𝒃𝒊𝒐𝒎𝒂𝒔𝒔
.  Mass flowrate of biomass TPD 

𝒀𝒃𝒊𝒐𝒎𝒂𝒔𝒔 Kg of hydrogen per tonne of biomass Kg H2/tonne 
biomass 



 

4 
 

𝑴𝑵𝑮𝒋

.  Energy flowrate of natural gas for technology 𝒋  MMbtu/year 

 

A.1. AP SMR and AP CCS 
The hydrogen production details were based on NETL's economic analysis reports, particularly 
Case 1, involving a conventional SMR option, and Case 2, associated with conventional SMR 
with an integrated CCS system (Lewis et al., 2022). For large-scale production of N2, cryogenic 
distillation is preferred. The process for the ASU was also obtained from (A. F. Young et al., 
2021). Finally, the ammonia synthesis loop came from NETL's report by Bransington et al., 
particularly Case 4, stream 38 (Brasington et al., 2011). 

Table A-2 contains all relevant inlet and outlet streams of the three LAC production blocks 
necessary for the design of the multi-stage compression. The resulting scale is 2717 TPD of 
NH3, assuming a nitrogen conversion of 99.9% through HB (Brasington et al., 2011). The ASU 
study scale was increased by 6.15% (2100 TPD to 2237 TPD) to match hydrogen production in 
a 3:1 H2/N2 (H2 flowrate in Table A-2) molar ratio (Lewis et al., 2022; A. F. Young et al., 2021).  

 The PFD, mass, and energy information of the multi-stage compression and cooling 

used to integrate the SMR-WGS hydrogen and the ASU nitrogen into the Haber-Bosch loop and 

electricity generation from surplus steam can be found in Figure A-2 and Table A-4. All 

compressors are modeled as isentropic. The steam turbine was assumed to have an isentropic 

efficiency of 72% and the make-up compressors 85%, while the resulting work was more than 

50MW. The latter is an overestimate compared to IEAGHG’s report on SMR AP; hence, we 

assume a generation of 25MW, which closely resembles the results in the IEAGHG report 

(IEAGHG, 2017). 

 AP CCS and AP AEC will not include the CAPEX of the steam turbine as surplus steam 

is not generated. AP SMR and AP BH2S will include the steam turbine. See the attached Excel 

file with the equipment list called AP_NE_Equipment_List.xlsx. 
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Figure A-2: Compression system for AP CCS, AP BH2S, and AP SMR. AP CCS does not 
generate electricity. 

Table A-2: Inlet and outlet streams of selected literature processes 

 H2 Outlet 
(Lewis et al., 
2022) 

N2 Outlet (A. F. 
Young et al., 
2021) 

Surplus Steam 
from H2 a(Lewis 
et al., 2022) 

Ammonia 
Synthesis 
Reactant Inlet 
(Brasington et 
al., 2011) 

Flowrate [TPD] 483.02 2,100.4 18,617.0 2,632.9 
Temperature [C] 30 40 399 21 
Pressure [MPa] 6.48 0.0980 3.1 13.614 
Vapor Fraction 1 1 1 1 
H2 [mol/mol] 0.9998 0.0000 0.0000 0.7490 
N2 [mol/mol] 0.0002 1.0000 0.0000 0.2500 
H20 0.0000 0.0000 1.0000 0.0000 
O2 0.0000 243 ppb 0.0000 0.0000 
Ar 0.0000 18 ppm 0.0000 0.0010 
Total 1.0000 1.0000 1.0000 1.0000 
a Surplus steam is only available for conventional SMR. In SMR CCS, the surplus steam is 
used to heat the amine regenerator (Lewis et al., 2022). 
b Oxygen and Argon are neglected from this study’s mass balance because these species are 

within specification, and their effects on HB catalyst deactivation are accounted for through 

the variable O&M from (Brasington et al., 2011). 

 

A.2. AP BH2S 
The AP BH2S unit was obtained from (Spath et al., 2005) and was combined with the inlet of 

the SMR-WGS hydrogen production process. Specifically, stream 327 of the current design for 

BH2S was combined with stream 3 of Case 1 of Lewis et al. (Lewis et al., 2022; Spath et al., 

2005). Table A-3 includes the difference in the stream compositions before entering the SMR 

reactor. The SMR reactors for both studies are modeled as equilibrium reactors with similar 
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design parameters (S/C ratio, pressure, and temperature) (Lewis et al., 2022; Spath et al., 

2005). Hence, for the BH2S scenario, we assume that the SMR outlet composition, 

temperature, and pressure differences are negligible for this techno-economic analysis. Given 

this assumption, we assume the process equipment before the SMR reactor comes from (Spath 

et al., 2005). After the SMR reactor, we assume the equipment from (Lewis et al., 2022) is used. 

To ascertain the amount of biomass required to fulfill the hydrogen production of the SMR 

process in (Lewis et al., 2022), we use the hydrogen yield from dry biomass by (Spath et al., 

2005). 

𝑴𝒃𝒊𝒐𝒎𝒂𝒔𝒔
. =  𝑴𝑯𝟐

. ∗ 𝟏𝟎𝟎𝟎 ∗
𝟏

𝒀𝒃𝒊𝒐𝒎𝒂𝒔𝒔
 (A.1) 

Table A-3: BH2S composition difference between (Lewis et al., 2022) and (Spath et al., 2005) at 
the SMR inlet. 

Species Xi AP Xi AP BH2S 
H2O 67.6% 40% 

H2 4.3% 32% 

CO 0% 19% 
CO2 1.7% 8% 

CH4 25.8% 1% 

 

A.3. AP AEC 
For the electrolysis system, the CAPEX and OPEX values were obtained from the literature 

(Böhm et al., 2020; Schmidt et al., 2017). A robust study by Sousa and colleagues estimated 

the outlet conditions of the electrolysis hydrogen stream – their values were used to model the 

inlet in the compression module (Sousa et al., 2022). We acknowledge that Sousa and 

colleagues prefer PEM, not AEC, as the technology option. Nevertheless, this assumption is 

appropriate. The outlet hydrogen stream out of PEM and AEC are found under similar 

conditions. Schmidt et al. (2017) indicate that AEC H2 outlet conditions are less than 30 bar and 

60-80C. Sousa et al.’s H2 outlet conditions are 29 bar and 65C; therefore, this assumption holds 

(Sousa et al., 2022). Hence, the only difference between AEC and PEM using our modeling 

methodology would be the cost per kW of capacity, energy efficiency, and cell lifetime. We tune 

these parameters to AP AEC (see SI C).   

 The water content in the hydrogen stream is separated by a separator block on ASPEN 

and is cost-estimated as a cylindrical vertical vessel (2m diameter by 10m length) using the 

heuristics proposed by Turton et al. (2018) (see Excel file named 

AP_NE_Equipment_List.xlsx). 
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Figure A-3: Compression system for AP AEC. 

Table A-4: Stream information for make-up compression and steam turbine for AP SMR, AP 
CCS, and AP BH2S. 

  H2FEE
D 

N2FEE
D 

REACTA
NT 

STEAM 
IN 

STEAM 
OUT 

NH3_OU
T 

Flowrate [TPD] 483.0 2237.0 2720.0 18617.0 18617.0 2717 

Flowrate 
[kmol/hr] 

9958.0 3327.3 13285.3 43058.4 43058.4 6647.4 

Temperature 
[C] 

30 40 26.5949 399 109.3491 21 

Pressure 
[MPa] 

6.48 0.098 13.614 3.1 0.1 13.614 

Vapor Fraction 1 1 1 1 1 1 

H2 [mol/mol] 1.000 0.000 0.749 0.000 0.000 0.000 
N2 [mol/mol] 0.000 1.000 0.251 0.000 0.000 0.000 

H20 [mol/mol] 0.000 0.000 0.000 1.000 1.000 0.000 

O2 [mol/mol] 0.000 0.000 0.000 0.000 0.000 0.000 
Ar [mol/mol] 0.000 0.000 0.000 0.000 0.000 0.000 

Nh3 [mol/mol] 0.000 0.000 0.000 0.000 0.000 1.000 
Total 1.000 1.000 1.000 1.000 1.000 1.000 

 

A.4. Utility, feedstock, and product flowrates and miscellaneous technical variables. 
Table A-5: Key technical parameters. 

Input Name Value Unit Source 

𝑴. 𝑵𝑯𝟑
 2717 TPD Calculated 

assuming 

99.9% 

conversion of 

N2 

𝑴. 𝑯𝟐
 483.013 TPD Lewis et al. 

2022 
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𝜼𝑨𝑬𝑪 uniform(70%, 78%) TPD Brauns et al., 

2020  

𝒉𝑯𝟐

𝑳𝑯𝑽 33.3333 kWh/kg  

𝑹𝑪𝑶𝟐 95.6% W%/w% Lewis et al., 

2022 

𝒉𝑵𝑮
𝑳𝑯𝑽 47.1 MJ/kg Engineering 

Tool Box, 2003 

𝒀𝒃𝒊𝒐𝒎𝒂𝒔𝒔 70.1 Kg H2/tonne 

biomass 

Spath et al., 

2005 

 

Table A-6: Electricity requirements 

Input 

Name 

ValueA Unit Source 

AP SMR HP: 13, AP: 64 MW Lewis et al., 2022; 

Brasington et al., 2011; 

A.F. Young et al., 2021; 

Spath et al. 2005 

AP CCS HP: 41, AP: 117 MW 

AP BH2S HP: 76.6, AP: 127 MW 

AP AEC 
HP: 

𝑴. 𝑯𝟐
×𝒉𝑯𝟐

𝑳𝑯𝑽×𝟏𝟎𝟎𝟎

𝜼𝑨𝑬𝑪
, AP:  

𝑴. 𝑯𝟐
×𝒉𝑯𝟐

𝑳𝑯𝑽×𝟏𝟎𝟎𝟎

𝜼𝑨𝑬𝑪
+ 52 

MW Lewis et al., 2022; 

Brasington et al., 2011; 

A.F. Young et al., 2021; 

Böhm et al., 2020.  
A HP stands for hydrogen production and shows the electricity demand for hydrogen 

production. AP is hydrogen production plus the electricity demand from HB, ASU, and the 

compression system.   

 

Table A-7: Natural gas requirements, 𝑴𝑵𝑮𝒋

.  

Input Name ValueA Unit Source 

AP SMR 25039232.02 MMBtu/yr Lewis et al., 

2022 

AP CCS 26624225.74 MMBtu/yr Lewis et al., 

2022 

AP BH2S 0 MMBtu/yr Assumption 

AP AEC 0 MMBtu/yr Assumption 

A The natural gas flowrates were directly obtained from case 1 and 2 of Lewis et al., 2022. 

Refer to stream number 3. We used the 𝒉𝑵𝑮
𝑳𝑯𝑽 and the MMBtu conversion factor to convert to 

energy units.  

 

Table A-8: Water demand 

Input Name Value Unit Source 
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AP SMR 52709532285 Kg/year Lewis et al., 

2022; 

Brasington et 

al., 2011; 

Young et al., 

2021; Spath et 

al. 2005 

AP CCS 54034044285 Kg/year 

AP BH2S 53448253002 Kg/year 

AP AEC OsmosisA 1332790200,  

73077302619 

Kg/year Lewis et al., 

2022; 

Brasington et 

al., 2011; 

Young et al., 

2021; Sousa et 

al., 2022. 
A The first value provided is the reverse osmosis flowrate. The second value is the process 

water demand. For more details on how the water demand was calculated, see the annexed 

Excel file called AP_NE_Water_Balance.xlsx. 

 

B. Techno-Economic Quantities of the Technical Process System Model 
B.1. Objectives 

This section aims to determine the equipment capacities for the AP process by combining the 

processes discussed in the previous section. These equipment capacities directly influence the 

capital expenditure (𝑪𝑨𝑷𝑬𝑿𝒋) associated with technology  𝒋,  where: 

𝒋 ∈ {𝑨𝑷 𝑺𝑴𝑹,𝑨𝑷 𝑪𝑪𝑺, 𝑨𝑷 𝑩𝑯𝟐𝑺,𝑨𝑷 𝑨𝑬𝑪} (B.1) 

Additionally, the demands for feedstock, utilities, and other raw materials can be obtained from 

the mass and energy balances from the reports. This will constitute the variable operating costs. 

The fixed operating costs, however, are estimated based on the number of unit operations 

required to operate the plant. These types of costs constitute the operational expenditure 

(𝑶𝑷𝑬𝑿𝒋). 

The goal of this section is to describe the methodology used to estimate the 𝑪𝑨𝑷𝑬𝑿𝒋 

and 𝑶𝑷𝑬𝑿𝒋 for each technology option, following the techno-economic approach outlined by 

Peters et al. (2003). These two quantities will allow for calculating the desired financial variables 

in ensuing sections (i.e., NPV, CAC, etc.).  

Table B-1: Nomenclature for the CAPEX section. 

Parameters Description Units 

𝒋 Technology index  

𝒛 Cost factor index  
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𝒙𝒛 CAPEX cost factor % 𝑬𝑪𝒖𝒋
 

𝑪𝑨𝑷𝑬𝑿𝒋 Capital Expenditure cost for 

technology 𝒋 
$ 

𝑷(𝒏𝟎,𝒕𝟎,𝒛) Base capacity equipment cost. $ 

𝒎𝒏 number of spare equipment units 

required 

ℕ 

𝑺𝒏 required equipment capacity   

𝑺𝒏𝟎 base capacity  

𝒊 installation cost factor  

𝒇 equipment economies of scale factor 

(Peters et al. 2003) 

 

𝑪𝒕𝟎
 Chemical engineering plant index at 

𝒕𝟎 

 

𝑪𝟐𝟎𝟐𝟑 Chemical engineering plant index in 

2023.  

 

𝑴𝑵𝑮 energy flowrate of natural gas mmBTU/year 

𝑴𝑬𝑳 electricity demand kWh/year 

𝑪𝑬𝑳(𝑻) electricity operating hour hour 

𝑪𝑨𝑷𝑬𝑿𝒖𝒑𝒅𝒂𝒕𝒆𝒅𝒋
 updated CAPEX after adding the 

additional cost 

$ 

𝑭𝑪𝑰𝑱 Fixed capital investment of 

technology 𝒋 
 

𝑬𝑪𝒖𝒋
 Uninstalled cost for technology 𝒋 $ 
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𝑬𝑪𝒊𝒋 Installed cost for technology 𝒋 $ 

𝑾𝑪𝒋 Working Capital for technology 𝒋 $ 

𝑪𝑰&𝑪 Cost factor for instrumentation and 

controls 

% 𝑬𝑪𝒖𝒋
 

𝑪𝒑 Cost factor for piping % 𝑬𝑪𝒖𝒋
 

𝑪𝒆𝒍 Cost factor for electrical % 𝑬𝑪𝒖𝒋
 

𝑪𝒃 Cost factor for buildings % 𝑬𝑪𝒖𝒋
 

𝑪𝒔𝒇&𝒚𝒊 Cost factor for service facilities and 

yard improvements 

% 𝑬𝑪𝒖𝒋
 

𝑪𝒍𝒂𝒏𝒅 Cost factor for land % 𝑬𝑪𝒖𝒋
 

 𝑪𝒆𝒏𝒈 Cost factor for engineering % 𝑬𝑪𝒖𝒋
 

𝑪𝑳 Cost factor for legal $ 

𝑪𝒄 Cost factor for construction % 𝑬𝑪𝒖𝒋
 

𝑪𝒄𝒐 Cost factor for contingency % 𝑬𝑪𝒖𝒋
 

𝑪𝑾𝑪 Cost factor for Working capital % 𝑭𝑪𝑰 

𝑪𝑨𝑬𝑪 Cost of AEC electrolyzer $/kWe 

 

B.2. Model Formulation CAPEX 
B.2.1. Estimating CAPEX 

𝑪𝑨𝑷𝑬𝑿𝒋 = ∑[𝒔𝒇 × 𝒙𝒛] × [𝑬𝑪𝒖𝒋
]
 

𝒛

𝒛=𝟎

+ 𝑬𝑪𝒊𝒋 + 𝑪𝒍𝒂𝒏𝒅 + 𝑾𝑪𝒋 (B.2) 

(B.2) describes how the 𝑪𝑨𝑷𝑬𝑿𝒋 was estimated. This method obtains the installed (𝑬𝑪𝒊𝒋
) and 

uninstalled (𝑬𝑪𝒖𝒋
) costs for a specific technology and calculates the 𝑪𝑨𝑷𝑬𝑿𝒋. The values for 
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𝑬𝑪𝒊𝒋 and 𝑬𝑪𝒖𝒋
 were calculated based on the equipment data sets described in section A. 𝒙𝒛 is a 

cost factor for a set of facilities, 𝒛 (Peters et al., 2003). 𝑪𝒍𝒂𝒏𝒅 is the cost of land and a constant 

for all technologies. 𝑾𝑪𝒋 is the working capital (calculated in (B.4)). 

