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Learning in Repeated Multi-Unit Pay-As-Bid
Auctions

Rigel Galgana
Operations Research Center, Massachusetts Institute of Technology, rgalgana@mit.edu,

Negin Golrezaei
Sloan School of Management, Massachusetts Institute of Technology, golrezaei@mit.edu,

Motivated by Carbon Emissions Trading Schemes, Treasury Auctions, Procurement Auctions, and Whole-

sale Electricity Markets, which all involve the auctioning of homogeneous multiple units, we consider the

problem of learning how to bid in repeated multi-unit pay-as-bid auctions. In each of these auctions, a large

number of (identical) items are to be allocated to the largest submitted bids, where the price of each of the

winning bids is equal to the bid itself. In this work, we study the problem of optimizing bidding strategies

from the perspective of a single bidder.

This problem is challenging due to the combinatorial nature of the action space. We overcome this

challenge by focusing on the offline setting, where the bidder optimizes their vector of bids while only having

access to the past submitted bids by other bidders. We show that the optimal solution to the offline problem

can be obtained using a polynomial time dynamic programming (DP) scheme under which the bidder’s utility

is decoupled across units. We leverage the structure of the DP scheme to design online learning algorithms

with polynomial time and space complexity under full information and bandit feedback settings. Under these

two feedback structures, we achieve an upper bound on regret of O(M
√

T log |B|) and O(M
√
|B|T log |B|)

respectively, where M is the number of units demanded by the bidder, T is the total number of auctions,

and |B| is the size of the discretized bid space. We accompany these results with a regret lower bound, which

match the linear dependency in M .

Our numerical results suggest that when all agents behave according to our proposed no regret learning

algorithms, the resulting market dynamics mainly converge to a welfare maximizing equilibrium where

bidders submit uniform bids. We further show that added competition reduces the impact of strategization

and bidders converge more rapidly to a higher revenue and welfare steady state. Lastly, our experiments

demonstrate that the pay-as-bid auction consistently generates significantly higher revenue compared to

its popular alternative, the uniform price auction. This advantage positions the pay-as-bid auction as an

appealing auction format in settings where earning high revenue holds significant social value, such as the

Carbon Emissions Trading Scheme.

Keywords. Multi-unit pay-as-bid auctions, Bidding strategies, Regret analysis, Market dynamics.

1. Introduction

Homogeneous multi-unit auctions, a special case of combinatorial auctions, are commonly used to

auction off large quantities of identical items, for example in Carbon Emissions Trading Schemes

Goulder and Schein (2013), Schmalensee and Stavins (2017), Goldner et al. (2019), US Treasury

Auctions Garbade and Ingber (2005), Binmore and Swierzbinski (2000), Procurement Auctions

Ausubel and Cramton (2005), and Wholesale Electricity Markets Tierney et al. (2008), Federico
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and Rahman (2003), Fabra et al. (2006). In these multi-unit auctions, bidders submit a bid vector

and then are allocated their goods and charged payments according to the auction format.

Of widespread use are the uniform price and pay-as-bid (PAB) mechanisms. As natural multi-

unit generalizations of the second and first price sealed bid auctions, bidders are allocated units

in decreasing order of bids and, for each unit won, are charged as payment the lowest winning bid

(uniform price) or their own bid (PAB). In this work, we focus on the PAB auction in light of the

recent industry and research community-wide push towards first price auctions, which is mainly

due to demand for price transparency and ease of revenue management (Deospotakis et al. 2021,

Bigler 2019).

Nevertheless, it has been observed that participants find it challenging to determine how to bid

effectively in PAB auctions, as highlighted by Porter et al. (2003). Bidders face a fundamental

dilemma: larger bids increase their chances of winning units but also lead to higher payments.

This predicament is further complicated by the necessity to submit monotone bid vectors. Bidding

too conservatively reduces the probability of winning units in subsequent slots, while bidding

excessively may inflate the payment.

In this paper, we address the issue of learning optimal bidding strategies in repeated multi-unit

PAB auctions. As we will elaborate later, we develop efficient no-regret algorithms that simplify

the bidding complexity associated with PAB auctions. Through simulating the market dynamics

derived from these learning algorithms, we empirically analyze the equilibria of PAB auctions,

which have been poorly understood prior to our research. Our empirical findings demonstrate that

in the equilibria resulting from these market dynamics, bidders’ winning bids converge to the same

value, thus addressing concerns regarding price fairness in PAB auctions (Binmore and Swierzbinski

2000, Akbarpour and Li 2020).

We also consistently observe high revenue from these equilibria, especially when compared to its

uniform price counterpart. In the context of carbon markets, this additional revenue can be invested

into clean-up efforts and green technology; see. e.g., phase 4 of the European Union Emissions

Trading System (EU-ETS) (Gregor 2023).

1.1. Technical Contributions

New Framework to Study Learning How to Bid in PAB Auctions (Section 2). Let

there be N bidders/agents with M -unit demand in a PAB auction with M supply. Each bidder

n is endowed with valuation vector vn = (vn,1, . . . , vn,M) ∈ [0,1]M and submits a bid vector bn =

(bn,1, . . . , bn,M) ∈ BM , where B is some discretization of [0,1] that represents the set of all possible

bids. Agents then receive allocation xn ∈ [M ] and utility
∑xn

m=1(vn,m − bn,m) according to the

PAB auction rule; see Section 2. Repeating this auction across T rounds, each agent’s goal is to
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minimize their regret with respect to their hindsight, utility maximizing bid vector. Here, we refer

to discretized regret as the regret incurred as a function of M,B, T when restricting our bid space

to B. Conversely, we refer to continuous regret as the regret incurred as a function of only M and

T when optimizing for the discretization error.

Dynamic Programming Scheme for Hindsight Optimal Offline Solution (Section 3).

To design low-regret bidding algorithms, we crucially leverage the structure of the hindsight optimal

offline solution. In the offline/hindsight problem, the bidder has access to the (historical) dataset

of submitted bids by competitors and seeks to find the utility maximizing bid vector on that

dataset. (See Roughgarden and Wang (2016), Derakhshan et al. (2022), Golrezaei et al. (2021b),

Derakhshan et al. (2021) for works that study similar problems from an auctioneer’s perspective.)

We show that the optimal solution to the offline problem—which is our benchmark in computing

the regret of our online learning algorithms—can be solved using a polynomial time Dynamic

Programming (DP) scheme. To do so, we make the following key observation: to win m units (or

equivalently, slots), an agent n must have at least m bids larger than the smallest m among the

largest M bids of all other bidders. This observation allows us to devise a DP where in each step

of the DP, we decide about the bid for one unit, while considering the externality that this bid

will impose on the bids and utilities for other units. This externality is precisely the fundamental

tradeoff of PAB auctions aforementioned: bidding too small decreases the probability of winning the

current or any subsequent units, however, bidding too large increases the payment of the current

and previous units.

Decoupled Exponential Weights Algorithm (Section 4). We present our first set of algo-

rithms to learn in the online setting, in both the full information and bandit feedback regimes.

We leverage our DP scheme to obtain decoupled rewards, or reward estimates in the bandit set-

ting, for each unit-bid value pair. In particular, we can obtain an exact expression for the utility

estimate for bidding bm for unit m that is independent of b1, . . . , bm−1 or bm+1, . . . , bM , subject to

bid vector monotonicity. This allows us to mimic the exponential weights algorithm on the expo-

nentially large bid space in polynomial time and space complexity. We show that our decoupled

exponential weights algorithm (Algorithm 2) achieves time and space complexities of O(M |B|T )

and O(M |B|) respectively, with discretized regret O(M
3
2

√
T log |B|); see Theorem 4. Optimizing

for the discretization error from using finite bid space B, we show that in the full information

setting, our algorithm achieves O(M
3
2
√
T logT ) regret.

Theorem 1 (Informal). Under full information feedback, there exists an algorithm that

achieves discretized and continuous regrets O(M
3
2

√
T log |B|) and O(M

3
2
√
T logT ) respectively in

the repeated multi-unit PAB auction.
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We also analyze the bandit version of our algorithm and show that it achieves discretized

regret O(M
3
2

√
|B|T log |B|); see Theorem 5. Balancing with the discretization error, this algorithm

achieves continuous regret of O(M
4
3T

2
3
√
logT ) (We defer the proofs of these and our other main

results to the appendix unless otherwise stated).

Online Mirror Descent Algorithm (Section 5). In this section, we present an alternative

learning algorithm based on Online Mirror Descent (OMD) that improves the regret upper bounds

of our decoupled exponential weight algorithm by a factor of
√
M at the cost of additional com-

putation. We once again leverage our DP scheme and in particular the graph induced by the DP

(see Section 3 for a formal definition). Given this DP graph, one idea is to maintain probabil-

ity measures over the edges of the DP graph to learn how to bid. Such an idea, which has been

studied in other contexts (see Takimoto and Warmuth (2003), Zimin and Neu (2013), Chen et al.

(2013)), leads to a sub-optimal O(M |B|
√

T log |B|) discretized regret and O(MT
3
4
√
logT ) contin-

uous regret. We obtain an improved regret bound by making an important observation that the

utility of a bid vector depends only on the nodes of the DP graph and not the edges. Leverag-

ing this fact enables us to maintain probability measures over the nodes in the DP graph, rather

than its edges, resulting in an algorithm that achieves time and space complexities polynomial in

M, |B|, T , with discretized regrets O(M
√
T log |B|) and O(M

√
|B|T log |B|) in the full information

and bandit settings, respectively. See Theorem 6. This algorithm achieves a factor of
√
M better

than the decoupled exponential weights algorithm. Optimizing for the discretization error from B,
we show that in the bandit feedback setting, we derive an algorithm that achieves O(MT

2
3 ) regret.

Theorem 2 (Informal). Under bandit feedback, there exists an algorithm that achieves dis-

cretized and continuous regrets O(M
√
T log |B|) and O(MT

2
3
√
logT ) respectively in the repeated

multi-unit PAB auction.

Regret Lower Bound (Section 6). To complement our discretized regret upper bound, we

construct a regret lower bound for the full information setting which matches our upper bound up

to a factor of
√
log |B|. We do this by constructing two distributions over adversary bid vectors

for which any learning agent is guaranteed to incur regret linear in M when trying to learn the

optimal bid under these distributions.

1.2. Experimental Results and Managerial Implications

Our experiments yield valuable practical insights for both auction designers and participants.

These insights are primarily derived from simulations of PAB market dynamics using the no-regret

learning algorithms outlined in our paper. Additionally, we compare these results with the market

dynamics of uniform price auctions using the algorithms described in Brânzei et al. (2023). It is

important to emphasize that conducting such systematic comparisons was previously challenging

due to the inherent difficulty of characterizing equilibria in these auctions prior to our research.
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1. Uniform Bidding in PAB Auctions is Optimal. As shown in Figures 2 and 8, the market

dynamics consistently yield convergence of the winning bids and largest losing bids to a common

price across all bidders. This partially addresses one of the main concerns over the fairness of the

PAB auction. That is, while the payment for each unit can be different across units and across

bidders, under a reasonable learning and bidding strategy, these payments across units and bidders

converge to the same value in the long run.

2. Simplified Bidding Interface is Sufficient for PAB but not for Uniform Price. In

a recent trend of bidding simplification and automation (e.g., Aggarwal et al. (2019), Deng et al.

(2023), Susan et al. (2023), Lucier et al. (2023)), auctioneers may find it easier to restrict bidders’

demand expressiveness by requiring only a single price and quantity, rather than a vector of bids. As

per our previous insight, the bid value convergence of the market dynamics suggest appropriateness

of this simplified bidding interface. In contrast, we show that the market dynamics of the uniform

price auction converge to a staggered bid vector (Figure 8), suggesting that the simplified bidding

interface may significantly damage the uniform price auction’s welfare, revenue, or bidders’ utility.

3. PAB Obtains High Revenue but Slightly Lower Welfare than Uniform Price. From

the insights provided by Figure 7, it is evident that the PAB auction surpasses the uniform price

auction in terms of revenue generation. However, it slightly lags behind in welfare, though to a

lesser extent. Consequently, auctioneers who prioritize revenue (resp. welfare) should favor the PAB

(resp. uniform price) auction over uniform price (resp. PAB) auctions.

1.3. Other Related Works

Learning in Auctions. Most of the recent learning-theory-flavored auction design research has

either focused on the single unit setting (Han et al. 2020b,a, Balseiro et al. 2022), the perspective

of the auctioneer setting reserve prices (Morgenstern and Roughgarden 2016, Mohri and Medina

2016, Cai and Daskalakis 2017, Dud́ık et al. 2017, Kanoria and Nazerzadeh 2014, Golrezaei et al.

2023a, 2021a, 2023b), or uniform price auctions (Mohri and Medina 2013, 2016, Huang et al. 2018,

Nedelec et al. 2019, Haoyu and Wei 2020). However, in PAB auctions, as the space of possible bid

vectors is exponentially large, the task of learning how to bid optimally in these multi-unit auctions

is more challenging, compared with the single unit setting. This is especially true when the number

of units demanded is large which necessitates not only low-regret but also tractable algorithms to

learn how to bid optimally. In this paper, we contribute to this line of works by proposing a novel

framework under which to analyze and derive efficient, low-regret learning algorithms for these

inherently combinatorial multi-unit PAB auctions.

PAB Mechanism. There are several multi-unit auction formats that are commonly used in

practice; e.g., uniform price (Binmore and Swierzbinski 2000, Burkett and Woodward 2020, Bey-

haghi et al. 2021, Goldner et al. 2019), PAB (Pycia and Woodward 2020, Pesendorfer 2000, Baisa
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and Burkett 2018), Vickrey-Clarke-Groves (VCG) (Dobzinski and Nisan 2007, Ausubel and Mil-

grom 2006), ascending price (Cramton 1998, Ausubel 2004). The literature is divided as to which

auction is appropriate for various settings. For example, while the PAB mechanism has desirable

revenue and welfare guarantees compared to the uniform price auction (Pycia and Woodward

2020), the empirical revenue of the two auctions is often comparable (Hortaçsu and McAdams

2010), and some argue that guess-the-clearing-price and other strategic behavior (Heim and Götz

2021) along with collusion (Tierney et al. 2008) can further damage its performance. Furthermore,

there are ethical and fairness concerns regarding PAB auctions, as their discriminatory nature

implies that agents pay unequally for the same unit. Despite this criticism, and other arguments

for (and against) other auction formats (Porter et al. 2003, Cramton et al. 2004, de Keijzer et al.

2013a, Ausubel et al. 2014, Akbarpour and Li 2020), we focus on the PAB mechanism due to the

simplicity and transparency of its payment rule, as well as, its widespread use.

The economics literature has only recently addressed several of the questions regarding the

equilibria, bidding dynamics, efficiency, and other key properties of multi-unit PAB mechanisms in

the static or Bayesian setting. For example, the Bayesian optimal bidding strategy is known for the

case of 2-unit demand and supply multi-unit auctions (Nautz 1995), for when valuations follow a

class of parametric distributions (Pycia and Woodward 2020), or when the bidders have symmetric

valuations (Ausubel et al. 2014). The PAB mechanism is also known to be smooth (Syrgkanis

and Tardos 2012), which yields a number of desirable guarantees on the price of anarchy of the

auction (Roughgarden 2015), even with the presence of an aftermarket (Babaioff et al. 2022). An

additional attractive property of the PAB mechanism is complete transparency of payments, as

given one’s allocation, an agent knows precisely how much they will pay. This is in stark contrast to

the uniform price auction, where shill bids can inflate payments by artificially increasing demand

(Akbarpour and Li 2020).

Relationship to Uniform Price Auctions. The uniform price auction is an alternative mech-

anism of allocating multiple homogeneous goods. Closely related to the PAB auction, bidders are

allocated units in decreasing order of bids, but instead of charging each bidder their correspond-

ing winning bid, each bidder instead pays the smallest winning bid. The EU-ETS carbon license

auctions use the uniform price auction, rather than the PAB auction, largely due to fairness con-

siderations, as each agent pays the same amount per unit allocated (EEX 2023). However, our

work shows that price fairness is not a concern in the long term when bidders learn how to bid

and converge to a common price.

In a study closely aligned with our research, Brânzei et al. (2023) investigated the problem

of learning optimal bidding strategies in multi-unit uniform pricing auctions. Since the uniform

price auction employs a distinct payment rule, the bid optimization problem necessitates different
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approaches compared to the PAB auction. While Brânzei et al. (2023) reformulated the offline

bid optimization problem as a path weight maximization problem over a directed acyclic graph

(DAG), the construction of these DAGs differs fundamentally from those we constructed in our

manuscript for PAB auctions. We also emphasize that the decoupling of utility across units is

unique to the PAB setting, which enables improved regret guarantees. Consequently, the path

kernel-based algorithms described in Brânzei et al. (2023) for both the full and bandit settings

yield sub-optimal regret in terms of dependence on the number of units in the PAB mechanism. As

previously mentioned, we introduce an alternative method based on OMD, which achieves regret

matching the lower bound.

Structured Bandits. The crux of our paper is constructing time and space efficient no-regret

bandit algorithms for bid optimization under a combinatorially large bid space for identical multi-

unit PAB auctions. As such, naive implementations of bandit algorithms, such as Exp3, that

consider each bid vector as its own arm in isolation incur exponential regret, computational and

memory costs. It is similarly difficult to generalize existing efficient cross-learning based algorithms

in the single-unit case (Han et al. 2020a,b, Badanidiyuru et al. 2021). To combat this, we take

from the expansive structured bandit literature, which includes linear bandits (Dani et al. 2008,

Abbasi-yadkori et al. 2011, Chu et al. 2011, Lattimore and Szepesvári 2020) and combinatorial

bandits (Chen et al. 2013, Audibert et al. 2011, Niazadeh et al. 2022), and convex uncertainty set

bandit (Van Parys and Golrezaei 2023). In particular, our algorithm most closely resembles existing

algorithms exploiting both these combinatorial and linear aspects in episodic Markov Decision

Processes (Zimin and Neu 2013) or cost minimization on graphs (Takimoto and Warmuth 2003).

