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Abstract

The power demand for electric vehicles in future mobility scenarios
may lead to peaks and overloads threatening grid stability. The neces-
sary infrastructure investments vary by the number and model type of
vehicles driven and the residents charging preferences. These attributes
significantly depend on socio-economic factors such as income. Our
power flow simulations predict massive cost asymmetries up to 33-fold
in higher-income compared to lower-income neighborhoods. This effect
could amount to a cost asymmetry of up to €14 billion on an EU level.
Hence, grid operators will have to prioritize higher-income neighbor-
hoods in their planning. As many grid operators redistribute their costs
through an across-the-board electricity price increase for all households,
the high infrastructure costs could lead to unwanted inequitable costing
allocation. Policymakers should consider countermeasures like dynamic
electricity pricing schemes, peak power pricing, or income-based electric
vehicle subsidies to ensure energy equity in future mobility scenarios.

Keywords: electric vehicles; electric grid; grid planning; socio-economic
factors; energy equity
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2 Another source of inequity?

With tightening carbon emission regulations in the transportation sector, more
and more consumers are switching to electric vehicles (EVs). However, charg-
ing a high number of EVs poses challenges to the distribution grids: Most
consumers favor charging their EVs at similar times during the day, especially
in the early evening hours. This parallel charging of multiple EVs could lead
to significant load peaks causing overloads within the grids [1–3]. These over-
loads increase with EV adoption and depend on the EV model choice as well as
the applied charging patterns. All these factors may be correlated with socio-
economic attributes like household income [4–8]. Therefore, grid operators may
have to over-proportionally enhance the grid infrastructure in areas with many
high-income households. Our paper investigates how the necessary grid rein-
forcement costs differ between lower and higher-income neighborhoods. From
these calculations, we quantify the over-proportional grid reinforcement cost
impact of higher-income EV users as well as the potential for energy inequities
and derive policy recommendations accordingly.

Our work contributes to the larger field of energy inequity, which is
increasingly relevant: [9] find that the clean energy transition might fur-
ther disadvantage lower-income households. [10] reveals that lower-income
neighborhoods experience stronger grid limitations, reducing their access to
residential photovoltaics and potentially hindering EV adoption. Hence, efforts
to accurately measure energy inequity and strive for energy justice and equity
through policy measures are increasing [11, 12].

[1, 2, 13, 14] are among the first to investigate the impact of EVs on
the distribution grids. [1] uncover that plug-in hybrid electric vehicle pene-
trations levels between 10% and 30% lead to significant voltage imbalances
and power losses. Building on these findings, numerous authors find simi-
lar results with grids being unable to handle EV charging loads in different
countries and grid scenarios [2, 3, 14, 15]. [13] and [16] contribute to the dis-
cussion by providing general overviews and outlooks of the challenges coming
when integrating electric vehicles into the grid. The recent technological shift
towards sole battery-powered electric vehicles (BEVs) and higher charging
powers could further increase the pressure on the grid, requiring new solutions
and improvements within the infrastructure [17–19].

When analyzing EVs’ impact on the distribution grids, most studies model
all households within the simulated distribution grid with homogeneous EV
adoption and usage behavior. However, socio-economic factors such as income,
age, gender, occupation, level of education, ethnicity, home ownership, or polit-
ical orientation play a role in EV adoption [4–6, 20–25]. The homogeneous
modeling of grid impact could hence be prone to significant errors. [4] ana-
lyzed sales data from 20 countries like China, Norway, Germany, and the US.
Although every country included provides tax benefits or government subsidies
decreasing the purchase costs, the authors find that of all possible socio-
economic factors, income still is the primary driver of EV adoption. [20] find
that above-average household income increases the likelihood of owning an EV
by as much as 200%. [21] and [22] support these claims, finding that medium
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to high-income groups tend to show higher EV adoption. [5] find the same phe-
nomenon in the UK. Analyzing survey data from more than 5000 respondents
in the Nordics, [6] uncover that higher income is associated with an increased
likelihood of owning an EV and more expensive car models. [26], [27] and [23]
find similar results. These more expensive and frequently larger car models
tend to have higher electricity consumption, increasing charging loads [28].

