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Consequences of the missing risk market problem for
power system emissions

Emil Dimanchev ∗†‡ Steven A. Gabriel §¶ Lina Reichenberg � Magnus
Korp̊as ⇤

Abstract

Financial risk is a central concern for investors in electricity technologies. Investors are
both risk-averse and unable to optimally manage risk due to the incompleteness of financial
markets. This missing market problem may have important consequences for climate policy
goals. However, research often omits this problem by assuming investors to be risk-neutral.
Here, we develop a new model of risk-averse generation expansion with missing markets. Our
approach reformulates the problem to facilitate solutions via integer programming, which en-
ables us to address the multiple equilibrium property inherent to such models. We solve our
model for a stylized power system featuring gas, wind, solar, and batteries under demand
and gas price uncertainty. We find that emissions are higher if investors are risk-averse and
markets for risk are missing, than if investors are assumed to be risk-neutral. Our results
show that the missing market problem skews the investment mix away from wind, solar, and
batteries and toward gas. These e↵ects are even larger relative to optimal risk-averse plan-
ning with complete markets. The impacts of risk depend only partly on technologies’ capital
intensities and are largely driven by how technologies interact at the systems level. Over-
all, our findings strengthen the case for policy measures that enable investors to e�ciently
manage risk.
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Nomenclature

Indices and Sets

s 2 S Demand scenarios

f 2 F Fuel cost scenarios

t 2 T Time steps (hours)

r 2 R Technology resources

G ⇢ R Generation technologies (gas, wind, solar)

O ⇢ R (O \G =Ø) Storage technologies (batteries)

↵,↵
inv

,↵
iso Sets containing the variables of the central planner, investors, and the system

operator

Parameters

Dts Demand (MWh)

C
var

rf
Variable cost ($/MWh)

⌦ Weight for risk aversion (fraction)

 Probability level used to parameterize risk aversion (fraction)

Art Availability of generation resource (fraction)

C
inv

r
Investment cost ($/MW)

F
ch Charging e�ciency (fraction)

F
dch Discharging e�ciency (fraction)

N
s

r
Power to energy ratio for storage technologies (fraction)

C
cap Price cap ($/MWh)

Wt Weight of representative time period (fraction)
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Psf Probability of demand s and gas price f (fraction)

E
co2
r

Emissions intensity (tCO2/MWh)

Variables

grtsf Generation (MWh)

xr Capacity (MW)

ytsf Load shedding (MWh)

ertsf Energy stored, i.e., state of charge (MWh)

z
ch

rtsf
Charging of storage technology (MWh)

z
dch

rtsf
Discharging from storage technology (MWh)

⇣
cp Value-at-Risk (VaR) for central planner ($)

u
cp

sf
Additional cost relative to VaR for central planner ($)

⇣r VaR for investor in technology r ($)

ursf Loss relative to VaR for investor in technology r ($)

⇣̃ VaR for investor in all technologies ($)

ũsf Loss relative to VaR for investor in all technologies ($)

⇡rsf Revenues net of operating costs ($/MW)

Key dual variables

�tsf Price of electricity ($/MWh)

µrtsf Generation capacity rent ($/MW)

�
soc

rtsf
,�

cap

rtsf
,�

c

rtsf
,�

d

rtsf
,�

bal

rtsf
, ⇠

d

rtsf
Dual variables corresponding to storage constraints

✓rsf Risk-adjusted probability (fraction)

✓̃sf Risk-adjusted probability for investor in all technologies (fraction)
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1 Introduction

Investments in electricity technologies face irreducible uncertainty which exposes investors
to financial risk. Risk is a central concern for investors because they are generally believed
to be risk-averse. The degree of risk investors are exposed to strongly depends on their
ability to hedge risk using financial markets. Markets generally fail to provide for optimal
risk hedging (Radner, 1970; Stiglitz, 1982; Staum, 2007), which is also known as the missing
market problem (Newbery, 2016; Keppler et al., 2022). Research has shown that this market
failure can significantly a↵ect power system resource adequacy (Abada et al., 2019; Mays
et al., 2022; Billimoria et al., 2022). Here, we investigate the implications of the missing
market problem for power system emissions.

Multiple sources of uncertainty bear on electricity investments. Increasingly relevant is un-
certainty in long-term electricity demand, which has become less predictable due to uncertain
new demand from electrification, hydrogen electrolysis, and direct air capture (Larson et al.,
2020). Fuel prices are another important source of uncertainty. The volatility of gas prices
increased in the early 21st century relative to the preceding three decades (Sherwin et al.,
2018). It then played a central role in the global energy crisis of the early 2020s. Unex-
pected changes in policy and other uncertainties can also a↵ect investment. For tractability,
we focus on demand and gas price uncertainty.

How uncertainty impacts power system investments has been extensively studied using
stochastic optimization (Roald et al., 2023). However, past research often omitted the role
of risk by assuming investors to be risk-neutral (Hu and Hobbs, 2010; Leibowicz, 2018; Scott
et al., 2021). Here, drawing on finance theory, we assume investors to be risk-averse, and
proceed to characterize their risk exposure.

Risk refers to variance in an investment’s payo↵. Exposure to risk depends both on the risk
investors face and on their ability to manage it. Investors manage risk by trading financial
contracts that diversify the risk from a given investment. In theory, financial markets feature
a complete set of financial instruments (known as Arrow-Debreu securities) that can insure
investors against any possible realization of the future. This is commonly assumed in studies
modeling risk-averse generation expansion (Munoz et al., 2017; Diaz et al., 2019; Möbius
et al., 2023). However, it is well established that financial markets fall short of this ideal
(Radner, 1970; Stiglitz, 1982; Staum, 2007). In power systems, an important hedging strategy
is the use of forward contracts between investors and consumers, an example being the use
of Power Purchase Agreements (PPAs). PPAs replace a variable stream of revenues with a
stable return based on a pre-negotiated price and volume. However, consumers have generally
shown low willingness to sign long-term PPAs (de Maere d’Aertrycke et al., 2017; Neuho↵
et al., 2022; Keppler et al., 2022; Batlle et al., 2023). Power systems are thus characterized by
a missing market problem (Newbery, 2016). As a result, investors are exposed to more risk
than is socially optimal, which makes missing markets a problem for policy makers as well
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as investors (Keppler et al., 2022). The purpose of this paper is to assess the implications
of the missing market problem for climate goals in particular. Our experiment focuses on
missing risk trading between investors and consumers, though our model is more general.

Previous work suggested that market incompleteness would hinder decarbonization because
clean energy technologies are relatively capital intensive Neuho↵ and De Vries (2004). How-
ever, technologies di↵er not only in capital intensity but also in the degree of risk they
face. Mays and Jenkins (2023) modeled di↵erent technologies’ risk exposures in incom-
plete markets and showed that gas plants can face more risk than renewables. These results
demonstrate the importance of modeling risk within a systems framework that endogenously
captures each technology’s unique risk exposure. A growing literature addresses this need by
employing equilibrium methods for risk-averse generation expansion. However a large strand
of this literature did not model variable renewables or storage (Ehrenmann and Smeers, 2011;
Meunier, 2013; de Maere d’Aertrycke et al., 2017; Bichuch et al., 2023). Recent studies in-
cluded renewable generation but omitted renewable investments (Pineda et al., 2018; Hoschle
et al., 2018; Billimoria et al., 2022). Mays et al. (2019) modeled wind investment and found
it decreases with missing markets relative to complete markets, but did not model storage
or show how risk impacts investment relative to the more traditional risk-neutral modeling
approach. Mays and Jenkins (2023) modeled wind, solar, and 1-hour battery investments
to assess the degree of risk in a power system with a high penetration of renewables but did
not isolate the e↵ect of market incompleteness on the technology mix or on carbon emis-
sions. Here, we extend this literature by investigating how market incompleteness impacts
the capacity mix and emissions of a power system featuring variable renewables and storage.

Modeling generation expansion with missing risk markets presents challenges due to the non-
convex nature of the problem (Ehrenmann and Smeers, 2011). The associated computational
burden makes it di�cult to capture the inter-temporal behavior of a system with variable
renewables and storage. Additionally, solutions are subject to the possibility of multiple
equilibria (Gérard et al., 2018). Previous work has addressed the former problem with
specialized algorithms (Hoschle et al., 2018; Mays et al., 2019). Here, we demonstrate a non-
algorithmic method, which enables us to address the latter challenge and partly the former
for a stylized power system case study featuring both variable renewable and storage.

This paper’s first contribution is a new approach to modeling generation expansion with
missing markets. We follow the commonly used approach to model investors’ risk exposure
(Ehrenmann and Smeers, 2011; Mays et al., 2019), but reformulate the problem to facilitate
numerical solutions for a problem featuring both variable renewables and storage. Another
advantage of our method is that it allows us to introduce a numerical robustness procedure,
analogous to modeling to generate alternatives (DeCarolis, 2011), to test for the possibility
of multiple equilibria.

This work’s second contribution is an analysis of how investment risk impacts the capacity
mix and emissions of a power system with variable renewables, storage, and a traditional
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thermal technology. We disentangle the mechanisms behind the impact of risk on the ca-
pacity mix, and distinguish between the impacts of each technology’s unique risk premium,
its capital intensity, and its system value. We thus extend prior work which emphasized
the role of capital intensity (Neuho↵ and De Vries, 2004; Tietjen et al., 2016). Our systems
perspective also complements the large technology-level literature on the role of risk in clean
energy investments (Polzin et al., 2019; Dukan and Kitzing, 2023, e.g.).