The primary difference is that our algorithm seeks to minimize the sum of the costs of nodes in a

path, rather than the edges. We describe how to efficiently perform negentropy regularized OMD

updates in our setting.

Multi-Agent Learning. While we seek to derive efficient, low-regret algorithms for a single

bidder, as we also explored, it is equally important to understand the implications of the bidding

dynamics induced by such adaptive behavior. For example, it may be possible for these adaptive

agents to learn to collude (Hendricks and Porter 1989, Pesendorfer 2000, Aoyagi 2003, Calvano

et al. 2021, Heim and Götz 2021) which can significantly reduce revenue and welfare. Precisely how

much they do so is characterized in the Bayesian setting as the Price of Anarchy (PoA) (Lucier and

Borodin 2009, de Keijzer et al. 2013a, Hartline et al. 2014, Roughgarden et al. 2017). The auction

efficiency in the dynamic setting is less well understood, though there have been several results for

specific auctions and learning algorithms (Blum et al. 2008, Lykouris et al. 2016, Hartline et al.

2015, Golrezaei et al. 2020, Kolumbus and Nisan 2022). However, most of the standard learning

theory literature takes the perspective of the auctioneer who optimizes revenue through reserves or
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supply. More standard in literature is assuming that the auctioneer is an adaptive agent themselves,

optimizing over the set of reserves or supply (Mohri and Medina 2013, Roughgarden and Wang

2016, Mohri and Medina 2015). This line of work is closely related to the vast and rapidly growing

literature on multi-agent learning (Phelps et al. 2008, Buşoniu et al. 2010, Yang and Wang 2020,

Golrezaei et al. 2020, 2023b, Zhang et al. 2021).

The multi-agent learning dynamics in the PAB auction (and also uniform price auction) is

studied in our experiments section. To our knowledge, these experiments are the first systematic

comparison between the equilibria of PAB and uniform price auctions, showing a noticeable revenue

improvement of the PAB over the uniform price auction.

2. Preliminaries

Notation. We let |S| denote the size of set S, and define [k] = {1, . . . , k} to be the set of the

first k positive integers. We define S+k to be the set of non-increasing k-vectors of elements from

set S. Similarly, S−k denotes the set of non-decreasing k-vectors of elements from set S. We let

∆(S) denote the set of valid probability measures over set S. We also say that the quantity x

is ≲, ∝, or ≳ than f(a1, . . . , ak) some function of k algorithm parameters if x ∈ O(f(a1, . . . , ak)),

x∈Θ(f(a1, . . . , ak)), or x∈Ω(f(a1, . . . , ak)), respectively.

Auction format: Pay-as-bid. Consider a scenario in which there areN bidders andM identical

units available for auction in a PAB format. In this context, we assume that each agent n within

the set [N ] desires a maximum of M units. (It should be noted that our results can be extended

to a situation where each agent n may demand a different maximum number of units, denoted by

Mn, which are not necessarily identical.)

Let vn = (vn,m)m∈[M ] ∈ [0,1]+M represent agent n’s non-increasing marginal valuation profile.

This implies that for any given n in the set [N ], the following conditions hold: (i) valuation mono-

tonicity vn,1 ≥ vn,2 ≥ . . . ≥ vn,M and (ii) the total valuation of agent n after receiving m units is

given by
∑m

k=1 vn,k.

Let bn = {bn,m}m∈[M ] ∈ [0,1]+M represent the non-increasing bids submitted by bidder n. Here,

bn,m refers to the bid made by bidder n for the m-th slot or, equivalently, the m-th unit. Similar

to vn, we have the following conditions for any n∈ [N ]: (i) bid monotonicity bn,1 ≥ bn,2 ≥ . . .≥ bn,M

and (ii) individual rationality (IR) bn,m ≤ vn,m for all m∈ [M ]. It is important to note that the bid

monotonicity condition is not an assumptions; it is implied by the auction rule that will be stated

shortly. Consequently, the total payment made by bidder n after receiving m units is given by∑m

k=1 bn,k. We define b−n = (b−n,m)m∈[M ] ∈ [0,1]−M as the set of the M largest bids not belonging

to agent n, arranged in increasing order (i.e., b−n,1 ≤ . . .≤ b−n,M).

The auction operates according to the following rules: In a PAB auction, all bids submitted

across the N bidders are arranged in descending order. The m-th unit is assigned to the bidder
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with the m-th highest bid, and they are charged the amount of their bid. We denote the allocation

to agent n as xn(bn) = x(bn,b−n), and the (quasi-linear) utility as µn(bn) = µ(bn,b−n), where

x(bn,b−n) =
M∑

m=1

1bn,m≥b−n,m
and µ(bn,b−n) =

xn(bn)∑
m=1

(vn,m − bn,m) . (1)

respectively. Here, b−n,m represents the m-th smallest bid among the M largest bids of all other

bidders except bidder n. It should be noted that x(bn,b−n) denotes the number of units that agent

n receives in the auction. In the case of tied bids, we assume the use of an arbitrary, publicly

known deterministic tie-breaking rule, denoted as TieBreakn :R+M ×R−M → [M ], to determine

the allocation for agent n. This tie-breaking rule is incorporated into the allocation as x(bn,b−n) =∑M

m=1 1bn,m>b−n,m
+TieBreakn(bn,b−n), and we use this shorthand notation in Equation (1).

Online/Repeated Setting. Consider a repeated setting where the PAB auction is conducted

over T rounds. In this repeated setting, we will focus on the perspective of agent n ∈ [N ] and

remove additional indexing when it is evident from the context. For each auction round, agent n

has a fixed valuation profile represented by v= (v)m∈[M ] ∈ [0,1]+M , and their bid vector in the t-th

auction is denoted by bt = (btm)m∈[M ] ∈ [0,1]+M .1 Similarly, bt− = (bt−m)m∈[M ] ∈ [0,1]−M represents

the competing bids in round t. In each round, agent n receives xt
n(b

t) units and earns a utility of

µt
n(b

t), where:

xt
n(b

t) = x(bt,bt−) and µt
n(b

t) = µ(bt,bt−) . (2)

Recall that functions x and µ are defined in Equation (1). The goal of agent n is to choose a

sequence of bid vectors (bt)t∈[T ] that maximizes their total utility, given by
∑T

t=1 µ
t
n(b

t). However,

the main challenge is that the vectors bt−, representing the competing bids, are not known in

advance. Instead, they are revealed in an online manner. Consequently, agents must learn how to

bid optimally throughout the sequence of auctions, taking into account their previous allocations

Ht−1 = (xτ (bτ ))τ∈[t−1] and their valuation profile v. The performance of an agent’s learning strategy

is evaluated in terms of regret, which quantifies the difference between their expected utility using

their learning strategy and the optimal utility achievable with perfect knowledge of the competing

bidding vectors in hindsight:

Regret= max
b∈[0,1]+M

T∑
t=1

µt
n(b)−E

[
T∑

t=1

µt
n(b

t)

]
. (Continuous Regret)

Here, bt− can be selected by an adaptive adversary; i.e. an adversary who can select bt− as a function

of the entire auction history, which includes b1, . . . ,bt−1, but does not have access to the possible

1 In Section 9.9, we extend our results to the case of time-varying valuations.
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randomness when selecting bt. One example is when the other competitors are also behaving

according to no-regret learning algorithms. We note that it is known that the time averaged iterates

in the game dynamics induced by agents running no-regret learning algorithms converges to a coarse

correlated equilibrium (CCE), which have desirable revenue and welfare guarantees via smooth-

auction PoA analysis (de Keijzer et al. 2013b, Feldman et al. 2017). As few theoretical results are

known regarding the structure of CCE’s in PAB auctions, we hope our proposed algorithms and

experiments will provide useful insights in this direction. We will discuss this further in Section 7.

The benchmark, maxb∈[0,1]M
∑T

t=1 µ
t
n(b) used in the definition of continuous regret, is constructed

considering all possible bt− for every round t ∈ [T ], where in the hindsight optimal solution, the

bid vector can be chosen from any vector b ∈ [0,1]+M . However, in practice, bid vectors are often

restricted to a discretization of [0,1] denoted by B = (B1, . . . ,B|B|), where 0 =B1 < . . . < B|B| = 1.

For such cases, we define an analogous version of regret:

RegretB = max
b∈B+M

T∑
t=1

µt
n(b)−E

[
T∑

t=1

µt
n(b

t)

]
. (Discretized Regret)

In both the definitions of continuous and discretized regret, we henceforth implicitly assume that

bm ≤ vm for any m ∈ [M ]; that is, we have the bid vector b is subject to individual rationality

and overbidding is not allowed. Observe that the benchmark in defining RegretB is weaker than

that in Regret. Nevertheless, they are not too far from each other as we discuss in the following

sections. We wish to derive a learning algorithm that achieves an upper bound on Regret that

is polynomial in M and sub-linear in T . To do so, we consider the discretized setting, and bound

RegretB; an upper bound on Regret will be obtained by accounting for the discretization errors.

We consider two feedback structures: (i) full information and (ii) bandit. In the full information

setting, the agent’s allocation and the values of bt− are revealed after the end of each round, whereas

in the bandit setting, only the agent’s allocation is revealed.

3. Hindsight Optimal Offline Solution

In the offline setting, our goal is to determine agent n’s optimal fixed bidding strategy for the T

rounds of PAB auctions. Recall the following optimization problem with bid space B:

max
b∈B+M

T∑
t=1

µt
n(b) , (Offline)

where µt
n(b) (defined in Equation (2)) represents the utility of agent n in round t given bid vector

b and competing bids bt−. As mentioned earlier, the solution to this optimization problem serves as

a benchmark for evaluating the performance of online learning algorithms in the repeated setting.

Furthermore, it provides valuable insights for designing algorithms with polynomial time and space

complexity for the repeated setting.
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ALGORITHM 1: Offline(v,{bt−}t∈[T ])

Input: Valuation v for v ∈ [0,1]+M , Other bids {bt−}t∈[T ] for b
t
− ∈B−M .

Output: Optimal bid vector b∗ = argmaxb∈BMµT
n (b) and its corresponding utility.

Let WT+1
m (b)←

∑T
t=1 1b≥bt−m

(vm− b), b∈B,m∈ [M ], define UM+1(b)← 0, b∈B, and set b∗0 =max(B);

for m∈ [M, . . . ,1], b∈B :Um(b)←maxb′∈B;b′≤bW
T+1
m (b′)+Um+1(b

′);

for m∈ [1, . . . ,M ] : b⋆m← argmaxb≤b∗m−1
Um(b);

Return U1(max(B)) and b∗ = (b∗m)m∈[M ].

To solve Problem (Offline), we take advantage of the following decomposition:

T∑
t=1

µt
n(b) =

T∑
t=1

M∑
m=1

(vm − bm)1bm≥bt−m
=

M∑
m=1

T∑
t=1

(vm − bm)1bm≥bt−m
(3)

:=
M∑

m=1

T∑
t=1

wt
m(bm) :=

M∑
m=1

W T+1
m (bm) , (4)

where wt
m(b) = 1b≥bt−m

(vm − b) represents the utility in the t-th auction for winning the m-th item

with bid b, and W T+1
m (b) =

∑T

t=1w
t
m(b) represents the cumulative utility gained from winning the

m-th item with bid b across the T auctions. (Here, in wt
m(b), the same tie-breaking rule in Equation

(1) is applied). To solve Problem (Offline), we develop a polynomial-time DP scheme utilizing these

wt
m(b) and W T+1

m (b). In particular, for any m ∈ [M ] and any bid b ∈ B, let Um(b) be the optimal

cumulative utility of the agents from units m,m+1, . . . ,M over T auctions assuming that bids for

unit m is less than or equal to b.

We then have

Um(b) = max
b′≤b,b′∈B

{
W T+1

m (b′)+Um+1(b
′)
}

b∈B,m∈ [M ] and UM+1(b) = 0 b∈B . (5)

Algorithm 1 uses the aforementioned DP scheme to devise an optimal solution to Problem (Offline).

The following theorem, proven in Section 9.1, shows the optimality of Algorithm 1.

Theorem 3. Algorithm 1 returns the optimal solution to problem (Offline) with time and space

complexity of O(M |B|2) and O(M |B|) respectively.

This algorithm to solve the offline bid optimization problem enables us to compute the hindsight

optimal utility, which serves as a benchmark for evaluating the effectiveness of our online learning

algorithms. It is worth mentioning that we can represent our DP algorithm as an equivalent graph

with M layers, with |B| nodes in each. More precisely, we define the (offline) DP graph as follows:

1. DP nodes/states. There are M layers, each with |B| nodes in each, denoted by

{(m,b)}m∈[M ],b∈B.
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Figure 1 DP graph for problem (Offline): Bid optimization problem cast as a graph problem, for m = 2 and

|B| = 3 with B1 < B2 < B3. Node (m,b)—the node in the m’th layer with bid value b—has weight

WT+1
m (b).

2. DP edges. In this graph, there are only (directed) edges between two consecutive layers, i.e.,

from layer m to layer m+ 1 for any m ∈ [M − 1]. In particular, node (m,b) only has an edge to

node (m+1, b′) for b′ ≤ b and if b′ ≤ vm+1, b≤ vm.

3. DP weights.We define the weight of node/state (m,b) to beW T+1
m (b) =

∑T

τ=1 1b≥bτ−m
(vm−b).

For the online setting, we also note that we can define the DP graph at time t, as opposed to

T , by setting W t
m(b) =

∑t−1

τ=1 1b≥bτ−m
(vm − b). This allows us to construct algorithms for the full

information and bandit settings by taking advantage of the structure of the DP graph to enhance

efficiency and optimize storage of necessary computations.

4. Decoupled Exponential Weights Algorithms

In this section, we present our first algorithm for learning in the online setting. In particular, we

construct a decoupled version of the Exponential Weights algorithm which circumvent the large

space and time complexity of maintaining and updating the sampling distributions of all possible

bid vectors. Our algorithms instead sequentially sample a singular bid value from each layer of our

DP graph such that the probability of sampling a particular vector of bids bt is precisely equal to

the probability of the exponential weights algorithm selecting bt.2

In the following sections, we provide a description of our algorithm in both the full information

and the bandit settings. It is important to note that our decoupled exponential weights algorithm

achieves regret that is sub-optimal by a factor of O(
√
M). Nonetheless, we present an alternative

regret optimal algorithm based on OMD in a subsequent section. Despite this, our decoupled expo-

nential weights algorithm remains practical as it does not necessitate solving a convex optimization

problem at each time step t∈ [T ].

2 In Section 9.9, we present a generalization of our decoupled exponential weights algorithm to the setting with time
varying valuations, where the valuations are drawn from some known, finite support distribution Fv.
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4.1. Full Information Setting

Now let us focus on learning optimal bidding in an online fashion with full information feedback.

One straightforward approach in this context is to apply the exponential weights algorithm (Lit-

tlestone and Warmuth 1994) to the entire set of bid vectors. This algorithm guarantees per-round

rewards within the range of [−M,M ]. However, the challenge lies in the exponentially large bid

space B+M . Tracking and updating weights for all possible bid vectors naively would lead to a

non-polynomial time and space complexity. Although this approach achieves a small regret of

O(M
3
2

√
T log |B|), we need a more efficient solution with a polynomial time and space complexity.

To do so, we leverage the DP scheme developed in Section 3. By utilizing the DP graph and

the information it provides about bid vector utilities, we can effectively mimic the exponential

weights algorithm without explicitly tracking weights for every bid vector. In Algorithm 2, instead

of associating weights to each possible bid vector, we associate weights with each (m,b) pair for

any m ∈ [M ] and b ∈ B. These weights are then updated via variables St
m(b) for b ∈ B,m ∈ [M ],

which are inspired by the DP scheme. For any round t, we define

St
m(b) = exp(ηW t

m(b))
∑

b′
m+1:M

∈B+(M−m),b′m+1≤b′m=b

exp(η
M∑

m′=m+1

W t
m′(b′m′))

= exp(ηW t
m(b))

∑
b′∈B;b′≤b

Sm+1(b
′) .

Here, η > 0 is the learning rate of the algorithm and we recall that W t
m(b) =

∑t−1

τ=1w
τ
m(b) is cumu-

lative utility gained across the first t − 1 auctions from the winning the m’th item with bid b,

respectively. Computing St
m(·) is done in step Compute−Sm of the algorithm. In step Sample−b,

the bid vector is then sampled according to St
m’s subject to bid monotonicity. To disallow overbid-

ding, we initialize weights W 0
m(b) =−∞ for all m∈ [M ], b∈B such that b > vm.

The concept of utility decoupling shares similarities with solutions used in combinatorial ban-

dits, tabular reinforcement learning (Chen et al. 2013, Zimin and Neu 2013), and problems such as

shortest path algorithms involving weight pushing or path kernels (Takimoto and Warmuth 2003,

Koolen et al. 2010). These methods are employed to solve variants of the shortest path or maxi-

mum weight path problems, where costs or weights are associated with edges rather than nodes.

By exploiting the graph structure and the linearity of utilities with respect to the weights of each

edge, these algorithms efficiently compute path weights based on edge weights, similar to how our

algorithm computes path weights based on node weights. In addition to investigating a fundamen-

tally different problem, the key distinction is that our approach considers weights associated with

nodes instead of edges. In our setting, the reward associated with selecting bid b′ in slot m+1 is

independent of selecting bid b≥ b′ in slot m. This allows us to get an improved regret bound and
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ALGORITHM 2: Decoupled Exponential Weights - Full Information
Input: Learning rate 0< η < 1

M
, v ∈ [0,1]+M .