Besides EV adoption and car model choice, driving patterns greatly affect
EV charging patterns and potential load peaks. The driving patterns depend
on socio-economic factors, including age, gender, and level of education or
occupation. Depending on these factors, the number of trips per day as well
as the departure and arrival times impacting charging times vary significantly
[7, 29–31]. Since socio-economic factors may lead to higher worst-case power
flows, papers like [8] or [32] criticize current charging modeling approaches and
call to include these factors in load assessments: [31] simulate EV charging
demand accounting for socio-economic factors such as household income or
occupation and analyze the related load curves in a German setting. The recent
2035 forecast for the US, as developed by [32], also criticizes current charging
modeling approaches. Using a data-driven model distinguishing driver income,
housing, and miles traveled, they find that EV charging loads increase peak
net electricity demand by up to 25% and deduct related implications as for
example the charging point dissemination. [5] simulate EV charging loads of
UK households with differing economic statuses. They find that higher-income
households cause larger load peaks, potentially leading to over-proportionally
high grid reinforcement costs. Their paper hence raises the issue of a fair grid
cost allocation. While only a few studies include socio-economic factors in
their load assessment, none of these studies provide estimations on the related
distribution grid reinforcement needs or related grid reinforcement costs.

Fairness in the allocation of these grid reinforcement costs is a matter of
perspective. [33] distinguishes the allocation of costs between three principles:
The allocation of costs along the need, along the contribution to a problem,
or to a simple equal share. In the context of reducing CO2 emissions, [34]
find that most individuals prefer the principle of contribution (equity), where
people who contribute more emissions should have to achieve higher emission
reductions. The issue of fairness in bearing the here-mentioned grid infrastruc-
ture costs is slightly more complicated, as higher-income households with more
electric vehicles might cause over-proportionally high infrastructure costs but
also reduce CO2 emissions. However, in the coming years, EVs are expected
to become cheaper with economies of scale. In the long run, we may assume
an equally high share of vehicle electrification in lower- and higher-income
households. At that point, we may still face differing costs in required grid
reinforcements due to driving behavior and vehicle ownership. Applying the
principle of fairness according to contribution would require higher-income
households to carry the caused asymmetry in grid reinforcement costs to the
full extent.
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However, residential grid reinforcement costs in many countries are com-
pensated for as part of the electricity price via a fixed component as well as
a fee per kWh (see [35, 36] and, for example, [37, 38] in Germany). Without
adjustment for maximum loads, increased grid reinforcement costs would lead
to an overall electricity price increase for all consumers. This price increase
could be considered inequitable to the principle of fairness according to the
contribution, as higher-income neighborhoods over-proportionally cause these
grid reinforcement costs. Previous literature does not quantify the related grid
cost asymmetry and could not uncover potential unfairness.

Connecting to this issue, we focus our analysis on household income as
a critical socio-economic factor and raise a discussion on energy equity. Our
paper aims to quantify the over-proportional grid reinforcement cost impact
of higher-income EV users. We, therefore, use real trip data from [39] in a
grid power flow analysis to compare the grid reinforcement costs of above-
average with below-average income neighborhoods. The contribution should be
highly relevant for policymakers, who increasingly incorporate energy equity
as a critical factor in electricity pricing and energy policy overall [40–43]. Fur-
thermore, our paper helps grid operators and illustrates the need to include
socio-economic factors such as income in their grid planning models, which
some providers are starting to incorporate [44].

The paper is organized as follows: Section 1 presents and discusses the
results and related implications, while Section 2 concludes. The general
methodology and input parameters are outlined in Section 3.