The average value of the cost factors for each technology for each scenario is in 

annexed excel file named AP_NE_CAPEX.xlsx. More detailed information on the CAPEX 

estimation methodology is in Peters et al. 2003. For clarity, we specify the cost factors below. 

𝒙𝒛 ∈ {𝑪𝑰&𝑪, 𝑪𝒑, 𝑪𝒆𝒍, 𝑪𝒃, 𝑪𝒔𝒇&𝒚𝒊, 𝑪𝒆𝒏𝒈, 𝑪𝑳, 𝑪𝒄, 𝑪𝒄𝒐} (B.3) 

where each cost factor, 𝑪𝒛, corresponds to instrumentation and control, piping, electrical, 

buildings, service facilities and yard improvements, engineering, legal, construction, and 

contingency, respectively. 

 The working capital, 𝑾𝑪𝒋, was calculated using the formula below (B.4).  

𝑾𝑪𝒋 = 𝑭𝑪𝑰𝒋 ∗ 𝑪𝑾𝑪 = (∑[𝒔𝒇 × 𝒙𝒛]

𝒛

𝒛=𝟎

× [𝑬𝑪𝒖𝒋
]
 
+ 𝑬𝑪𝒊𝒋 + 𝑪𝒍𝒂𝒏𝒅) × 𝑪𝑾𝑪 (B.4) 

The textbook cost factors used to calculate 𝑪𝑨𝑷𝑬𝑿𝒋 and related parameters are based 

on a scale of the order of 100 TPD (Peters et al., 2003). Hence, each parameter was scaled by 

using the six-tenths rule to the AP scale of 𝑀𝑁𝐻3
 (2717 TPD NH3). The factor is defined as 𝒔𝒇.  

𝒔𝒇 =
𝟏

(
𝟏𝟎𝟎
𝑴𝑵𝑯𝟑

)
𝟎.𝟔

 
(B.5) 

𝑬𝑪𝒖𝒋
 and 𝑬𝑪𝒊𝒋 were calculated using equations (B.6) and (B.7). 

𝑬𝑪𝒖𝒋
= ∑ 𝒎𝒏 ∗ 𝑷(𝒏,𝒕𝟎,𝒋) ∗ (

𝑺𝒏

𝑺𝒏𝟎
)
𝒇

∗ (
𝑪𝟐𝟎𝟐𝟑

𝑪𝒕𝟎

)

𝑵

𝒏=𝟎

 (B.6) 

𝑬𝑪𝒊𝒋 = ∑ 𝒎𝒏 ∗ 𝑷(𝒏𝟎,𝒕𝟎,𝒋) ∗ (
𝑺𝒏

𝑺𝒏𝟎
)
𝒇

∗ (𝟏 + 𝒊) ∗ (
𝑪𝟐𝟎𝟐𝟑

𝑪𝒕𝟎

)

𝑵

𝒏

 (B.7) 

𝑬𝑪𝒖𝒋
 and 𝑬𝑪𝒊𝒋 are functions of the sum of the base-capacity uninstalled equipment costs 

𝑷(𝒏𝟎,𝒕𝟎,𝒛) where 𝒏𝟎 denotes the name of the piece of equipment (see equipment list, 𝑵, in Excel 

file named AP_NE_Equipment_List.xlsx)1, and 𝒕𝟎 is the time when the equipment cost was 

estimated. 𝑺𝒏 is the required capacity of the piece of equipment. 𝑺𝒏𝟎 is the base equipment 

capacity. 𝒇 are the economies of scale factor obtained from Peters et al. (2003) (also in the 

Excel file). (𝟏 + 𝒊) is the installation factor obtained from Peters et al. (2003). 𝑪𝟐𝟎𝟐𝟑 is the 

 
1 The equipment list Excel file also contains the full calculations of 𝑬𝑪𝒖𝒋

 and 𝑬𝑪𝒊𝒋.  
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chemical engineering plant index (CEPCI) in 2023 and 𝑪𝒕𝟎 is the CEPCI at the time the piece of 

equipment was cost estimated. 𝒎𝒏 is the number of spares for a given piece of equipment 

(𝒎𝒏  ∈ ℕ).  

B.2.2. Back-propagation of additional CAPEX on other CAPEX-related cost 
factors.  

There are times when we need to add the cost of certain modules directly into the 𝑪𝑨𝑷𝑬𝑿𝒋 from 

the scientific literature. Once we do this, we also need to scale the cost components of the 

capex ([𝒔𝒇 × 𝒙𝒛] × [𝑬𝑪𝒖𝒋
]
.
) to be adjusted to the higher CAPEX. We perform the method 

described below for the AP AEC electrolyzer, wind farm, and battery storage costs2.  

 We define a new variable 𝑹𝒋 to represent the scaling ratio by which to increase each 

capex component.  

𝑹𝒋 = 𝟏 +
𝑪𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍𝒋

𝑪𝑨𝑷𝑬𝑿𝑼𝒑𝒅𝒂𝒕𝒆𝒅𝒋

 
(B.8) 

|[𝒔𝒇 × 𝒙𝒛] × [𝑬𝑪𝒖𝒋
]
.
|
𝒖𝒑𝒅𝒂𝒕𝒆𝒅

= [𝒔𝒇 × 𝒙𝒛] × [𝑬𝑪𝒖𝒋
]
.
× 𝑹𝒋 

(B.9) 
 

𝑪𝑨𝑷𝑬𝑿𝒖𝒑𝒅𝒂𝒕𝒆𝒅𝒋
 is the updated CAPEX after adding the additional cost (𝑪𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍𝒋

). This 

ensures that the overall CAPEX estimate accurately reflects the depreciation effect of the 

additional costs on the project's financial analysis. 

𝑪𝑨𝑷𝑬𝑿𝒖𝒑𝒅𝒂𝒕𝒆𝒅 = 𝑪𝑨𝑷𝑬𝑿 + 𝑪𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍 (B.10
) 

 Specific to AP AEC, we calculate the CAPEX based on established heuristics by the 
literature and the electricity demand required to electrolyze water. 

𝑪𝒂𝒅𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍𝑨𝑷 𝑨𝑬𝑪
= [

𝑴. 𝑯𝟐
× 𝒉𝑯𝟐

𝑳𝑯𝑽 × 𝟏𝟎𝟎𝟎

𝜼𝑨𝑬𝑪
] ∗ 𝑪𝑨𝑬𝑪 

(B.11
) 

 

Table B-2: Values for 𝒙𝒛 excluding 𝑊𝐶𝑗 . 

Input Name Value Unit Source 

𝑪𝑰&𝑪 uniform(0.08, 0.55) % Purchased 

equipment 

(PE) (Peters et al., 2003) 

𝑪𝒑 uniform(0.1, 0.8) % PE 

 
2 See SI D and E for calculations related to the wind farm and battery storage system.  
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𝑪𝒆𝒍 uniform(0.1, 0.4) % PE 

𝑪𝒃 uniform(0.1, 0.7) % PE 

𝑪𝒔𝒇&𝒚𝒊 uniform(0.05, 0.18) % PE 

𝑪𝒍𝒂𝒏𝒅 900000 $ (Lewis et al., 2022) 

 𝑪𝒆𝒏𝒈 uniform(0.05, 0.3) % PE 

(Peters et al., 2003) 

𝑪𝑳 uniform(0.03, 0.05) % PE 

𝑪𝒄 uniform(0.3, 0.4) % PE 

𝑪𝒄𝒐 uniform(0.35, 0.45) % PE 

𝑪𝑾𝑪 uniform(0.1, 0.2) % FCI 

𝑪𝑨𝑬𝑪 
2026: uniform (750, 1000) 

2033: uniform (500, 1000) 
$/kWe 

(Böhm et al., 2020; 

IRENA, 2020; 

Schmidt et al., 

2017) 

 

Table B-3: 𝑬𝑪𝒖𝒋
 and 𝑬𝑪𝒊𝒋 for each technology.  

Input Name ValueA Unit Source 

AP SMR (726947344.6, 

508096133.6) 

$ Calculated 

AP CCS (1103130442, 

781847023.7) 

$ Calculated 

AP BH2S (940144529.3, 

5080528806470) 

$ Calculated 

AP AEC (567914373, 

402707562.8) 

$ Calculated 

A The first value in the parenthesis is 𝑬𝑪𝒊𝒋 and the second is 𝑬𝑪𝒖𝒋
.  Obtained from Excel file 

called AP_NE_Equipment_List.xlsx. 

 

B.3. Model Formulation OPEX 
The OPEX is partitioned into two parts. A market-dependent OPEX(𝑴𝑫𝑶𝑷𝑬𝑿𝒋) and a market-

independent (MI) OPEX(𝑴𝑰𝑶𝑷𝑬𝑿𝒋). These two values are combined to derive the 𝑶𝑷𝑬𝑿𝒋 for 

each technology option considered.  
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The 𝑶𝑷𝑬𝑿𝒋 is generally divided into fixed and variable costs. The fixed costs represent 

costs related to labor, overhead, maintenance, and insurance while the variable costs rely on 

the raw materials and utility costs. In the methodology we utilize, the fixed and variable costs 

are added together. From this combined quantity, we add another set of cost factors.  

Some raw materials and utilities have costs that vary with the market; hence the variable 

costs are split between the 𝑴𝑫𝑶𝑷𝑬𝑿𝒋 and 𝑴𝑰𝑶𝑷𝑬𝑿𝒋. All the fixed costs are within the 

𝑴𝑰𝑶𝑷𝑬𝑿𝒋.  

𝑶𝑷𝑬𝑿 = 𝑴𝑰𝑶𝑷𝑬𝑿 + 𝑴𝑫𝑶𝑷𝑬𝑿 (B.12) 

B.1.1. Model Formulation OPEX 

Table B-4: Nomenclature for the OPEX section. 

Parameters Description Units 

𝑴𝑫𝑶𝑷𝑬𝑿𝒋 Market dependent OPEX for technology 𝒋 $/month 

𝑴𝑰𝑶𝑷𝑬𝑿𝒋 Market independent OPEX for technology 𝒋 $/month 

𝑯𝒔𝒉𝒊𝒇𝒕 Hours per shift Hour/shift 

𝑯𝒅𝒑 Hours per day per processing step Hours/day/processing 

step 

𝑷𝒔 Processing steps Processing step 

𝑭𝒂 Availability factor % 

𝒘𝒂𝒈𝒆𝒉 Operator salary $/hr 

𝑳𝒄 Monthly operator labor cost $/month 

𝑻𝑳𝒄𝒋
 Total labor costs $/month 

𝑻𝑭𝒄𝒋
 Fixed charges $/month 

𝑭𝑪𝒋 Fixed cost $/month 

𝑪𝒔𝒖𝒑 Supervision costs to calculate total labor costs  %𝑳𝒄 
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𝑪𝒐𝒔 Operating supply costs to calculate total labor 

costs  
% 𝑭𝑪𝑰𝒋 ×

𝑪𝑴𝑻

𝟏𝟐
 

𝑪𝑳𝑪 Laboratory charges to calculate total labor 

costs  

%𝑳𝒄 

 𝑪𝑷&𝑹 Patient and royalty costs to calculate total labor 

costs  

% 𝑪𝑨𝑷𝑬𝑿𝒋 

𝑪𝑶𝑯 Overhead costs to calculate total labor costs  % maintenance + 

supervision + labor 

𝑪𝒇𝒊𝒏 Financing fixed cost  % 𝑪𝑨𝑷𝑬𝑿𝒋 

𝑪𝒓𝒆𝒏𝒕 Rent fixed cost  %𝑪𝒍𝒂𝒏𝒅 

𝑪𝒑𝒕𝒂𝒙 Local property tax fixed cost  % 𝑻𝑳𝒄 

𝑪𝒂𝒅𝒎𝒊𝒏 Administrative fixed cost %𝑪𝒂𝒅𝒎𝒊𝒏 

𝑪𝒊𝒏𝒔 Insurance costs % 𝑭𝑪𝑰𝒋 

𝑪𝑴𝑻 Maintenance costs to calculate total labor costs  %𝑭𝑪𝑰𝒋 

𝑽𝑪𝒋 Variable cost $/month 

𝑺𝑯𝟐𝑶 Water cost $/kg 

𝑴𝑯𝟐𝑶 Process water demand per month Kg/month 

𝑴𝒊𝒔𝒄𝒋 Miscellaneous costs in calculating OPEX $/month 

𝑴𝑯𝟐𝑶𝒐𝒔𝒎𝒐𝒔𝒊𝒔
 Feedstock water demand $/kg 

𝑺𝑯𝟐𝑶𝒐𝒔𝒎𝒐𝒔𝒊𝒔
 Reverse Osmosis water cost Kg/month 

𝒊 Commodity index  

𝑷𝒊(𝑻) GBM price function for commodity 𝒊 $/unit 𝒊 
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𝑷(𝑻 = 𝟎)𝒊 Initial price of commodity 𝒊 $/unit 𝒊 

𝝁𝒊 Drift for commodity 𝒊 % 

𝝈𝒊 Volatility for commodity 𝒊 % 

𝑭𝑫𝑴 Distribution and marketing costs  $ 

𝑭𝑹𝑫 R&D costs $ 

𝑴𝑵𝑮 Energy flowrate of natural gas mmBTU/year 

𝑴𝑬𝑳 Electricity demand kWh/year 

𝑶𝑷𝑬𝑿𝒋 Operational Expenditure for technology 𝒋 $ 

 

B.3.1. Market Independent OPEX 
B.3.1.1. Fixed Costs 

The monthly cost of labor was calculated assuming a number of hours per day per processing 

step, 𝑯𝒅𝒑. Then dividing by the hours per shift, 𝑯𝒔𝒉𝒊𝒇𝒕, multiplying by the number of processing 

steps, 𝑷𝒔, times 7 days in a week over 5 shifts per week per operator, gives the number of 

operators assuming each operator can cover one shift per day. This is the first factor in the 

square brackets. The resulting hours an operator will work (5 shifts, 8 hours each) results in 40 

hours per week. The hourly wage, 𝒘𝒂𝒈𝒆𝒉, times 40 results in the weekly cost of an operator. 

This is the second factor in the square brackets. Finally, the weekly cost of labor (number of 

operators times the weekly cost per operator) is converted to the monthly cost of labor through 

the factor, 
𝟓𝟐

𝟏𝟐
∗ 𝑭𝒂; where 𝑭𝒂 is the availability factor.  

𝑳𝒄 = [(
𝑯𝒅𝒑

𝑯𝒔𝒉𝒊𝒇𝒕
) × 𝑷𝒔 ×

𝟕

𝟓
] × [𝟒𝟎 × 𝒘𝒂𝒈𝒆𝒉] ×

𝟓𝟐

𝟏𝟐
× 𝑭𝒂 (B.13) 

 The total labors costs are a function of the 𝑳𝒄, 𝑪𝑨𝑷𝑬𝑿𝒋, cost factors. Hence, we 

introduce the total labor costs, 𝑻𝑳𝒄 : 

𝑻𝑳𝒄𝒋
= 𝑳𝒄(𝟏 + 𝑪𝒔𝒖𝒑 + 𝑪𝑳𝑪) + 𝑭𝑪𝑰𝒋 ×

𝑪𝑴𝑻

𝟏𝟐
+ (𝑭𝑪𝑰𝒋 ×

𝑪𝑴𝑻

𝟏𝟐
) × 𝑪𝑶𝑺 

+ 𝑪𝑨𝑷𝑬𝑿𝒋 ×
𝑪𝑷&𝑹

𝟏𝟐
+ (𝑳𝒄(𝟏 + 𝑪𝒔𝒖𝒑) + 𝑭𝑪𝑰𝒋 ×

𝑪𝑴𝑻

𝟏𝟐
) × 𝑪𝑶𝑯 

(B.14) 

 There are also fixed charges, 𝑻𝑭𝒄: 
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𝑻𝑭𝒄𝒋
=

𝑪𝒇𝒊𝒏

𝟏𝟐
× 𝑪𝑨𝑷𝑬𝑿𝒋  +

𝑪𝒓𝒆𝒏𝒕

𝟏𝟐
× 𝑪𝒍𝒂𝒏𝒅 +

𝑪𝒊𝒏𝒔

𝟏𝟐
× 𝑭𝑪𝑰𝒋 +

𝑪𝒑𝒕𝒂𝒙

𝟏𝟐
× 𝑭𝑪𝑰𝒋 + 𝑪𝒂𝒅𝒎𝒊𝒏 × 𝑻𝑳𝒄 (B.15) 

After obtaining 𝑻𝑳𝒄𝒋 and 𝑻𝑭𝒄𝒋, we can calculate the fixed cost, 𝑭𝑪: 

𝑭𝑪𝒋  =   𝑻𝑳𝒄𝒋
+ 𝑻𝑭𝒄𝒋

 
(B.16) 

B.3.1.2. Variable Costs (market independent) 
The utility costs portion of the 𝑴𝑰 𝑶𝑷𝑬𝑿𝒋 is only the water costs since electricity is a market-

dependent parameter. For SMR, CCS, and BH2S, equation (B.17) applies. We also add 

miscellaneous costs, which account for other raw materials (catalysts, column trays, solvents, 

water treatment, etc.). These miscellaneous costs are found in the original reports (see SI A). 