The results show that the risks investors face in the absence of risk markets lead to smaller
shares of wind, solar, and batteries within the capacity mix and a higher share of gas,
than if investors are assumed, as is common, to be risk-neutral. Consequently, we find that
the missing market problem results in higher future emissions compared to what would be
indicated by risk-neutral modeling. These e↵ects have the same direction but an even larger
magnitude if we compare the missing markets outcome to optimal risk-averse planning where
markets are complete. Overall, this work shows that the missing market problem distorts
market outcomes in a way that interferes with climate policy goals.

2 Methods

2.1 Introduction to analytical framework for risk-averse genera-

tion expansion with missing markets

Exposure to risk equates to an additional cost of capital (Markowitz, 1952), known as the
risk premium, which e↵ectively increases a project’s investment cost. We model the risk
investors are exposed to in an absence of risk markets by following a common approach
in the generation expansion literature (Ehrenmann and Smeers, 2011; Hoschle et al., 2018;
de Maere d’Aertrycke et al., 2017; Mays et al., 2019). The way in which this method captures
the e↵ect of risk on investment decisions has been well described before (de Maere d’Aertrycke
et al., 2017; Mays et al., 2022). Here, we provide a brief introduction.

The modeling framework represents generation expansion as a two-stage stochastic opti-
mization problem. In the first stage, risk-averse investment decisions are made, and, in the
second stage, market clearing occurs for every scenario1. The revenues investors earn in each
scenario depend on the market-clearing outcome of that scenario as well as any risk trading.
An absence of risk markets is modeled by disaggregating the generation expansion problem
into separate optimization problems belonging to di↵erent market agents. The e↵ect of this
disaggregation is to relax the assumption of complete risk trading implicit in the traditional
optimization-based central planner framework (Munoz et al., 2017). We distinguish between
investors and a system operator agent that represents the consumer side of the market, in

1
Uncertainty is represented by a discrete probability distribution. Our numerical approach makes the

additional assumption that this distribution is uniform.
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the mold of prior work (Ehrenmann and Smeers, 2011). Our focus is on the missing risk
trading between investors and consumers, which drives our main results. Our main formula-
tion defines a separate investor agent for each technology, but we also show the implications
of allowing for a “representative investor” to invest in all technologies (Section 2.3.2).

Investors’ risk aversion is modeled using the Conditional Value-at-Risk (CVaR) function.
In this formulation, investors weight downside scenarios2 more heavily (where the weight is
exogenously determined). This has the e↵ect of increasing the expected revenues that are
required to trigger investment compared to the expected revenues in a risk-neutral case. In
this way, the model captures how risk exposure increases an investment’s required rate of
return, which corresponds to an increase in the cost of capital. The model thus endogenizes
the cost of capital. In Section 3.1, we derive each technology’s Weighted Average Cost of
Capital (WACC) from the model, and show how it impacts technologies’ costs.

2.2 Optimization model of generation expansion (complete risk

markets)

We first formulate a classical generation expansion optimization problem with the addition of
risk aversion. The solution of the model can be interpreted as the optimal planning decisions
of a risk-averse central planner, or as the equilibrium outcome in a perfectly competitive
market with complete risk trading between risk-averse investors and risk-averse consumers
(Munoz et al., 2017).

The optimization model takes the form of a linear, two-stage stochastic program including
risk aversion. The representation of risk aversion follows the standard approach by Rock-
afellar and Uryasev (2002) using the CVaR measure. Uncertainty is represented by allowing
for stochasticity in demand, represented by indexing the inelastic demand parameter Dts

by scenarios s 2 S, and stochasticity in fuel cost, captured by indexing the variable cost
parameter Cvar

rf
by scenarios f 2 F .

2
The model endogenously determines which scenarios represent downside risk for each technology.
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min
↵

X

r

C
inv

r
xr

+ ⌦

X

s

X

f

Psf

X

t

Wt

X

r

C
var

rf
grtsf +

X

s

X

f

Psf

X

t

WtC
cap

ytsf

�

+ (1� ⌦)

⇣
cp +

1

 

X

s

X

f

Psfu
cp

sf

�
(1a)

s.t. xr � 0 8 r 2 R (1b)

grtsf � 0 8 r 2 G, t 2 T, s 2 S, f 2 F (1c)

ertsf , z
ch

rtsf
, z

dch

rtsf
� 0 8 r 2 O, t 2 T, s 2 S, f 2 F (1d)

ytsf � 0 8 t 2 T, s 2 S (1e)

u
cp

sf
� 0 8 s 2 S, f 2 F (1f)

⇣
cp 2 R (1g)

u
cp

sf
�

X

t

Wt

X

r

grtsfC
var

rf
+
X

t

WtC
cap

ytsf � ⇣
cp 8 s 2 S, f 2 F (✓̃sf ) (1h)

|G|X

r

grtsf +
|O|X

r

⇥
z
dch

rtsf
� z

ch

rtsf

⇤
+ ytsf = Dts 8 t 2 T, s 2 S, f 2 F (�tsf ) (1i)

grtsf  xrAt,r 8 r 2 G, t 2 T, s 2 S, f 2 F (µrtsf ) (1j)

er1sf = er|T |sf �
1

F dch
z
dch

r1sf + F
ch
z
ch

r1sf 8 r 2 O, s 2 S, f 2 F (�soc

r1sf ) (1k)

ertsf = er,t�1,s,f �
1

F dch
z
dch

rtsf
+ F

ch
z
ch

rtsf

8 r 2 O, t 2 {2, 3, ..., |T |}, s 2 S, f 2 F (�soc

rtsf
) (1l)

ertsf  1

N s
r

xr 8 r 2 O, t 2 T, s 2 S, f 2 F (�cap

rtsf
) (1m)

z
ch

rtsf
 xr 8 r 2 O, t 2 T, s 2 S, f 2 F (�c

rtsf
) (1n)

z
dch

rtsf
 xr 8 r 2 O, t 2 T, s 2 S, f 2 F (�d

rtsf
) (1o)

z
dch

r1sf  er|T |sf 8 r 2 O, s 2 S, f 2 F (⇠d
r1sf ) (1p)

z
dch

rtsf
 er,t�1,s,f 8 r 2 O, t 2 {2, 3, ..., |T |}, s 2 S, f 2 F (⇠d

rtsf
) (1q)

z
dch

rtsf
+ z

ch

rtsf
 xr 8 r 2 O, t 2 T, s 2 S, f 2 F (�bal

rtsf
) (1r)

where all variables are contained in the set ↵ = (xr, grtsf , ytsf , ertsf , z
ch

rtsf
, z

dch

rtsf
, ⇣

cp
, u

cp

sf
). The

objective function (1a) minimizes the total system cost, which includes: investment costs,
C

inv

r
xr, and a weighted combination of expected operating costs (the first bracketed term)

weighted by ⌦, and the CVaR (the second bracketed term) weighted by 1 � ⌦. The CVaR
formulation follows the standard approach described in prior work (Munoz et al., 2017). This
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term represents the expected operating costs in the  -worst tail of the distribution of future
costs. This is modeled using the commonly used constraint (1h), which constrains the CVaR
to the highest-cost  tail. The auxiliary variable ⇣

cp takes on the value of the  -percentile
Value-at-Risk (VaR) in the optimal solution (Rockafellar and Uryasev, 2002).

Equation (1i) represents hourly power balance accounting for generation, load shedding, and
the discharging and charging of storage technologies, respectively, zdch

rtsf
and z

ch

rtsf
. Expressions

(1k)-(1r) represent the storage technology, following the formulation in the GenX model
(MIT Energy Initiative and Princeton University ZERO lab, 2023). Energy stored, ertsf ,
is dependent on its state in the previous period (1l); the first and last time periods are
similarly linked (1k)3. Constraint (1m) states that the storage technology cannot store more
energy than its energy capacity, which is the product of the built power capacity xr and an
exogenous energy-to-power ratio 1

Ns
r
, as commonly formulated. Charging and discharging are

constrained by the available power capacity xr in (1n), (1o), and (1r), and energy capacity
in (1q).

2.3 Generation expansion with missing risk markets

Here, we distinguish between the optimization problems solved by investors and the problem
solved by a system operator in charge of power market dispatch. The system operator’s
problem is a general representation of market clearing in liberalized power markets. In our
context, the system operator acts on behalf of consumers and minimizes their costs. This
formulation is a close analogue of the one by Ehrenmann and Smeers (2011). Below, we
first show each agent’s optimization problem before introducing our approach to solving the
generation expansion problem with missing markets.

2.3.1 System operator’s optimization problem

The system operator solves the following linear optimization problem for each scenario. The
problem is to meet inelastic electricity demand by dispatching all resources in the least cost
way. The system operator’s variables are contained in set ↵iso = (grtsf , ytsf , zchrtsf , z

dch

rtsf
, ertsf ).

min
↵iso

X

t

Wt

X

r

C
var

r
grtsf +

X

t

WtC
cap

ytsf 8 s 2 S, f 2 F (2a)

s.t. (1c), (1d), (1e), (1i)� (1r) (2b)

where objective function (2a) minimizes operating costs (equivalent to maximizing welfare

3
The model implementation links the first and last hour of each representative day.
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given our inelastic demand assumption), subject to the supply-demand balance constraint
(1i), and the remaining physical operating constraints on generation and storage.

2.3.2 Investors’ optimization problem

We define an investor agent for each technology r 2 R, a common approach (Ehrenmann
and Smeers, 2011; Mays et al., 2019). Thus, each investor considers a single technology and
cannot benefit from possible diversification e↵ects from investing in multiple technologies.
As a sensitivity test, we also introduce a “representative investor” agent that invests in all
technologies. We show how this can be formulated in Appendix B, discuss its implications in
Section 3.6 and report its computational performance in Appendix D. For our main formu-
lation shown below, we proceed with the common one-investor-one-technology formulation
to stay consistent with previous literature.