1 Results and Discussion

1.1 Impact on grid overloads

Based on simulated load profiles, we investigate the overloads occurring for
below-average (lower) and above-average (higher) income rural, suburban, and
urban neighborhoods. This overload analysis is relevant for grid planning,
as it displays which neighborhoods require prioritization. Figure 1 illustrates
the number of 5-minute intervals in which an overload occurs. For exam-
ple, on average, the rural grid experiences 5 overloads during a week in the
lower-income neighborhood, while 70 overloads occur in the higher-income
neighborhood.
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Fig. 1: Average simulated number of weekly overloads in December.

In all area types, higher-income neighborhoods would experience signifi-
cantly more grid overloads, putting these neighborhoods higher on the grid
operators’ agenda for grid reinforcements. As the number of overloads and
hence the probability for a blackout differ significantly between lower and
higher-income neighborhoods, the importance of including socio-economic fac-
tors such as income in grid planning models becomes apparent. The rural grid
is the weakest and exhibits the most overloads. However, a transformer replace-
ment in this grid would solve the vast majority of overloads occurring, while
mostly grid lines are the bottleneck in the other grid types.

1.2 Asymmetry in grid reinforcement costs and
underlying effects

In this section, we derive the related grid reinforcement costs to mitigate the
overloads previously outlined and stabilize the grid. The average reinforcement
costs to be expected are illustrated in Figure 2. While the analysis does not
prove a causal relationship between household income and grid reinforcement
costs caused, it provides illustrating scenarios for future grid reinforcement
costs to be expected for a representative higher-income compared to a lower-
income neighborhood.
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Fig. 2: Average simulated grid reinforcement costs (in €) in December.

We see 50% additional grid reinforcement costs for higher-income neigh-
borhoods in the rural, 3,266% in the suburban, and 478% in the urban grid
compared to lower-income neighborhoods. The additional reinforcement costs
are the lowest for the rural grid as this grid is the least resilient overall. An
upgrade of its bottleneck, the transformer, becomes inevitable even for lower
EV charging loads. These significant asymmetries in grid reinforcement cost
further illustrate the necessity for grid operators to include socio-economic
factors such as income in their grid planning models to represent future
grid costs adequately. These significant asymmetries also prevail when test-
ing for the inclusion of residential electricity generation and storage. When
extrapolating our findings to the around 119 million residential buildings in
the EU and accounting for their distribution to rural, suburban, and urban
areas, the potential grid cost asymmetry between higher- and lower-income
neighborhoods could reach around €14 billion [45–48].

In order to derive appropriate mitigating policy measures, we further ana-
lyze the impact of the underlying drivers for the additional grid reinforcement
cost of higher-income neighborhoods. We quantify the standalone impact of dif-
ferences in EV adoption, model choice, and driving patterns by neighborhood
type. For that purpose, we keep all other parameters equal (ceteris paribus)
and adjust one driver as follows.

• EV adoption: We derive the effect of EV adoption by assigning both income
groups the same EV adoption rate of 31.1%.

• Model choice: We quantify the impact of model choice by assigning the
car segment distribution of lower-income households to higher-income
households.

• Driving patterns: We analyze the impact of driving patterns by assigning
the driving patterns of lower-income groups to higher-income groups.
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It is important to note that these three drivers are not additive. However, this
analysis provides an understanding of the most effective levers for diminishing
grid cost asymmetry and related inequities. In Figure 3, we first analyze the
effect of EV adoption.

Fig. 3: Average simulated grid reinforcement costs (in €) assuming equal EV
adoption levels in December.

If EV adoption were equally distributed over all neighborhoods, the
grid reinforcement cost asymmetries would shrink significantly. This effect,
however, is partly caused by a related grid cost increase for lower-income neigh-
borhoods. Nonetheless, our results show that even if equal EV adoption levels
across income levels could be achieved, significant additional grid reinforcement
costs for higher-income neighborhoods prevail, especially for the suburban and
urban grids.

Figure 4 illustrates the impact of model choice and driving patterns of
higher-income households. We discuss only the urban grid, as the effects for
the other two grid types are similar.