We define the variable costs, 𝑽𝑪𝒋, as: 

𝑽𝑪𝒋  = 𝑺𝑯𝟐𝑶 × 𝑴𝑯𝟐𝑶𝒋
+ 𝑴𝒊𝒔𝒄𝒋 (B.17) 

If the process is AP AEC, the water dedicated to feedstock is water by reverse osmosis 

and is more expensive. Hence, for AP AEC, the following equation applies. 

𝑽𝑪𝒋=𝑨𝑷 𝑨𝑬𝑪  = 𝑺𝑯𝟐𝑶 × 𝑴𝑯𝟐𝑶𝒋
+ 𝑺𝑯𝟐𝑶𝒐𝒔𝒎𝒐𝒔𝒊𝒔

× 𝑴𝑯𝟐𝑶𝒐𝒔𝒎𝒐𝒔𝒊𝒔𝒋
+ 𝑴𝒊𝒔𝒄𝒋 (B.18) 

B.3.1.3. MIOPEX 
With the previous definitions, the 𝑴𝑰 𝑶𝑷𝑬𝑿𝒋 is defined as: 

𝑴𝑰 𝑶𝑷𝑬𝑿𝒋  = 𝑭𝑪𝒋 + 𝑽𝑪𝒋 (B.19) 

 

B.3.2. Market Dependent OPEX 
The objective is to use geometric Brownian motion (GBM) to model natural gas, electricity, and 

ammonia prices with parameters including the drift, 𝝁𝒊, and volatility, 𝝈𝒊, for commodity 𝒊. We 

used a bivariate distribution for ammonia and natural gas prices so that we could set a 

correlation parameter between the two commodities. The correlation was calculated using 

industrial natural gas prices and ammonia price indices from December 2014 to January 2023 

(Bureau of Labor Statistics, 2023; EIA, 2023b).  

𝑷𝒊(𝑻) = 𝑷(𝑻 = 𝟎)𝒊 ∏[𝑵(𝟏 + 𝝁𝒊, 𝝈𝒊)]

𝑳

𝑻=𝟎

 (B.20) 

Distribution and marketing costs (𝑭𝑫𝑴) and R&D (𝑭𝑹𝑫) costs are dependent on the 

variable costs. The 𝑴𝑫𝑶𝑷𝑬𝑿𝒋 can be defined as: 
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𝑴𝑫𝑶𝑷𝑬𝑿𝒋(𝑻) = 𝑴𝑵𝑮 ∗ 𝑷𝑵𝑮(𝑻) + 𝑴𝑬𝑳 ∗ 𝑷𝑬𝑳(𝑻) + 𝑴𝑰𝑶𝑷𝑬𝑿𝒋 + (𝑭𝑫𝑴 + 𝑭𝑫𝑴 ∗ 𝑭𝑹𝑫) 

(𝑴𝑵𝑮 ∗ 𝑷𝑵𝑮(𝑻) + 𝑴𝑬𝑳 ∗ 𝑷𝑬𝑳(𝑻) + 𝑴𝑰𝑶𝑷𝑬𝑿𝒋) 
(B.21) 

where 𝑴𝑵𝑮 is the energy flowrate of natural gas in mmBTU/year, and 𝑴𝑬𝑳 is the electricity 

demand in kWh/year. The term, 𝑴𝑵𝑮 ∗ 𝑷𝑵𝑮(𝑻) + 𝑴𝑬𝑳 ∗ 𝑷𝑬𝑳(𝑻) + 𝑴𝑰𝑶𝑷𝑬𝑿𝒛, is the 

manufacturing cost. If it is the year when operations start, then start-up costs are added to the 

𝑴𝑫𝑶𝑷𝑬𝑿𝒋(𝑻) (see Table B-8). More details on 𝑻 and financial analysis in Section C.  

B.3.3. Inputs for OPEX 
Table B-5: Number of processing steps by technology. 

Input Name Value Unit Source 

AP SMR 30 - - 

AP CCS 33 - - 

AP BH2S 38 - - 

AP AEC 23 - - 

𝐻𝑑𝑝 55   

Processing steps of each AP process. Used for labor cost calculations. All values are assumptions 

estimated from the process flow diagrams of Lewis et al. (2022), Spath et al. (2005), Brasington et al. 

(2011), and Young et al. (2021).  

Table B-6: Heuristics factors for OPEX. 

Input Name Value Unit Source 

𝑪𝑴𝑻 0.0286 % 𝑪𝑨𝑷𝑬𝑿𝒋 

(Peters et al., 

2003) 

𝑪𝒔𝒖𝒑 0.15 %𝑳𝒄 

𝑪𝒐𝒔 0.1 % 𝑭𝑪𝑰𝒋 ×
𝑪𝑴𝑻

𝟏𝟐
 

𝑪𝑳𝑪 0.15 % 𝑳𝒄 

 𝑪𝑷&𝑹 0.005 % 𝑪𝑨𝑷𝑬𝑿𝒋 

𝑪𝑶𝑯 0.70 %maintenance + 

supervision + labor 

𝑪𝒇𝒊𝒏 0 % 𝑪𝑨𝑷𝑬𝑿𝒋 

𝑪𝒓𝒆𝒏𝒕 0.1 %𝑪𝒍𝒂𝒏𝒅 

𝑪𝒑𝒕𝒂𝒙 0.005 % 𝑭𝑪𝑰𝒋 

𝑪𝒂𝒅𝒎𝒊𝒏 0.025 % 𝑻𝑳𝒄 
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𝑪𝒊𝒏𝒔 0.2 % 𝑭𝑪𝑰𝒋 

 

Table B-7: Miscellaneous raw materials costs. 

Input 

Name 

Value Unit Source 

AP SMR 6824075.7 $/year 

(Brasington et al., 2011; Lewis et al., 2022; A. F. Young et 

al., 2021) 

AP CCS 12434783.

5 

$/year 

AP BH2S 27093089.

5 

$/year 

AP AEC 335267.1 $/year 

 

Table B-8: Start-up costs 

Input Name Value Unit Source 

AP SMR 15413897.7 $ 

(Brasington et al., 2011; Lewis et al., 

2022) 

AP CCS 16514194.1 $ 

AP BH2S 15532525.5 $ 

AP AEC 118627.7 $ 

 

Table B-9: GBM inputs. 

Input Name Value Unit Source 

𝑷𝑵𝑮(𝑻 = 𝟎) 7.753 $/mmBTU 

(EIA, 2023a) 

 𝝁𝑵𝑮
A -0.0016 - 

𝝈𝑵𝑮 0.039683 - 

𝑷𝑬𝑳(𝑻 = 𝟎) 0.083 $/kWh 

𝝁𝑬𝑳
A -0.0006 - 

𝝈𝑬𝑳 0.00536 - 
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A The drift terms were obtained by calibrating the GBM model to the average price of 

commodity 𝑖 in 2050 to the EIA’s Annual Energy Outlook 2023 predictions (EIA, 2023a). 

Electricity was picked as the industrial electricity price in the baseline scenario. Natural gas 

was picked as the industrial natural gas price in the baseline scenario.  

 

C. Stochastic DCF Model Based on Techno-Economic Quantities 
C.1. Problem statement  

This analysis employs a Stochastic Discounted Cash Flow (DCF) model to evaluate the 

economic viability of various technology pathways for ammonia production. This assessment 

aims to provide a comprehensive understanding of the economic performance by considering 

various uncertain factors and their impact on the Net Present Value (𝑵𝑷𝑽) per lifetime ammonia 

produced metric. The NPV calculation factors in different cash flows, discount rates, and 

probabilities, enabling a robust evaluation of the pathways in a stochastic context. 

The nomenclature for a Stochastic Discounted Cash Flow (DCF) model encompasses 

key financial and economic parameters used to evaluate investments and projects under 

uncertain conditions. These parameters define discount rates, costs, revenues, emissions, and 

various financial factors. These parameters are essential for assessing the potential financial 

outcomes of an investment while considering factors like inflation, tax credits, cash flows, and 

environmental impacts. 

Table C-1: Nomenclature for DCF section. 

Parameters Description Units 

𝒅𝒑 Private discount rate % 

𝒅𝒔 Social discount rate  

𝒆 equity - 

𝑹𝒆 cost of equity - 

𝑹𝒅 cost of debt - 

𝝋𝒔𝒕𝒂𝒕𝒆 state income taxes $ 

𝝋𝒇𝒆𝒅𝒆𝒓𝒂𝒍 federal income taxes $ 

𝒓 interest rate % 

𝑴.
𝑵𝑯𝟑 Monthly ammonia production Tonne/day 
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𝑺 Month of project start month 

𝑪 Construction time months 

𝑳 Operating lifetime (duration) months 

𝑵𝑷𝑽 Net Present Value  $ 

𝑪𝑭(𝑻) cash flow at time 𝑇 $ 

𝑳𝒂𝒏𝒅(𝑻) costs of purchasing land at time T $ 

𝑪𝒍𝒂𝒏𝒅 Land cost $ 

𝑾𝑪(𝑻) costs of injecting working capital at 

time T 

$ 

𝑳𝒍𝒐𝒂𝒏 loan lifetime years 

𝑯𝒚 Hours per year (365 * 24) hour/year 

𝑪𝑰𝒋𝒅𝒊𝒓𝒆𝒄𝒕
 direct emission  kgCO2/KgH2 

𝑪𝑰𝒋𝑵𝑮
 Natural gas emission  kgCO2/KgH2 

𝑪𝑰𝒋𝑩𝒊𝒐𝒎𝒂𝒔𝒔
 Biomass emission kgCO2/KgH2 

𝑿𝒐𝒊𝒍(𝑻) electric demand from oil over the 

hydrogen production  

kgCO2/kWh_e 

𝑿𝒏𝒖𝒄𝒍𝒆𝒂𝒓(𝑻) electric demand from nuclear over the 

hydrogen production  

kgCO2/kWh_e 

𝑿𝒓𝒆𝒏𝒆𝒘𝒂𝒃𝒍𝒆𝒔(𝑻) electric demand from renewables 

over the hydrogen production  

kgCO2/kWh_e 

𝑿𝑵𝑮(𝑻) electric demand from NG over the 

hydrogen production  

kgCO2/kWh_e 
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𝑿𝒄𝒐𝒂𝒍(𝑻) electric demand from coal over the 

hydrogen production  

kgCO2/kWh_e 

𝑺𝒂𝒍𝒆𝒔(𝑻) revenue stream from selling ammonia 

at time T 

$ 

𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬(𝑻) cash-equivalent tax credits - 

 𝑭𝟒𝟓𝑽(𝑪𝑰𝒋)   intensive tax credits per unit of  H2 

captured 

- 

𝑭𝟒𝟓𝑸  intensive tax credits per unit of CO2 

captured 

- 

𝑳𝒆𝒒𝒖𝒊𝒑𝒎𝒆𝒏𝒕 equipment lifetime years 

𝑪𝒖𝒏𝒊𝒏𝒔𝒕𝒂𝒍𝒍𝒆𝒅 𝒆𝒒𝒖𝒊𝒑𝒎𝒆𝒏𝒕 costs of uninstalled equipment $ 

𝜼𝑵𝑮𝑪𝑪 

 

NGCC thermal efficiency % 

 

C.2. DCF Model Formulation  
The economic performance of each technology pathway was assessed using a Net Present 

Value (𝑵𝑷𝑽) per lifetime ammonia produced metric. NPV is the sum of the present value of all 

cash flows at each period (monthly basis) over the lifetime amount of ammonia production, 

𝑴𝑵𝑯𝟑 . 

𝑵𝑷𝑽 =  
𝟏

𝑴𝑵𝑯𝟑
∑

𝑪𝑭(𝑻)

(𝟏 +
𝒅𝒑

𝟏𝟐)𝑻−𝑺

𝑺+𝑪+𝑳

𝑻=𝑺

 
(C.1) 

where 𝑪𝑭(𝑻) is the cash flow at time 𝑻. The public discount rate, 𝑑𝑝, was calculated as the 

weighted average cost of capital (WACC) (C.2); as shown below; 𝒆 is the equity, 𝑹𝒆 is the cost 

of equity, 𝑹𝒅 is the cost of debt, and 𝝋𝒔𝒕𝒂𝒕𝒆 + 𝝋𝒇𝒆𝒅𝒆𝒓𝒂𝒍 are the state and federal income taxes, 

respectively. 

𝒅𝒑 = 𝒆 ∗ 𝑹𝒆 + ([𝟏 − 𝒆] ∗ 𝑹𝒅 ∗ [𝟏 − (𝝋𝒔𝒕𝒂𝒕𝒆 + 𝝋𝒇𝒆𝒅𝒆𝒓𝒂𝒍)]) (C.2) 



 

24 
 

𝑪𝑭(𝑻) = 𝑭𝑪𝑰(𝑻)3 + 𝑳𝒂𝒏𝒅(𝑻) + 𝑾𝑪(𝑻) + 𝑷𝑴𝑻(𝑻) 

+𝑺𝒂𝒍𝒆𝒔(𝑻) + 𝑶𝑷𝑬𝑿(𝑻) + 𝑻𝒂𝒙(𝑻) + 𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬(𝑻) 
(C.3) 

 Equations (C.4)-(C.6) represent the staggered spending of the FCI to build the ammonia 

plant over three years (𝑪 months). 𝒀𝟏,𝒀𝟐,and 𝒀𝟑are the fraction of the FCI that is spent on a 

given year.  

𝑭𝑪𝑰 (𝟎 < 𝑻 ≤
𝑪

𝟑
) = −𝒀𝟏 ∗

𝑭𝑪𝑰𝒋

𝟏𝟐
 (C.4) 

𝑭𝑪𝑰 (
𝑪

𝟑
< 𝑻 ≤

𝟐𝑪

𝟑
) = −𝒀𝟐 ∗

𝑭𝑪𝑰𝒋

𝟏𝟐
 (C.5) 

𝑭𝑪𝑰 (
𝟐𝑪

𝟑
< 𝑻 ≤  𝑪) = −𝒀𝟑 ∗

𝑭𝑪𝑰𝒋

𝟏𝟐
 (C.6) 

 𝑳𝒂𝒏𝒅(𝑻) and 𝑾𝑪(𝑻) are the costs of purchasing land and injecting working capital to begin 

operation. 

𝑳𝒂𝒏𝒅(𝑻 = 𝑺) = −𝑪𝒍𝒂𝒏𝒅 , 𝑳𝒂𝒏𝒅(𝑻 = 𝑺 + 𝑪 + 𝑳) = 𝑪𝒍𝒂𝒏𝒅 (C.7) 

𝑾𝑪(𝑻 = 𝑺 + 𝑪) = −𝑾𝑪𝑱,  𝑾𝑪(𝑻 = 𝑺 + 𝑪 + 𝑳) = 𝑾𝑪𝒋 (C.8) 

 Equations (C.9)-(C.11) represent increasing interest payments as the amount of 

borrowed capital increases throughout the construction period and (C.12) the constant 

payments to pay off the loan.  

𝑷𝑴𝑻 (𝑺 < 𝑻 ≤ 𝑺 +
𝑪

𝟑
) = −(

𝒓

𝟏𝟐
) ∗ 𝑻 ∗ (𝟏 − 𝒆) ∗ 𝒀𝟏 ∗

𝑭𝑪𝑰𝒋

𝟏𝟐
 (C.9) 

𝑷𝑴𝑻(𝑺 +
𝑪

𝟑
< 𝑻 ≤ 𝑺 +

𝟐𝑪

𝟑
) = −(

𝒓

𝟏𝟐
) ∗ (𝟏 − 𝒆) ∗ [(𝑻 − (𝑺 +

𝑪

𝟑
)) ∗ 𝒀𝟐 ∗

𝑭𝑪𝑰𝒋

𝟏𝟐
+ 𝒀𝟏 ∗ 𝑭𝑪𝑰𝒋] 

 

(C.10) 

𝑷𝑴𝑻(𝑺 +
𝟐𝑪

𝟑
< 𝑻 ≤ 𝑺 + 𝑪) = −(

𝒓

𝟏𝟐
) ∗ (𝟏 − 𝒆) ∗ [(𝑻 − (

𝟐𝑪

𝟑
+ 𝑺)) ∗ 𝒀𝟑 ∗

𝑭𝑪𝑰𝒋

𝟏𝟐
+ (𝒀𝟏 + 𝒀𝟐) ∗ 𝑭𝑪𝑰𝒋] 

 

(C.11) 

 
3 If the start of the plant is the year 2030, then the equity part of the FCI appreciates at the risk-free rate (4.25%) 
for seven years. The appreciation is compounded monthly. The ROI after seven years of appreciation is subject to 
income tax (set as 21%).  
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𝑷𝑴𝑻(𝑺 + 𝑪 < 𝑻 ≤ 𝑺 + 𝑪 + 𝑳𝒍𝒐𝒂𝒏) = −𝑭𝑪𝑰𝒋 ×
𝒓

𝟏 − (𝟏 − 𝒓)𝟏𝟐∗𝑳𝒍𝒐𝒂𝒏
 (C.12) 

 𝑺𝒂𝒍𝒆𝒔(𝑻) and 𝑶𝑷𝑬𝑿(𝑻) represent the revenue stream from selling ammonia to the 

market and the cost of operating the plant respectively.  