Each investor solves the following linear optimization problem. Investors maximize a weighted
combination of expected profits and the CVaR. The weighting in question is done by param-
eter ⌦, which e↵ectively represents the degree of risk aversion.

max
↵inv

⌦

X

s

X

f

Psf⇡rsfxr � C
inv

r
xr

�
+

(1� ⌦)

⇣r �

1

 

X

s

X

f

Psfursf

�
(3a)

s.t. xr � 0 8 r 2 R (3b)

ursf � ⇣r � ⇡rsfxr + C
inv

r
xr 8 r 2 R, s 2 S, f 2 F (✓rsf ) (3c)

ursf � 0 8 r 2 R, s 2 S, f 2 F (3d)

⇣r 2 R 8 r 2 R (3e)

where the investor’s variables are contained in set ↵inv = (xr, ⇣r, ursf ). The second bracketed
term in (3a), weighted by 1�⌦, represents the investor’s CVaR. The CVaR is modeled as in
Mays et al. (2019), using constraint (3c)4, which constrains it to the  -worst tail of the profit
distribution, as well as the auxiliary variables ⇣r, which equals the  -VaR in the optimal
solution, as shown by Ehrenmann and Smeers (2011). ⇡rsf denotes revenues net of variable
costs (hereafter, referred to as revenues). Revenues are defined di↵erently for generation and
storage technologies. The revenue expression for generation is the standard formulation used
in prior work (Mays et al., 2019, e.g.). Specifically, revenues are defined as the dual µrtsf of
the capacity limit constraint (1j) adjusted for the technologies availability Art.

4
Note that the investor’s CVaR formulation di↵ers from the central planner’s in model (1), which is

because the former maximizes profit while the latter minimizes cost.
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8 r 2 G, ⇡rsf :=
X

t

µrtsfArt

Storage revenues can similarly be represented using the dual values corresponding to the
market value of storage. Revenues in this context represent the marginal value of installing
an additional unit of capacity. This can be obtained by deriving the KKT conditions of
the optimization problem (1) associated with the storage capacity variable xr 8 r 2 O. For
ease of exposition, we show this in the risk-neutral case, ⌦ = 1, where the KKT derivation
yields: C

inv

r
�

P
s

P
f
Psf

P
t
Wt(

1
Ns

r
�
cap

rtsf
+ �

c

rtsf
+ �

d

rtsf
+ �

bal

rtsf
) � 0 (this is equivalent to

KKT condition (11a)). The KKT condition relates the cost a unit of capacity, C inv

r
to its

total expected value (i.e., revenues in our context). �
cap

rtsf
, as the dual of (1m), represents

the value of additional energy storage capacity (since in our formulation the power capacity
determines the energy capacity as well), while the remaining terms refer to the values of
charging and discharging. It follows that total storage revenues can be defined as follows:

8 r 2 O, ⇡rsf :=
X

t


1

N s
r

�
cap

rtsf
+ �

c

rtsf
+ �

d

rtsf
+ �

bal

rtsf

�

2.3.3 Generation expansion problem and numerical approaches

The problems (2) and (3) together encompass the power system generation expansion prob-
lem for a perfectly competitive market. This problem is equivalent to model (1) in a risk-
neutral case, ⌦ = 1, where risk trading is irrelevant5.

To solve problem (2)- (3), a common approach is to formulate a mixed complementarity
problem containing the KKT conditions of both problems (Gabriel et al., 2013). This ap-
proach results in a non-linear and non-convex problem, which can be solved, for example,
using non-linear programming (Pineda et al., 2018). In problems featuring power market
dispatch over many periods, as in our case, this method results in a large number of bi-
linear terms (i.e., the product of two continuous variables), which present a computational
challenge. Recent work has developed specialized algorithms to solve problems such as ours
(Hoschle et al., 2018; Mays et al., 2019), which can handle large case studies but do not
guarantee convergence.

Here, we set out to develop a non-algorithmic approach. The purpose of this is twofold:
first, if a problem can be formulated as a mixed integer program it can be solved to a global

5
The KKT conditions of (2) and (3) are shown in Appendix C. A trivial derivation of the KKT conditions

of problem (1) can confirm they are equivalent to the KKT conditions of (2) and (3) when ⌦ = 1. In the

risk-averse case, ⌦ 2 [0, 1), the two problems are no longer equivalent, which has to do with whether markets

for risk are implicitly complete as in (1) or missing as in (2)-(3).
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optimum within a tolerance, which facilitates additional numerical tests that can address
the multiple equilibrium problem inherent to such models, discussed this further in Section
2.7; second, a formulation that can be solved with available solvers can be more readily
integrated into bi-level optimization models in future research. Non-algorithmic approaches
include using big-M constraints to reformulate the KKT complementarities (Fortuny-Amat
and McCarl, 1981) or SOS1 variables (Siddiqui and Gabriel, 2013). However, these strategies
result in a large number of binary variables and can have associated computational issues,
which make modeling energy storage di�cult.

To address the above challenges, we introduce a primal-dual version of the equilibrium prob-
lem, which uses the Strong Duality (SD) theorem. This formulation consists of the primal
constraints, dual constraints, and SD equalities corresponding to each agent’s optimization
problem (Ruiz et al., 2012). Each agent’s primal-dual problem is necessary and su�cient for
the optimal solution to that agent’s optimization problem since the latter (i.e., each of (2)
and (3)) is a linear program when considered on its own. Similarly, the primal-dual problem
of each agent is equivalent to that agent’s KKT conditions, shown in Appendix C. Below,
we introduce the primal-dual formulation of problem (2)-(3).

2.4 Equilibrium model of generation expansion with missing mar-

kets

2.4.1 System operator’s primal-dual problem

In the following, (4a) is the SD condition for the system operator’s optimization problem
(2). Expressions (4b)-(4k) are the dual feasibility constraints, and (4l) contains the primal
feasibility constraints.
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X

t

Wt

X

r

C
var

r
grtsf +

X

t

WtC
cap

yt =
X

t

�tsfDts �
X

r

⇡rsfxr 8 s 2 S, f 2 F (4a)

�tsf 2 R 8 t 2 T, s 2 S, f 2 F (4b)
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rtsf
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rtsf
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rtsf
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rtsf
� ⇠

d

r,t+1,s,f � 0 8 r 2 O, t 2 {1, 2, ..., |T |� 1}, s 2 S, f 2 F (4h)

�
soc

r|T |sf � �
soc

r1sf + �
cap

r|T |sf � ⇠
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r1sf � 0 8 r 2 O, s 2 S, f 2 F (4i)

� F
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�
soc

rtsf
+ �

c

rtsf
+ �

bal

rtsf
+ �tsf � 0 8 r 2 O, t 2 T, s 2 S, f 2 F (4j)

1

F dch
�
soc

rtsf
+ �

d

rtsf
+ ⇠

d

rtsf
+ �

bal

rtsf
� �tsf � 0 8 r 2 O, t 2 T, s 2 S, f 2 F (4k)

(1c), (1d), (1e), (1i)� (1r) (4l)

Expressions (4f) and (4g) are the stationarity conditions that hold for the optimal dispatch of
generation technologies and load shedding respectively. Expressions (4h) and (4i) determine
the optimal amount of energy stored in each storage technology, with the latter accounting
for the relationship between the first and last time period. Expressions (4j) and (4k) relate to
the optimal charging and discharging decisions respectively. Note that this problem contains
non-convex bilinear terms ⇡rsfxr in (4a). We address this in Section 2.6.

2.4.2 Investors’ primal-dual problem

In the following, (5a) is the SD equality for the investors’ problem (3). Note that the dual
objective is zero. Expressions (5b)-(5d) represent the dual feasibility constraints, and (5e)-
(5i) are the primal feasibility constraints of the investors’ optimization problems (3). Note
that the derivation included multiplying 1� ⌦ by both sides of constraint (3c).
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X
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X
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Psfursf

�
= 0 8 r 2 R (5a)

C
inv

r
�

X

s

X

f

(⌦Psf + (1� ⌦)✓rsf )⇡rsf � 0 8 r 2 R (5b)

1

 
Psf � ✓rsf � 0 8 r 2 R, s 2 S, f 2 F (5c)

X

s

X

f

✓rsf = 1 8 r 2 R (5d)

ursf � ⇣r � ⇡rsfxr + C
inv

r
xr 8 r 2 R, s 2 S, f 2 F (5e)

xr � 0 8 r 2 R (5f)

ursf � 0 8 r 2 R, s 2 S, f 2 F (5g)

⇣r 2 R 8 r 2 R (5h)

✓rsf � 0 8 r 2 R, s 2 S, f 2 F (5i)

Expression (5b) represents the stationarity condition of the investor problem (3), corre-
sponding to optimal investment decisions xr. (5c) and (5d) are the stationarity conditions
found from di↵erentiating the investors’ optimization problems with respect to ursf and ⇣r,
respectively. As in prior work, ✓rsf represents the risk-adjusted probability for scenarios in
the probability distribution tail defined by parameter  (Ehrenmann and Smeers, 2011).

Note that problem (5) presents additional challenges for numerical solutions because of the
bilinear term ✓rsf⇡rsf in (5b), as well as the bilinear term ⇡rsfxr in (5a) and (5e).

Our purpose is to solve the entire equilibrium primal-dual model of generation expansion
(4)-(5). This model is non-convex due to the mentioned bilinear terms. We attempted to
solve this problem with Gurobi’s non-convex algorithm (Gurobi, 2020) but did not find this
to be tractable, as the solver fails to find a solution before reaching a termination threshold
of 10 hours6. To make the problem tractable, we first introduce an exact linear reformulation
of the bilinear terms ✓rsf⇡rsf in (5b) in the following section.