Fig. 4: Breakdown of grid reinforcement costs asymmetries by the underlying
drivers of model choice and driving patterns, urban grid.

Driving patterns strongly impact grid cost asymmetry, while the effect of
model choice is relatively small. This can also be observed for the rural and
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suburban grids, with additional costs shrinking in the suburban and slightly
also in the rural grid. For more details on this matter, please refer to Section
3.7. These findings indicate that policymakers may foster EV adoption with all
model sizes but focus more on reducing peak-hour charging to mitigate some
behavioral effects of higher-income households.

1.3 Electricity pricing implications, related inequity and
possible mitigating policy measures

Residential grid reinforcement costs are currently paid for via the consumer
electricity price, which is determined per kWh [37, 38]. These prices do not
vary with the load or maximum power demand but are reimbursed with a
flat-rate cost allocation [37]. As can be seen in Figure 5, the proportion of the
electricity price allocated to grid costs for an average household in 2021 was
around 23% [38].

Fig. 5: Electricity price split and cost calculation, Germany 2021 [38].

If grid costs increase, the electricity price for all consumers is inflated, and
electricity costs increase for all households. Due to their higher total electricity
consumption and related higher electricity costs, higher-income neighborhoods
carry more of the grid reinforcement costs in total. However, as they only con-
sume 16%-18% (based on the area type) more electricity than lower-income
households, this contribution fails to offset the massive additional grid rein-
forcement costs caused. Furthermore, grid operators often split grid costs into
a base rate in addition to a volumetric (per kWh) component. This base rate
is not scaled with regards to consumption and hence further limits the grid
cost contribution of higher-income households [37]. With household electricity
prices at a record high (32.63ct/kWh in 2021 and quickly increasing during
the European Energy Crisis in 2022 [46, 49, 50]), a further across-the-board
electricity price increase to cover the additional grid reinforcement cost of
higher-income neighborhoods could be considered inequitable with respect to
the principle of fairness according to contribution. As this grid reinforcement
cost asymmetry can be traced back to higher-income neighborhoods, equitable
cost allocation would require higher-income households fully bear this cost
asymmetry, not affecting the electricity prices of other consumers.

However, it is important to note that the rationale for this potential
inequitable cost allocation is not the difference in income between the two
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neighborhood types but the difference in usage of the electric distribution grid
as a common resource. According to the principle of fairness according to con-
tribution (equity) [33], households in a higher-income neighborhood should
rather pay grid fees which reflect the contribution to the grid reinforcement
costs induced by them. We focus on mitigating policy actions directly related
to households’ grid cost impact, not socio-economic attributes such as income.

Policymakers should consider alternative electricity pricing models that
adjust for maximum electricity loads induced. They could also encourage a
dynamic electricity pricing strategy increasing peak time electricity prices for
households, for example, implemented by a large grid operator in Denmark. In
their pricing policy, grid tariffs more than double between 5 and 8 p.m. during
the winter months [51]. [40] recommend similar electricity price adjustments to
promote energy equity. Any dynamic electricity pricing, load-based or adjusted
for peak times, does, however, require the installation of a smart meter. The
smart meter installations are, unfortunately, lagging behind. In Germany, for
example, only 19% of households own any smart energy management device
in 2022. Since energy companies fall behind their smart meter installation
ambitions [46, 52], alternative measures are worth considering.

EV adoption greatly impacts the magnitude of the inequitable grid cost
allocation. As it is not desirable to reduce overall EV adoption and limit the
electrification of mobility, policymakers could reduce the inequity in cost allo-
cation by increasing subsidies for EV adoption in lower-income households,
where EV subsidies have shown the strongest impact on EV adoption [53]. A
fuel efficiency-dependent reduction in government EV subsidies based on car
models could also compensate lower-income households and mitigate some of
the inequities. However, the effect of model choice on grid costs is limited, as
seen in Figure 4. Households that can not afford an electric vehicle will not
profit from any of such actions but will still face higher grid costs.