Output: The aggregate utility
∑T

t=1 µ
t
n(b

t)

W 0
m(b)← 0 for all m∈ [M ], b∈B such that b≤ vm; else W 0

m(b)←−∞;

bt0←maxB, and St
M+1(minB) = 1 for any t∈ [T ];

for t∈ [1, . . . , T ]: do
Recursively Computing Exponentially Weighted Partial Utilities St;

for m∈ [M, . . . ,1], b∈B : St
m(b)← exp(ηW t

m(b))
∑

b′≤b S
t
m+1(b

′). \\ Compute−Sm;

Determining the Bid Vector bt Recursively;

for m∈ [1, . . . ,M ], b≤ btm−1 : b
t
m← b with probability

St
m(b)∑

b′≤bt
m−1

St
m(b′) ; \\ Sample− b;

Observe bt− and receive reward µt
n(b

t);

Update Weight Estimates ;

for m∈ [M ], b∈B :W t+1
m (b)←W t

m(b)+ (vm− b)1b≥bt−m
if b≤ vm; else W t+1

m (b)←−∞;

end

Return
∑T

t=1 µ
t
n(b

t)

save a factor of |B| in terms of time and space complexity. Instead of storing and updating weights

for O(M |B|2) possible (m,b, b′) slot-value-next value triplets, we only need to handle O(M |B|)

possible (m,b) unit-bid pairs.

The following statement is the main result of this section.

Theorem 4 (Decoupled Exponential Weights: Full Information). With η =

Θ(
√

log |B|
MT

), Algorithm 2 achieves (discretized) regret O(M
3
2

√
T log |B|), with total time and space

complexity polynomial in M , |B|, and T . Optimizing for discretization error from restricting the

bid space to B, we obtain a continuous regret of O(M
3
2
√
T logT ).

It is worth noting that both the time and space complexity exhibit polynomial scaling with M

and |B|. Given that M can be large in practical scenarios, such as carbon emissions license auctions

or electricity markets, it becomes crucial to minimize the dependence on M .

4.2. Bandit Feedback Setting

We extend Algorithm 2 for the bandit feedback setting. In the bandit feedback setting, the bidder’s

allocation and utility are not available for all possible bid vectors, unlike in the full information

setting. Instead, the agent only observes their utility for the submitted bid vector. To handle this,

we use inverse probability weighted (IPW) node weight estimates ŵt
m(b) instead of the node weights

wt
m(b) in Algorithm 2. This adaptation results in a regret of O(M

3
2

√
|B|T log |B|), as shown in

Theorem 5. This regret includes an additional factor of
√

|B| compared to the full information

setting.
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ALGORITHM 3: Decoupled Exponential Weights - Bandit Feedback
Input: Learning rate 0< η < 1

M
, v ∈ [0,1]+M

Output: The aggregate utility
∑T

t=1 µ
t
n(b

t)

Ŵ 0
m(b)← 0 for all m∈ [M ], b∈B such that b≤ vm; else Ŵ 0

m(b)←−∞.;

bt0←maxB, and Ŝt
M+1(minB) = 1 for any t∈ [T ];

for t∈ [1, . . . , T ]: do
Recursively Computing Exponentially Weighted Partial Utilities St;

for m∈ [M, . . . ,1], b∈B : Ŝt
m(b)← exp(ηŴ t

m(b))
∑

b′≤b Ŝ
t
m+1(b

′) \\ Compute− Ŝm;

Determining the Bid Vector bt Recursively;

for m∈ [1, . . . ,M ], b≤ btm−1 : b
t
m← b with probability

Ŝt
m(b)∑

b′≤bt
m−1

Ŝt
m(b′)

; \\ Sample− b;

Observe bt− and receive reward µt
n(b

t);

Recursively Computing Probability Measure q;

qt1(b)←
Ŝt
m(b)∑

b′∈B Ŝt
m(b′)

for all b∈B;

for m∈ [2, . . . ,M ], b∈B : qtm(b)←
∑

b′≥b

qtm−1(b
′)Ŝt

m(b)∑
b”≥b′ Ŝ

t
m(b”)

for all b∈B;

Update Weight Estimates;

for m∈ [M ], b∈B : Ŵ t+1
m (b)← Ŵ t

m(b)+ (1−
1−(vm−b)1b≥btm

qtm(b)
1btm=b) if b≤ vm; else Ŵ t+1

m (b)←−∞;

end

Return
∑T

t=1 µ
t
n(b

t)

The structure of Algorithm 3 is similar to that of Algorithm 2. Both algorithms maintain node

weight estimates, compute the sum of exponentiated partial bid vector estimated utilities recur-

sively, and sample bids for each unit recursively proportional to these summed exponentiated

utilities. Specifically, Algorithm 3 samples bid vectors with probabilities proportional to the sum

of the cumulative estimated utility Ŵ t
m(b) =

∑t−1

τ=1 ŵ
τ
m(b) over each unit-bid value pair, where

ŵt
m(b) = 1−

1−(vm−b)1
b≥bt−m

qtm(b)
1btm=b and qtm(b) is the (unconditional) probability that bid b is chosen

for unit m at time t.

Note that this bid vector utility estimator is a slightly different estimator than the one used in the

standard Exp3 algorithm (See Chapter 11 of Lattimore and Szepesvári (2020)). In particular, the

standard IPW estimator ŵt
m(b) =

vm−b
qtm(b)

1b=btm>bt−m
, while unbiased, can be unboundedly large when

qtm(b) approaches 0, whereas our proposed estimator is bounded above by 1. As a consequence, we

have that µ̂t
n(b) is upper bounded by M , and therefore = ηµ̂t(b) = η

∑M

m=1 ŵ
t
m(b) is upper bounded

by 1 for η < 1
M
, which we crucially use in the proof.

The primary difference in the implementation of Algorithm 3 as compared to Algorithm 2 is

that we require additional steps in order to obtain unbiased node weight estimates Ŵ t+1
m (b) =∑t

τ=1 ŵ
τ
m(b) which we compute using an IPW estimator. In order to do this, we must compute

qtm(b)—the probabilities of selecting bid b at slot m.

Theorem 5 (Decoupled Exponential Weights: Bandit Feedback). With η =

Θ(
√

log |B|
M |B|T ) such that η < 1

M
, Algorithm 3 achieves (discretized) regret O(M

3
2

√
|B|T log |B|), with
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total time and space complexity polynomial in M , |B|, and T . Optimizing for discretization error

from restricting the bid space to B, we obtain a continuous regret of O(M
4
3T

2
3
√
logT ).

5. Online Learning Algorithms: Mirror Descent

In this section, we propose our second online learning algorithm. Instead of mimicking the expo-

nential weights algorithm, we reformulate the problem as online linear optimization over node

probabilities in our DP graph. We solve this using OMD and construct a policy that sequentially

samples bids based on these probabilities. We first present the regret analysis for the bandit setting,

followed by the full information setting. We provide a single algorithm for both settings, with only

one line changing based on the feedback structure. Our OMD algorithm is regret optimal in both

feedback structures (up to a factor of
√

|B| log |B|). However, it requires solving a convex optimiza-

tion problem at each iteration, which may slow it down in practice. Nonetheless, this algorithm is

preferred when prioritizing regret optimality over computational complexity.

5.1. Algorithm Statement

Recall that in the DP graph, we have M layers, where in each layer there are |B| nodes and |B|2

edges. Given the structure of the DP graph, one idea is to maintain some policy π : [M ]×B×B→

[0,1] which induces a family of probability measures ρ : [M ]×B×B→ [0,1] over the edges in the

DP graph. In particular, let π((m,b), b′) = P(bm+1 = b′ | bm = b) be the probability that the agent

selects bid b′ for slot m+1 conditional on having already selected bid b for slot m. Further, define

ρ((m,b), b′) = P(bm = b, bm+1 = b′) as the unconditional probability that agent selects bids b and b′

for slots m and m+ 1, respectively. Following this idea, one can transform the bid optimization

problem as an equivalent online linear optimization (OLO) problem over the space of possible ρ,

which we will show in the following section. However, this approach would lead to an algorithm

with sub-optimal regret of O(M |B|
√
T log |B|) as it fails to capture the additional structure within

the DP graph; cf. (Chen et al. 2013, Takimoto and Warmuth 2003, Zimin and Neu 2013). We show

later that it is possible to improve this regret by a factor of
√

|B|.

In this section, as our main contribution, instead of maintaining probability measures ρ over the

edges in the DP graph, we maintain probability measures q over nodes. This idea is based on an

important observation that, in the DP formulation, the weight of a path depends only on the nodes

traversed and not the edges. In other words, regardless of the value of bm, selecting the edge from

(m,bm) to (m+1, bm+1) at round t always yields the same utility wt
m+1(bm+1). We then construct

some policy π that generates the desired node probability measures q, where there may be many

such choices of π, though we argue the specific choice will not affect the regret. Consequently, we

can reduce the higher dimensional problem of regret minimization over policies to the simpler one

of regret minimization over node measures.
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ALGORITHM 4: OMD - Bid Optimization in Multi-Unit Pay as Bid Auctions
Input: Learning rate η > 0, Valuation v ∈ [0,1]+M

Output: The aggregate utility
∑T

t=1 µ
t
n(b

t).

π0((m,b), b′)← 1
|{b”∈B:b”≤b,b”≤vm+1}|

for all m∈ [M ], b≥ b′ ∈B, b′ ≤ vm+1. Let q
0 ∈ [M ]×B→ [0,1] be the

corresponding unit-bid value pair occupancy measure;

for t∈ [T ]: do
Determining the Bid Vector bt recursively. Set b1 to b∈B with probability qt1(b);

for m∈ [1, . . . ,M − 1], b∈B : bm+1← b with probability πt((m,bm), b);

Receive reward µt
n(b

t) =
∑M

m=1w
t
m(btm) and observe wt

m(btm) where wt
m(b) = (vm− b)1b≥bt−m

;

Update Reward Estimates;

for m∈ [M ], b∈B : ŵt
m(b)← wt

m(b)

qt−1
m (b)

1b=btm
if Bandit Feedback, ŵt

m(b)←wt
m(b) if Full Information;

Determining Probability Measure qt over any unit-bid value pair (m,b) Set

qt← argminq∈Qη⟨q,−ŵt⟩+D(q||qt−1) ,

where Q is as in Equation (6) and D(q||q′) =
∑

m∈[M ],b∈B qm(b) log qm(b)
q′m(b)

− (qm(b)− q′m(b)).

Convert qt to Policy πt;

Compute any feasible solution πt to constraints qtm(b) =
∑

b′≥b q
t
m(b′)πt((m− 1, b′), b) and∑

b”≤b π
t((m,b), b”) = 1 for all m∈ [M ], b∈B.

end

Return
∑T

t=1 µ
t
n(b

t).

Algorithm Summary. Our algorithm (Algorithm 4) consists of four steps. First, we recur-

sively sample bt according to the policy πt. Second, we compute node utility estimates ŵt
m(b),

either as the true loss wt
m(b) in the full information setting or the inverse probability weighted

version wt
m(b)

qt−1
m (b)

1b=btm
in the bandit setting. Third, we optimize the negentropy-regularized expected

estimated utility with respect to the probability measure over states qt, using OMD or Follow-the-

Negentropy-Regularized-Leader updates. We show how this update can be efficiently computed by

projecting the unconstrained optimizer of the regularized utility to the feasible space of q, denoted

by Q, where the set Q

Q=
{
q ∈ [0,1]M×|B| :

∑
b∈B

qm(b) = 1,
∑
b≤b′

qm+1(b)≥
∑
b≤b′

qm(b)∀b, b′ ∈B,m∈ [M ]
}
. (6)

consists of probability distributions over bids satisfying certain stochastic dominance constraints

which reflect the bid monotonicity constraints. That is, under Q, qm+1 stochastically dominates

qm for all m∈ [M −1]. Fourth, we convert qt to a corresponding policy representation πt, ensuring

that a feasible solution πt exists as long as qt ∈Q.

We next discuss the main ideas and provide insights regarding our algorithm design.

Main Idea: Using the DP formulation to reduce our problem to online linear opti-

mization. To design our algorithm, we observe that our DP formulation allows us to reduce the
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bidding problem to OLO over the space of possible node probability measures q. Of course, we

must justify why it is reasonable for our optimization procedure to only consider node probability

measures instead of the larger space of possible policies π. Recall that the reward at round t for

bidding b is given by the sum of utilities of unit-bid values µt
n(b) =

∑M

m=1w
t
m(bm). We then take

expectations over the bid vector b, sampled from the following policy π which induces probability

measures q1, . . . ,qM over bid values; i.e., qm(b) = Pb∼π(bm = b):

Eb∼π [µ
t
n(b)] =

M∑
m=1

Eb∼π [w
t
m(bm)] =

M∑
m=1

Ebm∼qm [wt
m(bm)] =

M∑
m=1

∑
b∈B

qm(b)w
t
m(b) = ⟨q,wt⟩ . (7)

Here, the last term is an inner product over the space [M ]×B, and in the first equation, we invoke

the linearity of bid vector utilities on its unit-bid value utilities. The second equality is justified

because we are taking an expectation over possible bid vectors b, as the qm’s are by definition

the probabilities of selecting bid b and unit m. This addresses the question of why we concern

ourselves only with the node probability measures q when optimizing, as the regret depends only

on q, rather than the associated policy. In other words, for a fixed q, any policy π that induces

node probability measures q will yield the same expected utility. Intuitively, this reflects the fact

that the utilities are associated with nodes and not edges in our DP graph.

Letting qt denote the probability measures induced by the (condensed) policy at round t, the

instantaneous utility at round t is given by ⟨q,wt⟩. Seeing this inner product begs use of OLO

algorithms. However, most OLO algorithms require convexity of the action space which is, in our

setting, the space of possible q. To show that this space is convex, we invoke the following lemma.

Lemma 1 (Q-Space Equivalence). Let

Π=
{
π ∈ [0,1]M×|B|×|B| : π((m,b), b′) = 0 ∀b′ > b,m∈ [M ],

∑
b′≤b

π((m,b), b′) = 1,m∈ [M ]
}

denote the space of policies on our DP graph. With a slight abuse of notation, for any π ∈Π, define

q(π) = {q∈ [0,1]M×|B| : ∀b∈B, q1(b) = π((0, b0), b), qm+1(b) =
∑
b′∈B

qm(b
′)π((m,b′), b),m∈ [M − 1]}

as the node probabilities induced by π. Here, b0 =maxB. Let QΠ =∪π∈Πq(π). Then, QΠ is equivalent

to the set Q where Q is defined in Equation (6).

At a high level, the proof requires constructing a bijection between elements of QΠ and Q.

Showing that q ∈ QΠ implies q ∈ Q follows straightforwardly by applying the linear transform q

to the π associated with q. The reverse direction requires a careful construction of a sequence of

nested, non-empty subsets of Π that satisfy the qm+1(b) =
∑

b′∈B qm(b
′)π((m,b′), b) constraints.
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Lemma 1 establishes that during the execution of Algorithm 4, we can focus on the node prob-

abilities in set Q without loss of generality. We recall that within Q, the stochastic dominance

conditions are enforced solely over node probabilities across layers. In other words, when determin-

ing qt in Algorithm 4, it is sufficient to consider the feasible set restricted to Q, which is a convex

set as Q is a polyhedron.

Now, we argue that we only need to consider optimizing over Q as opposed to Π, as the regret

can be rewritten strictly in terms of q, independently of the corresponding π.

Lemma 2. Any sequence of policies π1, . . . ,πT over our DP graph with associated node proba-

bility measures q1, . . . ,qT has discretized regret RegretB =maxq∈Q
∑T

t=1⟨q− qt,wt⟩. Here, wt =

{wt
m(b)}m∈[M ],b∈B represents vector of the round t rewards for all possible (m,b) unit-bid value pairs.

Having shown convexity of our action space and the mapping to an equivalent OLO problem,

we are ready to state the key result for Algorithm 4, for the bandit setting.

Theorem 6 (Online Mirror Descent: Bandit Feedback). With η = Θ(
√

log |B|
|B|T ), Algo-

rithm 4 achieves (discretized) regret O(M
√

|B|T log |B|), with total time and space complexity poly-

nomial in M , |B|, and T . Optimizing for discretization error from restricting the bid space to B,
we obtain a continuous regret of O(MT

2
3 ).

Under full information, we recover the regret bound of Algorithm 2 by replacing the node weight

estimates with the true weights.

Corollary 1 (Online Mirror Descent: Full Information). With η = Θ(
√

log |B|
T

), Algo-

rithm 4 achieves (discretized) regret O(M
√

T log |B|), with total time and space complexity poly-

nomial in M , |B|, and T . Optimizing for discretization error from restricting the bid space to B,
we obtain a continuous regret of O(M

√
T logT ).

6. Regret Lower Bound

We remark that our OMD algorithms, under both full information and bandit settings, were

designed to be robust to adversarial environments and incur discretized regret linear in M . In this

section, we show that this is the best one can do, even in the stochastic setting. More specifically,

we construct a corresponding (discretized) regret lower bound for our online bid optimization prob-

lem. At a high level, we will construct two bid vectors with nearly optimal expected utility under

stochastic highest other bids. We derive the precise distribution of highest other bids and, using

Le Cam’s method, show that no algorithm in the full information or bandit feedback setting can

learn the optimal bid vector quickly enough to avoid incurring O(M
√
T ) regret.

Theorem 7. Under the full information setting, the discretized regret is lower bounded with

RegretB ∈Ω(M
√
T ). This implies an equivalent regret lower bound in the bandit feedback setting.
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We remark that our regret lower bound matches our upper bound for the OMD algorithm in the

full information setting (up to a
√
log |B| factor), as well as in the bandit setting up to a factor of√

|B| log |B| factor.