𝑺𝒂𝒍𝒆𝒔(𝑺 + 𝑪 < 𝑻 ≤ 𝑺 + 𝑪 + 𝑳) = 𝑴.
𝑵𝑯𝟑 ∗

𝑭𝑨 ∗
𝑯𝒚

𝟐𝟒
𝟏𝟐

∗ 𝑷𝑵𝑯𝟑
(𝑻) 

(C.13) 

𝑶𝑷𝑬𝑿(𝑺 + 𝑪 < 𝑻 ≤ 𝑺 + 𝑪 + 𝑳) = 𝑶𝑷𝑬𝑿𝒋(𝑻) (C.14) 

where 𝑳𝒍𝒐𝒂𝒏 is the loan lifetime in years, 𝑭𝒂 ∗ 𝑯𝒚 are the operating hours per year, 𝑴.
𝑵𝑯𝟑 is the 

monthly ammonia production and 𝑪𝑵𝑯𝟑(𝑻) its market-dependent cost.  

 𝑻𝒂𝒙(𝑻) is the income tax and 𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬(𝑻) represents the cash-equivalent IRA tax 

credits. The following  variables are interconnected in the financial analysis of income and 

expenses, with depreciation and uninstalled equipment cost playing key roles in determining net 

revenue and, subsequently, tax. 

𝑻𝒂𝒙 (𝑺 + 𝑪 < 𝑻 < 𝑺 + 𝑪 + 𝑳) = −(𝑵𝒆𝒕 𝒓𝒆𝒗𝒆𝒏𝒖𝒆(𝑻)) ∗ (𝝋𝒔𝒕𝒂𝒕𝒆 + 𝝋𝒇𝒆𝒅𝒆𝒓𝒂𝒍) (C.15) 

𝑵𝒆𝒕 𝒓𝒆𝒗𝒆𝒏𝒖𝒆(𝑺 + 𝑪 ≤ 𝑻 ≤ 𝑺 + 𝑪 + 𝑳)

= 𝑫𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏(𝑺 + 𝑪 ≤ 𝑻 ≤ 𝑺 + 𝑪 + 𝑳𝒆𝒒𝒖𝒊𝒑𝒎𝒆𝒏𝒕) 

+𝑶𝑷𝑬𝑿(𝑻) + 𝑺𝒂𝒍𝒆𝒔(𝑻) + 𝑷𝑴𝑻(𝑻) 

(C.16) 

𝑫𝒆𝒑𝒓𝒆𝒄𝒊𝒂𝒕𝒊𝒐𝒏(𝑻) = (
𝟏𝟎𝟎%

𝑳𝒆𝒒𝒖𝒊𝒑𝒎𝒆𝒏𝒕
) ∗ 𝑬𝑪𝒖𝒋

 (C.17) 

C.3. Policy Model 
C.3.1. Carbon Intensity Calculations 

The calculation of the carbon intensity as a function of time, 𝑪𝑰𝒋(𝑻), the carbon intensity is 

divided into multiple components. Each component is in units 
𝑲𝒈𝑪𝑶𝟐

𝑲𝒈𝑯𝟐

 in (C.18). The electric grid 

carbon intensity (C.19) in 
𝑲𝒈𝑪𝑶𝟐

𝑲𝒈𝑯𝟐

 is the electric mix weighted average of the carbon intensities of 

each type of electric generation times the electric demand of the technology 𝒋 over the hydrogen 

production. In this study, we use the electricity demand of hydrogen only because the tax credits 

only depend on the emissions of hydrogen.  
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𝑪𝑰𝒋(𝑻) = 𝑪𝑰𝒋𝒅𝒊𝒓𝒆𝒄𝒕
+ 𝑪𝑰𝒋𝑵𝑮

+ 𝑪𝑰𝒋𝑩𝒊𝒐𝒎𝒂𝒔𝒔
+ 𝑪𝑰𝒋𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚

(𝑻) (C.18) 

𝑪𝑰𝒋𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚
(𝑻) = 

[𝑿𝒐𝒊𝒍(𝑻) ∗ 𝑪𝑰𝒆𝒍𝒆𝒄𝒐𝒊𝒍
+ 𝑿𝒏𝒖𝒄𝒍𝒆𝒂𝒓(𝑻) ∗ 𝑪𝑰𝒆𝒍𝒆𝒄𝒏𝒖𝒄𝒍𝒆𝒂𝒓

+ 𝑿𝒓𝒆𝒏𝒆𝒘𝒂𝒃𝒍𝒆𝒔(𝑻) ∗ 𝑪𝑰𝒆𝒍𝒆𝒄𝒏𝒖𝒄𝒍𝒆𝒂𝒓
+ 𝑿𝑵𝑮(𝑻)

∗ 𝑪𝑰𝒆𝒍𝒆𝒄𝑵𝑮
+ 𝑿𝒄𝒐𝒂𝒍(𝑻) ∗ 𝑪𝑰𝒆𝒍𝒆𝒄𝒄𝒐𝒂𝒍

] 

(C.19) 

 The natural gas carbon intensity of SMR and CCS are estimated from the upstream 

emissions per kWh of electricity of an NGCC plant times the average efficiency of an NGCC 

plant (see Table C-3).  The direct, or stack, emissions, 𝑪𝑰𝒋𝒅𝒊𝒓𝒆𝒄𝒕
, from SMR and CCS come from 

Lewis et al. (2022) and are assumed to be 0 for BH2S and AEC. 

𝑪𝑰𝑺𝑴𝑹𝑵𝑮 = 𝑪𝑰𝒆𝒍𝒆𝒄𝑵𝑮
× 𝜼𝑵𝑮𝑪𝑪 ×

𝑴𝑵𝑮𝒋

.

𝟑𝟔𝟓

𝑴𝑯𝟐
× 𝒉𝑵𝑮

𝑳𝑯𝑽 × [𝟎. 𝟎𝟎𝟎𝟗𝟒𝟖
𝑴𝑴𝑩𝒕𝒖

𝑴𝑱 ] × [𝟏𝟎𝟎𝟎
𝒌𝒈

𝒕𝒐𝒏𝒏𝒆] 
 (C.20) 

𝑪𝑰𝑪𝑪𝑺𝑵𝑮 = 𝑪𝑰𝑺𝑴𝑹𝑵𝑮 ∗ (𝟏 − 𝑹𝑪𝑶𝟐
) (C.21) 

𝑪𝑰𝒋𝑩𝒊𝒐𝒎𝒂𝒔𝒔
=

𝑴𝒃𝒊𝒐𝒎𝒂𝒔𝒔
.

𝑴𝑯𝟐

∗ 𝑪𝑰𝑩𝒊𝒐𝒎𝒂𝒔𝒔 (C.22) 

 

C.3.2. Policy Tax Credits 
The AP plan first must decide on a credit program (45V or 45Q). AP BH2S and AP AEC 

do not qualify for 45Q. Hence, only AP CCS can choose between 45V and 45Q by using the 

formula below: 

max

[
 
 
 
 
 
45𝑉: ∑ 𝓗𝑪𝑬  [

𝐅𝟒𝟓𝐐 ∗ 𝑴.
𝑯𝟐(𝑪𝑰𝑺𝑴𝑹𝒅𝒊𝒓𝒆𝒄𝒕

− 𝑪𝑰 𝒋𝒅𝒊𝒓𝒆𝒄𝒕
)

(𝟏 + 𝒅𝒑)
𝑻−𝑺

]

𝑳+𝑺+𝑪

𝑻=𝑺+𝑪

,

45𝑄: ∑ 𝓗𝑪𝑬 [
𝑴.

𝑯𝟐 ∗ 𝑭𝟒𝟓𝑽(𝑪𝑰𝒋)

(𝟏 + 𝒅𝒑)
𝑻−𝑺

]

𝑳+𝑺+𝑪

𝑻=𝑺+𝑪 ]
 
 
 
 
 

 (C.23) 

  

where 𝓗𝑪𝑬 is an operator that converts the tax credits from the IRA eligible tax credits to the 

cash-equivalent utilizing the “direct pay” and “transferability” capabilities of the credits – it 

performs the logical operation in equations (C.26) and (C.27). The first term in the max function 

is the NPV of 45V credits. The second term is the NPV of 45Q credits.  
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𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝟒𝟓𝑽𝒋
(𝑻) = 𝑴.

𝑯𝟐 ∗ 𝑭𝟒𝟓𝑽(𝑪𝑰𝒋) (C.24) 

𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝟒𝟓𝑸𝒋
(𝑻) = 𝐅𝟒𝟓𝐐 ∗ 𝑴.

𝑯𝟐(𝑪𝑰𝑺𝑴𝑹𝒅𝒊𝒓𝒆𝒄𝒕
− 𝑪𝑰 𝒋𝒅𝒊𝒓𝒆𝒄𝒕

) (C.25) 

𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬 (𝑻| |𝑻𝒂𝒙(𝑻)| > 𝑪𝒓𝒆𝒅𝒊𝒕𝒔(𝑻) ) = 𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝒋(𝑻)  (C.26) 

𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬 (𝑻| |𝑻𝒂𝒙(𝑻)| < 𝑪𝒓𝒆𝒅𝒊𝒕𝒔(𝑻) )  = −𝑻𝒂𝒙(𝑻) 

+𝑭𝒕(𝑻) ∗ (𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝒋(𝑻) + 𝑻𝒂𝒙(𝑻)) 

(C.27) 

where 𝑭𝟒𝟓𝑽(𝑪𝑰𝒋) and  𝑭𝟒𝟓𝑸 is the intensive tax credits per unit of H2 produced and CO2 

captured, respectively. 45V is a piecewise function of CI. 45V and 45Q are mutually exclusive, 

so the highest tax credit is preferred for technology option 𝒋. 𝑴.
𝑯𝟐 is the monthly flowrates of H2 

and CO2. 𝑭𝒕(𝑻) is an exchange rate of USD per tax credit. It is equal to 1 in the first five years of 

operation (due to direct pay) and then attains a market values of less than one after five years. 

𝑭𝟒𝟓𝑽(𝑪𝑰𝒋) and 𝐅𝟒𝟓𝐐 become zero after 10 and 12 years of operation, respectively. 

C.4. Measurement Metric Formulations 
 

Table C-2: Nomenclature 

Parameters Description Units 

𝑪𝑨𝑪𝒋 Carbon abatement cost for 

technology 𝒋 
$/tCO2eq 

𝒅𝒔 Social discount rate % 

𝑻𝑪𝒋𝜶
 Tax credit for technology 𝒋 for type of 

credit 𝜶 

$/Kg H2 

𝜶 Can be the potential tax credits 

discounted at 𝒅𝒔, cash-equivalent 

tax credits discounted at 𝒅𝒔, or cash-

equivalent tax credits discounted at 

𝒅𝒑 

 

𝑳𝑯𝟐
 Lifetime of hydrogen produced under 

the IRA.  

months 
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C.4.1. Carbon Abatement Cost 
A valuable measure in the context of comparisons of climate policy instruments could be the 
carbon abatement cost (𝑪𝑨𝑪𝒋), which quantifies the cost to the taxpayer of bringing low-carbon 

technologies to commercialization, normalized by the mitigated emissions over the lifetime of 
the plant (see eq.5). 

𝑪𝑨𝑪𝒋 = ∑

𝑪𝒓𝒆𝒅𝒊𝒕𝐬𝐣(𝑻)

[𝟏 + 𝒅𝒔]𝑻−𝑺

∑ [
𝑴.

𝑯𝟐(𝑪𝑰𝑺𝑴𝑹(𝑻) − 𝑪𝑰 𝒋(𝑻))

[𝟏 + 𝒅𝒔]𝑻−𝑺 ]𝑳+𝑺+𝑪
𝑻=𝑺+𝑪

𝑳+𝑺+𝑪

𝑻=𝑺+𝑪

 
(C.28) 

where 𝑳 + 𝑺 + 𝑪 represents the operating lifetime, the month the plant begins to be built, and 

the construction period, respectively. The denominator represents the total abated emissions as 

a Riemann sum of the CO2 at all periods. Both the carbon and credits are discounted to the 

present value at the social discount rate, 𝒅𝒔 . The discount rate for the CAC is set to two percent 

– in line with EPA’s estimates of the social cost of carbon (EPA, 2022).  

C.4.2. Tax Credits on a Hydrogen Basis 
Much like the 𝑪𝑨𝑪𝒋, the total tax credits we measure are on a hydrogen basis. This metric is 

easily compared to the popular levelized cost of hydrogen (LCOH) metric. We develop the 

following metrics to quantify the three types of tax credit (𝑻𝑪𝒋𝜶
) quantifications we report: 

𝑻𝑪𝒋𝑷𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍 (𝟐%)
= ∑

𝑪𝒓𝒆𝒅𝒊𝒕𝐬𝐣(𝑻)

[𝟏 +
𝒅𝒔
𝟏𝟐

]
𝑻−𝑺

∑

[
 
 
 

𝑴.
𝑯𝟐

[𝟏 +
𝒅𝒔
𝟏𝟐

]
𝑻−𝑺

]
 
 
 

𝑺+𝑪+𝑳𝑯𝟐
𝑻=𝑺+𝑪

𝑳+𝑺+𝑪

𝑻=𝑺+𝑪

 
(C.29) 

𝑻𝑪𝒋𝑪𝑬 (𝟐%)
= ∑

𝑪𝒓𝒆𝒅𝒊𝒕𝐬𝐂𝐄𝐣(𝑻)

[𝟏 +
𝒅𝒔
𝟏𝟐

]
𝑻−𝑺

∑

[
 
 
 

𝑴.
𝑯𝟐

[𝟏 +
𝒅𝒔
𝟏𝟐

]
𝑻−𝑺

]
 
 
 

𝑺+𝑪+𝑳𝑯𝟐
𝑻=𝑺+𝑪

𝑳+𝑺+𝑪

𝑻=𝑺+𝑪

 
(C.30) 

𝑻𝑪𝒋𝑪𝑬 (𝟗.𝟑%)
= ∑

𝑪𝒓𝒆𝒅𝒊𝒕𝐬𝐂𝐄𝐣(𝑻)

[𝟏 +
𝒅𝒑

𝟏𝟐
]
𝑻−𝑺

∑

[
 
 
 
 

𝑴.
𝑯𝟐

[𝟏 +
𝒅𝒑

𝟏𝟐
]
𝑻−𝑺

]
 
 
 
 

𝑺+𝑪+𝑳𝑯𝟐
𝑻=𝑺+𝑪

𝑳+𝑺+𝑪

𝑻=𝑺+𝑪

 
(C.31) 
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 We take the NPV of the tax credits from the public and private perspective. 

𝑻𝑪𝒋𝑷𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍 (𝟐%)
 captures the total amount of credits issued – hence the cost to the taxpayer. 

𝑻𝑪𝒋𝑪𝑬 (𝟐%)
 is always less than 𝑻𝑪𝒋𝑷𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍 (𝟐%)

 and represent the amount of tax credits awarded 

to the low-carbon AP investor from the total pool of tax credits, 𝑻𝑪𝒋𝑷𝒐𝒕𝒆𝒏𝒕𝒊𝒂𝒍 (𝟐%)
. 𝑻𝑪𝒋𝑪𝑬 (𝟗.𝟑%)

 is 

the low-carbon AP investor’s valuation of the tax credits using the WACC as the discount rate. 

The AP investor is more “impatient” than the government and hence places more value on 

credits awarded in the near future. 

C.5. Data sources 
Table C-3: Direct carbon emissions intensity 

Input Name Value Unit Source 

𝐶𝐼𝑆𝑀𝑅𝑑𝑖𝑟𝑒𝑐𝑡
 9.3 Kg CO2/Kg H2 (Lewis et al., 

2022) 

𝜂𝑁𝐺𝐶𝐶  46.1%a - (O’Donoughue 

et al., 2014)b 

a The thermal efficiency was used to back-calculate the upstream emissions from natural gas 

from NGCC plants. An NGCC plant demands an amount of natural gas that is equal to the 

amount of energy input needed to generate electricity. Since we have the carbon intensity of 

NGCC generation, we can derive the natural gas upstream emissions by dividing by thermal 

efficiency. 

b The thermal efficiency is the average efficiency of NGCC plants in the US from Table 1 of 

O'Donoughe et al. (2013). 