2.5 Exact linear reformulation for the risk-averse investment prob-

lem’s bilinear terms ✓rsf⇡rsf

Here, we introduce our method for handling the bilinear terms ✓rsf⇡rsf in (5b) through an
exact linear reformulation that leads to a lower computational burden. Ultimately, the task
we set out to achieve is to show that, under assumptions formalized below, the continuous

6
The model was run on a cluster with specifications described in Appendix D
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variable ✓rsf can be replaced by a product of a binary and a constant. We start by setting
down necessary notation. The set of all scenarios is S [ F with Psf the probability of each
scenario (s, f) and cardinality |S[F | := N

all. Furthermore, we formalize the set of scenarios
in the CVaR tail with the following definition.

Definition 1 Let V be the set of scenarios in the CVaR tail; V ⇢ S [ F , with cardinality
|V | := N

cvar. Formally, 8 (s, f) 2 V, ⇡rsfxr � C
inv

r
xr  ⇣r. Equivalently, ⇡rsfxr � C

inv

r
xr >

⇣r 8 (s, f) /2 V .

Next, we explore the properties of ✓rsf across the di↵erent scenarios (summarized in Table
1). Recall that ✓rsf is the risk-adjusted probability that a risk-averse investor places on
scenario (s, f). As shown by Ehrenmann and Smeers (2011), ✓rsf has the following property
for scenarios outside of the CVaR tail:

Remark 1 ✓rsf = 0 8 (s, f) /2 V . To see this, note that from Definition 1, 8 (s, f) /2
V, ⇡rsfxr � C

inv

r
xr > ⇣r, which implies ✓rsf = 0 by the KKT condition (11d). Further note

this implies ursf = 0 by KKT condition (11b).

Definition ✓rsf ursf

In CVaR tail ⇡rsfxr � C
inv

r
xr  ⇣r 0  ✓rsf  1

 Psf ursf � 0
Not in CVaR tail ⇡rsfxr � C

inv

r
xr > ⇣r ✓rsf = 0 ursf = 0

Table 1: Properties of risk-adjusted probability variable ✓rsf

These properties refer to the values of ✓rsf before making Assumption 1 and Assumption 2.

Next, for scenarios in the CVaR tail, there are two possibilities (Ehrenmann and Smeers,
2011). First, if ⇡rsfxr�C

inv

r
xr < ⇣r, then ursf > 0 by (11d), and ✓rsf = Psf

 by (11b). Second,

if ⇡rsfxr � C
inv

r
xr = ⇣r, ursf is not necessarily strictly positive, leading to: 0  ✓rsf  Psf

 .
This makes our task challenging, so, to impose stricter boundary conditions on ✓rsf , we
introduce the following assumptions.

Assumption 1 The probability mass function for scenarios S [ F in problem (3) follows a
discrete uniform distribution with probability Psf = P 8 (s, f), where P = 1

Nall .

Assumption 2  2 {cP : c 2 {1, 2, ..., Nall}}, i.e.,  is a discrete probability that only
takes on integer multiples of P .
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These assumptions allow us to use the number of scenarios in the CVaR tail, N
cvar, to

describe the probabilities ✓rsf . First note that:

Lemma 1 N
cvar

P =  under Assumptions 1 and 2. Proof: Recall that N cvar is the number
of scenarios in the CVaR tail, per Definition 1, and that  is the cumulative probability of
this tail. If all scenarios have equal probability P , per Assumption 1, it follows that  is a
multiple of P . Since N

cvar is an integer while  is not necessarily an integer, N cvar
P �  .

However, if we assume that  is an integer multiple P , i.e., Assumption 2, it follows that
N

cvar
P =  .

Given Lemma 1, we next show that all ✓rsf in the CVaR tail are equal under the above
assumptions.

Proposition 1 ✓rsf = 1
Ncvar 8 (s, f) 2 V . Proof: given Lemma 1, we can replace  with

N
cvar

P in (5c). This leads to: ✓rsf  1
Ncvar . Further, note that, since all ✓rsf sum to

one by (11c), and since ✓rsf outside the CVaR tail are zero, by Remark 1, then the ✓rsf

in the CVaR tail sum to one; i.e.,
P

(s,f)2V ✓rsf = 1. This equality can be rewritten as:P
(s,f)2V ✓rsf = N

cvar 1
Ncvar . Given that ✓rsf  1

Ncvar , the quality
P

(s,f)2V ✓rsf = N
cvar 1

Ncvar

holds only if ✓rsf = 1
Ncvar 8 (s, f) 2 V .

Based on Proposition 1, we can introduce our exact substitution for the continuous variable
✓rsf , as follows:

Proposition 2 ✓rsf = 1
Ncvar ✓

Z

rsf
8 (s, f) 2 S [ F , where ✓

Z

rsf
2 {0, 1} 8 r, s, f . Proof:

✓rsf = 0 8 (s, f) /2 V by Remark 1. ✓rsf = 1
Ncvar 8 (s, f) 2 V by Proposition 1. Therefore,

✓rsf can be exactly replaced by 1
Ncvar ✓

Z

rsf
. As a remark, the auxiliary binary variable ✓

Z

rsf
has

the following properties: ✓
Z

rsf
= 1 8 (s, f) 2 V , and ✓

Z

rsf
= 0 8 (s, f) /2 V .

For the rest of the paper we assume that Assumptions 1 and 2 hold. Given Proposition 2,
we can exactly reformulate the investor’s problem using the following two steps. First, we
introduce constraints (6a), (6b), (6c), and (6d), which replace respectively, (5i), (5c), (5d),
and (5b).
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✓
Z

rsf
2 {0, 1} 8 r 2 R, s 2 S, f 2 F (6a)

1

 
Psf �

1

N cvar
✓
Z

rsf
� 0 8 r 2 R, s 2 S, f 2 F (6b)

X

s

X

f

1

N cvar
✓
Z

rsf
= 1 8 r 2 R (6c)

C
inv

r
� ⌦

X

s

X

f

Psf + (1� ⌦)
X

s

X

f

1

N cvar
✓
Z

rsf
⇡rsf � 0 8 r 2 R (6d)

Second, we introduce an exact substitution for 1
Ncvar ✓

Z

rsf
⇡rsf in (6d) by adapting a standard

technique (Tanaka et al., 2022, e.g.), which is to introduce constraints (7a)-(7f) where M̄ is a
su�ciently large upper bound7. The linear expression (7f) replaces the non-convex expression
(6d). The justification for this substitution is that ⌫rsf exactly matches 1

Ncvar ✓
Z

rsf
⇡rsf

8.

⌫rsf � 0 8 r 2 R, s 2 S, f 2 F (7a)

hrsf � 0 8 r 2 R, s 2 S, f 2 F (7b)

⌫rsf  M̄✓
Z

rsf
8 r 2 R, s 2 S, f 2 F (7c)

hrsf  M̄(1� ✓
Z

rsf
) 8 r 2 R, s 2 S, f 2 F (7d)

⌫rsf + hrsf =
1

N cvar
⇡rsf 8 r 2 R, s 2 S, f 2 F (7e)

C
inv

r
� ⌦

X

s

X

f

Psf + (1� ⌦)
X

s

X

f

⌫rsf � 0 8 r 2 R (7f)

We can now introduce the following exact reformulation of the investor’s problem:

Proposition 3 The solution set of the problem containing (5a), (5e) - (5h), (6), and (7) is
the same as the solution set of problem (5), for a su�ciently large M̄ , and under Assumptions
1 and 2. Proof: The problem containing (5a), (5e) - (5h), (6), and (7) is algebraically
equivalent to (5) under Proposition 2, which is derived from KKT conditions (11b), (11c),
and (11d). These KKT conditions necessarily hold for the solution of (3), which is equivalent
to the solution of (5), since (3) is a linear program.

7
The value of this upper bound can be based on the observation that each technology’s revenues are

upper-bounded by its investment cost by construction via (5b).
8
To see why note that if ✓zrsf = 1, then hrsf = 0, leading to ⌫rsf =

1
Ncvar ✓Zrsf⇡rsf ; and if ✓zrsf = 0, then

⌫rsf = 0 =
1

Ncvar ✓Zrsf⇡rsf . If ✓zrsf = 0, then hrsf =
1

Ncvar ⇡rsf . Note that this does not a↵ect the solution as

hrsf is not used elsewhere in the model.
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The combination of the system operator’s problem (4) and the new investor problem, con-
taining (5a), (5e) - (5h), (6), and (7), represents the generation expansion problem (8), which
is our main model. Formulation (8) is equivalent to the original problem (4)-(5) under the
premise and result of Proposition 3.

(4), (5a), (5e)� (5h), (6), (7) (8)

2.6 Solution approaches to equilibrium generation expansion prob-

lem

Model (8) is non-convex due to the remaining bilinear terms ⇡rsfxr in (5a), (5e), and (4a).
This non-convexity can be addressed in several di↵erent ways. First, we find that model (8)
can be solved as a mixed integer quadratic program (MIQP) with Gurobi’s non-convex solver
(Gurobi, 2020). This solver uses McCormick relaxation and spatial Branch and Bound. Sec-
ond, the bilinear terms ⇡rsfxr can be approximated by adapting the piece-wise linearization
method by (Gabriel et al., 2006), which can be used to reformulate our problem as a mixed
integer linear program. Third, the bilinear terms ⇡rsfxr can be linearized by discretizing the
capacity variable and performing binary expansion as shown by Wogrin et al. (2013). After
testing these methods, we find the first approach outperforms the others in solution speed,
and use it in this paper.