7. Experiments

In our experiments, we simulate the market dynamics induced by our learning algorithms; see the

performance of our algorithms under a stochastic setting in Section 9.7.3. To better give context

into the meaning of these experiments, we briefly discuss the notions of coarse correlated equilibria.

We also provide specifics as to the slight modifications made in our algorithms to improve its

empirical performance.

Coarse Correlated Equilibrium (CCE). In our experiments, we simulate the market dynam-

ics in which every agent behaves according to our algorithms. This will allow us to obtain some

insight into the structure, welfare, and revenues of the PAB CCEs recovered by our algorithms.

CCEs are solution concepts that generalize Nash equilibria by allowing for dependence between

bidder strategies. It is well known that the time-averaged behavior of agents running no-regret

learning algorithms converges to a CCE and that these CCEs possess strong welfare and revenue

guarantees in smooth games, such as PAB auctions Syrgkanis and Tardos (2012), de Keijzer et al.

(2013a), Roughgarden (2015), Roughgarden et al. (2017), Feldman et al. (2017). While there are

some limiting results describing the efficiency, revenue, and structure of Bayes-Nash equilibria of

PAB auctions (Nautz 1995, de Keijzer et al. 2013a, Pycia and Woodward 2020), the CCEs have

eluded an analytic characterization. We conduct several simulations of market dynamics under

these no-regret learning algorithms to better understand the properties of these CCEs.

Algorithm Implementation. In our experiments, we run a slightly modified version of our

algorithms in the bandit feedback setting. We do this as the variance of the regret of our algorithms

is high, as the node weight estimators normalize over small probabilities qtm(b). To mitigate the

effect of such normalization, we use the implicit EXP3-IX estimator as described in (Neu 2015,

Lattimore and Szepesvári 2020). Under this estimator, rather than reward estimate ŵt
m(b

t
m) of

selecting bid btm for unit m at time t by qtm(b
t
m), we instead normalize it by qtm(b

t
m)+γ. That is, we

use node reward estimator ŵt
m(b) =

wt
m(b)

qtm(b)+γ
1b=btm

for specially chosen γ > 0 (see Section (9.7.1)) in

our OMD algorithm. (Note that in the standard K-armed bandit setting, despite being a biased

estimator, this algorithm still achieves the same sublinear expected regret guarantee with a smaller

variance.) Aside from this modified estimator, the remainder of the Algorithm 4 remains the same.

Experiments. To that end, we analyze the bidding behavior of multiple learning agents and

the induced market dynamics under full information with Algorithm 2 and under bandit feedback

with Algorithm 4 (see Section 7.1). Note that we omit the bandit feedback decoupled exponential
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Figure 2 Time averaged bids under market dynamics for the setting described in Section 7.1. The left

(resp. right) figure corresponds with the full information setting (resp. bandit setting). In this spe-

cific instance, valuations are given by v1 = [0.89,0.7,0.55,0.51,0.29], v2 = [0.89,0.44,0.2,0.12,0.05], v3 =

[0.67,0.64,0.45,0.27,0.02].

weights (Algorithm 3) as its regret guarantees are dominated by the OMD variant both theoretically

and empirically (See Section 9.7.3). Similarly, we omit the full information OMD algorithm as

the convex optimization step is prohibitively computationally expensive, considering the marginal

improvement in regret. We additionally compare the PAB market dynamics to the uniform pricing

dynamics recovered under the no-regret learning algorithms described in Brânzei et al. (2023).

7.1. PAB Market Dynamics

In this experiment, we let there be N = 3 bidders, M =M = 5 items, all valuations drawn from

Unif(0,1) which are then sorted, and the bid space is B = { i
20
}i∈[20], with higher indexed bidders

receiving tie-break priority. We run the market dynamics where each agent is using the decoupled

exponential weights algorithm under full information (Algorithm 2, with T = 104, η =
√

log |B|
T

=

0.036) and the OMD algorithm under bandit feedback (Algorithm 4 with T = 105 and η=
√

log |B|
|B|T =

0.0008).

Bids Dynamics. In Figure 2, we analyze the bids over time of the market dynamics induced

when all agents bid according to our Algorithms 2 and 4. We observe that the winning bids (and

largest losing bid) converge to approximately the same value. Informally, while the converged

prices are slightly different, our learning algorithms induce market dynamics under which prices

are almost the same for all the bidders. (See also the left plot of Figure 8 for a similar observation.)

Utilities Dynamics. In Figure 3, we analyze the time averaged utility of the agent in the market

dynamics induced when all agents bid according to Algorithm 2 under the full info setting and

Algorithm 4 under the bandit setting. In both the full information and bandit feedback settings, the

utilities converge to the optimal utilities overtime; albeit significantly faster in the full information

setting. As a consequence, the algorithms converge to a welfare optimal CCE. We also note that
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Figure 3 Time averaged utilities under market dynamics for the setting described in Section 7.1. The left

(resp. right) figure corresponds with the full information setting (resp. bandit setting). In this spe-

cific instance, valuations are given by v1 = [0.89,0.7,0.55,0.51,0.29], v2 = [0.89,0.44,0.2,0.12,0.05], v3 =

[0.67,0.64,0.45,0.27,0.02].

the hindsight optimal utility for each bidder differs across the two settings, potentially due to the

different prices converged to. One interesting observation is that the shape of the regret curves are

similar for both settings, indicating that the agents learned similar sets of strategies under, albeit

more slowly and with higher variance in the bandit feedback setting.

Distribution of Revenues. In Figure 4, we compare the distribution of per-item time averaged

revenue under Algorithm 2 for the full information setting and Algorithm 4 for the bandit setting.

Here, we normalize by either the per-item average welfare or by the M ’th and M + 1 largest

valuations (i.e., v(M) and v(M+1)). We also plot both the time averaged and last iterate versions to

see that the bids did indeed converge last-iterate wise. We note that while the revenues are generally

lower in the bandit setting, the distribution of revenue of both algorithms generally maintain the

same shape and it is not too heavy tailed towards low revenue. In fact, in most cases, the revenue

returned is at least half of the maximum welfare. This is hopeful considering that the impact of

strategizing and bid shading is large as there are a small number N = 3 agents. We further note

that revenue recovered is actually smaller than both v(M) and v(M+1). This suggests that in some

cases, there exists an agent whose valuation exceeds the clearing price, but does not actually learn

to win this item; as they have foregone exploring this possibility in order to lower their payments

for units they are already winning. Indeed, in several instances, some agents fail to learn their

hindsight optimal bid and incur large regret. 3

Welfare and Revenue Over Time. In Figure 5, we further compare the distribution of welfare

and revenue over time showing the 10th, 25th, 50th, 75th, and 90th percentiles in different shades

under Algorithm 2 and Algorithm 4. We normalize both welfare and revenue by the maximum

3 We note that the occasional non-convergence to 0 regret does not contradict our results as our algorithms only
guarantee convergence of the expected regret. See Section 11.5 in Lattimore and Szepesvári (2020).
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Figure 4 Distribution of revenue for the setting described in Section 7.1. The left (resp. right) figure corresponds

with the full information setting (resp. bandit setting).

Figure 5 Welfare and revenue over time under the market dynamics for the setting described in Section 7.1.

The left (resp. right) figure corresponds with the full information setting (resp. bandit setting).

.

possible welfare (sum of the largest M valuations) in each instance. In comparison to the full

information version, it takes longer for the bidders to settle to an approximately welfare maximizing

steady state in the bandit setting. Furthermore, the revenue at the recovered steady state under

bandit feedback is lower than that of the full information setting, albeit with lower variance.

Impact of Competition. In Figure 6, we compare the distribution of welfare and revenue over

time showing the 10th, 25th, 50th, 75th, and 90th percentiles in different shades under Algorithm 4

for the bandit setting for a varying number of market participants N ∈ {12,48} with T = 104.

Compared with the previous experiment with N = 3 bidders, we see that as N grows larger, there is

less incentive for agents to bid strategically as there is more competition, and thus, the agents’ bids,

welfare, and revenue converge more quickly. Additionally, the increased competition also improves

the revenue, as expected.
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Figure 6 Effect of competition under the market dynamics for the setting described in Section 7.1. In the left

figure, the number of agents is 12 while in the right one, it is 48. In both figures, we run Algorithm 4.

.

7.2. PAB vs. Uniform Price Auction Market Dynamics

In the following set of experiments, we compare the bids, welfare, and revenue of the no-regret

market dynamics recovered in the uniform price auction (using the same parameterizations N =

3,M = 5, |B|= 20, T = 105 and valuations as for the PAB learning algorithms). More specifically, we

implement the no-regret learning algorithm for the uniform price auction as described in Brânzei

et al. (2023), with the payment equal to the smallest winning bid. (An alternative approach would

be to set the payment equal to the largest losing bid. However, as argued in Burkett and Woodward

(2020), Brânzei et al. (2023), this strategy yields low revenue under Nash Equilibria. This insight

has inspired us to set the payment equal to the smallest winning bid in our implementation of

uniform price auctions.)

In our implementation of these algorithms, we impose no-overbidding constraint just as we had

in the PAB setting, which prevents the learning dynamics from converging to a non-IR equilibrium.

Similarly, we also use the EXP3-IX based estimator in the bandit uniform price algorithm to be

consistent with the PAB implementation. In Sections 9.7.3 and 9.8, we run additional experiments

that provide more detail regarding the regret rates, bid dynamics, and the evolution of revenue

and welfare of the uniform price auction.

Time Averaged Welfare and Revenue. In Figure 7, we present a direct comparison of

the time-averaged welfare and revenue (normalized by maximum welfare) between the PAB and

uniform price auctions, considering both full information and bandit feedback scenarios. The plot

includes the median (represented by a horizontal line), mean (indicated by an ‘x’), 25th and 75th

percentiles, as well as the minimum and maximum values for welfare and revenue. Our observations

reveal that in both full information and bandit feedback settings, the uniform price dynamics

yield slightly higher welfare but significantly lower revenue compared to the PAB dynamics. This
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Figure 7 Welfare (left) and revenue (right) comparisons between the PAB and Uniform Price auctions, under

both full information and bandit feedback. We use the setting described in Section 7.2.

disparity is further amplified in the bandit feedback scenario. Specifically, in bandit feedback, the

mean welfare for the uniform price auction is 0.980 (with a standard deviation of 0.028), while the

PAB mechanism achieves a mean welfare of 0.952 (with a standard deviation of 0.049). Similarly,

the mean revenue for the uniform price auction is 0.481 (with a standard deviation of 0.194),

whereas the PAB mechanism achieves a mean revenue of 0.626 (with a standard deviation of 0.091).

It is worth noting that the variance in uniform price revenue under bandit feedback is particularly

concerning, as the revenue can be as low as 8% of the maximum welfare, compared to 39% under

the PAB mechanism. Conversely, the minimum welfare achieved under bandit feedback for the

PAB mechanism is 77%, while the uniform price auction attains a minimum welfare of 86%.

The slight decrease in welfare observed in PAB can be attributed to the increased incentive for

bidders to understate their bids in order to reduce their payment. In PAB, the payment and utility

for each individual unit directly depend on the bid placed on that specific unit. On the other hand,

in the uniform price auction, the payment is determined by the lowest winning bid, and there

is consequently less motivation to manipulate higher bids since they are less correlated with the

payment. This observation aligns with findings from other variants of discriminatory versus uniform

pricing, such as generalized first and second price auctions. Conversely, the improved stability

and higher revenue observed in PAB can be attributed to the ability of bidders to strategically

shade their bids on a per-unit basis. In PAB, bidders have more direct control over their payments

compared to the uniform price auction, where the payment per unit can fluctuate significantly

depending on a single clearing price. This increased control allows bidders to optimize their bids

strategically and leads to enhanced stability and higher revenue in the PAB mechanism.

Convergence of Bids. In Figure 8, we compare the ratios of (i) the largest to the smallest

winning bid and (ii) the smallest winning bid to the largest losing bid. We plot these ratios over

time for both the PAB and uniform price auctions, under bandit feedback only (we exclude full

information feedback as the differences in welfare and revenue are negligible). We make the crucial

observation that while both ratios converge to 1 (log2 1 = 0 in the plot) in the PAB auction, the
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Figure 8 We compare the ratios of the largest winning bid to the smallest winning bid and also the smallest

winning bid to the largest losing bid for the setting described in Section 7.1. The left (resp. right)

figure corresponds with the PAB dynamics (Uniform pricing dynamics).

.

ratio of the largest to smallest winning bid in the uniform price auction does not converge to 1.

The convergence of these ratios for the PAB setting indicate that the optimal bidding strategy

for the PAB auction is uniform bidding. In contrast, the non-convergence for the uniform price

setting suggests that the optimal bidding in the uniform price auction requires discriminatory

bidding (different prices for each unit). See our discussions in Section 1.2 regarding the practical

implications of this observation.

Furthermore, we observe that the ratio of the smallest winning to largest losing bids converges

noticeably more slowly under the uniform price auction. This slower convergence can be attributed

to the increased number of edge weights O(M |B|2) required to learn in the uniform price auction

as compared to the O(M |B|) node weights in the PAB auction.

8. Concluding Remarks

We have provided low-regret learning algorithms for PAB auctions in the full information and

bandit settings with corresponding polynomial time and space complexities. In particular, we utilize

our DP formulation and its equivalent graph representation to decouple the utility associated with

bidding bm = b for all m∈ [M ], b∈B. We derived two algorithms, one that mimics the exponential

weights algorithm and another based on OMD, both of which allowed us to achieve polynomial

(in M , |B|, and T ) regret upper bounds, as well as time and space complexities, despite the

combinatorially large bid space.

There are several intriguing avenues for future research that can be explored based on the current

work. A promising direction is to leverage the structure induced by bid monotonicity in PAB

auctions. Recent advancements in a simpler single-unit setting have demonstrated the efficacy of
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cross-learning between bids under certain feedback structures (Han et al. 2020a,b). It would be

intriguing to investigate the potential benefits of applying cross-learning techniques in our multi-

unit setting. By incorporating such methods, we can explore whether they can enhance our regret

bounds. Furthermore, inspired by our numerical results—where we show that the winning bids in

PAB market dynamics converge to the same value—we can explore the design of online learning

algorithms for the setting where bidders are restricted to a simplified bidding interface, wherein

they are only allowed to submit a single price and quantity for the units demanded rather than an

entire vector of bids.
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Bart de Keijzer, Evangelos Markakis, Guido Schäfer, and Orestis Telelis. 2013b. On the Inefficiency of

Standard Multi-Unit Auctions. CoRR abs/1303.1646 (2013). arXiv:1303.1646 http://arxiv.org/

abs/1303.1646

Yuan Deng, Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab Mirrokni. 2023. Multi-

channel Autobidding with Budget and ROI Constraints. arXiv e-prints (2023), arXiv–2302.

S. Deospotakis, R. Ravi, and A. Sayedi. 2021. First-Price Auctions in Online Display Advertising. Journal

of Marketing Research. Journal of Marketing Research 58(5) (2021), 888–907. https://doi.org/10.

1177/00222437211030201

Mahsa Derakhshan, Negin Golrezaei, and Renato Paes Leme. 2022. Linear program-based approximation

for personalized reserve prices. Management Science 68, 3 (2022), 1849–1864.

Mahsa Derakhshan, David M Pennock, and Aleksandrs Slivkins. 2021. Beating greedy for approximating

reserve prices in multi-unit VCG auctions. In Proceedings of the 2021 ACM-SIAM Symposium on

Discrete Algorithms (SODA). SIAM, 1099–1118.

Shahar Dobzinski and Noam Nisan. 2007. Mechanisms for Multi-Unit Auctions. In Proceedings of the 8th

ACM Conference on Electronic Commerce (San Diego, California, USA) (EC ’07). Association for

Computing Machinery, New York, NY, USA, 346–351. https://doi.org/10.1145/1250910.1250960

Miroslav Dud́ık, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, and Jennifer Wortman

Vaughan. 2017. Oracle-Efficient Learning and Auction Design. In FOCS.

EEX. 2023. EU ETS Auctions. (2023). https://www.eex.com/en/markets/environmental-markets/

eu-ets-auctions#:~:text=Bids%20are%20sorted%20in%20descending,selection%20according%

20to%20an%20algorithm

https://proceedings.mlr.press/v15/chu11a.html
https://proceedings.mlr.press/v15/chu11a.html
https://doi.org/10.1016/S0014-2921(97)00122-0
https://doi.org/10.1016/S0014-2921(97)00122-0
https://ideas.repec.org/p/pcc/pccumd/04mit.html
https://ideas.repec.org/p/pcc/pccumd/04mit.html
http://arxiv.org/abs/1303.1646
http://arxiv.org/abs/1303.1646
https://doi.org/10.1177/00222437211030201
https://doi.org/10.1177/00222437211030201
https://doi.org/10.1145/1250910.1250960
https://www.eex.com/en/markets/environmental-markets/eu-ets-auctions#:~:text=Bids%20are%20sorted%20in%20descending,selection%20according%20to%20an%20algorithm
https://www.eex.com/en/markets/environmental-markets/eu-ets-auctions#:~:text=Bids%20are%20sorted%20in%20descending,selection%20according%20to%20an%20algorithm
https://www.eex.com/en/markets/environmental-markets/eu-ets-auctions#:~:text=Bids%20are%20sorted%20in%20descending,selection%20according%20to%20an%20algorithm


30

Natalia Fabra, Nils-Henrik von der Fehr, and David Harbord. 2006. Designing Electricity Auctions. The

RAND Journal of Economics 37, 1 (2006), 23–46. http://www.jstor.org/stable/25046225

Giulio Federico and David Rahman. 2003. Bidding in an Electricity Pay-as-Bid Auction. Journal of Regu-

latory Economics (2003). https://link.springer.com/article/10.1023/A:1024738128115

Michal Feldman, Brendan Lucier, and Noam Nisan. 2017. Correlated and Coarse equilibria of Single-item

auctions. arXiv:1601.07702 [cs.GT]

Kenneth Garbade and Jeffrey Ingber. 2005. The Treasury Auction Process: Objectives, Structure, and Recent

Adaptations. (2005). https://ssrn.com/abstract=678301

Kira Goldner, Nicole Immorlica, and Brendan Lucier. 2019. Reducing Inefficiency in Carbon Auctions with

Imperfect Competition. https://doi.org/10.48550/ARXIV.1912.06428

Negin Golrezaei, Patrick Jaillet, and Jason Cheuk Nam Liang. 2020. No-regret learning in price competitions

under consumer reference effects. Advances in Neural Information Processing Systems 33 (2020),

21416–21427.