Table C-4: Carbon intensity inputs for electricity mix. 

Input Name Value Unit Source 

𝑿𝒐𝒊𝒍(𝑻) uniform(0.256, 1.17) Kg CO2/Kg H2 

(Nicholson & 

Heath, 2021) 

𝑿𝑵𝑮(𝑻) uniform(0.389, 0.988) Kg CO2/Kg H2 

𝑿𝑪𝒐𝒂𝒍(𝑻) uniform(1.001,1.01) Kg CO2/Kg H2 

𝑿𝒏𝒖𝒄𝒍𝒆𝒂𝒓(𝑻) uniform(0.012, 0.220) Kg CO2/Kg H2 

𝑿𝒓𝒆𝒏𝒆𝒘𝒂𝒃𝒍𝒆𝒔(𝑻) 0 Kg CO2/Kg H2 

 

Table C-5: Financial inputs 

Input Name Value Unit Source 

𝑭𝒂 0.9 - (Lewis et al., 2022) 

𝒀𝟏, 𝒀𝟐, 𝒀𝟑 10%, 60%, 30% - Author’s assumption 
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𝑹𝒆 12.27% - 

(Damodaran, 2023) 𝑹𝒅 5.5% - 

𝒆 63.19% - 

𝝋𝒔𝒕𝒂𝒕𝒆 5.25% -   

𝝋𝒇𝒆𝒅𝒆𝒓𝒂𝒍 21% -  

𝑳𝒍𝒐𝒂𝒏 180 years (Lewis et al., 2022) 

𝑳𝒆𝒒𝒖𝒊𝒑𝒎𝒆𝒏𝒕 84 years (Turton et al., 2018) 

 

Table C-6: IRA Inputs 

Input Name Value Unit Source 

𝑭𝟒𝟓𝑽(𝟎 –  𝟎. 𝟒𝟓
𝐊𝐠𝐂𝐎𝟐𝐞𝐪

𝐊𝐠𝐇𝟐
) 

3 $/Kg H2 IRA , 2022 

𝑭𝟒𝟓𝑽𝟎. 𝟒𝟓 – 𝟏. 𝟓
𝐊𝐠𝐂𝐎𝟐𝐞𝐪

𝐊𝐠𝐇𝟐
) 

1 $/Kg H2 IRA, 2022 

𝑭𝟒𝟓𝑽(𝟏. 𝟓 – 𝟐. 𝟓
𝐊𝐠𝐂𝐎𝟐𝐞𝐪

𝐊𝐠𝐇𝟐
) 

0.75 $/Kg H2 IRA, 2022 

𝑭𝟒𝟓𝑽(𝟐. 𝟓 –  𝟒. 𝟎
𝐊𝐠𝐂𝐎𝟐𝐞𝐪

𝐊𝐠𝐇𝟐
) 

0.6 $/Kg H2 IRA, 2022 

𝑭𝟒𝟓𝑸 85 $/tCO2e IRA, 2022 

 

Table C-7: Measurement metrics values. 

Input Name Value Unit Source 

𝒅𝒔 2% %/year (EPA, 2022) 

𝑳𝑯𝟐
 120A months IRA, 2022 

A The lifetime of 45V credits (10 years) is assumed to be the lifetime of hydrogen production 

under the IRA.  
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D. Wind Farm and Battery System Optimization 
D.1. Problem Statement 

The problem aims to minimize the capital cost required for wind and battery installations to meet 

constant electricity demand. Optimal sizing of wind and battery capacity depends on the relative 

costs of wind and battery facilities, wind generation resource availability, and requirements for 

constant electricity output. Thus, the objective is to find the optimal capacities of wind and 

battery installations that minimize the overall capital cost. 

D.2. Model Formulation 
In this problem, the index 𝒕 ∈ 𝑵 denotes discrete time steps. We model hourly (i.e., 8760 time 

steps) and monthly (i.e., 12 time steps) resolutions. Table D-1 outlines notations used in the 

formulation, while Table D-2, Table D-3, Table D-4, and Table D-5 summarize numerical input 

values and their sources. 

Table D-1: Nomenclature 

 Description Units 

Decision variables 

𝒘 Installed wind capacity MW 

𝒃 Battery capacity MW 

𝒘(𝒕) Wind generation in each time period MWh 
𝒄(𝒕) Battery charge in each time period  MWh 

𝒅(𝒕) Battery discharge in each time period MWh 
𝒃(𝒕) Battery state of charge in each time period MWh 

Parameters 

𝑪𝑭(𝒕) Capacity factor of wind across different periods.  Unitless 
𝑫 Constant electricity demand, which differs based on specific 

technologies, including AP CCS, AP BH2S, and AP AEC 
MWh 

𝑬𝑭𝑭 
Roundtrip efficiency of the battery system. It is assumed to be 
85%A. 

Unitless 

𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 Capital cost per MW of wind capacity $/MW 
𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 Capital cost per MW of battery capacity $/MW 

A Cole & Frazier (2019)  

D.2.1. Objective Function 
The objective function (eq. D.1) is to minimize the total capital investments, which is the sum of 

the capital cost of wind installation (𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 ×  𝒘) and the capital cost of battery installation 

(𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 ×  𝒃). 

𝐦𝐢𝐧
𝒘≥𝟎,𝒃≥𝟎

𝑭 = 𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 × 𝒘 + 𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 × 𝒃 (D.1) 

D.2.2. Constraints 
The power balance constraint (D.2) ensures that the net power balance in each time period 
equals the electricity demand (𝑫). It accounts for wind generation (𝒘(𝒕)), battery charging (𝒄(𝒕)), 
and battery discharging (𝒅(𝒕)). The net power balance is achieved by subtracting the battery 

charge and adding the battery discharge to the wind generation.  

𝒘(𝒕) − 𝒄(𝒕) + 𝒅(𝒕) = 𝑫, ∀𝒕 (D.2) 

Wind generation constraint (D.3) enforces wind generation (𝒘(𝒕)) in each time period to 

not exceed wind resource availability (𝑪𝑭(𝒕) × 𝒘). 
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𝟎 ≤ 𝒘(𝒕) ≤ 𝑪𝑭(𝒕) × 𝒘, ∀𝒕 (D.3) 

(D.4) and (D.5) limit the battery charging and discharging to their capacity. 

𝟎 ≤ 𝒄(𝒕) ≤ 𝒃, ∀𝒕 (D.4) 

𝟎 ≤ 𝒅(𝒕) ≤ 𝒃, ∀𝒕 (D.5) 

While (D.6) defines the battery storage state considering roundtrip efficiency, charge and 

discharge dynamics. Lastly, (D.7) puts a lower and an upper limit on the battery's state of 

charge. 

𝒃(𝒕) = 𝒃(𝒕 − 𝟏) + 𝑬𝑭𝑭 ×  𝑪(𝒕) − 𝒅(𝒕),   ∀𝒕 > 𝟏 (D.6) 

𝟎 ≤ 𝒃(𝒕) ≤ 𝒃, ∀𝒕 (D.7) 

 

D.3. Data sources 
D.1.1. Sources and assumptions on the capacity factor data.  

The data for the wind capacity factors (𝑪𝑭(𝒕)) is parametrized by location, year, and wind 

turbine design. The hourly capacity data originates from Pfenninger et al. (2016). 

• Locations: the capacity factors are obtained from 8 locations, labeled Yara, Koch, 

Woodward, Port Neal, Verdigris, Nutrien, Donaldson, AdvanSix. The locations match 

some of the largest AP plants in the US (see Table D-2).  

• Year: only 2019 data was available. We assume 2019 capacity factors to be a typical 

meteorological year (TMY) for the AP plant model for computational tractability. In other 

words, the time-varying results from this optimization problem (𝒘(𝒕), 𝒅(𝒕), etc..) are 

oscillatory functions in the context of the AP plant (see SI E).  

• Wind turbine design: as wind turbine technology improves, the costs are expected to 

decrease and the hub heights and capacity per turbine to increase. 2026 scenario data 

was obtained using a hub height of 90.2m and a BONUS B82 2300 turbine. 2033 data 

was obtained using a hub height of 120m and a GAMESA G128 5000 turbine. The 

turbine design was picked to match closely with the average design specifications of 

deployed wind turbines in the baseline and moderate scenarios of NREL’s Annual 

Technology Baseline report (Open Energy Data Initiative (OEDI), 2022)4.  

D.1.2. Justification for hybrid wind farm locations and applications to the AP plant 
model.  

Our stochastic NPV model uses a uniform distribution to capture the lower and upper bounds of 

uncertain variables such as wind and battery capex. To capture the upper and lower bounds of 

wind resource availability in those eight locations, we compute the average monthly and hourly 

capacity factors and pick two farm locations each year with the highest and lowest average 

capacity factors (see Table D-3). Intuitively, locations with low-energy wind resources will have 

a larger wind capacity (higher overall CAPEX) than locations with high-energy wind resources 

(lower overall CAPEX). 

 
4 The average wind turbine specifications reported by NREL were in the years 2020 and 2030. We use the design parameters from 2020 for the 
2026 scenario and the 2030 design parameters for our 2033 scenario.  
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This helps in understanding which locations are performing the best and the worst in 

wind electricity generation, and these two locations’ data are used for stochastic NPV analysis. 

Table D-2: Specific locations of AP plants. 

Company Name State Latitude Longitude 

CF Industries Donaldsonville Complex LS 30.087397 -90.955682 

CF Industries Verdigris Complex OK 36.233335 -95.718833 

CF Industries Woodward Complex OK 36.437942 -99.472056 

CF Industries Port Neal Complex IA 42.332879 -96.377213 

Koch 
Industries 

Koch Fertilizer Company Enid OK 36.380941 -97.761921 

Nutrien Nutrien Augusta Nitrogen GA 33.443125 -81.930376 

Yara BASF Chemicals Division TX 29.000639 -95.393318 

AdvanSix AdvanSix VA 37.300405 -77.271941 

 

Table D-3: Capacity factor data for selected locations. 

2023 

Location Average   Minimum   Maximum   Std Deviation 

Koch 35.5% 0.0% 98.2% 28.1% 
AdvanSix 17.8% 0.0% 97.6% 18.9% 
Port Neal 34.9% 0.0% 98.2% 27.8% 
Nutrien 18.4% 0.0% 98.2% 18.7% 
Yara 29.1% 0.0% 98.1% 23.7% 
Woodward 39.2% 0.0% 98.2% 29.6% 
Donaldson 19.4% 0.0% 98.2% 20.1% 
Verdigris 31.4% 0.0% 98.2% 26.7% 
2030 

Location Average   Minimum   Maximum   Std Deviation 

Koch 42.7% 0.0% 96.4% 29.8% 
AdvanSix 26.7% 0.0% 96.4% 23.5% 
Port Neal 41.9% 0.0% 96.4% 29.3% 
Nutrien 25.4% 0.0% 96.4% 22.5% 
Yara 35.7% 0.0% 96.4% 26.0% 
Woodward 46.1% 0.0% 96.4% 30.9% 
Donaldson 25.8% 0.0% 96.4% 23.2% 
Verdigris 38.7% 0.0% 96.4% 28.8% 

 

Constant electricity demand, 𝑫, is outlined below in Table D-4. 

Table D-4: Constant electricity demand of each technology.  

  Low High Units Low High Units 

AP CCS, 𝑫 117  MW 922428  MWh/year 

AP BH2S, 𝑫 127  MW 1001268  MWh/year 

AP AEC, 𝑫 1007 913 MW 7939188 7198092 MWh/year 
Notes: AP AEC has a demand range because we assume an uncertain electrolyzer efficiency. 
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The capital cost of wind and battery is based on values from Bistline et al. (2023). See 

below in Table D-5. 

Table D-5: CAPEX of wind and battery systems. 

Battery Low  High Units 

2023, 𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 800 1500 $/kW 

2030, 𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 450 1200 $/kW 

Wind    

2023, 𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 1200 1400 $/kW 

2030, 𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 750 1200 $/kW 

 

D.4. Model implementation 
The optimization problem is formulated in Python and solved using the pulp library, a popular 

open-source linear programming (LP) modeling package that can seamlessly handle mixed-

integer linear programming (MILP) scenarios (Dunning et al., 2011).  

PuLP offers a simple and intuitive syntax for defining optimization problems using 

Python, such as intuitive syntax for defining decision variables, objective functions, and 

constraints. Thus, the model can be formulated to resemble the mathematical notation that 

describes optimization problems closely. It provides a high-level abstraction that makes it easier 

to express mathematical programming concepts. 

D.5. Results 
The optimal results are computed for installed wind capacity, battery capacity, wind generation, 

battery charging, battery discharging, battery state of charge, storage duration, and wind supply 

curtailment. These results collectively provide insights into how the optimization model has 

determined the optimal configuration for wind capacity, battery capacity, and their operational 

behavior to minimize costs while ensuring supply-demand balance and considering various 

constraints. We report and publish all results from this optimization in an Excel file – named 

AP_NE_Optimization_Results.xlsx. 
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E. Scenario Specific Changes and Assumptions 
The previous SI modules describe the model methodology for scenario A in its entirety. This 

section contains a set of case studies of this model. There are three dimensions to the case 

studies: 

1. Business models: choice between scenarios A, B, and C. Scenario A is the baseline, not 

discussed in this section. 

2. CBAM: a choice on whether to enforce CBAM or not. 

3. Electricity matching constraints: a choice to enforce yearly, monthly, or hourly 

constraints. 

This section describes the differences between scenarios B and C from the baseline. We 

also describe the implementation of CBAM. Finally, we do not discuss matching constraints 

because the constraints are integrated into the optimization model (see section D)5.  

Table E-1: Nomenclature. 

Variables/Parameters Description Units 

𝑴𝑰𝑶𝑷𝑬𝑿𝒆𝒍(𝚪) Additional market-independent OPEX as a function 
of the remainder of the AP plant time attributed to the 
wind and battery O&M. 

$/month 

𝒅𝒎𝒐𝒏𝒕𝒉𝒍𝒚(𝚪) Monthly aggregated sum of the battery discharge MWh/month 

𝑪𝒇+𝒗
𝒘𝒊𝒏𝒅 Fixed and variable O&M cost of the wind farm $/MW/year 

𝑪𝒇
𝒃𝒂𝒕𝒕𝒆𝒓𝒚

 Fixed O&M costs of the battery system $/kW-year 

𝑪𝒗
𝒃𝒂𝒕𝒕𝒆𝒓𝒚

 Variable O&M costs of the battery system $/MWh 

𝑳 Plant operating lifetime months 

𝑺 The time step in which the plant construction begins month 

𝑪 Construction time months 

𝑺𝒆𝒍(𝑻) Surplus electricity income. $/month 

𝒘𝒎𝒐𝒏𝒕𝒍𝒚(𝚪) Monthly aggregated sum of the total electricity 
generated by the wind farm. 

MWh/month 

𝐋𝐂𝐎𝐄𝐰𝐢𝐧𝐝 𝐟𝐚𝐫𝐦 𝐨𝐧𝐥𝐲, The levelized cost of electricity of a stand-alone wind 
farm.  

$/MWh 

𝑷𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚(𝑻) Electricity market price $/kWh 

𝟒𝟖𝑬 The percentage ITC of 48E credits from the IRA %wind and 
battery CAPEX 

𝟒𝟓𝒀(𝑻) Time function of 45Y credits bounded by the start of 
operations and 45Y credit lifetime, 𝑬𝟒𝟓𝒀 

$/MWh 

𝑬𝟒𝟓𝒀 Lifetime of 45Y credits. Constrained by 𝟐𝟎𝟐𝟑 +
𝑬𝟒𝟓𝒀+𝑺+𝑪

𝟏𝟐
= 𝟐𝟎𝟓𝟎 (see explanation below).  

Months 

 
5 For example, to model yearly matching, the number of time steps in the optimization model is changed to 1. For 
monthly matching, only 12-time steps are required. For hourly matching, 8760 time steps are required. 



 

36 
 

𝓗𝑪𝑬[𝒙] Cash-equivalent operator. Performs the conversion 
from nominal tax credits to cash-equivalent tax 
credits. 

$ 

𝒅𝒓 Discount rate.  

𝑳𝑪𝑶𝑬 Levelized cost of electricity  $/MWh 

𝑪𝑶𝟐𝒕𝒂𝒙 CO2 tax imposed by CBAM $/Month 

𝑪𝑰𝑺𝑴𝑹𝑬𝑼
(𝑻) European AP SMR carbon intensity.  Kg CO2eq/kg H2 

𝑴𝑯𝟐
 Mass flowrate of hydrogen Tonnes per day 

𝑭𝒂 Availability factor % 

𝑪𝑶𝟐𝑬𝑼𝑷𝒓𝒊𝒄𝒆 Price for CBAM certificates. $/tCO2 

𝑹𝑬𝑼𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔
 Decay rate for EU AP SMR emissions intensity. % 

𝑳𝒃𝒂𝒕𝒕𝒆𝒓𝒚 Lifetime of battery system. years 

𝑳𝒘𝒊𝒏𝒅 Lifetime of wind farm turbines.  Years 

 

Table E-2: Input values for section F. 