2.7 Numerical robustness test

An important property of risk-averse equilibrium models is the possibility of multiple equi-
libria (Gérard et al., 2018). We do not rule this out in the case of our model and leave
the task of proving uniqueness for future work. However, we introduce a numerical proce-
dure to test the robustness of our results, which takes advantage of the fact that our model
can be solved via integer programming to global optimality. The procedure entails solving
a new optimization problem, which solves our equilibrium problem while optimizing for a
given linear objective function. The procedure is thus analogous to modeling to generate
alternatives (DeCarolis, 2011). Here, we construct the following optimization model, which
minimizes a linear objective function equal to expected emissions, (9a), while solving the
original problem, (9b), therefore forming a MIQP.

min
X

s

X

f

Psf

X

t

WtE
co2
r

grtsf (9a)

s.t. (8) (9b)
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The choice of this objective function is motivated by our main research question, which
concerns the impact of risk on emissions. We are thus interested in solutions with emission
outcomes that refute our main result that the missing markets problem increase emissions.
Since this MIQP model can be solved to global optimality using Gurobi’s non-convex solver
(Gurobi, 2020), the solution represents the lowest-emission solution from among the possible
equilibria. If this solution contains higher emissions than the risk-neutral solution, we can
conclude that our findings regarding the impact of missing markets on emissions are not
a↵ected by the possibility of other equilibria. As discussed in Section 3.5, we find this to be
the case.

2.8 Experimental design

To illustrate the impact of risk on emissions, we model a stylized power system including
four technologies: gas plants (combined cycle combustion), onshore wind, solar photovoltaic,
and 4-hour Li-ion batteries. Albeit highly simplified, this case study captures several key
features shared by low-carbon power systems: an emitting dispatchable technology with
relatively low capital intensity (gas), zero-carbon technologies with high capital intensity and
variable capacity factors (wind and solar), and energy storage. A sensitivity test including
a technology that can be interpreted as subsidized nuclear does not alter our findings (see
section 3.6).

Technology cost data is sourced from the NREL (2022) “moderate” scenario for 2030 and
shown in Table 2, except for the investment cost of the 4-hour battery, which is based on the
NREL (2022) “advanced” scenario. We chose this cost scenario to ensure that the battery
technology will feature in our model solutions. This means that our experiments can either
be interpreted as representing a future of additional cost declines or one in which batteries
continue to receive a certain level of subsidies. As is common, the investment costs in the
models, C inv

r
, represent annualized costs, which we calculated based on the CAPEX shown

in Table 2 and a risk-free discount rate of 2% (since risk is modeled endogenously). The
annualized investment costs are shown in Table 4 (second column). The variable cost of
gas assumes a gas price of $3.6/MMBtu (EIA, 2022a), a heat rate and variable O&M costs
from NREL (2022), as well as a CO2 cost based on a $10/tCO2 carbon price (RGGI Inc.,
2023) and a 0.4 tCO2/MWh emissions intensity (EIA, 2022b). Time series for electricity
demand and renewable capacity factors are for the New England power system and are
sourced from Dimanchev et al. (2021). The power market’s price cap, Ccap, is assumed to
be $2,000/MWh, based on the New England power system (see Supplementary Material for
results based on alternative values). This price cap represents in e↵ect the model’s Value of
Lost Load (VOLL).
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CAPEX
($/kW)

Variable cost
($/MWh)

Emissions intensity
(tCO2/MWh)

Gas (combined cycle) 912 30 0.4
Onshore wind 950 0 0
Solar PV 752 0 0
Batteries (4-hour) 680 0 0

Table 2: Technology parameters

We represent the power system’s operation using 30 representative days at an hourly res-
olution, leading to 720 time steps. Though simplified, this temporal scope captures the
limitations that variability imposes on wind and solar (Mallapragada et al., 2020; Reichen-
berg et al., 2018). Sensitivity tests using a full year with 8,760 time steps did not change
the directionality of our main results, which concern how the capacity mix and emissions
change across di↵erent representations of risk (see the Supplementary Material). Thus, the
use of 30 days can be deemed su�cient for our purpose, which is to illustrate the system’s
behavior, rather than to predict market outcomes. Each hour is scaled using weights Wt

so that the entire 30-day period represents one year. The 30-day time series (for demand
and renewable availability) and their weights Wt are generated using the K-means clustering
method in the GenX model, which is configured to capture extreme periods (MIT Energy
Initiative and Princeton University ZERO lab, 2023).

The experiments consider two sources of uncertainty. These are represented in a simplified
way with two scenarios each, as our purpose is only exploratory. First, demand uncertainty
is represented with two scenarios, contained in set S, featuring a “high” and “low” level of
demand that scale load higher and lower by 25% (while keeping hourly variations the same).
The 25% variation was chosen as roughly illustrative of the degree to which long-term load
varies across electrification scenarios modeled in prior work (Larson et al., 2020). Second,
gas price uncertainty, set F , includes two scenarios featuring a gas price that is 25% higher
and lower respectively relative to the aforementioned price assumption. The magnitude of
this price variation was chosen only for illustration of possible future variability. The main
results presented below were derived from modeling both uncertainties (four total scenarios).
Results from modeling each uncertainty separately are also presented in Appendix A. Though
policy risk is not the focus of this paper, we note that the gas price stochasticity can also
be interpreted as carbon price stochasticity since gas is the only emitting technology in
our experiments. Risk aversion is parameterized using ⌦ = 0.59 and  = 0.25 across all
models. These values are chosen for illustrative purposes. The Supplementary Material
reports sensitivity tests, which do not alter our conclusions.

9
This value could be interpreted as 50% of financing being provided by risk-neutral equity investors and

50% by risk-averse debt investors, similarly to the interpretation suggested by Mays and Jenkins (2023).
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3 Results and discussion

To address our main research question regarding the impact of the missing market problem on
power system emissions, we sequentially investigate the main causal mechanisms that explain
this impact. First, uncertainty results in risk exposure which di↵ers between technologies and
has a unique impact on each technology’s costs (Section 3.1). Next, cost changes influence the
interactions between investment decisions leading to a new equilibrium investment outcome
(Section 3.2). Then, the new capacity mix impacts the operation of the power system and
thus power system emissions (Section 3.3). Results are shown for three main cases featuring
di↵erent representations of risk.

Model Risk-aversion
Risk case setting

Risk-neutral (1) ⌦ = 1
Risk-averse & missing markets (8) ⌦ = 0.5
Risk-averse & complete markets (1) ⌦ = 0.5

Table 3: Alternative risk cases

3.1 Impact of missing markets on technology costs

Here we explore each technology’s risk exposure in the absence of risk markets. For this
we use results from the “Risk-averse & missing markets” case (Table 3), which represents a
power system with a missing market problem, and which is the focus of this paper. Recall
that we model uncertainty in demand and the gas price with two scenarios each, for a total
of four scenarios, which all have equal probability of 25%. The risk faced by each technology
can be described via the distribution of its revenues across the four scenarios, as generated
by the model. We display all distributions in Figure 1. The figure shows that the gas plant
is exposed to a relatively wide revenue distribution. Gas earns zero revenues in two of the
scenarios, where its marginal cost sets the electricity price. These scenarios correspond to low
electricity demand. In the other two scenarios (which correspond to high electricity demand),
the gas plant receives relatively large revenues. This illustrates how gas investors rely on
revenues earned during rare periods of scarcity pricing when the electricity prices rises above
their marginal cost. Scarcity pricing occurs in our model during periods of load shedding,
which occurs only in the high demand scenarios. The battery technology also exhibits a
large variance in revenues. This is similarly due to batteries relying heavily (though not
exclusively) on scarcity pricing revenues.

Figure 1 further shows that wind and solar revenues do not vary as widely across scenarios
compared to gas, as these technologies earn money across scenarios. This is due to the fact
that wind and solar are infra-marginal in the merit order, which allows them to earn revenues
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when gas is on the margin. The distribution for wind is wider than for solar, which is due
to the greater coincidence between wind availability and periods of scarcity (i.e., high load
net of renewable generation).

Figure 1: Probability distributions of technology revenues
Revenues represent the value of expression ⇡rsf from the “Risk-averse & missing markets”
case.

We next consider how risk influences technologies’ investment costs (Table 4). Note that
each technology’s expected revenues represent the required return on investment given its
risk. In equilibrium, the return on investment equals the investment cost inclusive of risk.
Therefore, a technology’s actual risk-reflective investment cost can be found by computing
the expected value of its revenues across all scenarios (which were shown in Figure 1), as
discussed by Mays and Jenkins (2023). Table 4 displays the resulting investment costs
(third column). For comparison, the table also shows the exogenous risk-free investment
cost (second column), based on the assumed risk-free rate (first column)10. From the values
in the first three columns, we can derive the WACC resulting from each technology’s risk
exposure. This is done by solving for the WACC necessary to increase the investment cost
from the risk-free value (second column) to the risk-adjusted value (third column), following
prior work Mays and Jenkins (2023). Finally, the fifth and sixth column in the table show the
impact of risk on a technology’s costs in terms of the risk premium and the overall increase
in investment cost respectively.

The results in Table 4 show that the gas plant’s investment cost is most strongly a↵ected

10
The risk-free rate and the resulting investment cost are both inputs to our modeling as opposed to the

endogenous investment cost, which is an output.
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by risk (sixth column), followed by the battery11, wind, and solar. Wind and solar costs are
less a↵ected by risk than gas, in line with results by Mays and Jenkins (2023). Comparing
the two renewable technologies, we observe that wind exhibits a larger risk premium. The
di↵erence is driven by the greater variance in wind revenues discussed above.

A B C D D-A (C-B)/B
Risk-free Investment Investment WACC Risk Investment
discount cost cost (%) premium cost

rate risk-free risk-adjusted (% point) change
(%) ($/kW-yr) ($/kW-yr) (%)

Gas 2 40 81 8 6 100
Wind 2 42 65 5 3 53
Solar 2 33 42 4 2 26
Battery 2 41 76 9 7 82

Table 4: Impact of investment risk on the cost of capital
The four rightmost columns are derived from the “Risk-averse & missing markets” case.