Negin Golrezaei, Patrick Jaillet, and Jason Cheuk Nam Liang. 2023a. Incentive-aware contextual pricing

with non-parametric market noise. In International Conference on Artificial Intelligence and Statistics.

PMLR, 9331–9361.

Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab Mirrokni. 2023b. Pricing against a Bud-

get and ROI Constrained Buyer. In International Conference on Artificial Intelligence and Statistics.

PMLR, 9282–9307.

Negin Golrezaei, Adel Javanmard, and Vahab Mirrokni. 2021a. Dynamic incentive-aware learning: Robust

pricing in contextual auctions. Operations Research 69, 1 (2021), 297–314.

Negin Golrezaei, Max Lin, Vahab Mirrokni, and Hamid Nazerzadeh. 2021b. Boosted second price auctions:

Revenue optimization for heterogeneous bidders. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining. 447–457.

Larence H. Goulder and Andrew R. Schein. 2013. Carbon Taxes versus Cap and Trade: A Critical

Review. Climate Change Economics 4 (2013). https://www.worldscientific.com/doi/10.1142/

S2010007813500103

ERBACH Gregor. 2023. Review of the EU ETS: Fit for 55. (2023).

Yanjun Han, Zhengyuan Zhou, Aaron Flores, Erik Ordentlich, and Tsachy Weissman. 2020b. Learning to Bid

Optimally and Efficiently in Adversarial First-price Auctions. https://doi.org/10.48550/ARXIV.

2007.04568

Yanjun Han, Zhengyuan Zhou, and Tsachy Weissman. 2020a. Optimal No-regret Learning in Repeated

First-price Auctions. https://doi.org/10.48550/ARXIV.2003.09795

http://www.jstor.org/stable/25046225
https://link.springer.com/article/10.1023/A:1024738128115
https://ssrn.com/abstract=678301
https://doi.org/10.48550/ARXIV.1912.06428
https://www.worldscientific.com/doi/10.1142/S2010007813500103
https://www.worldscientific.com/doi/10.1142/S2010007813500103
https://doi.org/10.48550/ARXIV.2007.04568
https://doi.org/10.48550/ARXIV.2007.04568
https://doi.org/10.48550/ARXIV.2003.09795


31

Zhao Haoyu and Chen Wei. 2020. Online Second Price Auction with Semi-Bandit Feedback under the Non-

Stationary Setting. Proceedings of the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020),

6893–6900. https://doi.org/10.1609/aaai.v34i04.6171

Jason Hartline, Darrell Hoy, and Sam Taggart. 2014. Price of Anarchy for Revenue. (04 2014).

Jason Hartline, Vasilis Syrgkanis, and Eva Tardos. 2015. No-Regret Learning in Bayesian Games. In Advances

in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-

nett (Eds.), Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/

3e7e0224018ab3cf51abb96464d518cd-Paper.pdf
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9. Appendix
9.1. Proof of Theorem 3: Offline Bid Optimization Algorithm

We give a proof of correctness of the offline bid optimization algorithm used to compute the hindsight optimal bid

vector across T rounds of PAB auctions. Our proof shows that the variables Um(b) are path weights of the optimal

partial bid vector with weights WT+1
m (b). Thus, U1(b) is the optimal bid vector and b∗m’s can be used to back out the

optimal bid vector recursively in polynomial time.

Proof of Theorem 3 By definition,

Um(b) = max
b≥bm≥...≥bM

M∑
m′=m

WT+1
m′ (bm′)

= max
b≥bm≥...≥bM

WT+1
m (bm)+

M∑
m′=m+1

WT+1
m′ (bm′)

=max
b′≤b

WT+1
m (b′)+Um+1(b

′) .

Since we have that UM (b) = WT+1
M (b) trivially correct from the base case, and the optimality of Um(b) follows

from induction. Consequently, optimality of b∗m follows from induction. The base case trivially holds as b∗1 =

argmaxb∈BU1(b). The recursive case also follows straightforwardly by definition of b∗m:

b∗m = argmaxb≤b∗m−1
Um(b) .

As b∗m−1 was optimal by the induction hypothesis, then b∗m must also be optimal.

We finish this proof by discussing the time and space complexity of Algorithm 1. Table U is of size O(M |B|), with
each entry requiring taking a maximum over O(|B|) terms, yielding time and space complexities of O(M |B|2) and

O(M |B|) respectively.

9.2. Proof of Theorems 4 and 5: Decoupled Exponential Weights Algorithm

We give the proofs of correctness, complexity analysis, and regret analysis for the decoupled exponential weights

algorithms for both the full information (Algorithm 2) and the bandit setting (Algorithm 3). Our proof comes in

5 parts. We first prove correctness of the bandit version of our algorithm. In particular, we show that defining

the node and bid vector utility estimates to be ŵt
m(b) = 1−

1−(vm−b)1
b≥bt−m

qtm(b)
1b=btm

and µ̂t(b) =
∑M

m=1 ŵ
t
m(bm), our

algorithm samples bid vector bt with probability proportional to exp(η
∑t−1

τ=1 µ̂
τ (b)) via the same recursive sampling

procedure as in Algorithm 2. In the second part and third parts, we derive a corresponding regret upper bound and

obtain the time and space complexities of our algorithm with bandit feedback. In the fourth part, we optimize the

continuous regret w.r.t. the selection of B. In the fifth part, we show how to extend our algorithm and results to the

full information setting.

Part 1: Algorithm Correctness. In this part of the proof, we argue that our choice of estimator is unbiased

and that Algorithm 3 samples bid vectors with the same probability that the exponential weights algorithm would

have, given the same node utility estimates ŵt
m(b). To show unbiasedness of ŵt

m(b), we have:

E
[
ŵt

m(b)
]
=E

[
1− 1−wt

m(b)

qtm(b)
1btm=b

]
=E

[
1−

1btm=b

qtm(b)
+

1btm=b ·wt
m(b)

qtm(b)

]
=wt

m(b) .

Now, it remains to show that our sampling procedure Sample− b w.r.t. Ŝt
m indeed samples bid vectors b with the

same probability as the exponential weights algorithm under weights µ̂t
n(b). In particular, we want to show that our

algorithm samples bid vectors bt with probability proportional to exp(η
∑t−1

τ=1 µ̂
τ
m(bm)) for any m∈ [M ]. This follows

from analyzing the dynamic programming variables that represent the sum of exponentiated (estimated) partial bid

vector utilities, Ŝ.
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In exponential weights, the bidder selects at round t+ 1 some action b with probability P t(b) proportional to∑t
τ=1 µ̂

t
n(b). Using our representation of µ̂t

n(b) as a function ŵτ
m(b), we have:

P t(b) =
exp(η

∑t−1
τ=1 µ̂

τ
n(b))∑

b′∈B+M exp(η
∑t−1

τ=1 µ̂
τ
n(b′))

=
exp(η

∑M
m=1 Ŵ

t
m(bm))∑

b′∈B+M exp(η
∑M

m=1 Ŵ
t
m(b′m))

.

Hence, we wish to construct a sampler that samples b with the above probability. Defining b0 =maxb∈B b, we begin

by decomposing the denominator as follows:∑
b∈B+M

exp(η

M∑
m=1

Ŵ t
m(bm)) =

∑
b1∈B,b1≤b0

∑
b2∈B,b2≤b1

. . .
∑

bM∈B,bM≤bM−1

exp(η

M∑
m=1

Ŵ t
m(bm))

=
∑

b1∈B,b1≤b0

exp(ηŴ t
1(b1))

∑
b2∈B,b2≤b1

exp(ηŴ t
2(b2)) . . .

∑
bM∈B,bM≤bM−1

exp(ηŴ t
M (bM )) .

Recall a key object Ŝt
m(b), which is the sum of exponentially weighted utilities of partial bid vectors b′m:M ∈

B+(M−m+1) over slots m, . . . ,M subject to bm = b.

Ŝt
m(b) = exp(ηŴ t

m(b))
∑

b′
m+1:M

∈B+(M−m),b′m+1≤b′m=b

exp(η
M∑

m′=m+1

Ŵ t
m′(b′m′)) (8)

= exp(ηŴ t
m(b))

∑
b′∈B;b′≤b

Ŝt
m+1(b

′) . (9)

With the trivial base case Ŝt
M (b) = exp(ηŴ t

M (b)), we can recover all of the exponentially weighted partial utilities

{Ŝt
m(b)}m∈[M ],b∈B given W t. Once we have computed {Ŝt

m(b)}m∈[M ],b∈B, we can sample b according to its exponen-

tially weighted utility exp(ηµ̂t
m(b)) by sequentially sampling each b1, . . . , bM .

Let P t
D(b) be the probability that our Algorithm 3 returns bid vector b∈B+M in round t. Recall that we sample b

by setting btm to b∈B, b≤ btm−1 with probability
Ŝt
m(b)∑

b′≤bt
m−1

Ŝt
m(b′)

. Hence, the probability of selecting b is the product

of m conditional probability mass functions (pmf’s) and we have

P t
D(b) =

M∏
m=1

Ŝt
m(bm)∑

b′≤bm−1
Ŝt
m(b′)

=

(
M−1∏
m=1

exp(ηŴ t
m(bm))

∑
b≤bm

Ŝt
m+1(b)∑

b′≤bm−1
Ŝt
m(b′)

) exp(ηŴ t
M (bM ))∑

b′≤bM−1
Ŝt
M (b′)

 .

Moving the exp(ηŴ t
m(bm)) outside of the product, we obtain:

P t
D(b) =

(
M−1∏
m=1

exp(ηŴ t
m(bm))

)(
M−1∏
m=1

∑
b≤bm

Ŝt
m+1(b)∑

b′≤bm−1
Ŝt
m(b′)

) exp(ηŴ t
M (bM ))∑

b′≤bM−1
Ŝt
M (b′)


=

(
M∏

m=1

exp(ηŴ t
m(bm))

)∑b≤bM−1
Ŝt
M (b)∑

b′≤b0
Ŝt
1(b

′)

 1∑
b′≤bM−1

Ŝt
M (b′)


=

∏M
m=1 exp(ηŴ

t
m(bm))∑

b′≤b0
Ŝt
1(b

′)
.

We now rearrange the last expression to see that our algorithm samples b with the same probability as the exponential

weights algorithm:

P t
D(b) =

∏M
m=1 exp(ηŴ

t
m(bm))∑

b≤b0
St
1(b)

=
exp(η

∑M
m=1 Ŵ

t
m(bm))∑

b′∈B+M exp(η
∑M

m=1 Ŵ
t
m(b′m))

= P t(b) .

Part 2: Regret Analysis. We are now ready to derive the regret upper bound on Algorithm 3. First, we show

that the bid vector utility estimators µ̂t(b) are both unbiased and have a finite upper bound. To show the upper

bound, we take expectation with respect to the bid vectors selected by our algorithm and observe that

E[µ̂t(b)] =

M∑
m=1

E[ŵt
m(bm)] =

M∑
m=1

E

[
1−

1− (vm− bm)1bm>bt−m

qtm(bm)
1bm=btm

]
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As we are considering the expectation ex-post, keeping the bt−m’s fixed, we have independence between the two

indicator functions and we obtain:

=

M∑
m=1

E
[
1− 1−wt

m(bm)

qtm(bm)
1bm=btm

]
=M −

M∑
m=1

1−wt
m(bm)

qtm(bm)
E
[
1bm=btm

]
= µt(b) .

As for the finite upper bound, we have that µ̂t(b) =
∑M

m=1 ŵ
t
m(bm) is the sum over M node utility estimators, each

of which is upper bounded by 1. Hence, µ̂t(b)≤M for all b∈B+M . Now, we make the following claim:

Lemma 3. Let µ̂t(b) =
∑M

m=1(1−
1−(vm−bm)1

bm>bt−m

qtm(bm)
1bm=btm

) be our bid vector utility estimate as discussed. Then,

any algorithm which samples bid vectors b with probability proportional to exp(η
∑t−1

τ=1 µ̂
t(b)) at round t for η ≤ 1

M

has regret upper bound

RegretB ≲ η−1M log |B|+ η

T∑
t=1

∑
b

P(bt = b)E[(
M∑

m=1

ŵt
m(bm))2] . (10)

Proof of Lemma 3 We will closely follow the analysis of the Exp3 algorithm as presented in Chapter 11.4 of

Lattimore and Szepesvári (2020). In particular, we follow their regret analysis until Equation 11.13. Define Φt =∑
b∈B+M exp(η

∑t
τ=1 µ̂

τ (b)) to be the potential at round t. As per our initial conditions in Algorithm 3, we have

µ̂0(b) = 0, and consequently, Φ0 = |B+M |. While it is not immediately apparent how the potentials Φt relate to the

regret, we begin by upper bounding exp(η
∑T

t=1 µ̂
t(b)) for a fixed b′:

exp(η

T∑
t=1

µ̂t(b′))≤
∑

b∈B+M

exp(η

T∑
t=1

µ̂t(b)) =ΦT =Φ0
T∏

t=1

Φt

Φt−1
. (11)

Now, we upper bound each Φt

Φt−1 :

Φt

Φt−1
=

∑
b∈B+M

exp(η
∑t

τ=1 µ̂
τ (b))

Φt−1
=

∑
b∈B+M

exp(η
∑t−1

τ=1 µ̂
τ (b))

Φt−1
exp(ηµ̂t(b)) =

∑
b∈B+M

P(bt = b) exp(ηµ̂t(b)) ,

where in the last equality, we used the condition that our algorithm samples bid vector b with probability proportional

to exp(η
∑t−1

τ=1 µ̂
t(b)) at round t. In order to continue the chain of inequalities, we note that for η ≤ 1

M
, we have

that the quantity ηµ̂t(b) is upper bounded by 1 as ηµ̂t(b) ≤ ηM ≤ 1. In the first inequality, we used the fact that

µ̂t(b)≤M . Now, we can apply the inequalities exp(x)≤ 1+ x+ x2 and 1+ x≤ exp(x) for all x≤ 1, with x= ηµ̂t(b)

and x= ηP(bt = b)µ̂t(b), respectively, to obtain:

Φt

Φt−1
≤

∑
b∈B+M

P(bt = b) exp(ηµ̂t(b))

≤
∑

b∈B+M

P(bt = b)
[
1+ ηµ̂t(b)+ η2µ̂t(b)2

]
= 1+

∑
b∈B+M

P(bt = b)
[
ηµ̂t(b)+ η2µ̂t(b)2

]
≤ exp(

∑
b∈B+M

P(bt = b)
[
ηµ̂t(b)+ η2µ̂t(b)2

]
) .

Combining this with Equation (11) and then taking logarithms, we obtain:

η

T∑
t=1

µ̂t(b′)≤ logΦ0 + η

T∑
t=1

∑
b∈B+M

P(bt = b)µ̂t(b)+ η2
T∑

t=1

∑
b∈B+M

P(bt = b)µ̂t(b)2 .

Dividing both sides by η, applying the upper bound on Φ0, and rearranging, we obtain that for any b′ ∈B+M :

T∑
t=1

µ̂t(b′)−
T∑

t=1

∑
b∈B+M

P(bt = b)µ̂t(b)≲ η−1M log |B|+ η

T∑
t=1

∑
b∈B+M

P(bt = b)µ̂t(b)2 .
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Replacing µ̂t(b) with its definition in terms of ŵt
m(bm) and taking expectations, we obtain the right hand side of the

lemma:

E

 T∑
t=1

µ̂t(b′)−
T∑

t=1

∑
b∈B+M

P(bt = b)µ̂t(b)

≲ η−1M log |B|+ η

T∑
t=1

∑
b

P(bt = b)E[(
M∑

m=1

ŵt
m(bm))2] .

Replacing
∑

b∈B+M P(bt = b)µ̂t(b) with E[µ̂t(bt)] and recalling that the bid vector utility estimates µ̂t were unbiased,

we have:

T∑
t=1

µt(b′)−
T∑

t=1

E[µt(bt)]≲ η−1M log |B|+ η

T∑
t=1

∑
b

P(bt = b)E[(
M∑

m=1

ŵt
m(bm))2] .

Notice that as this is true for any b′, we can replace it with the bid vector that maximizes the true cumulative utility∑T
t=1 µ

t(b′) and see that the left hand side becomes precisely RegretB, which completes the proof. □

Now, it remains to show an upper bound on the second moment of the bid vector utility estimate

E[(
∑M

m=1 ŵ
t
m(bm))2]. A crude attempt would be to say that E[(

∑M
m=1 ŵ

t
m(bm))2]≤M

∑M
m=1E[ŵ

t
m(bm)2]:

T∑
t=1

∑
b

P(bt = b)E[(
M∑

m=1

ŵt
m(bm))2]≤M

T∑
t=1

∑
b

P(bt = b)

M∑
m=1

E[ŵt
m(bm)2] (12)

=M

T∑
t=1

M∑
m=1

∑
b∈B

E[ŵt
m(b)2]

∑
b:bm=b

P(bt = b) =M

T∑
t=1

M∑
m=1

∑
b∈B

E[ŵt
m(b)2]qtm(b)

≤M

T∑
t=1

M∑
m=1

∑
b∈B

2

qtm(b)
qtm(b) =O(M2|B|T ) .