Our findings on potentially inequitable EV-related grid cost allocation
contribute to the larger field of energy inequity, which has gained impor-
tance globally in recent months [41–43, 54–56]. With energy and electricity
prices rapidly increasing due to the Ukraine war, lower-income households in
Europe are over-proportionally affected, experiencing a larger cost of living
increase and disposable income decrease compared to higher-income house-
holds [42, 54, 55]. In Germany, energy poverty is quickly becoming an issue
affecting also middle-class households [56]. Targeted, income-adjusted govern-
ment relief measures could be required to support lower-income households
and allow equitable cost allocation [42, 56]. Unfortunately, current energy crisis
relief measures are frequently falling short of this goal (see e.g. 12, 41, 43, 57).

2 Conclusion

Our work analyzes the difference in grid reinforcement costs induced by EV
charging in lower- compared to higher-income neighborhoods. In the analyzed
potential scenario, the number of grid overloads occurring for higher-income
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neighborhoods exceeds those for lower-income neighborhoods by over 12-fold
on average across area types. Hence, the stronger need for grid reinforcements
puts higher-income neighborhoods at the top of grid operators’ agendas. While
grid reinforcement costs from higher-income neighborhoods in rural grids are
only 50% higher, we see a more significant effect in suburban and urban
grids, with costs diverging by up to around 3,300% and 480%, respectively.
For the EU, these cost asymmetries could potentially amount to €14 billion.
The current policy setting would cover the related grid reinforcement costs
via an across-the-board electricity price. This could be considered inequitable
regarding the principle of fairness according to contribution, as these grid
reinforcement costs can be over-proportionally traced back to higher-income
neighborhoods. Policymakers should hence consider adopting a load-based
pricing policy to prevent assigning these costs to all electricity consumers.
As grid cost asymmetries between neighborhoods are mostly caused by differ-
ences in EV adoption and driving patterns, policymakers may try to establish
maximum-load-based electricity pricing or compensate for inequities with
income-dependent EV subsidies. However, households that can not afford an
electric vehicle will not profit from such compensations and may still face
higher grid cost allocations.
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3 Methods

We simulate electricity usage for two neighborhood types: below-average
(lower) and above-average (higher) income. For these two neighborhood types,
we assign respective EVs considering adoption and model choices and fit the
corresponding mobility behavior. We use representative distribution grids in
urban, suburban, and rural settings to account for the differing structure
and load capacity [58]. After allocating the electric vehicles amongst the grid
nodes, the simulations check each setting for overloads. While we showcase the
approach with inputs for distribution grids in Bavaria in the South of Ger-
many, the approach may be applied to any grid or geographical region. The
simulation builds upon [59] and is structured as displayed in Figure 6.

Fig. 6: Simulation approach to quantify the costs of reinforcing distribution
grids, own illustration using [60].

For both neighborhood types,

1. we populate the grid with the related income group (above- or below-
average-income households).

2. we assign the related EV adoption level and model choice depending on the
income group.

3. we model the driving patterns for each EV depending on the income group.
4. we derive the EV charging loads resulting from the EV driving patterns.
5. we sample household electricity load profiles on a household level.
6. we consolidate the EV charging loads and household electricity load profiles.
7. we perform a power flow analysis, and if overloads occur, we reinforce the

respective overloading grid element.
8. we calculate grid reinforcement costs to resolve these overloads.

We derive the grid reinforcement cost asymmetry between the two neigh-
borhood types within the simulation. The power flow analysis is performed
using the Newton-Raphson method of the matpower package in MATLAB,
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which is frequently used in load analysis [61]. To consider the most challeng-
ing season for electricity usage, we perform the simulation using five-minute
intervals over a week in December.