Out of the two sources of risk, it is the demand stochasticity that mainly drives the risk
premia shown in Table 4. If we assume a constant gas price and only model demand uncer-
tainty, we estimate similar WACC values of 8%, 5%, 3% and 9% for gas, wind, solar, and
batteries respectively. As expected, gas price uncertainty does not significantly a↵ect the gas
plant risk premium, which is due to the nature of marginal cost pricing. This refers to the
fact that, outside of scarcity pricing periods, gas would pass on its fuel cost to consumers.
This e↵ect has been described as a “natural hedge” for fossil fuel producers (Grubb and
Newbery, 2018).

To explore the role of technologies’ capital intensities, we calculate each generation technol-
ogy’s total costs, as measured by the expected Levelized Cost of Energy (LCOE), shown in
Table 5. The first column shows the LCOE based on the risk-free investment cost, as well as
technologies’ capacity factor in the “Risk-averse & missing markets” case, i.e., the solution
of model (8). The relatively low renewable LCOEs are due to the 2% discount rate and our
simplifying assumptions12 (which do not a↵ect our conclusions, as our results are only meant
to be broadly illustrative). The second column shows the LCOE based on the endogenous
investment cost inclusive of risk and the same capacity factor used for the first column, i.e.,
from the solution of the “Risk-averse & missing markets case”.

Perhaps surprisingly, Table 5 shows that the gas technology’s LCOE is more strongly im-
pacted by risk than renewables, even though gas is less capital intensive. This result is

11
The battery’s risk premium is larger than the gas plant’s but its investment cost is a↵ected less due to

the battery’s shorter economic lifetime of 20 years compared to 30 for gas.
12
We omit fixed O&M costs across technologies, and assume a 30-year economic lifetime across the gener-

ation technologies.
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driven by the strong impact of risk on the gas plant’s investment cost (sixth column of Table
4), which outweighs the technology’s low capital intensity. This finding demonstrates the
importance of di↵erentiating between technologies’ risk premia.

LCOE, LCOE Change
risk-free risk-adjusted (%)
($/kWh) ($/kWh)

Gas 0.058 0.086 48.3
Wind 0.013 0.019 46.2
Solar 0.023 0.029 26.1

Table 5: Impact of investment risk on technologies’ total costs
Results derived from the “Risk-averse & missing markets” case.

3.2 Impacts of missing markets on the capacity mix

Here we explore how risk influences the equilibrium power system capacity mix. Figure 2
shows the capacity mix resulting from di↵erent representations of risk. Our main case, “Risk-
averse & missing markets” is illustrated by the second column, computed with model (8).
For comparison, the first column represents a case in which market agents are risk-neutral,
as is often assumed. This case is computed with model (1)13. The third column shows the
“Risk-averse & complete markets” case, which represents the socially optimal risk-averse
outcome, and is also generated with model (1).

13
The risk-neutral case can be modeled with either the equilibrium or optimization models, but, after

confirming their equivalence, we use the latter for the results.
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Figure 2: Capacity and generation mix for di↵erent representations of risk
All cases include both demand and gas price stochasticity. “Risk-averse & missing markets”
refers to output from model (8). The remaining cases show output from (1). Generation is
computed in expectation over all scenarios.

By comparing the first and second columns in Figure 2, we find the risk exposure resulting
from an absence of risk markets leads to less investment in variable renewables and batteries,
and more investment in gas generation, compared to the case where investors are risk-neutral.
These results show that renewable and storage investments are relatively more sensitive to
the risks they are exposed to compared to gas. Importantly, this is only partly due to their
capital intensity. As we showed above, the renewable LCOEs are less a↵ected by risk than the
gas LCOE. This is not a generalizable result but merely an illustration that capital intensity
cannot serve as a primary explanation for the way risk impacts investment. Aside from
capital intensity, the observed changes reflect how technologies interact within the power
system. One of the main advantages of our use of a generation expansion model is that we
capture each technology’s unique value to the power system. A technology’s system value is
determined by its capabilities and how it interacts with the rest of the system. Gas has a
relatively high system value because, as the dispatchable technology in our experiments, it
competes mainly with expensive load shedding and partly with relatively expensive energy
storage. This means that gas investment is not very sensitive to a change in its overall
cost. In contrast, the intermittency of wind and solar limit their system values, and make
investment relatively more sensitive to a change in their overall cost.

A somewhat surprising result is that gas capacity increases in the missing markets case
compared to the risk-neutral case. This occurs despite the negative influence of risk on the
cost of gas discussed previously. The increase in gas capacity can be explained by the large
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decreases in other technologies, which act largely as competitors to the gas investors. As
wind, solar, and battery capacities are lower in the missing markets case, this creates an
additional revenue opportunity for the gas plant. This result is in part driven by our limited
set of technologies, but it nevertheless serves to illustrate that dispatchable technologies are
able to capture greater value in a case of missing markets. Whether this translates to increase
in gas capacity in absolute terms also depends on the degree to which competing technologies
are impacted by risk, and is therefore highly case-dependent. For example, the increase in
gas capacity (in absolute terms) almost disappears in our sensitivity test modeling a full year
(see the Supplementary Material).

We now consider the socially optimal risk-averse outcome (third column in Figure 2). The
capacity mix in this case is the result of the optimization model (1). The results represent
the optimal decisions of a risk-averse central planner. Equivalently, this case reflects the
socially optimal outcome in a market with risk-averse investors and risk-averse consumers14.
This case exhibits more investment in wind, solar, and batteries and less investment in gas
relative to both the missing market and risk-neutral cases. This is because, by construction,
the risk-averse model places additional emphasis on reducing the system’s total operating
costs in the highest-cost scenario. This can be observed in the analytical formulation of
the model, specifically constraint (1h). Reducing total operating costs is accomplished by
reducing load shedding and decreasing generation from sources with high variable costs (gas
in our case). To do so, the power market encourages (equivalently, the central planner builds)
additional variable renewables and storage capacity. Previous studies showed similar results
(Munoz et al., 2017; Diaz et al., 2019), though for di↵erent sets of stochastic parameters.
In the context of our framework, consumers in e↵ect pay a premium to encourage capacity
investments that insure against the possibility of high operating costs. What makes clean
energy technologies more valuable in this case is their low variable cost, showing that their
capital intensity is not necessarily a disadvantage.

Finally, we isolate the impact of each source of risk to further understand the reason for the
above results. This is done by re-running our models with a single stochastic parameter at
a time (either demand or the gas price); the results are displayed in Tables 8 in Appendix
A. These tests show that both demand and gas price stochasticity, on their own, discourage
overall investment in storage and in variable renewables in the missing markets case (ad-
ditional tests in the third paragraph of Section 3.6 qualify this finding in the case of gas
price uncertainty). Similarly, in the complete markets case, both the demand and gas price
stochasticity drive the results observed in the previous paragraph.

14
Note that, in contrast to this complete market case, the consumers implicitly represented in the “Risk-

averse & missing markets” case can be interpreted equivalently as either risk-averse or risk-neutral. This is

because consumers’ decisions, as represented by the system operator, lack any first-stage variables that can

be influenced by risk.
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3.3 Impacts of missing markets on power system emissions

Table 6 shows how annual power system emissions vary across alternative representations
of risk. Emissions are estimated in expectation. The results show that emissions are higher
in the missing markets case (second row) compared to the risk-neutral case (first row).
This stems directly from the changes in the capacity mix observed earlier. As renewable
capacities are lower in the the missing markets case, this leads to less renewable generation,
which is replaced by gas plant generation. These changes in generation can also be observed
in Figure 2. Our emissions results align with prior work using agent-based modeling (Yang
et al., 2023) where the authors modeled risk-averse investment, excluding storage, under
carbon price uncertainty.

In the case of complete risk markets (third row in Table 2), emissions are lower relative to the
risk-neutral case. This result can be explained by the greater amount of variable renewable
capacity discussed above. Comparing the case of complete markets to the case of missing
markets (third and second rows) shows that the socially optimal risk-averse outcome entails
lower emissions than what may result from power markets in the absence of risk trading.

We distinguish between each source of uncertainty (demand and gas prices) in Table 9 and
find that the directionality of the emissions results is consistent for each source of uncertainty.

Emissions Emissions intensity
(MtCO2) (tCO2/MWh)

Risk-neutral 13.8 0.10
Risk-averse & missing markets 18.1 0.13
Risk-averse & complete markets 10.4 0.07

Table 6: Expected CO2 emissions

3.4 Impacts of missing markets on system cost

This section considers how investment risk impacts other key criteria of power system per-
formance. Table 7 first displays the expected average system cost. This can be interpreted
as a measure of the system’s overall social welfare (since the model’s demand curve is in-
elastic) from a risk-neutral perspective. The results show that system costs increase in the
risk-averse case with missing markets relative to the risk-neutral case. This is driven by
load shedding (i.e., non-served energy) shown in the second column, which occurs because
risk-averse investors put less weight on revenues earned during load shedding, thus investing
less than they otherwise would.

Turning to the case of complete risk markets, we observe that system costs are higher rel-
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ative to the risk-neutral case (comparing the fourth and first rows). This outcome is by
construction since the latter case is obtained from an optimization model that minimizes
the expected total system cost as defined here (while in the former case the model places
additional weight on costs in the most expensive scenario). In practical terms, this reflects
that the risk-averse social optimum entails an insurance cost (in the form of higher expected
costs), the purpose of which is to reduce costs in the highest-cost scenario.