Variables/Parameters Value Source 

𝑪𝒇+𝒗
𝒘𝒊𝒏𝒅 52.22 $/MW/year (Stehly et al., 2020) 

𝑪𝒇
𝒃𝒂𝒕𝒕𝒆𝒓𝒚

 Uniform(6.16, 49.33) $/kW-year (Cole & Frazier, 
2019) 𝑪𝒗

𝒃𝒂𝒕𝒕𝒆𝒓𝒚
 Uniform(0,8.63) $/MWh 

𝑳 480 months (40 years) 

Author assumption 𝑺 0 months (year 2023) or 84 (year 2030) 

𝑪 36 months 

𝟒𝟖𝑬 Uniform(30%,40%) 
IRA, 2022 

𝟒𝟓𝒀(𝑻) $1.5/MWh (when eligible) 

𝑴𝑯𝟐
 483 TPD 

(Lewis et al., 2022) 
𝑭𝒂 90% 

𝑳𝒃𝒂𝒕𝒕𝒆𝒓𝒚 Uniform(13,20) years 
(Cole & Frazier, 
2019) 

𝑳𝒘𝒊𝒏𝒅 20 years (Stehly et al., 2020) 

𝑪𝑰𝑺𝑴𝑹𝑬𝑼
(𝑻 = 𝟎) 8.82  

𝐾𝑔𝐶𝑂2𝑒

𝐾𝑔𝐻2
 (McDonald, 2023) 
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𝑹𝑬𝑼𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔
 1.4 % 

(European 
Commission, 2023; 
Kakoulaki et al., 
2021; McDonald, 
2023) 

𝑪𝑶𝟐𝑬𝑼𝑷𝒓𝒊𝒄𝒆 Uniform(35-100) 
$

𝑡𝐶𝑂2𝑒

 (McDonald, 2023) 

 

E.1. Scenario B: Build-and-Own 
To describe the changes we make to the baseline model (scenario A), we include a table with 

all the changes (Table E-3). We utilize some of the variables from the optimization problem and 

introduce some new variables in Table D-1. We define the AP plant time step to be 𝑻 ∈ 𝑺 + 𝑪 +

𝑳 months. Let 𝚪 = 𝑻 mod 𝟏𝟐  (so 𝟎 ≤ 𝚪 ≤ 𝟏𝟏). 𝚪 is a useful transformation of 𝑻 that allows us to 

extend the values of the optimization model from one year to 40 years of AP plant operation. 

Table E-3: Changes to the baseline model to enable scenario B. All changes apply to the low-
carbon technologies. AP SMR stays the same as the baseline.  

Change Module 
Affected 

Description 

Wind farm and battery 
storage CAPEX 

CAPEX The CAPEX of each technology is increased by 𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 ×
𝒘 + 𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 × 𝒃 except for AP SMR. The increased 

CAPEX is backpropagated to the rest of the CAPEX 
components.  

Grid electricity costs MDOPEX Electricity costs from the grid are set to 0. 

Wind farm and battery 
storage OPEX 

MIOPEX The electricity costs are replaced for the variable and fixed 
O&M costs of the hybrid farm and battery system.  
 

𝑴𝑰𝑶𝑷𝑬𝑿𝒆𝒍(𝚪) = 𝒘 ×
𝑪𝒇+𝒗

𝒘𝒊𝒏𝒅

𝟏𝟐
+ [𝒃 ×

𝟏𝟎𝟎𝟎

𝟏𝟐
] × 𝑪𝒇

𝒃𝒂𝒕𝒕𝒆𝒓𝒚

+ 𝒅𝒎𝒐𝒏𝒕𝒉𝒍𝒚(𝚪) × 𝑪𝒗
𝒃𝒂𝒕𝒕𝒆𝒓𝒚

 

𝑪𝑰𝒋 | 𝒋 ≠ 𝑺𝑴𝑹𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚
(𝑻)

= 𝟎 

Carbon Intensity We assume the electricity generated from the hybrid wind 
farm is zero.  

48E or 45Y credits Tax Credits The NPV model has added tax credits coming from IRA 
programs that support the hybrid wind farm system. The 
decision between 48E and 45Y is based on the NPV of each 
cash-equivalent tax credit. The formulation of the decision is 
long, so we describe it below in section E.1.1.  

Selling surplus 
electricity 

MDOPEX Surplus electricity produced by the wind farm that is not 
stored can be sold to the grid at a larger price between the 
LCOE (see section E.2) of the wind farm and the market 
price: 
 

𝑺𝒆𝒍(𝑻) = [𝑪𝑭𝒎𝒐𝒏𝒕𝒉𝒍𝒚(𝚪) ∗ 𝒘 − 𝒘𝒎𝒐𝒏𝒕𝒍𝒚(𝚪)]

∗ 𝐦𝐚𝐱[𝐋𝐂𝐎𝐄𝐰𝐢𝐧𝐝 𝐟𝐚𝐫𝐦 𝐨𝐧𝐥𝐲 , 𝑷𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚(𝑻)

∗ 𝟏𝟎𝟎𝟎] 
 
So that 𝑴𝑫𝑶𝑷𝑬𝑿(𝑻) is increased by 𝑺𝒆𝒍(𝑻).  
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Battery and wind farm 
have replacement costs 

MIOPEX Every 𝑳𝒃𝒂𝒕𝒕𝒆𝒓𝒚 and 𝑳𝒘𝒊𝒏𝒅 the uninstalled equipment cost of 

the wind and battery farm is incurred. We make this 
assumption as the project lifetime of wind farm and battery 
storage is shorter than AP6.  

E.1.1. Tax credits for scenario C.  
The decision between 48E and 45Y is found below: 

max

[
 
 
 
 
 𝓗𝑪𝑬 [ 

𝟒𝟖𝑬 ∗ (𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 × 𝒘 + 𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 × 𝒃)

(𝟏 + 𝒅𝒓)𝑺+𝑪
] ,

∑ 𝓗𝑪𝑬 [
𝒘(𝚪) × 𝟒𝟓𝒀(𝑻)

(𝟏 + 𝒅𝒓)𝑻−𝑺
]

𝑳+𝑺+𝑪

𝑻=𝑺+𝑪 ]
 
 
 
 
 

 

 

(E.1) 

𝟒𝟖𝑬 credits are redeemed at the start of operation and are discounted to the present 

value. We assume 𝟒𝟖𝑬 credits also cover investments in the battery system. 

𝟒𝟓𝒀 credits are spread out across time, hence the summation term. 𝟒𝟓𝒀(𝑻 |𝑺 + 𝑪 ≤ 𝑻 ≤

𝑺 + 𝑪 + 𝑬𝟒𝟓𝒀) is non-zero and zero whenever 𝑻 ∉ 𝑺 + 𝑪 ≤ 𝑻 ≤ 𝑺 + 𝑪 + 𝑬𝟒𝟓𝒀. The lifetime of 45Y 

credits, 𝑬𝟒𝟓𝒀,  is determined to be when the grid emits 75% less than the 2022 grid. We first 

estimated this through 
𝑪𝑰𝑨𝑷 𝑨𝑬𝑪(𝑻)

𝑪𝑰𝑨𝑷 𝑨𝑬𝑪(𝑻=𝟎)
= 𝟎. 𝟐𝟓 since 

𝑪𝑰𝒈𝒓𝒊𝒅(𝑻)

𝑪𝑰𝒈𝒓𝒊𝒅(𝑻=𝟎)
∝

𝑪𝑰𝑨𝑷 𝑨𝑬𝑪(𝑻)

𝑪𝑰𝑨𝑷 𝑨𝑬𝑪(𝑻=𝟎)
 because AP AEC’s CI 

only varies with electricity. We find that grid emissions, according to the AEO2023, do not reach 

that level until after 2050 (EIA, 2023a). For simplicity, we assume 𝟐𝟎𝟐𝟑 +
𝑬𝟒𝟓𝒀+𝑺+𝑪

𝟏𝟐
= 𝟐𝟎𝟓𝟎 so 

that 𝑬𝟒𝟓𝒀 is a free variable that ensures 𝟒𝟓𝒀(𝑻) is zero after 2050. 

Once a tax credit program is chosen, the tax credits are added to the total tax credits. In 

the case of 48E, (E.2) is used. (E.3) is used when 45Y is larger than 48E. 

𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬𝒔𝒄𝒆𝒏𝒂𝒓𝒊𝒐 𝑪
(𝑻) = 𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬(𝑻) + 

𝒊𝒇(𝑻 = 𝑺 + 𝑪,𝓗𝑪𝑬[ 𝟒𝟖𝑬 ∗ (𝑪𝑶𝑺𝑻𝒘𝒊𝒏𝒅 × 𝒘 + 𝑪𝑶𝑺𝑻𝒃𝒂𝒕𝒕𝒆𝒓𝒚 × 𝒃) ]) 
(E.2) 

𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬𝒔𝒄𝒆𝒏𝒂𝒓𝒊𝒐 𝑪
(𝑻) = 𝑪𝒓𝒆𝒅𝒊𝒕𝒔𝑪𝑬(𝑻) + 𝓗𝑪𝑬[ 𝒘(𝚪) × 𝟒𝟓𝒀(𝑻)] (E.3) 

 

E.2. Scenario C: Power Purchase Agreement (PPA) 
The electricity price in scenario C becomes the LCOE of the hybrid wind farm and what we call 

the PPA price. The rest of this section describes how the PPA price was calculated. The PPA 

values can be found in Table E-5. 

 
6 The cost of the wind farm and the battery is the same cost as the start year. Hence, no technological 
improvements are taken into account. We adopt this assumption because the capacity factor data (and hence the 
optimization algorithm) is a function of the design parameters of the wind turbine. Relaxing this assumption brings 
about considerable computation barrriers and also has little effect on the PPA price (scenario C) or NPV (scenario 
B) because the replacement cost is heavily discounted. Consider that 75% of the value of the NPV or PPA price is 
derived from the first 13 years of performance. At 20 years, the replacement cost plays a small part in the 
economic performance.   
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The levelized cost method applied to the hybrid wind farm system is initially the same method 

as the baseline AP NPV model with an additional step to minimize the absolute value of the 

NPV by iterating through the levelized cost (LCOE or PPA price). 

Table E-4: Changes to the baseline model to enable scenario C. All changes apply to the low-
carbon technologies. AP SMR stays the same as the baseline.  

Change Module 
Affected 

Description 

Changes to the AP Model 

Change in the 
electricity price 

MDOPEX The new electricity price corresponds to the LCOE of 
the hybrid wind farm.  

Changes to AP Model to derive the LCOE 

Every probabilistic 
value becomes the 
average value 

All modules  

Heuristic factors for 
the CAPEX are no 
longer multiplied by a 

factor of 
1

(
2717

100
)
0.6. (see 

section C) 

CAPEX This scaling factor for the heuristics is not valid for 
the hybrid wind facility because the facility does not 
produce ammonia.  

All OPEX costs are 
substituted for 
heuristics. 

MIOPEX The OPEX is becomes the 𝑴𝑰𝑶𝑷𝑬𝑿(𝚪). 
 

𝑴𝑰𝑶𝑷𝑬𝑿(𝚪) = 𝒘 ×
𝑪𝒇+𝒗

𝒘𝒊𝒏𝒅

𝟏𝟐
+ [𝒃 ×

𝟏𝟎𝟎𝟎

𝟏𝟐
] × 𝑪𝒇

𝒃𝒂𝒕𝒕𝒆𝒓𝒚

+ 𝒅𝒎𝒐𝒏𝒕𝒉𝒍𝒚(𝚪) × 𝑪𝒗
𝒃𝒂𝒕𝒕𝒆𝒓𝒚

 

Sales change from 
ammonia to electricity. 

Sales 𝑺𝒂𝒍𝒆𝒔(𝚪) = [𝑫𝒋 + [𝑪𝑭𝒎𝒐𝒏𝒕𝒉𝒍𝒚(𝚪) ∗ 𝒘 − 𝒘𝒎𝒐𝒏𝒕𝒍𝒚(𝚪)]]

∗ 𝑳𝑪𝑶𝑬 

Only 48E or 45Y 
credits are considered 

Tax Credits 48E or 45Y credits are applied using the same 
formulation as scenario C (see section E.1.1).  

Instead of an NPV 
analysis, we use a 
levelized cost 
analysis.  

DCF Model We iterate the LCOE until the absolute value of the 
NPV is minimized.  

arg 𝑳𝑪𝑶𝑬min ∑ |
𝑪𝑭𝑳𝑪𝑶𝑬(𝑻)

(𝟏 + 𝒅𝒓)𝑻−𝑺
|

𝐿+𝑆+𝐶

𝑇=0

 

 

Table E-5: PPA prices based on the LCOE model. 

Time matching Capacity factor IRA?A 𝑳𝑪𝑶𝑬 [
𝟐𝟎𝟐𝟑$

𝑴𝑾𝒉
] 

2023 yearly high TRUE 46.22 

2023 yearly low TRUE 101.18 

2023 yearly high FALSE 71.06 

2023 yearly low FALSE 156.00 

2030 yearly high TRUE 26.59 

2030 yearly low TRUE 66.23 
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2030 yearly high FALSE 48.50 

2030 yearly low FALSE 88.15 

2023 monthly high TRUE 46.29 

2023 monthly low TRUE 101.19 

2023 monthly high FALSE 71.13 

2023 monthly low FALSE 156.01 

2030 monthly high TRUE 26.64 

2030 monthly low TRUE 66.27 

2030 monthly high FALSE 48.56 

2030 monthly low FALSE 88.20 

2023 hourly high TRUE 113.77 

2023 hourly low TRUE 262.28 

2023 hourly high FALSE 138.61 

2023 hourly low FALSE 408.65 

2030 hourly high TRUE 83.31 

2030 hourly low TRUE 115.40 

2030 hourly high FALSE 105.22 

2030 hourly low FALSE 173.74 
A True means IRA subsidies were applied to the technologies (if they qualify). False means 
otherwise.  

 

E.3. Carbon Border Adjustment Mechanism (CBAM) 
The implementation of CBAM is a simple formula that measures the difference between the 

European AP SMR CI and the technology 𝑗. The magnitude of the difference is translated into 

the carbon tax below: 

𝑪𝑶𝟐𝒕𝒂𝒙 = (𝑪𝑰𝑺𝑴𝑹𝑬𝑼
(𝑻) − 𝑪𝑰𝒋(𝑻)) × 𝑴𝑯𝟐

×
𝟑𝟔𝟓

𝟏𝟐
× 𝑭𝒂 × 𝑪𝑶𝟐𝑬𝑼𝑷𝒓𝒊𝒄𝒆 

(E.4) 

𝑪𝑰𝑺𝑴𝑹𝑬𝑼
(𝑻) = 𝑪𝑰𝑺𝑴𝑹𝑬𝑼

(𝑻 = 𝟎) ∗ (𝟏 − 𝑹𝑬𝑼𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔
)

𝑻
𝟏𝟐 

(E.5) 

We assume CBAM does not expire. The values for each parameter are found in Table 

E-1. We calibrated 𝑹𝑬𝑼𝒆𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝒔
 so that the EU AP SMR emissions in 2050 will match the 

predictions by the European commission and Kakoulaki et al. (2021). We chose an exponential 

decay type of relationship to show more pronounced emissions reductions early in the century 

and slower reductions towards the middle of the century.  
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F. Literature Review 
This section briefly reviews the four AP technologies this report considers (Figure F-1Error! 
Reference source not found.). We start with the carbon-intensive, conventional AP SMR. 
Then, we describe AP SMR with Carbon Capture and Storage (AP CCS), followed by AP SMR 
with carbon-neutral biomass, as feedstock (AP BH2S). The last low-carbon technology pathway 
we considered for the AP is via Alkaline Electrolysis (AP AEC). Additionally, we include a 
comparison of each AP technology's technical advantages and disadvantages.  

 

Figure F-1: Technology pathways analyzed in this report. 

F.1. AP through Steam Methane Reforming (AP Baseline) 
The common denominator across all technologies is the notable Haber-Bosch (HB) process – a 
chemical process by which pure sources of hydrogen (H2) and nitrogen (N2) gases combine to 
form ammonia (NH3). The source of N2 is separated from the air with an air separation unit (ASU), 
as air is 78% N2 by volume. For H2, natural gas (NG) is the most prominent source (78% of global 
AP) – although coal is also common (22%) (EIA, 2021). NG is chemically treated to obtain pure 
H2 for the HB process selectively. Specifically, the chemical treatment for hydrogen production 
has three major steps (Amhamed et al., 2022; Appl, 1999; IRENA & AEA, 2022; MacFarlane et 
al., 2020): 

1. NG is cleaned of impurities such as sulfur (Kim et al., 2021).   
2. The NG is mixed with steam and reacted in several heated vessels – the first reaction is 

called steam-methane reforming (SMR), and the second is the water-gas shift (WGS) 
reaction. The resulting chemicals from these reactions are methane, CO2, and H2. 