3.1 EV portfolio and driving patterns by income class

First, we create a set of below- and above-average-income households for a
German neighborhood. Using current German household net income data, we
find that the average net income lies around 3,600€ per month [62, 63]. We
leverage the household data from the German Mobility Panel to separate this
data set by household income [39]. The data set states monthly income with
steps of 500€ granularity. We separate into below- (lower) and above-average
(higher) income households at 3,500€ net household income per month.

We again use household data from the German Mobility Panel to assign
EVs to households by determining the number of private cars owned per house-
hold based on the area type [39]. When analyzing the average number of cars
per household by income group, we can see significant differences, with lower-
income households owning, on average, 0.94 and higher-income households 1.77
cars. When including EVs in our model, we choose to use BEVs only as this
reflects the markets’ direction to reduce all conventional vehicle powertrain
technologies [18, 19]. We separate the EV into different segments: Mini (Volk-
swagen e-UP), Small (Renault Zoe Z.E. 40 R110), Compact (Volkswagen ID.3
Pro), Medium-sized (Tesla Model 3 Long Range Dual Motor), SUV (Audi e-
tron 55 quattro) and Luxury (Porsche Taycan Turbo S). The different vehicle
classes allow considering the varying power consumption and the corresponding
charging needs. We derive the usable battery capacity from [64], which com-
piles technical specifications for EVs currently on the market. The electricity
consumption data is based on real-live driving tests by [65, 66]. Table 1 lists the
car segments’ specifications. Since our simulation investigates the demanding
December conditions, we utilize climate data by [67, 68] to fine-tune the elec-
tricity consumption considering the ambient temperature. This adjustment is
needed as ambient temperature significantly affects the energy efficiency of an
EV. Specifically, temperatures between 0°C and 15°C decrease vehicle ranges
by up to 28% in comparison with driving at moderate temperatures from 15°C
to 25°C [67, 69].

Table 1: Car segment battery capacity and consumption [64–66].

Segment Mini Small Compact Medium-sized SUV Luxury
Usable battery (kWh) 32 41 58 76 87 84
Electricity consumption 17.7 20.3 19.3 20.9 25.8 33.0

(kW/100km)

To find the appropriate segment sizes for the German car market, we
aggregate the newly registered cars per segment of 2021 as provided by the
German federal transport agency (Kraftfahrtbundesamt) [70]. To separate
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between lower and higher-income households, we leverage the car segmenta-
tion included in the German Mobility Panel to reflect model choice differences
between income classes [39]. We choose to re-scale the newly registered car
segment distribution from [70] instead of simply using the 2019 German Mobil-
ity Panel’s car segment distribution to reflect future car model choice instead
of the existing German car park. The resulting impact of income on the car
model choice can be seen in Table 2.

Table 2: Car segment distribution by income class.

Household group Mini Small Compact Medium-sized SUV Luxury
Lower-income 8% 19% 21% 12% 31% 8%
Higher-income 6% 13% 19% 17% 25% 19%

All 7% 16% 20% 15% 28% 14%

To simulate car driving patterns by income class, we use real-live driving
data from the German Mobility Panel collected between September 2019 and
the beginning of March 2020 [39]. This data set includes weekly trip data for
70,796 trips covering various modes of transportation, provided with travel
times, trip purposes, and timings. After selecting only trips performed by car
and outlier removal by excluding drivers performing holiday trips or very long
journeys (above 200km, longer than 132 min), we arrive at a data set of 22,803
trips representing common driving patterns. We assume that the first trip of
each day always starts at home and the last trip of each day ends at home. We
generate synthetic trips for both income groups using this trip data set through
a time-inhomogeneous first-order Markov chain. Markov chain models are a
commonly used method for uncertainty modeling, particularly in the context
of EV charging loads, due to their ability to achieve high accuracy at moderate
computational costs [71]. In this work, the Markov chain is employed to create
trip samples between ”Home”, ”Work” and ”Other” locations, resulting in
synthetic EV driving and charging profiles. Differentiating between weekdays,
weekends, and times of day, we fit a time-inhomogeneous Markov chain for our
mobility simulation. We choose the Markov chain to be time-inhomogeneous,
as the probability of transitioning between locations is time-dependent. The
simulation is conducted at five-minute intervals since self-reported recordings
exhibit a rounding bias with approximately 75% of timing data points ending
in a right-hand digit of either 0 or 5.