Average system cost Non-served energy
($/MWh) (GWh)

Risk-neutral 26.05 0.2
Risk-averse & missing markets 26.43 8.2
Risk-averse & complete markets 26.35 0.0

Table 7: System performance for di↵erent risk cases

3.5 Multiple equilibria and robustness of results

While we find that missing markets imply higher emissions, we have so far not addressed the
possibility of alternative equilibrium solutions. To check for other solutions that may refute
this finding, we run model (9). We find that the global minimum emissions are equivalent to
the presented results from our equilibrium model (8), with the single exception of the case
where we only model gas price uncertainty (last column of Table 8). In this case, model (9)
finds a di↵erent equilibrium solution with emissions of 13.2 Mt15, lower than the estimate
we derive from our main model (8) of 14.5 Mt. The capacity mix also di↵ers, with solar in
particular exhibiting a di↵erence of 2.6 GW. When we refer to results from this case (shown
in Appendix A), we use the result derived from model (9). Note that the emissions in this
solution are still higher than in the risk-neutral case. Thus, this robustness test shows that
the directions of our emissions results are not a↵ected by the existence of multiple equilibria.

3.6 Sensitivity analysis

Here we test the sensitivity of our results to the inclusion of an additional baseload tech-
nology, which is assumed to be zero-emission, fully dispatchable, and capital intensive. This
technology can be interpreted, for example, as subsidized nuclear. For this technology, we
use an annualized investment cost of $100/kW-yr. While this value is far below the cost of
nuclear estimated by NREL (2022), it is chosen for illustrative purposes to ensure that this
technology features in our model’s solution. We further assume an illustrative variable cost

15
The result was obtained for an optimality tolerance of 1e-9, relative to an optimal objective value of 13.2

and an objective coe�cient range between 2e-4 and 5e-3.
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of $10/MWh. The solution of the “Risk-neutral” case features capacities of: 15, 20, 7, 2 and
8 GW respectively for gas, wind, solar, batteries, and the “subsidized nuclear” technology
respectively. In comparison, the “Risk-averse & missing markets” case results in capacities
of: 17, 17, 6, 1, and 7 GW. Therefore, the results of this test are consistent with our capacity
mix results. We further confirm this is also the case for our emissions results.

We also test the sensitivity of our results to the presence of the storage technology. We
confirm that the changes in capacity and emissions between the risk cases have the same
directions as with storage. Consistent with this result, we find that the risk premia for
gas, wind, and solar are virtually the same as in the previous results featuring the storage
technology.

Next, we explore the implications of modeling one technology per investor (as we do in our
main model (8)) relative to using a “representative investor” agent deploying all technologies,
as discussed in Section 2.3.2. When modeling both demand and gas price uncertainty,
we find that the two formulations result in the same solution. This equivalence occurs
because, in our case study, all technologies happen to earn their lowest-possible revenues in
the same scenario (where both demand and the gas price are low). There is thus no anti-
correlation between technology revenues in the CVaR scenario and outside it, and thus no
gains from diversification. This shows that the missing market that drives the results in the
previous sections is the absence of risk trading between investors and consumers (rather than
between investors). However, this is dependent on the experimental set-up. A comprehensive
comparison of the investor formulations is beyond our scope. However, we report that if we
only include uncertainty in the gas price, the use of a representative investor formulation in
the “Risk-averse & missing markets” case leads to more investment in renewables (relative
to risk neutrality) as a hedge against the high gas price scenario. This leads to emissions
of 11.2 Mt, lower than the emissions from model (8), equal to 13.2 Mt, as reported in the
last column of appendix Table 9. Importantly, emissions are also lower than in the risk-
neutral case (13.0 Mt). Therefore, this result constitutes an exception to our main finding
that incomplete markets imply higher emissions. This leads us to ask how much demand
uncertainty would be necessary to drive an increase in emissions in the missing markets
case with a representative investor agent. We test a case with both demand and gas price
uncertainty, where demand only varies by 5% (instead of our main assumption of 25%). The
results shows that emissions increase in the missing markets case relative to risk neutrality.
This suggests that even a small amount of demand uncertainty is su�cient for our main
finding to hold in our illustrative case study.

4 Conclusions

This paper finds that an absence of risk markets distorts power system investments away from
variable renewables and storage, and consequently increases power system emissions. This
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finding suggests that the missing market problem interferes with climate policy objectives.
Therefore, this market failure warrants attention from policy makers seeking to decarbonize
power systems.

Several specific policy implications follow from our results. It is currently debated how
renewable and storage technologies should recover investment costs. In U.S. markets and
some European countries, renewable investors rely on PPAs. This reliance implies that
investments are limited by the degree to which markets for such contracts are complete.
The incompleteness of these markets suggests a role for policy intervention (Newbery, 2016;
de Maere d’Aertrycke et al., 2017; Batlle et al., 2023). This problem is not new and has
already motivated the concept of hybrid markets, which combine liberalized short-term mar-
kets and government-aided long-term contracting (Abada et al., 2019; Joskow, 2021; Batlle
et al., 2023). What we show is that addressing this problem would also reduce future
power system emissions. This strengthens the case for hybrid markets in general and for
policies that reduce investors’ risk exposure in particular. Such policies include contracts-
for-di↵erences (CfDs) and similar measures being used by U.S. states, such as New York’s
index renewable energy credit contracts. It must be acknowledged that such policies transfer
risk to another party, for example, a taxpayer-funded agency. Such public risk burden should
be weighed against the benefits of de-risking clean energy investments, which, as we show,
include climate mitigation. It would also be important for such policies to avoid distorting
operational signals, which motivates recent discussions of financial CfDs and their design fea-
tures (Huntington et al., 2017; Schittekatte and Batlle, 2023). Our results also lend support
to policy and market design measures that help mitigate the risks faced by storage investors.
This could include long-term contracting, the design of which was explored by Billimoria
and Simshauser (2023).

We also show that risk has two important implications for policy research. First, accounting
for risk can have important implications for generation expansion modeling. We find that
model results can change considerably when including investor risk aversion and market
incompleteness relative to the more common use of risk-neutral stochastic optimization.
We note however that stochastic optimization can incorporate risk exogenously through
technologies’ discount rates. Future research could compare this exogenous approach to
ours. Second, generation expansion modeling facilitates a better understanding of how risk
impacts investment by capturing key systemic interactions. Specifically, this work illustrates
that modeling risk endogenously within a generation expansion model captures how the
impact of risk on investment depends not only on technologies’ capital intensities but also
on their endogenous risk premia and system values.

Our numerical results are not meant to anticipate actual market outcomes but to indicate
more generally how risk can interact with generation expansion and power system operation.
A limitation of this work is that, even though we endogenize risk, our representation of it
is simplified compared to the complexity of real-world financial markets. Our main results
assume an absence of risk trading, even though investors are able to hedge some risk through
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di↵erent power market contracts as well as other securities traded on broader financial mar-
kets (Mays et al., 2019; de Maere d’Aertrycke et al., 2017). A further numerical limitation
is our use of a limited set of technologies and scenarios. Future work could perform more
detailed numerical experiments and model alternative policy solutions to the missing market
problem. Future work could also explore the role of policy uncertainty. Though this is not
the focus of this paper, the stochasticity in the gas price that we model can be equivalently
interpreted as variability in a carbon price. This paper also omits renewable volume risk
stemming from interannual meteorological variability. Accounting for these e↵ects would
require more detailed financial modeling that captures renewable variability throughout the
lifetime of asset which is beyond our scope.

Appendices

A Additional results

Main results Demand Gas price
(demand and gas stochasticity stochasticity

price stochasticity)
Resource Risk case

Gas
RN 20.5 20.5 15.4
RA & MM 22.5 21.4 15.4
RA & CM 19.3 19.8 15.2

Wind
RN 26.5 26.5 25.7
RA & MM 22.8 23.8 25.9
RA & CM 31.7 31.2 25.6

Solar
RN 14.8 14.8 15.4
RA & MM 11.2 14.3 14.7
RA & CM 18.2 15.4 19.6

Battery
RN 3.1 3.1 2.8
RA & MM 1.1 2.3 2.8
RA & CM 3.5 3.2 2.9

Table 8: Technology capacities (GW) by risk representation and source of risk
RN: Risk-neutral; RA: Risk-averse; MM: Missing markets; CM: Complete markets
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Demand and gas Demand Gas price
price stochasticity stochasticity stochasticity

Risk case

Risk-neutral 13.8 13.8 13.0
Risk-averse & missing markets 18.1 15.7 13.2
Risk-averse & complete markets 10.4 11.6 11.2

Table 9: Expected CO2 emissions by risk representation and source of risk

B Representative investor formulation

While our main investor formulation (3) includes one technology r per investor agent, we
propose an alternative that uses a “representative investor” agent. The key di↵erence here
is that the representative investor can invest in all technologies r. This investor solves
the following linear optimization problem. This problem is easily incorporated into our
equilibrium model (8) by deriving the primal-dual formulation of (10) and following the
same reformulation steps we showed above.
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C Karush-Kuhn-Tucker conditions of the main opti-

mization problems

The KKT conditions of the investor optimization problem (3) follow. Note that in the
derivation of these KKT conditions, 1 � ⌦ was multiplied by both sides of constraint (3c).
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These conditions are necessary and su�cient, since (3) is a linear program.
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The KKT conditions of the system operator’s optimization problem (2) follow. These con-
ditions are necessary and su�cient, since (2) is linear.
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D Numerical steps

To solve model (8), we define upper bounds for capacity xr. We do this heuristically based on
the characteristics of the modeled system. For the gas plant investor, there is no incentive to
install more capacity than the system’s peak demand. For renewable capacities, since they
can exceed peak demand, we set the upper bounds to be 50% larger than peak demand. For
batteries, we assume capacity will not exceed 25% of peak demand. Both the storage and
renewable bounds are informed by prior work modeling capacity mixes in low-carbon power
systems across a large range of scenarios (Sepulveda et al., 2018). In sensitivity testing,
relaxing these bounds increased solution times but did not change our results.