3. H2 is separated from CO2 and methane in a pressure-swing absorption unit (PSA). The 
pure H2 product is sent to the HB process. The remaining methane and CO2 heat the SMR 
vessel through combustion. Finally, the combusted gas is emitted into the environment 
through the plant’s stack.   

  
The H2 from the HP process and the N2 from the ASU must be compressed because the 

HB process requires extreme pressures and temperatures. The compression of H2 and N2 is the 
most energy-intensive step in AP. The source of energy for compression varies across 
technologies (see §2.5) 

The typical AP SMR plant produces 500 to 3000 metric MTs per day (TPD) of NH3 
(Amhamed et al., 2022; IEA, 2021). The IEA reports that the break-even AP SMR ammonia price 
ranges from approximately $300 to $600 per ton of NH3, whereas the market price is between 
$200 and $750 in 2021 (IEA, 2021). Natural gas price constitutes 30% of the levelized cost of 



 

42 
 

ammonia (LCOA) as it is needed for hydrogen production and heating (Appl, 1999; Maxwell, 2012; 
Zhang et al., 2020). Therefore, a strong correlation between natural gas and ammonia markets 
exists. The remaining cost is attributed primarily to capital expenditure (CAPEX) and the rest to 
operational expenditure (OPEX) (Appl, 1999; Maxwell, 2012). 

F.2. AP SMR with a Carbon Capture System (AP CCS) 
The state-of-the-art CCS technologies are amine-based carbon sequestration units operated 
commercially for direct air or point-source capture7. This CCS technology operates by mixing CO2-
rich gases with water and amine solution to dissolve the CO2 in the solvent. The CO2-rich solvent 
can be stripped of the CO2 by heating – effectively regenerating the solvent and obtaining pure 
CO2 gas for transportation and storage. CCS systems can capture up to 95% of the CO2 within 
the AP plant at an additional electric energy penalty cost relative to AP SMR. A report by the DOE 
comparing hydrogen production via SMR with and without CCS found that H2 SMR required 0.65 
kWh/Kg H2 of electricity, while H2 SMR with CCS required 2.04 kWh/Kg H2 H2 (Lewis et al., 2022).  

F.3. AP SMR with a Biomass-derived feedstock (AP BH2S) 
The natural gas feedstock of AP SMR can be substituted with biomass. Hydrogen production 

with a biomass feedstock utilizes the organic compounds in the biomass to generate small 

gaseous molecules (i.e., CH4, C2H4, CO, CO2, H2, N2, etc.) through a process known as 

gasification. These molecules are further processed into H2 and CO2 through the conventional 

SMR-WGS steps (Arora et al., 2016, 2017; Tock et al., 2013; Tunå et al., 2014). According to 

Spath et al., the organic molecules are converted to small molecules in a separate tar reformer 

before the SMR to pre-treat the syngas for sulfur contaminants and avoid char formation – 

although the goal design would be to perform tar reforming and SMR in the same vessel (Spath 

et al., 2005).  

Biomass feedstocks are effectively net-zero, as the carbon emitted by biomass comes 

from the atmospheric CO2 fixated into plants through photosynthesis. However, the electric 

energy requirements to process the biomass into usable NG-like synthesis gas are in the 

ballpark of AP CCS (Lewis et al., 2022; Spath et al., 2005). Hence, significant and possibly IRA-

disqualifying indirect emissions of AP BH2S may be a fault of a carbon-intensive electric source 

(i.e., the electric grid) (EIA, 2023a). 

F.4. AP via Alkaline Electrolysis (AP AEC) 
The most abundant source of hydrogen is water. Water contains zero carbon and can be 
electrolyzed to produce pure hydrogen and oxygen gas. The advantage of electrolysis is that it 
is modular and suitable for decentralized systems (Böhm et al., 2020; Sousa et al., 2022). The 
current competing technologies are alkaline water electrolysis (AEC), proton exchange 
membrane electrolysis (PEM), and solid oxide electrolysis (SOE) (Böhm et al., 2020; dos 
Santos et al., 2017; Proost, 2017; Schmidt et al., 2017). 

AEC is the most competitive technology as it has a high lifetime (60,000-90,000 hours (h)) 
and a low cost (1300-500 $/kW) when compared to PEM (20,000-90,000h and 2000-800 $/kW) 
(Schmidt et al., 2017). SOE stacks have the highest cost among all technologies (5000-1500 
$/kW) and the shortest lifetime (<20,000h) as they are still at the laboratory stage (Schmidt et al., 
2017). Nevertheless, SOE stacks are expected to experience the most significant cost reductions 
from deployment and R&D (Lee et al., 2021; Schmidt et al., 2017). AP AEC forms a small part of 
AP in general (<0.02 Mt in 2021) (Böhm et al., 2020; IRENA & AEA, 2022). AEC pathways and 
other electrolysis technologies expect cost reductions of 0-24% from R&D and 17-30% from 
production scale-up (Schmidt et al., 2017).  

 
7  In this report, CCS refers to Methyl diethanolamine (MDA) solvent-based carbon capture units.  
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While electrolytic pathways mitigate emissions by ensuring a zero-carbon feedstock, the 
additional electric energy demand can be higher (Singh et al., 2019). Gomez and colleagues 
identified that H2 electrolysis required 50-60 kWh/kg H2 versus 0.65 kWh/kg H2 for SMR (Gomez 
et al., 2020; Lewis et al., 2022). The additional electricity usage renders electrolytic hydrogen 
production to be non-zero because of the indirect emissions of the grid and construction materials. 
Simons and Bauer estimate solar-powered electrolysis at 3 kg CO2 eq/kg H2 and wind at 2 kg 
CO2 eq/kg H2 due to the indirect emissions of the construction materials for wind and solar alone 

(Simons et al., 2011). 

F.5. Economic and environmental comparison of AP across the literature.  
The most often used and preferred method in the literature to compare economic performance 
of low carbon hydrogen and ammonia is the levelized cost approach (LCOH and LCOA) (Arora 
et al., 2016, 2017; Campion et al., 2022; del Pozo & Cloete, 2022; Gomez et al., 2020; Guerra 
et al., 2020; Lee et al., 2021; Lewis et al., 2022; Osman et al., 2020; K. H. R. Rouwenhorst et 
al., 2019; Sánchez et al., 2019; Sousa et al., 2022; Tock et al., 2013; G. Wang et al., 2020a; 
Zhang et al., 2020). The LCOA, while pertinent in numerous instances, is primarily focused on 
the production cost side of the equation, potentially overlooking the IRA's significant dynamics, 
which influence the revenue side. 

 This revenue-side influence, particularly concerning income taxes, is outside the scope 
of the LCOA, necessitating assumptions that could potentially overstate outcomes8. For 
instance, Jenkins et al. (2023) implicitly assumed all tax credits equal $1 US dollar by awarding 
full credit value to their levelized cost analysis. This approach may lead to overestimations, 
particularly regarding policy support for low-profit, riskier, low-carbon technologies that heavily 
rely on a tax credit market. Consequently, this study adopts the NPV approach, offering a more 
comprehensive and nuanced perspective better suited to capturing the real-world effects of 
income tax credit-based policies like the IRA. 

 Regarding the electric energy intensity of AP, compressing the gas out of the HP and 
ASU systems before the HB loop is known to be a highly energy-intensive step. Hence, using 
surplus energy from other parts of the process is a critical step that may sometimes drive AP 
SMR to generate electricity (IEAGHG, 2017). This energy integration step is essential in 
determining the relative OPEX between AP SMR and low-carbon technologies. Some 
technologies lack surplus energy to power the compression and need to purchase energy from 
the grid.  

 In general, AP SMR may have surplus energy to power the entire compression load, and 
hence, it uses the least amount of grid electricity (IEAGHG, 2017; Lewis et al., 2022). AP CCS 
does not have surplus energy and uses grid electricity (IEAGHG, 2017; Lewis et al., 2022). AP 
BH2S does have surplus energy for one compression process but has two in total – hence 
using around the same amount of grid electricity as AP CCS (Spath et al., 2005). Finally, AP 
AEC needs an order of magnitude larger amount of electricity for hydrogen production. It does 
not have surplus energy for compression – making it the most electrically energy-intensive 
process in the portfolio (Gomez et al., 2020). Regarding total energy efficiency, AP AEC is the 
least efficient, followed by BH2S and CCS. AP SMR is the most energy-efficient pathway (del 
Pozo & Cloete, 2022; Smith et al., 2020; Spath et al., 2005; Tock et al., 2013).   

 
8 The LCOA's effective income tax rate skews towards 0% as the revenues generated are only sufficient 

to offset the costs. With no income tax to abate, this framework's dependence on selling tax credits invites 
the risk of incorporating potentially oversimplifying assumptions. This issue becomes particularly notable 
under conditions of an unpredictable tax credit market. 
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 In terms of economic cost assessment, large-scale AP SMR plants, with capacities 

above 2000 TPD of ammonia, can have capital expenditure (CAPEX) ranging from $500M 

($250k/TPD NH3) to $1800M ($900k/TPD NH3) and operating expenditure (OPEX) ranging 

from $180 to $500 per ton of NH3 (IEA, 2021; Maxwell, 2012; Pfromm, 2017). For AP CCS at 

an 88.2% capture rate, the CAPEX is estimated to be between $298k/TPD NH3 and $275k/TPD 

NH3, with an OPEX of €280/Ton NH3 (del Pozo & Cloete, 2022). On the other hand, AP BH2S 

costs have been studied at scales of 73 to 1187 TPD NH3. Arora et al. (2017) provided a 

detailed process model for biomass gasification at 73.5 TPD NH3. They noted that the CAPEX 

and OPEX of biomass gasification are between $170k to $175k/TPD NH3 and $705 to $722/ton 

NH3, respectively. 

 Although specific cost data for AP AEC was not easily found in the literature, it is likely to 

have similar or higher costs than AP CCS and AP BH2S, depending on variable factors such as 

electricity costs (OPEX-related) and electrode stack costs (CAPEX-related), which are highly 

uncertain variables (Sousa et al., 2022). AP AEC is the pathway expected to reduce cost due to 

modularity (Schmidt et al., 2017). AP CCS is expected to remain at a similar cost level –hence 

only seen as a transitory technology for decarbonization (MacFarlane et al., 2020). AP BH2S, 

on the other hand, presents significant uncertainties regarding its cost and feedstock availability 

(Sánchez et al., 2019; Tock et al., 2013; Tunå et al., 2014). 

 On the environmental front, life cycle assessments (LCA) of AP SMR produce variable 

results involving the emissions intensity of ammonia production. The cradle-to-gate equivalent 

CO2 emissions of AP SMR varied by 10 to 15% from the average across studies (Bicer et al., 

2016; Bicer & Dincer, 2017; Liu et al., 2020). For example, Bicer and colleagues measured the 

emissions intensity for AP SMR to be 1.6 kg of equivalent CO2 emissions (kgCO2e) per kg of 

NH3 with a plant-wide scope, while ARPA-E reported a value of 2.55 kgCO2e/kgNH3 for a 

cradle-to-gate analysis using the GREET model (Bicer et al., 2016; Bicer & Dincer, 2017). Liu 

and colleagues reported emissions intensities of around 1.8 kgCO2e/kgNH3 for a cradle-to-gate 

scope (Liu et al., 2020). Young and colleagues found that CCS reduced cradle-to-gate CO2e 

emissions by 69% (B. Young et al., 2019).  

 The DOE report on hydrogen production via SMR with CCS found similar results at a 

61% reduction in cradle-to-gate CO2e intensity (Lewis et al., 2022). The average CO2e intensity 

of AP SMR across four studies is approximately 11.7 kgCO2e/kgH2 (1.99 kgCO2e/kgNH39) 

(Bicer et al., 2016; Bicer & Dincer, 2017; Liu et al., 2020) – Please note that reductions by 61-

69% qualify AP SMR with CCS for significant 45Q carbon sequestration credits under IRA 

(Bauer et al., 2022; Lewis et al., 2022).  

 AP through BH2S has been considered a viable alternative to ammonia production as it 

is a zero-carbon fuel (Arora et al., 2016, 2017; Gilbert et al., 2014). Gilbert and colleagues show 

that biomass reduces cradle-to-gate emissions to 0.7 kg CO2e/kg NH3 (3.95 kg CO2e/kg H2 ) 

from a 1.9 kg CO2e/kg NH3 (10.7 kg CO2e/kg H2) natural gas AP SMR baseline (Gilbert et al., 

2014). The environmental performance of AP w/ BH2S has also been shown to decrease with 

increasing scale at varying proportions depending on the type of biomass. Arora et al. (2017) 

display results indicating the inverse relationship between decreasing life-cycle emissions and 

scale-up cost reductions (Arora et al., 2017).  

 
9 Hydrogen is approximately 17% of NH3 by mass. Hence, carbon intensity values on a per-NH3 or H2 unit are interchangeable. Regardless of 
basis units, ammonia processes will be more carbon intensive as there is more processing than hydrogen production.  
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 While AP AEC pathways mitigate emissions by ensuring a zero-carbon feedstock, the 

additional indirect electric energy emissions can be higher. The estimated potential emissions 

intensity of AP AEC can range between 4.4-2.2 kg CO2e/kgH2. Simons and Bauer estimate 

solar-powered electrolysis at 3 kg CO2e/kgH2 and wind at 2 kgCO2e/kgH2 due to the indirect 

emissions of the construction materials for wind and solar (Simons et al., 2011). Borole and 

Greig estimated wind-powered electrolysis at 0.97 kgCO2e/kgH2, and Valente et al. estimated 

0.3 kgCO2e/kgH2 (Borole & Greig, 2019; Valente et al., 2020). Liu and colleagues estimated 

the emissions intensity of N2 production and the Haber-Bosch to be 0.3 kgCO2e/kgH2 and 0.9 

kg CO2e/kgH2, respectively (Liu et al., 2020). By adding Liu et al.’s estimates to the results, the 

estimated potential emissions intensity of AP AEC can range between 4.4-2.2 kg CO2 eq/kg H2. 

 In essence, AP CCS and AP BH2S are effective strategies for significantly reducing the 

carbon emissions associated with AP SMR. Despite this, AP CCS is inherently limited by a 

capture rate that falls short of 100%, leading to unavoidable residual emissions. In contrast, AP 

BH2S holds the potential for near-net-zero emissions at the risk of limited feedstock supplies 

and quality.  Alternatively, AP AEC can attain net-zero emissions, provided that the emissions 

linked to the production of materials are disregarded, especially in scenarios where the power 

generation is green. 

F.6. Haber-Bosch Flexibility 
F.6.1. HB Flexibility in Literature 

The maximum flexibility of the HB loop varies widely between sources, ranging from 10% of 

nominal capacity (Ostuni & Zardi, 2011) to nearly 80% (Verleysen et al., 2023), with most 

estimates being concentrated around the 40% level. This wide variance can be attributed to a 

range of underlying assumptions made by various authors; Verleysen et al. conservatively 

estimate a flexibility of 78.7% of maximum capacity while optimizing system performance under 

realistic operational constraints. They also observe a significant 76.2% decrease in mean AP for 

a 9.33% increase in flexibility.  

Another study by Cheema and Krewer found through physicochemical modeling that by 

reducing the H2-N2 ratio in the feed, H2 consumption can be reduced by 67% with a 

consequential 17% increase in recycle load (2018). Cocon conducted a technical design 

optimization of an HB reactor while fluctuating the feed stream composition (H2:N2) from 3:1 to 

1.31:2.69 over a 24 minute simulation. No substantive comments were made on the economic 

implications of implementing such a reactor (Cocon 2020).  

Armijo and Philibert outline a standard flexibility case through interviews with 

manufacturers where HB flexibility is 40% of nominal capacity with a ramp rate of +/-20% of 

nominal capacity per hour (2020). Further, they conclude that this ramp rate is more than 

sufficient to not be a limiting factor, which is corroborated by Wang et al. (2023). Another first-

principle-based  analysis by Lazouski et al. finds that the energy efficiency of the ammonia 

production reaction must be greater than 32%, and energy efficiencies below 30% dramatically 

increase energy costs (2022).  