Where the last inequality follows from:

E[ŵt
m(b)2] =E

[(
1− 1−wt

m(b)

qtm(b)
1btm=b

)2
]
= 1− 2E

[
1−wt

m(b)

qtm(b)
1btm=b

]
+E

[(
1−wt

m(b;v)

qtm(b)

)2

1btm=b

]
.

Evaluating the expectations with E
[
1btm=b

]
= qtm(b), we have:

E[ŵt
m(b)2] = 1−

[
2− 2wt

m(b)
]
+

[
(1−wt

m(b))2

qtm(b)

]
= 2wt

m(b)− 1+
1

qtm(b)
≤ 1+

1

qtm(b)
≤ 2

qtm(b)
.

Plugging this back into our upper bound yields stated regret bound for η=Θ(
√

log |B|
M|B|T ) such that η < 1

M
:

RegretB ≲ η−1M log |B|+ ηM2|B|T =O(M
3
2

√
|B|T log |B|) .

Part 3: Complexity Analysis. We note that the time and space complexity analysis is identical to that of

Algorithm 2, as the only additional computational work being done is computing the normalization terms qtm(b),

which requires O(M |B|) space and O(MT |B|) time respectively. Hence, discarding old tables, the total time and

space complexities of Algorithm 3 are O(M |B|T ) and O(M |B|) respectively. As this is polynomial in M, |B|, T , we

have proven the claim of polynomial space and time complexities.

Part 4: Selecting B. We claim that the sub-optimality due to the discretization is on the order of MT
|B| . Assume

that B ≡ { i
|B|}i∈[|B|] is an even discretization of [0,1]., and recall the continuous regret benchmark:

Regret= max
b∈[0,1]+M

T∑
t=1

µt
n(b)−E

[
T∑

t=1

µt
n(b

t)

]
,

where the maximum is taken over the entire space [0,1]+M rather than B+M . Let b∗ denote the maximizer of the

continuous regret. Then, bidder n could have obtained at least the same allocation by rounding up each bid in b∗ to

the next largest multiple of 1
|B| . Let this rounded bid vector be denoted by b+. As their allocation, thus value for the
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set of items received, does not decrease, and their total payment increases by a maximum of M
|B| at each round, then

we have that µt
n(b

+)≥ µt
n(b

∗)− M
|B| . Let b

∗
B ∈B+M denote the hindsight optimal utility vector returned by our offline

dynamic programming (Algorithm 1), which serves as the regret benchmark in the definition of discretized regret.

Noting that b+ ∈B+M , we have that the total utility of bidding b∗B must be at least that of b+. Thus,

T∑
t=1

µt
n(b

∗
B)≥

T∑
t=1

µt
n(b

+)≥
T∑

t=1

µt
n(b

∗)− MT

|B|

We balance this with the discretized regret O(M
3
2

√
|B|T log |B|) with |B|=M− 1

3 T
1
3 . This yields continuous regret

Regret=O(M
4
3 T

2
3
√
logT ).

Part 5: Extending to the Full Information Setting. Thus far, we have only discussed the bandit feedback

algorithm. Fortunately, the full information setting algorithm is exactly the same except for two differences: 1) we do

not need to compute q and 2) we can replace the reward estimates µ̂t(b) with the true rewards µt(b) in Equation 12.

The first difference can only serve to improve the time and space complexity of our algorithm. The second difference

allows us to improve the bound on
∑T

t=1

∑
b P(b

t = b)E[(
∑M

m=1 ŵ
t
m(bm))2] in the left hand sight of Equation 12 by

replacing ŵt
m(bm)) with wt

m(bm):

T∑
t=1

∑
b

P(bt = b)E[(
M∑

m=1

ŵt
m(bm))2] =

T∑
t=1

∑
b

P(bt = b)E[(
M∑

m=1

ŵt
m(bm))2]≤M2

T∑
t=1

∑
b

P(bt = b) =M2T

Notice that this bound is a factor of |B| improvement over that in the bandit setting. Consequently, we obtain

our stated regret bound of O(M
3
2

√
T log |B|) with the choice of η=Θ(

√
log |B|
MT

). Balancing this regret with the error

term, which is of order O
(

M|B|
T

)
, the optimal choice of |B| is given by Θ(

√
T
M
). This yields corresponding continuous

regret of O(M
3
2
√
T logT ).

9.3. Proof of Lemma 1

Proof of Lemma 1 In order to show equivalence, we show that (1) for any π ∈Π, that q(π) ∈Q and (2) for any

q ∈ Q, there exists a π ∈ Π such that q(π) = q. We first prove (1). To do this, we simply need to check that for a

given π ∈Π, that qπ = q(π) satisfies the constraints prescribed by Q.

The non-negativity constraint holds trivially as each π((m,b), b′) is non-negative. Since all qπ1 (b) = π((0,maxB), b)≥

0 for all b∈B, by induction, qπm+1(b) =
∑

b”≥b q
π
m(b”)π((m,b”), b) is also non-negative.

Now we prove that each layer m sums to 1, i.e.,
∑

b∈B qπm(b) = 1. Since
∑

b∈B qπ1 (b), the policy has total node

probability 1 in the first layer, we can prove
∑

b∈B qπm(b) = 1, that the policy has total node probability 1 in the m’th

layer, via induction. This follows immediately from the fact that the DP graph is layered, i.e., edges exist only from

nodes in layer m to nodes in layer m+1, thus the only edges leading to layer m+1 are from layer m, in which there

are no other edges. Hence, the total node probability in layer m+1 must be exactly that of layer m. More formally,

we have: ∑
b∈B

qπm+1(b) =
∑
b∈B

∑
b”≥b

qπm(b”)π((m,b”), b) =
∑
b”∈B

qπm(b”)
∑
b≤b”

π((m,b”), b) =
∑
b”∈B

qπm(b”) .

To show the stochastic domination constraint
∑

b≤b′ q
π
m+1(b) ≥

∑
b≤b′ q

π
m(b), we use the bid monotonicity con-

straint; i.e., the fact that the edges between layers are only from larger bids to (weakly) smaller bids. Recall that

π((m,b′), b”) is the probability of transitioning from unit-bid value pair (m,b′) to (m+1, b”) and that the only edges

leading to (m+1, b”) come from nodes (m,b′) for b′ ≥ b”. Then, we have:∑
b≤b′

qπm+1(b) =
∑
b≤b′

∑
b”≥b

qπm(b”)π((m,b”), b)
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=
∑
b”>b′

qπm(b”)
∑
b≤b′

π((m,b”), b)+
∑
b”≤b′

qπm(b”)
∑
b≤b”

π((m,b”), b)

=
∑
b”>b′

qπm(b”)
∑
b≤b′

π((m,b”), b)+
∑
b≤b′

qπm(b)

≥
∑
b≤b′

qπm(b) .

Hence, we have shown that for any π ∈Π, that the corresponding q(π)∈Q.
Now we show the other direction (2), that for any q ∈Q, there exists a π ∈Π such that q(π) = q. We proceed by

showing that for all m,b∗, there exists {π((m,b), b′)}b,b′∈B such that the following conditions hold:

1. π((m,b), b′)≥ 0 for all b, b′ ≥ b∗.

2. π((m,b), b′) = 0 for all b′ > b≥ b∗.

3.
∑

b′≤b,b′≥b∗ π((m,b), b′)≤ 1 for all b∗ ∈B, with equality if and only if b∗ = bmin where bmin =minB.
4.
∑

b′≥b∗
∑

b≥b′ qm(b)π((m,b), b′) =
∑

b′≥b∗ qm+1(b
′).

Let Π(b∗;q), b∗ ∈B, be the set of all policies under which the four conditions hold at b∗ and q∈Q.
These conditions trivially hold for m= 0, as we can set π((0,maxB), b) = q1(b) and π((0, b), b′) = 1b=b′ . To solve

for general m, we must show that there exists {π((m,b), b′)}b,b′∈B that satisfies the constraints prescribed by Π and

that
∑

b≥b′ qm(b)π((m,b), b′) = qm+1(b
′) for all b′ ∈ B. In order to do this, we show that conditions (1), (2), (3), and

(4) for each b∗ ∈ B. In particular, if we show conditions (1) and (2) for b∗ = bmin, then we have already satisfied

the first two conditions of Π. If we show that (3) holds for b∗ = bmin, then by condition (1), then (3) holds for all

b∗ ∈ B as well, as the summation only includes fewer terms as b∗ increases. Similarly, if we show condition (4) holds

for two adjacent values of b∗− < b∗, then we have that
∑

b≥b′≥b∗ qm(b)π((m,b), b′) = qm+1(b
∗). Thus, if condition (4)

holds for all possible pairs of adjacent bid values, then we have that
∑

b≥b′ qm(b)π((m,b), b′) = qm+1(b
′) for all b′.

These observations suggest use of induction over b∗, and indeed, we begin by showing that these conditions hold for

b∗ = bmin. We then show that this implies that the conditions hold for the next smallest value of b∗, which would

complete the induction proof.

Base Case: Recall b∗ = bmin. We now show that there exists {π((m,b), b′)}b,b′∈B satisfying all four conditions. For

any m∈ [M ], let we set π((m,b), b′) = 1b=b′ . Then, condition (4) is clearly satisfied:∑
b′≥b∗

∑
b≥b′

qm(b)π((m,b), b′) =
∑
b′≥b∗

qm+1(b
′)↔

∑
b∈B

qm(b)
∑
b′≤b

π((m,b), b′) =
∑
b∈B

qm+1(b) = 1 .

It is also easy to check that conditions (1)-(3) are also satisfied when we set π((m,b), b′) = 1b=b′ for any m. This

shows that Π(b∗;q) is non-empty, as desired.

Recursive Case: For any b∈B, let b− be the largest b′ ∈B, which is strictly smaller than b. Here, we assume that

Π(b∗−;q) is not empty, and under this assumption, we show that set Π(b∗;q) is not empty, where Π(b∗;q)⊆Π(b∗−;q).

Let us start with condition (4). We would like to show that there exists a π that satisfies condition (4) at b∗ along

with the other three conditions. By the induction assumption, we have∑
b′≥b∗−

∑
b≥b′

qm(b)π((m,b), b′) =
∑

b′≥b∗−

qm+1(b
′)→

∑
b′≥b∗

∑
b≥b′

qm(b)π((m,b), b′)+
∑
b≥b∗−

qm(b)π((m,b), b∗−) =
∑
b′≥b∗

qm+1(b
′)+ qm+1(b

∗
−)→

∑
b′≥b∗

∑
b≥b′

qm(b)π((m,b), b′) =
∑
b′≥b∗

qm+1(b
′)+

qm+1(b
∗
−)−

∑
b≥b∗−

qm(b)π((m,b), b∗−)

→
∑
b≥b∗

qm(b)
∑

b′≤b;b′≥b∗

π((m,b), b′) =
∑
b′≥b∗

qm+1(b
′)+

qm+1(b
∗
−)−

∑
b≥b∗−

qm(b)π((m,b), b∗−)
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Thus, we can satisfy condition (4) if qm+1(b
∗
−) =

∑
b≥b∗−

qm(b)π((m,b), b∗−). We now observe that the latter summation

depends linearly (and hence, continuously) in the values of π((m,b), b∗−). If we can show that there exists an assignment

of these variables that satisfy qm+1(b
∗
−)≥

∑
b≥b∗−

qm(b)π((m,b), b∗−) and also qm+1(b
∗
−)≤

∑
b≥b∗−

qm(b)π((m,b), b∗−),

then by the intermediate value theorem, there must be some assignment that achieves exact equality.

In order to show the first inequality, notice that if we set π((m,b), b∗−) = 1−
∑

b′<b∗−
π((m,b), b′) for all b≥ b∗− (this

is required in order to guarantee conditions (1) and (3) are satisfied), then:∑
b≥b∗−

qm(b)π((m,b), b∗−) =
∑
b≥b∗−

qm(b)−
∑
b≥b∗−

qm(b)
∑

b′<b∗−

π((m,b), b′)

=
∑
b≥b∗−

qm(b)−
∑
b∈B

qm(b)
∑

b′<b∗−

π((m,b), b′)+
∑
b<b∗−

qm(b)
∑

b′<b∗−

π((m,b), b′)

=
∑
b≥b∗−

qm(b)−
∑

b′<b∗−

qm+1(b)+
∑
b<b∗−

qm(b)
∑

b′<b∗−

π((m,b), b′)

=
∑
b≥b∗−

qm(b)−
∑

b′<b∗−

qm+1(b)+
∑
b<b∗−

qm(b)

≥
∑
b≥b∗−

qm+1(b)−
∑

b′<b∗−

qm+1(b)+
∑
b<b∗−

qm+1(b)

=
∑
b≥b∗−

qm+1(b)

≥ qm+1(b
∗
−) .

Here, the third equality follows from the (strong) inductive hypothesis, and the first inequality is a result of the

stochastic domination constraint in Q. We also note that the values
∑

b′<b∗−
π((m,b), b′) have already been fixed as

these were required to satisfy condition (4) in the previous iterates, and as condition (3) holds for b∗− by the inductive

hypothesis, then 1−
∑

b′<b∗−
π((m,b), b′)≥ 0. Conversely, if we set π((m,b), b∗−) = 0 for all b≥ b∗−, then:∑

b≥b∗−

qm(b)π((m,b), b∗−) = 0≤ qm+1(b
∗
−) .

As the sum
∑

b≥b∗−
qm(b)π((m,b), b∗−) linearly (thus, continuously) depends on the values of π((m,b), b∗−), by the

intermediate value theorem, there exists an assignment of {π((m,b), b∗−)}b≥b∗−
with each π((m,b), b∗−) ∈ [0,1 −∑

b′<b∗−
π((m,b), b′)] such that the sum is precisely equal to qm+1(b

∗
−) ∈ [0,1]. Now we observe that these values

of π((m,b), b∗−) ∈ [0,1−
∑

b′<b∗−
π((m,b), b′)] do not violate conditions (1), (2), or (3). Furthermore, note that any

π ∈ Π also satisfied conditions (1), (2), and (3) under b∗− for {π((m,b), b′)}b≥b∗−,b′≤b∗−
, then the assignment to

{π((m,b), b′)}b≥b∗−,b′<b∗−
will not violate these conditions as our new constraint on the variables {π((m,b), b∗−)}b≥b∗−

is independent of the values of {π((m,b), b′)}b≥b∗−,b′<b∗−
. Thus, the set Π(b∗) is non-empty:

Π(b∗) = {{π((m,b), b′)}b,b′∈B ∈Π(b∗−) :
∑
b≥b∗−

qm(b)π((m,b), b∗−) = qm+1(b
∗
−)} ≠ ∅

With this, we have proven via induction that our four conditions hold for all b∗ ∈ B, implying that for a fixed

m, every constraint in Π pertaining to variables π((m,b), b′) is satisfied, as well as the node-measure constraints∑
b≥b′ qm(b)π((m,b), b′) = qm+1(b

′) for all b′. By induction, this works for all m∈ [M ], which concludes the proof.

9.4. Proof of Lemma 2

We have by the definition of discretized regret:

RegretB =max
b∈B

T∑
t=1

µt
n(b)−E

[
T∑

t=1

µt
n(b

t)

]
=max

q∈Q
E

[
T∑

t=1

⟨q,wt⟩−
T∑

t=1

⟨qt,wt⟩

]
,

where in the first equality, we applied Equation (7) which equated the dot product of utilities wt and node probability

weights q to the expected utility of bid vector b ∼ π with utilities {wt
m(b)}m∈[M ],b∈B = wt. Combining the two

summations yields the desired result.
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9.5. Proof of Theorem 6: Online Mirror Descent Algorithm

Proof of Theorem 6: Online Mirror Descent Algorithm The proof is divided into four parts, similar to the analysis

of Algorithm 2. In the first part, we rigorously show how our algorithm achieves the stated regret. In the second,

we verify correctness of our procedure that recovers a policy πt from qt. Then, we show the corresponding time and

space complexity of our algorithm. Afterwards, we optimize over discretization error to obtain the continuous regret.

Part 1: Regret of Online Linear Optimization. Recall that from Lemma 2, we have

RegretB =max
q∈Q

E

[
T∑

t=1

⟨q− qt,wt⟩

]
=max

q∈Q
E

[
T∑

t=1

⟨qt− q,−wt⟩

]
, (13)

where we negate the utility function into a loss function to be consistent with the OLO convention. We follow

a standard analysis of OMD, which shows that the optimization step can be solved efficiently and the resulting

iterates have bounded regret. For the former, we show that solution to the q optimization step in our algorithm

qt = argminq∈Qη⟨q,−wt⟩+D(q||qt−1) can be obtained as the projection of the unconstrained minimizer of

q̃t = argminq∈[0,1]M×|B|η⟨q,−wt⟩+D(q||qt−1)

to the space Q (See Projection Lemma, Lemma 8.6 of Bartok et al. (2011)). Having characterized the exact form of

the OMD iterates, all that remains is to upper bound the regret of OMD with the regret of Be-the-regularized-leader.

Lemma 4 (Lemma 9.2 of Bartok et al. (2011)). Letting D(q||q′) denote the unnormalized KL divergence

between q and q′, we have:

RegretB ≤max
q∈Q

E
[
η−1D(q||q1)+

T∑
t=1

⟨qt− q̃t+1,wt⟩
]
.

The remainder of the regret analysis closely follows that of Theorem 1 in Zimin and Neu (2013). At a high level,

we want to bound the regret of Online Mirror Descent by the regret of the unconstrained Be the (Negentropy)

Regularized leader, via Lemma 4 (see Lemma 13 of Rakhlin (2009) for the more general statement and proof of this

lemma). We then upper the contribution of the summation term by using the specific definition of the node weight

estimators. Similarly, we upper bound the divergence term as a function of the dimension of the space Q.