The EV driving and charging simulation is based on [31] adapted by sep-
arating households only according to income to reduce complexity. To start
our simulation, we first sample the number of trips performed by each car of
the lower (higher) income household on that day. In the second step, we use
the first-order Markov property to define trip destinations, distances, speeds,
and associated parking times depending on the start location of the current
trip and its time of day (as time-inhomogeneous). Our model fits the empiri-
cal data well, with average daily driving time differing by 1.1% and an average
daily trip frequency differing by 1.2% from the empirical data, respectively.
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3.2 EV and household loads

The charging logic applied does not vary by income group. However, the differ-
ing mobility behavior of lower and higher-income households impacts charging
patterns. After each EV trip, the EV updates its state of charge (SOC) to
reflect the distance driven. Once the EV arrives home and parks for more
than 10 minutes, the probability of starting the charging process is determined
based on the state of charge as an inverse s-shaped relationship found in a
six-month German field study of 79 EV drivers [72]. The charging probability
model from [72] defines the probability of starting the charging process as

pcharge = min

((
1− 1

1 + e−0.15(SOC−60%)

)
cl, 1

)
with the parameters calibrated using an analysis of the charging behavior
of EV fleets in Germany performed by [73]. The factor cl can be chosen
location-dependent. We focus on charging at home, representing most charg-
ing instances [74]. We adjust cl for whether a private charger is available or the
charger is public and assumed to be located in front of the house. The charging
process ends once the next trip is started or the EV battery is fully charged.
Applying charging patterns to stop at a charge level of 80% to improve battery
health would lead to similar results.

We generate the household loads via empirical sampling in two steps: First,
we generate 1,000 representative German household electricity load profiles
for December using the Load Profile Generator of [75] frequently used and
validated by previous literature like [76–78]). It creates representative syn-
thetic household electricity load profiles based on a full behavior simulation
of the related households [75]. We categorize these load profiles by household
size. In the second step, we construct the electricity load a typical neigh-
borhood in rural, suburban, and urban areas for our exemplary setting of
Bavaria, Germany. Therefore, we sample household load profiles according to
the distribution of household sizes per area type according to [79]. We also
use area-specific distributions of households per building, as those vary by
area type according to [80]. The respective household size and household per
building distributions can be found in Section 3.6.

The loads Lh,t occurring for each house h in the neighborhood at a five
minute interval time point t ∈ {1, 2, ..., 2016} in a week are hence defined as
follows

Lh,t =

k∑
hh=1

(
ehh,t +

nk∑
n=1

cn,t

)
where k is the number of households in the house h, ehh,t the household elec-
tricity load profile associated with the respective household hh at time t and
cn,t the charging load of an EV n of the nk EVs of owned by household k at
time t.
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3.3 LV distribution grids and synthetic neighborhoods

As in [59], we use the SimBench low-voltage (LV) distribution grids [58, 81],
which are designed to represent benchmark distribution grids for Germany.
We opt for the SimBench grids as they allow us to analyze differing area types
and the related differences in distribution grids. We perform our analysis on
the SimBench LV 02 as the rural, the SimBench LV 05 as the semi-urban,
and SimBench LV 06 as the urban LV grid. These encompass 95, 109, and
108 houses, respectively. To perform our analysis, we create synthetic lower
(higher) income neighborhoods by allocating households sampled from the
lower (higher) income data set to the SimBench grid nodes. We run a power
flow analysis, and if overloads occur, we reinforce the respective overloading
line or transformer.

Overloads occur, if for any grid element g ∈ {1, ..., G} within a grid con-
sisting of G elements the related capacity Capg is exceeded at any time point
t ∈ {1, 2, ..., 2016}, meaning ∑

h∈Hg

Lh,t ≤ Capg

is violated at any time t where Hg is the set of all houses supplied through the
grid element g.