Our instance of model (8) contains 49,032 continuous variables, 16 quadratic constraints,
and 16 binary variables. All solutions were derived using the Gurobi solver run on cluster
computing with 48-core Intel(R) Xeon(R) 2.10GHz CPUs and 180GB RAM. The main case
featuring risk aversion, missing markets, and four scenarios solves in approximately 1,700
seconds. The same case solves in 100 seconds when using the “representative investor” formu-
lation (resulting in the same solution), showcasing that this approach o↵ers a computational
advantage.
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discussions. This research was funded by CINELDI, an 8 year research center part of the Nor-
wegian Centers for Environment-friendly Energy Research (FME) (grant number: 257626).

Author Contributions

Conceptualization, E.D.; Methodology, E.D. and S.A.G.; Investigation, E.D. and S.A.G.;
Validation, E.D., S.A.G., L.R., M.K.; Writing – Original Draft, E.D.; Writing – Review &
Editing, E.D., L.R., M.K., S.A.G.; Supervision, M.K.

Declaration of Interests

None.

References

Abada, I., De Maere D’Aertrycke, G., Ehrenmann, A., Smeers, Y., 2019. What Models Tell
us about Long-term Contracts in Times of the Energy Transition. Economics of Energy
& Environmental Policy 8, 163–182. Publisher: International Association for Energy
Economics.

Batlle, C., Schittekatte, T., Mastropietro, P., Rodilla, P., 2023. The EU Commission’s
Proposal for Improving the Electricity Market Design: Treading Water, but not Drown-
ing. Current Sustainable/Renewable Energy Reports URL: https://doi.org/10.1007/
s40518-023-00223-4, doi:10.1007/s40518-023-00223-4.

Bichuch, M., Hobbs, B.F., Song, X., 2023. Identifying optimal capacity expansion and di↵er-
entiated capacity payments under risk aversion and market power: A financial Stackelberg
game approach. Energy Economics 120, 106567. doi:10.1016/j.eneco.2023.106567.

Billimoria, F., Fele, F., Savelli, I., Morstyn, T., McCulloch, M., 2022. An insurance mecha-
nism for electricity reliability di↵erentiation under deep decarbonization. Applied Energy
321, 119356. doi:10.1016/j.apenergy.2022.119356.

35

https://doi.org/10.1007/s40518-023-00223-4
https://doi.org/10.1007/s40518-023-00223-4
http://dx.doi.org/10.1007/s40518-023-00223-4
http://dx.doi.org/10.1016/j.eneco.2023.106567
http://dx.doi.org/10.1016/j.apenergy.2022.119356


Billimoria, F., Simshauser, P., 2023. Contract design for storage in hybrid electricity markets.
Joule 7, 1663–1674. doi:10.1016/j.joule.2023.07.002. publisher: Elsevier.

DeCarolis, J.F., 2011. Using modeling to generate alternatives (MGA) to expand our think-
ing on energy futures. Energy Economics 33, 145–152. doi:10.1016/j.eneco.2010.05.
002.

Diaz, G., Inzunza, A., Moreno, R., 2019. The importance of time resolution, operational
flexibility and risk aversion in quantifying the value of energy storage in long-term energy
planning studies. Renewable and Sustainable Energy Reviews 112, 797–812. doi:10.1016/
j.rser.2019.06.002.

Dimanchev, E.G., Hodge, J.L., Parsons, J.E., 2021. The role of hydropower reservoirs in deep
decarbonization policy. Energy Policy 155, 112369. doi:10.1016/j.enpol.2021.112369.

Dukan, M., Kitzing, L., 2023. A bigger bang for the buck: The impact of risk reduction on
renewable energy support payments in Europe. Energy Policy 173, 113395. doi:10.1016/
j.enpol.2022.113395.

Ehrenmann, A., Smeers, Y., 2011. Generation Capacity Expansion in a Risky Envi-
ronment: A Stochastic Equilibrium Analysis. Operations Research 59, 1332–1346.
URL: http://pubsonline.informs.org/doi/abs/10.1287/opre.1110.0992, doi:10.
1287/opre.1110.0992.

EIA, 2022a. Annual Energy Outlook 2022. Technical Report. Energy Information Admin-
istration. Washington, DC. URL: https://www.eia.gov/outlooks/aeo/IIF_pipeline/
index.php.

EIA, 2022b. US Electricity Profile 2021. URL: https://www.eia.gov/electricity/state/
index.php.

Fortuny-Amat, J., McCarl, B., 1981. A Representation and Economic Interpretation of a
Two-Level Programming Problem. The Journal of the Operational Research Society 32,
783–792. URL: https://www.jstor.org/stable/2581394. publisher: Palgrave Macmil-
lan Journals.

Gabriel, S.A., Conejo, A.J., Fuller, J.D., Hobbs, B.F., Ruiz, C., 2013. Complementarity
Modeling in Energy Markets. volume 180 of International Series in Operations Research
& Management Science. Springer, New York, NY. URL: https://link.springer.com/
10.1007/978-1-4419-6123-5, doi:10.1007/978-1-4419-6123-5.
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1 Implications of using representative time periods

The results reported in the main manuscript are derived from modeling the power system’s
operation over 30 representative days. Here, we test if our results change if we use an annual
scope with 8,760 hourly time steps. We show results derived from full-year model runs
in Table S1. The “Risk-neutral” and “Risk-averse & complete markets” cases are derived
from running the optimization model (1) (see main manuscript). To generate results for the
“Risk-averse & missing markets” case, we use the “representative investor” formulation (see
main manuscript Section 2.3.2), because of its significant computational advantage. Recall
that in this formulation, an investor can invest in all technologies. As discussed in the
main manuscript, this formulation leads to the same result as our main formulation (one
technology per investor) when using a 30-day temporal scope (see Section 3.6). For ease of
comparison, we also include our results from the main manuscript below in Table S2.
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We find that the directions in which technology capacities and emissions change between risk
cases are the same across the two tables. A key di↵erence concerns the impact of missing
markets on gas capacity. In our main results (Table S2), gas capacity increases from 20.5
GW in the risk-neutral case (first row) to 22.5 GW in the missing markets case (second row).
In contrast, this increase almost disappears in Table S1. Nevertheless, the percent share of
gas capacity within the capacity mix increases non-negligibly in both tables. Thus in both
tables, the investment mix shifts toward gas, and away from the clean energy technologies
when markets for risk are missing.

Capacity mix Emissions
Gas Wind Solar Battery (MtCO2)

(GW) (GW) (GW) (GW)

Risk-neutral 20.9 26.8 10.1 1.2 13.0
Risk-averse & missing markets* 21.0 23.0 8.6 0.3 16.1
Risk-averse & complete markets 20.3 29.7 14.6 2.0 10.0

Table S1: Key results when using a full year
All models were run under both demand and gas price uncertainty.
*Results derived using the “representative investor” formulation (see main manuscript Sec-
tion 2.3.2).

Capacity mix Emissions
Gas Wind Solar Battery (MtCO2)

(GW) (GW) (GW) (GW)

Risk-neutral 20.5 26.5 14.8 3.1 13.8
Risk-averse & missing markets 22.5 22.8 11.2 1.1 18.1
Risk-averse & complete markets 19.3 31.7 18.2 3.5 10.4

Table S2: Key results when using 30 representative days
All models were run under both demand and gas price uncertainty.

2 Additional sensitivity tests

Here, we test the sensitivity of the results to alternative price cap assumptions, which we
report in Table S3. Tests with price caps of $100/MWh and $9,000/MWh did not alter the
directions of our results with regard to emissions or the capacity mix, with the exception
that, in the case of a $100/MWh price cap, gas capacity is lower in the missing markets
case relative to the risk-neutral case, in contrast to our result above. This showcases that,
as expected, gas investment is dependent on its ability to capture revenues from scarcity
pricing events.
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The next sensitivity test uses alternative assumptions for the degree of risk aversion, as
represented by parameter ⌦. We test values of 0.25 and 0.75, which respectively represent
higher and lower risk-aversion relative to our main results, which assume a value of 0.5. In all
cases, we find the same directional impact of the missing markets case on all four technology
capacities and emissions relative to risk neutrality. As expected, the magnitudes di↵er. The
higher the degree of risk-aversion, the lower are the wind, solar, and battery capacities. The
gas capacity equals 21.7, 22.5, and 21.5 GW for ⌦ of 0.25, 0.5, and 0.75 respectively. This
pattern reflects the changing magnitudes of the already mentioned countervailing e↵ects
acting on gas capacity: on the one hand, risk exposure encourages less investment; and
on the other hand, less competition from other technologies encourages more investment.
Finally, we note that the alternative ⌦’s also do not alter the directionality of the e↵ects of
the complete market case, except that for ⌦ = 0.75, solar capacity is less (though overall
variable renewable capacity is still greater) than in the risk-neutral case.

Main results Low High Price cap Price cap
(⌦ = 0.5, risk risk 100 9,000

price cap = aversion aversion ($/MWh) ($/MWh)
$2000/MWh) (⌦ = 0.75) (⌦ = 0.25)

Resource Risk case

Gas
RN 20.5 20.5 20.5 14.6 20.5
RA & MM 22.5 21.5 21.7 12.5 21.7
RA & CM 19.3 19.8 19.0 14.7 19.3

Wind
RN 26.5 26.5 26.5 28.3 26.5
RA & MM 22.8 25.6 20.7 23.0 23.4
RA & CM 31.7 30.6 32.0 32.8 31.7

Solar
RN 14.8 14.8 14.8 15.5 14.9
RA & MM 11.2 13.3 10.1 14.8 10.8
RA & CM 18.2 15.6 23.6 18.5 18.2

Battery
RN 3.1 3.1 3.1 0.0 3.1
RA & MM 1.1 1.8 0.2 0.0 2.5
RA & CM 3.5 3.2 3.6 0.1 3.5

Table S3: Technology capacity (GW) for alternative model parameters
RN: Risk-neutral; RA: Risk-averse; MM: Missing markets; CM: Complete markets
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