To begin, note that our node utility estimators ŵt
m(b) are unbiased:

Eb∼πt [ŵt
m(b)] =Eb∼πt [

wt
m(b)

qtm(b)
1b=btm

] =
wt

m(b)

qtm(b)
Pb∼πt(b= btm) =

wt
m(b)

qtm(b)
qt−1
m (b) =wt

m(b) . (14)

Now, consider the right hand side of the inequality in Lemma 4. As the node utility estimators are unbiased, so we

can replace wt with ŵt. Now, as per Lemma 4, we can upper bound the expected estimated regret as a function of the

unconstrained optimizer q̃t+1 and the unregularized relative entropy with respect to the initial state-edge occupancy

measure q1. Applying the aforementioned lemma to Equation (14), we obtain:

RegretB =max
q∈Q

E

[
T∑

t=1

⟨qt− q,−ŵt⟩

]
≤max

q∈Q
E

[
T∑

t=1

⟨qt− q̃t+1,−ŵt⟩+ η−1D(q||q1)

]
(15)

Applying exp(x)≥ 1+x for x= exp(ηŵt), we obtain q̃t+1 = qt exp(ηŵt)≥ qt+ηqtŵt, which yields qt−qt exp(ηŵt)≥

−ηqtŵt. Plugging this back in:

RegretB ≤max
q∈Q

E

[
T∑

t=1

⟨qt− qt exp(ηŵt),−ŵt⟩+ η−1D(q||q1)

]
(16)

≤max
q∈Q

E

[
η

T∑
t=1

M∑
m=1

∑
b∈B

qtm(b)ŵt
m(b)2 + η−1D(q||q1)

]
. (17)
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Note that ŵt
m(b) =

wt
m(b)

qt−1
m (b)

1b=btm
for all m ∈ [M ] and b ∈ B by definition. Since wt

m(b) ≤ 1 and 1b=btm
≤ 1 we have

ŵt
m(b)≤ 1

qtm(b)
and we continue the above chain of inequalities with:

RegretB ≤max
q∈Q

E

[
η

T∑
t=1

M∑
m=1

∑
b∈B

qtm(b)ŵt
m(b)

1

qtm(b)
+ η−1D(q||q1)

]
(18)

=max
q∈Q

E

[
η

T∑
t=1

M∑
m=1

∑
b∈B

ŵt
m(b)+ η−1D(q||q1)

]
. (19)

Recalling that D(q||q1) =
∑

m∈[M ],b∈B qm(b) log qm(b)

q1m(b)
− (qm(b)− q1m(b)), we note that:

D(q||q1) =

M∑
m=1

∑
b∈B

qm(b)
log qm(b)

log q1m(b)
− qm(b)+ q1m(b)

=

M∑
m=1

∑
b∈B

qm(b) log qm(b)− qm(b) log q1m(b) ,

where in the second equality, we used the fact that the elements both q and q1 all sum to M . Selecting q1
m(·) to be

the uniform distribution over all b∈B and using the fact that the entropy of a discrete distribution over |B| items is

log |B|, we obtain:

D(q||q1) =−
M∑

m=1

H(qm)+ log |B|
M∑

m=1

∑
b∈B

qm(b)

≤
M∑

m=1

log |B|+ log |B|
M∑

m=1

∑
b∈B

qm(b) =Θ(M log |B|) ,

where H(x) =−
∑

x∈x x logx denotes the discrete entropy function. Plugging this back in:

RegretB ≲E

[
η

T∑
t=1

M∑
m=1

∑
b∈B

ŵt
m(b)+ η−1M log |B|

]
(20)

≤E

[
η

T∑
t=1

∑
m=1

∑
b∈B

ŵt
m(b)+ η−1M log |B|

]
(21)

≤ η

T∑
t=1

∑
m=1

∑
b∈B

wt
m(b)+ η−1M log |B| (22)

= ηTM |B|+ η−1M log |B| , (23)

where in the last equality, we used the unbiasedness property of ŵt. Setting η =
√

log |B|
|B|T , we obtain RegretB(T )≤

M
√
|B|T log |B|.

Part 2: Determining Policy π from Node Probability Measures q. Notice that in our regret analysis for

both the bandit and full information setting, we do not require explicit knowledge of the policy πt, so long as it

generates the desired node occupancy measure qt. In particular, we require a method of converting qt to policy πt

which, in turn, is required in order to sample bt. Recall from Lemma 1 that the mapping from the space of policies

Π to the space of node weight measures QΠ =Q is injective. Thus, for any q ∈ Q, there must exists a π ∈ Π such

that q(π) = q. Moreover, the set Π(q) of such π can be written as the intersection of two polyhedrons, and hence a

polyhedron, from which a feasible solution can be computed efficiently (e.g., ellipsoid method), where Π(q) is the set

of policies π ∈ [0,1]M×|B|×|B| such that

• π((0,maxB), b) = q1(b), for any b∈B;

• π((0, b), b′) = 1b=b′ for any b, b′ <maxB;

• qm+1(b
′) =

∑
b∈B qm(b)π((m,b), b′)} for any b′ ∈B and m∈ [M − 1].
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Part 3: Complexity analysis. One may wonder how to efficiently update the state occupancy measures by

computing the minimizer of η⟨q,−ŵt⟩+D(q||qt−1). The idea is to first solve the unconstrained entropy regularized

minimizer with q̃t+1 = qt exp(ηŵt). We then project this unconstrained minimizer to Q with:

qt+1 = argminq∈QD(q||q̃t+1) (24)

Relegating the details to Zimin and Neu (2013), the above constrained optimization problem can be solved as the

minimizer of an equivalent unconstrained convex optimization problem with a polynomial (in M and |B|) number of

variables, and therefore, can be computed efficiently. Combining with finding an initial feasible solution to Π(q) as

well as the optimization step, we achieve polynomial in M, |B|, T total time complexity. For the space complexity, we

only need store the values of πt, qt, and ŵt, for a total space complexity of O(M |B|2).

Part 4: Continuous Regret. To obtain the continuous regret, recall that the discretization error is O(MT
|B| ). As

the discretized regret is O
(
M
√
|B|T log |B|

)
in the bandit feedback setting, the optimal choice of |B| is Θ(T

1
3 ), which

achieves continuous regret Regret=O(MT
2
3
√
logT ).

9.5.1. Proof of Corollary 1 We can straightforwardly extend Algorithm 4 to the full information setting.

To do this, we note that we can improve Equation (18) by instead replacing ŵt with wt in Equation (17) to obtain:

T∑
t=1

M∑
m=1

∑
b∈B

qtm(b)ŵt
m(b)2 =

T∑
t=1

M∑
m=1

∑
b∈B

qtm(b)wt
m(b)2 ≤

T∑
t=1

M∑
m=1

∑
b∈B

qtm(b) =

T∑
t=1

M∑
m=1

1 = TM .

Setting η=
√

log |B|
T

, we obtain in the full information setting RegretB =O(M
√

T log |B|). We can also compute the

optimal choice of |B| to obtain optimal continuous regret. Using the optimal choice of |B| being Θ(
√
T ), we achieve

continuous regret of Regret=O(M
√
T logT ). Note that due to the complexity of the optimization sub-routine in

the projection step of OMD, for the full information setting, it is preferable to use Algorithm 2 instead.

9.6. Proof of Theorem 7: Regret Lower Bound

To construct our lower bounds, we construct a stochastic adversary whose distribution across their bids makes it

difficult for the bidder to determine their optimal bid, and thus, occurs Ω(M
√
T ) regret while doing so. We define

b′− = (0, . . . ,0, c, . . . , c), where there are k and M −k values of 0 and c each. We additionally define b”− = (c, . . . , c) as

the M -vector of bids at c. Restricting the adversary’s bid vectors to be in {b′−,b”−}, we construct two adversary bid

vector distributions F and G over {b′−,b”−}T such that under F , we have P(bt− = b′−) =
1
2
+δ and P(bt− = b”−) =

1
2
−δ

and under G, we have P(bt− = b′−) =
1
2
− δ and P(bt− = b”−) =

1
2
+ δ for some δ ∈ [0, 1

2
] to be optimized over later.

Assume that v= (1, . . . ,1), all tiebreaks are won for simplicity, and the competitors’ bids over time are independent.

Then, for certain choices of c and k (which we show below), the expected utility maximizing bid vector under

{bt−}t∈[T ] ∼ F is (0, . . . ,0) and under {bt−}t∈[T ] ∼G is (c, . . . , c). In particular, we can compute precisely the expected

value of bidding bt = b for all t∈ [T ] under both F and G. Note that as adversary bid values only take values in {0, c}

and bidder n wins all tiebreaks, then the bidder only need consider bid vectors consisting only of all 0 or c. Letting

m denote the number of bids in b equal to c, we have:

EF

[
T∑

t=1

µt
n(b)

]
= T

[
(
1

2
+ δ) ((1− c)m+max(0,M − k−m))+ (

1

2
− δ)(1− c)m

]
.

Where EF denotes the expectation with respect to the adversary bids drawn from F , namely {bt−}t∈[T ] ∼ F (and

similarly for EG below). In particular, we have that with probability 1
2
+ δ, the adversary will select bid b′−. We are

then guaranteed to win m units at a price of c, for a utility of 1− c per unit. If m<k, then M − k−m of the items
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were won with price 0, for a utility of 1 per unit. With probability 1
2
−δ, all of the adversary bids are c, and we obtain

m units at a cost of c each, which corresponds to utility 1− c. Similarly, we have:

EG

[
T∑

t=1

µt
n(b)

]
= T

[
(
1

2
− δ) ((1− c)m+max(0,M − k−m))+ (

1

2
+ δ)(1− c)m

]
For the case m+ k ≤M , we have that (1− c)m+max(0,M − k−m) =M − k−mc, and the above two equations

simplify to:

EF [

T∑
t=1

µt
n(b)] = T

[
(
1

2
+ δ)(M − k)+m(

1

2
− δ− c)

]
;

EG[

T∑
t=1

µt
n(b)] = T

[
(
1

2
− δ)(M − k)+m(

1

2
+ δ− c)

]
.

In the case where m+ k≥M , we have that (1− c)m+max(0,M − k−m) =m−mc and we obtain:

EF

[
T∑

t=1

µt
n(b)

]
=EG

[
T∑

t=1

µt
n(b)

]
= T (1− c)m.

Note that in either case, in the case where we sample {bt−}t∈[T ] according to the mixture F+G
2

, this corresponds to

the case where δ= 0, i.e., the probability of observing either b′− or b”− is equal. We have for all b:

E(F+G)/2[

T∑
t=1

µt
n(b)] =

1

2
((1− c)m+max(0,M − k−m))+

1

2
(1− c)m≥ (1− c)m

Note that under F , the optimal occurs at the all 0’s vector for c > 1
2
− δ and ( 1

2
+ δ)(M −k)> (1− c)m= 0. Similarly,

the optimal occurs at the all c’s vector for c > 1
2
− δ and ( 1

2
− δ)(M − k) > (1 − c)M . These obtain utilities of

( 1
2
+ δ)(M − k) and M −Mc respectively. One choice of c and k is 2

3
and M

3
, with 0< δ < 1

6
. Looking at the regret

incurred each step of the algorithm by selecting any action b, we have:

max
b′

(
EF [

T∑
t=1

µt
n(b

′)−µt
n(b)]

)
+max

b′

(
EG[

T∑
t=1

µt
n(b

′)−µt
n(b)]

)

≥max
b′

(
EF [

T∑
t=1

µt
n(b

′)]

)
+max

b′

(
EG[

T∑
t=1

µt
n(b

′)]

)
− 2max

b′
E(F+G)/2

(
EF [

T∑
t=1

µt
n(b

′)]

)

≥EF [

T∑
t=1

µt
n((0, . . . ,0))]+EG[

T∑
t=1

µt
n((c, . . . , c))]− 2max

b′
E(F+G)/2

(
EF [

T∑
t=1

µt
n(b

′)]

)

= (
1

2
+ δ)(M − k)+ (M −Mc)− 2max

b′
E(F+G)/2

(
EF [

T∑
t=1

µt
n(b

′)]

)
≥ (

1

2
+ δ)(M − k)+ (M −Mc)− 2(1− c)M .

Now, for example, we can set k= M
3

and c= 2
3
to obtain a per step incurred regret of Θ(Mδ). We invoke the useful

lemma relating the regret under (F +G)/2 to the Kullback-Leilber divergence:

Lemma 5 (Tsybakov (2008) Theorem 2.2.). We have for any two discrete distributions F and G:

E(F+G)/2 [RegretB(T )] = Ω

(
∆

2
exp(−DKL(F ||G))

)
(25)

where ∆ denotes the sum of the total regret incurred under F or G.

When F and G are independent Bernoulli processes with parameters 1
2
+ δ and 1

2
− δ respectively, then DKL(F ||G)≤

cTδ2 for some constant c. Using ∆∈Θ(MTδ), we have that the previous lemma implies:

RegretB ∈Ω
(
M
√
T
)

(26)

where δ is chosen to be Ω( 1√
T
).
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9.7. Appendix to Section 7: Additional Experiments

In this section, we run additional experiments to (1) show the impact of the modified EXP3-IX estimator, and

(2) empirically verify the regret guarantees of Algorithms 3 and 4. First, we explain the modified, EXP3-IX based

versions of the algorithms as used in the experiments section, as well as why we chose to use these modified versions

instead of the original ones. We show that the change in the algorithms is marginal, as the only step that is different

between Algorithm 4 and its EXP3-IX variant is in updating the node weights. We then run experiments in the

M = 1 unit setting to illustrate the impact of our modified algorithm. Second, in order to empirically gauge the regret

guarantees of our proposed algorithms, we compare their performance against an adversary that bids stochastically.

We analytically derive the optimal bidding strategy and compare how quickly our algorithms converge to this optimal

solution. We repeat similar experiments for the uniform price auctions.

9.7.1. EXP3-IX vs. Unbiased Reward Estimator In the experiments section, we ran a slightly

modified version of our existing algorithms in the bandit feedback setting. We do this as the variance of the

accumulated regret of our algorithms are high, as the node weight estimators normalize over vanishingly small

probabilities qtm(b). To mitigate the effect of such normalization, we use the EXP3-IX estimator as described

in Neu (2015), Lattimore and Szepesvári (2020). Under this estimator, rather than normalizing the probability

of selecting bid btm for unit m at time t by qtm(btm), we instead normalize it by qtm(btm) + γ for some constant

γ > 0. In the standard K-armed bandit setting, despite being a biased estimator, still achieves the same sublinear

expected regret guarantee with a smaller variance. This smaller variance indeed allows for stronger high probability

guarantees on the magnitude of our regret; i.e., for δ > 0 and γ =

√
log(K)+log(K+1

δ
)

4KT
, the EXP3-IX algorithm

guarantees with probability at least 1 − δ that the regret is upper bounded by C
√
KT logK for some absolute

constant c > 0. We extend this algorithm to the multi-unit PAB setting algorithms, where for each node (m,b), we

set γ =

√
log(K)+log(K+1

δ
)

4KT
and K = |{b ∈ B : b≤ vm}|, for δ = 0.05. Aside from the change in node weight estimators,

the EXP3-IX versions of Algorithms 3 and 4 are exactly the same.

9.7.2. Empirical Performance of Original Algorithms vs. EXP3-IX Variants In this

section, we empirically analyze the modified variants of our algorithms which use the biased, but lower variance

EXP3-IX node-weight estimators (see Appendix 9.7.1). We compare the distribution of the regret recovered by these

modified algorithms versus the non-modified versions when the number of units is one. The bidder, endowed with

valuation vector v = [1], will compete against a single adversary over the course of T rounds for M =M = 1 item.

This is the standard first price auction (FPA). Here, we compare performance when the adversary is stochastic (bids

drawn uniformly random from [0,1]) versus adaptive adversary (running the same algorithm, with a valuation drawn

uniformly random from [0,1]).

We plot the regret of the bidder against the stochastic and adversarial competitors for moderate T ∈

{100,500,2000,10000}. The stochastic adversary setting is shown in Figure 9 (a) and the adversarial setting is

shown in Figure 9 (b). We observe that while the EXP3-IX variants marginally worsens regret for small values of

T ∈ {100,500} for both the stochastic and adaptive settings, it significantly mitigates the heavy tailed distribution of

regret for large T ∈ {2000,10000}, especially in the adversarial setting.

9.7.3. Stochastic Setting To verify our algorithms’ theoretical regret guarantees, we consider the setting

where the bidder competes in a stochastic setting with multi-unit. Here, the bidder, endowed with valuation vector

v = [1,1,1], will compete over the course of T = 104 rounds for M =M = 3 items. The competing bids are b−1 =

[0.1,0.1,0.1], [0.3,0.3,1.0], or [0.4,1.0,1.0] with probabilities 1
4
, 1
4
, and 1

2
, respectively. Assuming that the bidder
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Figure 9 Distribution of regret when using OMD vs its EXP3-IX variant against stochastic and adaptive adver-

saries for varying T .

Figure 10 Bid convergence over time under the stochastic setting in Section 9.7.3 for the PAB auction (left)

and the uniform price auction (right).

receives priority in tiebreaks, with B = { i
10
}i∈[10], the expected utility

∑3
m=1 P(bm ≥ b−1

m )(1− bm) maximizing bid

vector is given by b= [0.4,0.3,0.1], which yields utility (1)(1− 0.4) + (0.75)(1− 0.3) + (0.5)(1− 0.1) = 0.6+ 0.525+

0.45 = 1.575. We select learning rates η =
√

log(|B|)
|B|T ≈ 0.005 and η =

√
log(|B|)

T
= 0.002 for the full information and

bandit settings respectively (and for the EXP3-IX estimator, we choose an exploration rate of
√

2 log(|B|/δ)
4|B|T ≈ 0.003,

for high probability bound parameter δ= 0.05).