These studies primarily examine the technical capabilities of HB while forgoing economic 

feasibility evaluation. Analyses based on cost-effectiveness yield a smaller operable capacity 

range; a study by Onodera et al. found a cost-optimized capacity factor for HB of 73% as part of 

a larger flexible AP system. Further, they found that a flexible production capacity was 

economically preferable to a battery buffer storage system (2023).  
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 Allowing for flexible HB operation involves weighing the costs and benefits of reduced 

electricity matching requirements against the obvious reduced production, but also the 

increased risk of damaging process equipment under non optimal operating conditions (Ostuni 

& Zardi, 2011). Flexibility in HB operation is a prominent cost driver as the CAPEX associated 

with supplemental renewable energy infrastructure is significantly larger than that of ammonia 

production or generation of hydrogen. Oftentimes, the minimum load of a flexible HB process is 

more impactful on overall process system costs than HB CAPEX itself given the impact of 

minimum load on sizing of supplemental power equipment (Wang et al., 2023). It was 

determined that a minimum HB load decrease from 60% of nominal to 10% supported by a 

hybrid renewable energy system (wind and PV) resulted in a 7.1% and 3.9% decrease in LCOA 

in two Australian locations for which simulations were conducted (Wang et al., 2023). 

F.6.2. Applications of HB Flexibility in Industry 

While flexibility in an HB loop is possible, research into its practical implementation and cost 
effectiveness is in its early stages. The breadth of literature suggests the extent to which the HB 
process can be operated flexibly depends on the lens through which analysis is conducted. 
Multiple technical analyses and patents purport HB operating ranges down to 10% of nominal 

capacity with ramp rates of +- 20%/hr (Ostundi & Zardi, 2011). That said, economic analyses 

find optimal performance within significantly more stringent constraints (between 70 and 80% 
capacity) (Onodera et al., 2023; Verleysen et al., 2023). 

There are groups working to better understand the state of flexible HB technology 
through more pragmatic implementation. A report for the British government introduces the 
Ammonia Synthesis Plant from Intermittent Renewable Energy (ASPIRE) project. This project 
proposes the use of seven synthesis reactors in parallel which can individually be powered on 
and off to achieve flexibility of down to 5% of maximum capacity (0.5MW to 10MW), storing 
excess thermal energy to keep idle reactors up to operating temperature (Davenne et al., 2022). 
They also find that flexible HB design is preferable to either energy or hydrogen storage units 
due to significantly reduced CAPEX. They claim that the technology for this flexible design is 
commercially available, but even their model plant is still in the planning stages.  

The Danish green energy company Topsoe plans to pilot a 25 MT per day ammonia plant with 
10% to 100% flexibility in early 2024, with further plans to upscale to 1800 MT per day by 2025 
(K. Rouwenhorst, 2023). Even when process economics are considered, there is little research 
into how incorporation of flexibility into a HB process will affect CAPEX, making the overall value 
of such a development difficult to estimate. Even Topsoe acknowledges cost optimization has 
not been performed on the pilot plant due to small scale process economics not being reflective 
of full scale. With the IRA expiring in 2035, there are economic incentives to utilize mature, 
available technologies to maximize the benefits of these policies. 

 

 

G. Validation 
G.1. Convergence of Monte Carlo Results 

This study examined the variability of NPV values across total Monte Carlo simulations for SMR, 

CCS, BH2S, and AEC. Our primary objective was to evaluate the robustness of NPV values as 
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they evolve with an increasing number of simulations, thereby providing insights into their 

stability in response to varying levels of simulation. 

 For each technology, scenario, and year, we performed simulations comprising 500, 

1000, 2000, 4000, and 8000 iterations (see annexed Excel file named 

AP_NE_Convergence_On_NPV.xlsx). We gathered statistical data during these simulations 

encompassing maximum, minimum, P95, P5, mean, and median values. We chose to run the 

model at 4,000 simulations for data collection for the reasons outlined herein. 

 At the outset of our analysis, we observed noteworthy fluctuations in NPV values during 

the initial 300 runs, indicating potential uncertainty in the early iterations. However, beyond the 

threshold of approximately 2000 runs, the NPV values gradually stabilized, with fluctuations 

diminishing significantly. Across most scenarios, a discernible convergence trend emerged after 

the 2000-run mark, suggesting that further iterations had a limited impact on the NPV values. 

We found 4,000 to be the right balance between ensuring convergence and maximizing 

computational tractability. 

G.2. Comparison of SMR baseline to IEA 
The IEA shows a detailed chart of a levelized cost analysis they performed on various 

technologies. To validate our techno-economic methodology, we compare our AP SMR 

levelized cost to the AP SMR LCOA reported by the IEA (Figure 1.6, page 40) to the 

deterministic levelized cost of this study (IEA, 2021). 

 We use the sensitivity inputs for natural gas and electricity the IEA uses to obtain the 

range of LCOAs (see Table G-1). The IEA assumes a higher capacity factor (95%) and smaller 

CAPEX heuristics – hence, having a reduced CAPEX compared to this study10. The figure 

below illustrates the comparison (Figure G-1). They assume a smaller discount rate of 8% (we 

use 9.3%) and a shorter operating lifetime (25 years versus 40 years). Therefore, their TEA is 

less sensitive to changes in the OPEX because the operating lifetime is much smaller (although 

the difference in discount rates may reduce this difference).  

Table G-1: Comparison of inputs of IEA versus this study.  

Inputs IEA, 2021 
This 

study 

Electricity (cents/kWh) 1.0 – 10 6.3 
Natural gas ($/MMBtu) 2.8 – 7.765 2 
Availability (%time) 95 90 
Discount factor (%$) 8 9.3 
CAPEX heuristics (%PEC)A +70 >+100 
Lifetime (years) 25 40 

A PEC = purchased equipment cost 

Notes: For comparisons with the IEA’s levelized cost, the inputs shown here differ from the baseline models we show in the previous 

SI sections. Here, we set the electricity and natural gas baseline values to the 2020 prices to align with IEA’s assumptions. 

 
10 They increase their equipment costs by 70% to estimate the CAPEX for “engineering, procurement, and 
construction costs” (IEA, 2021). Our estimates increase the equipment costs well over 100% to estimate the 
additional costs of more cost factors such as site improvements, contingency, legal expenses, and contractor fees, 
among others (see section B). 



 

48 
 

 

Figure G-1: This study's deterministic LCOA compared to IEA’s Ammonia Technology Roadmap 
report (IEA, 2021).  

 The deterministic LCOA is computed by setting the NPV to zero (similar to the LCOE, 

see SI D). The deterministic NPV is calculated by taking the average of all probabilistic inputs. 

The high and low error bars represent instances when the model takes the maximum and 

minimum probabilistic values, respectively. Furthermore, in the minimum and maximum 

scenarios, we take on the electricity and natural gas values that the IEA uses (see Table G-1). 

 In conclusion, the values we obtain are close to those of the IEA, considering the large 

differences across input values. Our plant model is more sensitive to natural gas, ammonia, and 

electricity markets (denoted as 𝑷𝒊(𝑻) in SI B) than the IEA’s AP SMR. Moreover, we 

conservatively estimate the CAPEX with additional cost factors, contributing to the upward shift 

in LCOA from the IEA’s LCOA. 

G.3. Sensitivity Analysis of Inputs 
Ensuring the quality of our TEA through a sensitivity analysis will help us determine if directional 

changes in the inputs result in economically sensible shifts in the NPV of the technologies. We 

include an Excel file named AP_NE_Sensitivities.xlsx, which shows the difference in NPV 

[$/tNH3] between the deterministic baseline and the sensitivity analysis. The “input” column 

depicts the change in the input variables in the high and low scenarios. The sensitivities are 

ranked in descending order by the sum of the NPV shifts across technologies. 

 We set the bounds of the sensitivity analysis to be the distribution limits for probabilistic 

values and +/-20% for deterministic and composite values. Composite values are values that sit 

in between the outputs and inputs. For example, the OPEX is a composite value because it is 

not an input or an output.  

 There are values in the file that do not contain the input bounds for the sensitivity 

analysis – namely, “AEC Stack Cost” and “Wind Turbine CAPEX”. This is because the bounds 

of these values change over time. To find the bounds, refer to the 2023 and 2030 costs we set 

for these costs in SI B and D. 
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 In the deterministic version of the AP model, we handled commodity prices differently 

from the probabilistic counterpart. We set the standard deviation of the GBM module to 0 to 

express linear changes in commodity prices across time. This slightly affects the sensitivity 

analysis results (see section G.4.3) 

G.3.1. CAPEX-related Sensitivities 
We consider the AEC CAPEX, the total CAPEX, and the wind CAPEX for the sensitivity 

analysis. We do not consider the battery CAPEX since monthly matching has no allocated 

battery capacity.  

 For validation, the wind and battery CAPEX have the same sign (negative) and are part 

of the same equation in the Python model. Hence, they behave similarly in the hourly matching 

sensitivity (where battery capacity is allocated). 

 Varying the overall CAPEX (composite value) by +/-20% has little effect on the NPV in 

scenario A. Less than $1/tNH3 was recorded, so it was rounded to 0, as such a difference is 

statistically insignificant. In scenario B, the CAPEX disproportionately affects the AP CCS, AP 

BH2S, and AP AEC NPVs relative to AP SMR. This is caused by the additional cost of the 

hybrid wind farm, which increases the CAPEX for the low-carbon technologies. Consequently, 

changes by +/-20% in the low-carbon CAPEX will also vary the CAPEX of the hybrid wind farm 

– thereby becoming a more sensitive parameter. AP AEC is the most sensitive because its 

CAPEX is the biggest (see AP_NE_CAPEX.xlsx). In scenario C, the CAPEX sensitivity 

regresses to scenario A sensitivity because the only difference between scenario A and 

scenario C is the OPEX. 

 This parameter is more sensitive than the CAPEX for the AEC stack CAPEX. This is 

because the range of variation, in terms of percentage points, is +/- 33%. Remember that the 

AEC stack CAPEX is a probabilistic parameter that varies according to its bounds.  

G.4. OPEX-related Sensitivites  
We consider the process related OPEX (MI OPEX) and market dependent commodity prices 

(electricity and natural gas) for monthly matching. 

G.4.1. Process related OPEX 
The process related OPEX is the largest in scenario B because of the O&M costs of the hybrid 

wind farm for low-carbon technologies and looks correlated with the electricity price. AP SMR 

only experiences a shift of $6/tNH3 when decreasing the process related OPEX by 20%. 

Meanwhile AP AEC experiences a change of $65/tNH3 with the same change. This is due to 

the scale of the hybrid wind fam, which incurs severe O&M costs. Note that the hybrid wind farm 

scale is directly proportional to the electricity demand of the AP technology. AP CCS and AP 

BH2S sit in between AP SMR and AP AEC with changes of $19/tNH3 and $25/tNH3 in scenario 

B, respectively.  

  In scenarios A and C, the process OPEX is similar for all technologies. This is because 

the electricity price is not part of the process OPEX – the electricity price being the only 

difference between scenarios A and C in terms of OPEX. Hence, the cost drivers cause the 

same directional change. This change is less than scenario B. AP SMR, AP CCS, AP BH2S, 

and AP AEC only incur a $6/tNH3, $8/tNH3, $15/tNH3, and $9/tNH3 with a 20% decrease in the 

process OPEX, respectively.  
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G.4.2. Market commodities 
Natural gas and electricity prices were found to be significant cost drivers of the AP process. In 

the probabilistic model, we enforce a correlation between ammonia and natural gas prices 

through a bivariate distribution. In the deterministic model, we take the average markup from 

natural gas to ammonia prices, and make the ammonia price dependent on the product of the 

natural gas price and the markup. We do this to capture the hedging effect we see in the 

probabilistic model.  

 The natural gas price along drives a large part of the NPV of AP SMR and AP CCS 

across all scenarios. We set a range of prices by taking the minimum and maximum natural gas 

prices from December 2014 until January 2023 (EIA, 2023b). Changing the natural gas price 

results in hedging as we see when the price is set at $2.58/MMBtu, the NPV of AP SMR and AP 

CCS decrease by -$42/tNH3 and -$48/tNH3 while AP BH2S and AP AEC decrease by -

$75/tNH3 and -$84/tNH3. On the high sensitivity ($9.95/MMBtu), the NPV of AP SMR and AP 

CCS decrease by $90/tNH3 and $91/tNH3 while AP BH2S and AP AEC decrease by $100/tNH3 

and $109/tNH3. We see the hedging effects result in approximately twice the loss for non-

hedged technologies (AP BH2S and AP AEC) when natural gas prices reduce (and hence 

ammonia prices). On the other hand, the potential gain from not hedging results in 21% higher 

increase in NPV for BH2S and 11$ for AP AEC. 

 The markup between NH3 and natural gas was also varied. The low is 58.96 $NH3/$NG 

and the high is 204 $NH3/$NG. Changing the markup directly changes the ammonia price 

without affecting the natural gas price. Consequently, both AP SMR and AP CCS increase by 

$51/tNH3 when the markup is high. Similarly, AP BH2S and AP AEC increase by $52/tNH3 and 

$62/tNH3. On the other hand, low markup results in a loss of -$76/tNH3, -$86/tNH3, -$85/tNH3, 

and -$94/tNH3 for AP SMR, AP CCS, AP BH2S, and AP AEC, respectively. These results vary 

slightly across scenarios due to tax-credit and profitability effects (see section I). Nevertheless, 

the general trend holds.  

 The electricity price is one of the foundation of the NPV difference between AP SMR and 

the low-carbon technologies (specially AP AEC). In scenario A, the electricity price affected AP 

SMR, AP CCS, and AP BH2S less than their feedstock cost – specifically by +/- $1/tNH3, 

$3/tNH3, and $3/tNH3. The effects of biomass feedstock on BH2S were + $14/tNH3 and -

$15/tNH3 for a decrease to $50.68/dry tonne and an increase to $118.24/dry tonne, 

respectively. Meanwhile, AP AEC uses the electricity to drive the energy input into the hydrogen 

product (given the delta in thermodynamic energy states of water and hydrogen gas), which 

results in a dramatic sensitivity of +/- $29/tNH3 for a +/- 20% change in the electricity price in 

scenario A.  

 In scenario B, the electricity cost sensitivity goes to zero for the low-carbon technologies 

and remains at the same level for AP SMR. This is because the electricity costs are shifted to 

the hybrid wind farm CAPEX and O&M costs. 

 In scenario C, the electricity cost sensitivities are the same as scenario A. Although AP 

AEC shows slightly less sensitivity at +/- $28/tNH3 – which can be considered negligible. 

G.4.3. Policy Sensitivities 
 We consider sensitivity of +/-20% for all programs except 48E, which was varied 

between 30% and 40% ITC. In scenario A, 45V credits are the only sensitive parameter. AP 

CCS can claim 45Q – however, this choice is suboptimal. In scenario A, AP CCS and AP BH2S 
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are the only technologies receiving tax credits. Changing 45V credits by +20% results in a 

change of $4/tNH3 and $3/tNH3 for AP CCS and AP BH2S, respectively.  

 In scenario B, 45V and 48E credits are the only sensitive parameters. 48E credits are 

always preferred over 45Y credits given that the return on energy per $ CAPEX invested in the 

wind farm is not high enough make 45Y credits desirable. We find that 45V credits have a 

symmetric and similar effect for all three low-carbon AP technologies. The variation is +/- 

$12/tNH3 for AP CCS, AP BH2S, and AP AEC. 48E credits are symmetrical around the high 

and low sensitivities but not across technologies. The high electricity demand of AP AEC 

increases the scale of the hybrid wind farm – thereby increasing the amount of 48E credits 

awarded to AP AEC. We see AP AEC net an increase in NPV of +/- $13/tNH3. AP CCS and AP 

BH2S only receive +/-$2/tNH3. Note that for the deterministic model we took the inputs as the 

average of the probabilistic ranges, hence the baseline value for 48E credits is 35% -- which is 

technically not possible given the step-wise nature of the 48E program (either 30% or 40%). 

This discontinuity is expressed in the probabilistic model. If we were to set the 48E credits to 

30%, then the sensitivity would be $0/tNH3 in the low scenario and twice the change in the high 

scenario.  

 In scenario C, 45V credits have the same effect on the NPV as in scenario B. In scenario 

C, all other credits are not sensitive because (i) the hybrid wind farm is not part of the system 

and (ii) 48Q credits are not preferable to 45V credits in the case of AP AEC – these two 

conditions leave only 45V credits.  

G.4.4. Conclusions on validating sensitivities 

We find sensical changes in the NPV when varying the inputs. First, cost side variables drive 

the prices down and revenue side variables drive prices up. Second, in areas related to 

asymmetric resource demand across technologies (i.e., electricity demand), we see unequal 

changes in the NPV per unit input. On the revenue side, we find the expected hedging that AP 

SMR and AP CCS have against ammonia and natural gas price movements. In cases where the 

carbon intensities are high, we see a decreased sensitivity in policy support – which is also 

expected. With these results we find confidence in the formulation of the model.  
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H. Additional Results 

Figure H-1: Hourly matched total policy support in $/Kg H2. Notice scenario B charts have a y 

axis three times larger than scenarios A and B. 
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Figure H-2: Yearly matched total policy support in $/Kg H2. 
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Figure H-3: Mean electricity price over time. The GBM model collapses to a linear model across 
4000 simulations.  
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