In Figure 10, we plot the average value of each bid over time. Here, the bidder’s objective is to learn the optimal

bid vector under each of our three algorithms: decoupled exponential weights algorithm (Algorithm 2) for the full

information, modified (i.e., EXP3-IX) version of decoupled exponential weights algorithm (Algorithm 3) for the bandit

setting, and modified version of the OMD algorithm (Algorithm 4) for the bandit setting. In this figure, we further

compare the rate of convergence to the optimal bid vector of [0.4,0.3,0.1] with our three algorithms. We observe that

the full information decoupled exponential weights algorithm converges the fastest to the optimal bid, and the bandit

feedback decoupled exponential weights algorithm converges the slowest, and the bandit feedback mirror descent

algorithm is in between. This behavior is consistent with our theoretical findings.

We repeat this experiment for the algorithms to learn in uniform price auctions described in Brânzei et al. (2023).

Though we do not perform the calculations, the optimal bid vector in the uniform price setting is still [0.4,0.3,0.1].

We note that it takes noticeably longer for the bandit algorithm to converge as compared to either its full information

variant or our Algorithms 3 or 4, as predicted by the looser regret upper bounds:
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Figure 11 Time averaged bids under market dynamics for the setting described in Section 7.1. The left (resp.

right) figures correspond with the full information setting (resp. bandit setting) [and the top (resp. bot-

tom) figures correspond with the uniform price (PAB) auctions. In this specific instance, valuations are

given by v1 = [0.89,0.7,0.55,0.51,0.29], v2 = [0.89,0.44,0.2,0.12,0.05], v3 = [0.67,0.64,0.45,0.27,0.02]].

Theorem 8 ((Discrete) Regret in Uniform Price Auctions, Brânzei et al. (2023)). Under full informa-

tion feedback (resp. bandit feedback), there exists an algorithm which achieves O(M
3
2

√
T log |B|) (resp.

O(M
5
2 |B|T

1
2 log |

√
log |B|+M2 log |B|)) discrete regret.

9.8. Uniform Price Market Dynamic Analysis

In this section, we provide some additional experiments or analyses in the market dynamics for the uniform price as

prescribed in Section 7.1 in order to directly compare to the dynamics of the PAB auction. In particular, we run a

more complete analysis of the uniform price auction bidding dynamics that parallels Section 7.1.

Uniform Price Learning Dynamics: Here, we repeat the setup and analyses of Section 7.1 except using the

uniform price auction with bidders bidding according to the learning algorithms as prescribed in Brânzei et al. (2023).

Bid Dynamics. In Figure 11, we observe that the winning bids and largest losing bids noticeably diverge,

indicating that the regret minimizing bid strategies are non-uniform (and so are the true hindsight optimal bid

vectors which we verified using an offline optimization protocol described in Brânzei et al. (2023)). In particular, as

in Section 7.1, there are N = 3 bidders, M =M = 5 items, the bid space is B= { i
20
}i∈[20]. The valuations (which are

drawn i.i.d. Unif(0,1) which are then sorted) for this specific instance are given by v1 = [0.89,0.7,0.55,0.51,0.29], v2 =

[0.89,0.44,0.2,0.12,0.05], v3 = [0.67,0.64,0.45,0.27,0.02]. For convenience and ease of comparison, we include the PAB

bidding dynamics counterpart (Figure 2) as well.

Welfare and Revenue Over Time. In Figure 12, we compare the distribution of welfare and revenue (normalized

by maximum welfare) of the uniform price auction over time showing the 10th, 25th, 50th, 75th, and 90th percentiles
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Figure 12 Welfare and revenue over time under the market dynamics for the uniform price auction, under the

setting described in Section 7.1. The left (resp. right) figures correspond with the full information

setting (resp. bandit setting) and the top (resp. bottom) figures correspond with the uniform price

(PAB) auctions.

in different shades. In particular, we run the full information and bandit feedback learning algorithms for the uniform

price auction Brânzei et al. (2023). Note that this figure parallels Figure 5 under PAB. We observe that the welfare

rapidly converges to 1 in both the full information and bandit feedback settings. However, the revenue under bandit

feedback has noticeably larger variance compared to the full information revenue. Once again, to compare the welfare

and revenue evolution over time with the PAB auction, we include the PAB counterpart (Figure 5) for convenience.

9.9. Time Varying Valuations

We extend Algorithms 2 and 3 to the time varying valuations setting. In particular, we assume that the valuations v

are no longer fixed, and instead, in every round t, vt is independently drawn i.i.d. from some known distribution Fv

with discrete, finite support V. This contextual setting requires a stronger benchmark oracle in comparison to our

original setup with a fixed valuation. The new benchmark oracle, which we will formalize shortly, possesses knowledge

of the hindsight optimal bid vector for each context. That is, under this benchmark, we have the optimal mapping

from any context (valuation vector) to an action (bid vector). Consequently, our current definitions of Regret and

RegretB need to be updated to accommodate these contextual factors:

Regret(Fv) = max
b:V→[0,1]+M

T∑
t=1

Ev∼Fv [µ
t
n(b(v);v)]−E

[
T∑

t=1

µt
n(b

t;vt)

]
. (Continuous Contextual Regret)

Here, µt
n(b;v) denotes the utility of bidder n by submitting bid vector b with valuations v at round t where the

competing bids are bt−. Observe that in the benchmark of Regret(Fv), i.e., maxb:V→[0,1]+M

∑T
t=1Ev∼Fv [µ

t
n(b(v);v)],
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we abuse notation and define valuation-to-bid vector mapping b : V → [0,1]+M . We have an equivalent definition of

discretized contextual regret:

RegretB(Fv) = max
b:V→B+M

T∑
t=1

Ev∼Fv [µ
t
n(b(v);v)]−E

[
T∑

t=1

µt
n(b

t;vt)

]
. (Discretized Contextual Regret)

An agent’s goal is to minimize their contextual regret with respect to their valuation distribution Fv. Using naive

contextual bandit algorithms would lead to a large regret, as the regret of these algorithms scales with the square

root of the number of contexts. However, we make an observation that we have complete cross-learning over these

contexts as in Balseiro et al. (2022). As such, we borrow from the results described in Balseiro et al. (2022); specifically

those explaining the cross-learning-across-contexts generalizations of the EXP3 algorithm in the stochastic contexts

(valuations) and adversarial rewards setting (adversarial competing bids).

We assume that the agent has access to their valuation distribution. Moreover, as stated earlier, we assume that

the support of this valuation distribution is finite; i.e., |V|<∞. This scenario occurs often in practice where bidders’

valuations depend naturally on some natural events. For example, investors may prescribe a ‘low’ or ‘high’ value to

certain assets depending on various market indices.

We generalize the EXP3-CL algorithm described in Balseiro et al. (2022) to our PAB setting, specifically Algo-

rithm 3, and achieve exactly the same regret rates as our non-contextual variants, albeit requiring an additional

O(|V|) factor of memory and computation.

In order to make the generalization more clear, at a high level, the EXP3-CL algorithm on a set of K arms and

C contexts with full cross learning constructs a reward estimator r̂(k; c) = r(k;c)∑
c P(c)P(kt=k|ct=c)

1kt=k for each arm k

and context c pair. Here, the term
∑

c P(c)P(k
t = k|ct = c) is the expected probability that arm kt = k was selected

under context ct = c, where in the summation we take expectation with respect to the stochasticity over contexts c.

This estimator mirrors that of standard EXP3 using the IPW estimator, except that the IPW is averaged over the

context distribution.

To apply this to our setting, we wish to mimic the behavior of the EXP3-CL algorithm with our decoupled

exponential weights algorithm. This can be done by running the EXP3-CL estimator on all of the nodes b∈B within

each layer m∈ [M ]. In particular, we use the following estimator ŵt
m(b;v) = 1− 1−wt

m(b;v)

Qt
m(b)

1btm=b, where the normalizer

Qt
m(b) =

∑
v∈V P(vt = v)qtm(b;v) in this estimator is the expected probability of selecting bid b with corresponding

valuation v= vt, where the expectation is taken with respect to all valuation vectors v ∈ V. This procedure, formally

described in Algorithm 5 yields the following regret upper bound:

Theorem 9 (Time Varying Valuations - Decoupled Exponential Weights). Under bandit feedback (resp.

full information feedback), Algorithm 5, with appropriately chosen η, achieves contextual continuous regret

Regret(Fv) of order O(M
3
2
√
T logT ) (resp. O(M

√
T logT )) with total time time and space complexity polynomial

in M , |B|, |V|, and T .

Proof of Theorem 9 To begin, we can once again ‘decouple’ the utility per unit-bid pair, but this time conditional

on the valuation vector context. In particular, we have:

µt
n(b;v) =

M∑
m=1

wt
m(bm;v) =

M∑
m=1

(vm− bm)1bm≥bt−m
and µ̂t

n(b;v) =

M∑
m=1

ŵt
m(bm;v) .

As stated earlier, we define reward-weight estimates based on Equation (6) of Balseiro et al. (2022) and our Algo-

rithm 3:

ŵt
m(b;v) = 1− 1−wt

m(b;v)∑
v∈V P(vt = v)qtm(b;v)

1btm=b = 1− 1−wt
m(b;v)

Qt
m(b)

1btm=b .
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Here, qtm(b;v) = P(btm = b|vt = v) =
∑

b:btm=b P(b
t = b|vt = v) is the probability of selecting bid b in slot m with

valuation v. Similarly, Qt
m(b) is the probability of selecting bid b for unit m, averaged across all possible valuations.

One can verify unbiasedness of this estimator E[ŵt
m(b;v)] =wt

m(b;v) for all m∈ [M ], b∈B,v ∈ V. The second moment

can similarly be computed as:

E[ŵt
m(b;v)2] =E

[(
1− 1−wt

m(b;v)

Qt
m(b)

1btm=b

)2
]
= 1− 2E

[
1−wt

m(b;v)

Qt
m(b)

1btm=b

]
+E

[(
1−wt

m(b;v)

Qt
m(b)

)2

1btm=b

]
.

Evaluating the expectations and recalling that E[1btm=b] =Qt
m(b), we have:

E[ŵt
m(b;v)2] = 1−

[
2− 2wt

m(b;v)
]
+

[
(1−wt

m(b;v))2

Qt
m(b)

]
= 2wt

m(b;v)− 1+
1

Qt
m(b)

≤ 1+
1

Qt
m(b)

≤ 2

Qt
m(b)

.

Using this, the proof largely follows that of Algorithm 3 up until Equation (12). In particular, we have that the

contextual regret can be written as:

RegretB(Fv) =EFv

[
T∑

t=1

µt
n(b

′;vt)−
T∑

t=1

E[µt(bt;vt)]

]

≲ η−1M log |B|+ ηEFv

[
T∑

t=1

∑
b

P(bt = b|vt = v)E[(
M∑

m=1

ŵt
m(bm;v))2]

]

= η−1M log |B|+ η

[
T∑

t=1

∑
v∈V

P(vt = v)
∑
b

P(bt = b|vt = v)E[(
M∑

m=1

ŵt
m(bm;v))2]

]

= η−1M log |B|+ ηM

[
T∑

t=1

M∑
m=1

∑
v∈V

P(vt = v)
∑
b∈B

E[ŵt
m(b;v)2]

∑
b:bm=b

P(bt = b|vt = v)

]

= η−1M log |B|+ ηM

[
T∑

t=1

M∑
m=1

∑
v∈V

P(vt = v)
∑
b∈B

E[ŵt
m(b;v)2]qtm(b;v)

]

= η−1M log |B|+2ηM

[
T∑

t=1

M∑
m=1

∑
v∈V

P(vt = v)
∑
b∈B

1

Qt
m(b)

qtm(b;v)

]

= η−1M log |B|+2ηM

[
T∑

t=1

M∑
m=1

∑
b∈B

1

Qt
m(b)

∑
v∈V

P(vt = v)qtm(b;v)

]

= η−1M log |B|+2ηM

[
T∑

t=1

M∑
m=1

∑
b∈B

1

Qt
m(b)

Qt
m(b)

]
≤ η−1M log |B|+ ηM2|B|T .

(We will show the first inequality shortly.) With η=Θ(
√

log |B|
M|B|T ), this yields the discretized contextual regret upper

bounds of O(M
3
2

√
|B|T log |B|) under the bandit setting. Accounting for the rounding error of order O(MT

|B| ), we

obtain the stated continuous contextual regret upper bounds. To obtain the full information results, we simply replace

ŵt
m(bm;vt) with wt

m(bm;vt) in the second line of the above equations, which leads to the discretized contextual regret

upper bounds of O(M
3
2

√
T log |B|), as desired.

Next, following the proof of Algorithm 3, we show the first inequality. We define the potentials with respect to a

fixed valuation vector v: Φt(v) =
∑

b∈B+M exp(η
∑t

τ=1 µ̂
τ (b;vτ )). Taking the ratio of adjacent terms, we obtain:

Φt(v)

Φt−1(v)
=

∑
b∈B+M

exp(η
∑t−1

τ=1 µ̂
τ (b;vτ ))

Φt−1(v)
exp(ηµ̂t(b;vt)) =

∑
b∈B+M

P(bt = b|vt = v) exp(ηµ̂t(b;vt)) ,

Where in the last equality, we used the condition that our algorithm samples bid vector b with probability proportional

to exp(η
∑t−1

τ=1 µ̂
t(b;v)) at round t with valuations vt = v. Combining this with inequalities exp(x)≤ 1+ x+ x2 and

1+x≤ exp(x) for all x≤ 1, we obtain:

Φt(v)

Φt−1(v)
≤

∑
b∈B+M

P(bt = b|vt = v) exp(ηµ̂t(b;v))≤ exp(
∑

b∈B+M

P(bt = b|vt = v)
[
ηµ̂t(b;v)+ η2µ̂t(b;v)2

]
) .
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ALGORITHM 5: Decoupled EXP3-CL - Time Varying Valuations
Input: Learning rate 0< η < 1

M
, Valuation Distribution Fv

Output: The aggregate utility
∑T

t=1 µ
t
n(b

t;vt)

Ŵ 0
m(b;v)← 0 for all m∈ [M ], b∈B,v ∈ V such that b≤ vm; else Ŵ 0

m(b;v)←−∞.;

for t∈ [1, . . . , T ]: do
Observe Valuation Vector vt ∼ Fv;

bt0←maxB, and Ŝt
M+1(minB;vt) = 1 for any t∈ [T ];

Recursively Computing Exponentially Weighted Partial Utilities St;

for m∈ [M, . . . ,1], b∈B : Ŝt
m(b;vt)← exp(ηŴ t

m(b;vt))
∑

b′≤b Ŝ
t
m+1(b

′;vt) \\ Compute− Ŝm;

Determining the Bid Vector bt Recursively;

for m∈ [1, . . . ,M ], b≤ btm−1 : b
t
m← b with probability

Ŝt
m(b;vt)∑

b′≤bt
m−1

Ŝt
m(b′;vt)

; \\ Sample− b;

Observe bt− and receive reward µt
n(b

t;vt);

Qt
m(b)← 0 for all m∈ [M ], b∈B;

for v ∈ V: do
Recursively Computing Probability Measure q Under v ∈ V;

Ŝt
M+1(b;v)← 1 for all m∈ [M ], b∈B;

for m∈ [M, . . . ,1], b∈B : Ŝt
m(b;v)← exp(ηŴ t

m(b;v))
∑

b′≤b Ŝ
t
m+1(b

′;v);

qt1(b;v)←
Ŝt
m(b;v)∑

b′∈B Ŝt
m(b′;v)

for all b∈B;

for m∈ [2, . . . ,M ], b∈B : qtm(b;v)←
∑

b′≥b

qtm−1(b
′;v)Ŝt

m(b;v)∑
b”≥b′ Ŝ

t
m(b”;v)

for all b∈B;

Qt
m(b)←Qt

m(b)+P(vt = v)qtm(b;v)
end

Update Weight Estimates;

if Bandit Feedback, for m∈ [M ], b∈B,v ∈ V;

Ŵ t+1
m (b;v)← Ŵ t

m(b;v)+ (1−
1−(v−b)1b≥btm

Qt
m(b)

1btm=b) if b≤ v; else Ŵ t+1
m (b;v)←−∞;

if Full Information, for m∈ [M ], b∈B,v ∈ V;

Ŵ t+1
m (b;v)← Ŵ t

m(b;v)+ (v− b)1b≥btm
if b≤ v; else Ŵ t+1

m (b;v)←−∞;

end

Return
∑T

t=1 µ
t
n(b

t;vt)

Combining this with Equations 11 and the fact that Φ0(v) =M log |B|, for any fixed bid vector b′, we have:

T∑
t=1

µ̂t(b′;v)−
T∑

t=1

∑
b

P(bt = b|vt = v)µ̂t(b;v)≲ η−1M log |B|+ η

T∑
t=1

∑
b

P(bt = b|vt = v)µ̂t(b;v)2

= η−1M log |B|+ η

T∑
t=1

∑
b

P(bt = b|vt = v)(

M∑
m=1

ŵt
m(bm;v))2 .

Taking expectations over b and the supremum over all b′ yields the desired first crucial regret inequality.

As for the time and space complexity, notice that the only algorithmic difference between Algorithm 5 and Algo-

rithm 3 is precisely in computing the estimator, which in the former, requires having to compute the weights Qt
m(b)

by iterating over all v ∈ V. As we also have to store reward estimates for each possible valuations, both the time

complexity and space complexity of Algorithm 5 are a factor |V| larger than in Algorithm 3, which are O(M |B||V|T )

and O(M |B||V|) respectively.
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