Investment costs for line reinforcements in Germany are estimated as
85–125€/m according to [82]. We assign investment costs of 26,970€ to a
250kVA transformer upgrade used in the rural grid and 61,730€ to a 630kVA
transformer upgrade for the suburban and urban grid in line with [83].

3.4 EV adoption scenario analyzed

In order to simulate realistic future EV penetration levels, we use the current
German government target of 15 million EVs on German roads by 2030 as
the basis for our scenarios [18]. Relative to the 2021 German car park of 48.24
million cars, this would equate to an EV adoption rate of 31.1% [84]. Analysis
of current EV sales reveals that a household’s probability of owning an EV is
up to three times as high for higher-income than for lower-income households
[20]. Using the 15 million EV target as a base (equating to an overall EV
adoption rate of 31.1%) and accounting for higher-income households owning
more cars, EV adoption rates would lie at 22.4% for lower-income and 35.7%
for higher-income households. As we could expect this effect to become smaller
as more EVs enter the market and prices decrease, we will include an analysis
of equal EV adoption rates for both income groups in Section 1.2.

3.5 Driving patterns and load profile implications

First, we investigate the differences in driving patterns, EV charging behavior,
and resulting load curves. In line with existing literature, we find that higher
and lower-income households differ in their driving patterns. The German
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Mobility Panel trip data reveals that higher-income households perform more
daily trips, with an average of 2.2 daily trips instead of 2.0 daily trips for lower-
income households [39]. They also exhibit longer trip durations of, on average,
42 minutes instead of 38 minutes. Furthermore, higher-income households show
more concentrated weekday home arrival times, leading to stronger load peaks,
as visible in Figure 7.

(a) Weekdays.

(b) Weekends.

Fig. 7: Probability of car arrival at home for an average weekday and weekend.

These effects are most likely also linked to differences in occupation and
level of education between the two income groups, which have been shown
to affect mobility behavior [29–31]. While 46% of drivers in higher-income
households are working full-time, this only applies to 25% of drivers in lower-
income households within the data of [39]. The proportion of drivers with a
university degree, which is often linked to a ”nine-to-five” work schedule, is
43% for higher-income and only 26% for lower-income households. This may
be the reason why we observe more concentrated weekday arrival times and
increased car usage for high-income households. Due to the longer driving
times, the hence higher electricity consumption, and the more pronounced
weekday arrival time peaks, we expect the high-income households to induce
stronger load peeks, especially on weekdays. This effect is also enhanced by
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the difference in EV adoption as well as model choice. Figure 8 shows the
exemplary case of the induced load curves a week in December in the rural
grid.

Fig. 8: Net load profiles of households and EVs in the rural grid.

As expected, the load peak difference between higher- and lower-income
households is especially pronounced on weekdays. Due to the stronger load
peaks, we expect the higher-income neighborhood grids to be more at risk for
overloads caused by EV charging.

3.6 Additional input data: Household size and
households per building

Table 3: Average distribution of household size per area type in Bavaria,
Germany [79].

Persons per household Rural Suburban Urban
1 35% 40% 54%
2 35% 33% 27%
3 14% 12% 10%
4 12% 11% 7%

5 or more 4% 4% 2%
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Table 4: Average distribution of households per building in Bavaria, Germany
[80].

Households per building Rural Suburban Urban
1 70% 55% 53%
2 17% 13% 10%
3-6 9% 16% 14%
7-12 3% 12% 15%

13 or more 1% 4% 8%

3.7 Additional results: Breakdown of grid reinforcement
costs asymmetries

(a) Rural. (b) Suburban.

(c) Urban.

Fig. 9: Breakdown of grid reinforcement costs asymmetries by the underlying
drivers of model choice and driving patterns for all area types.



Another source of inequity? 19

References

[1] Clement-Nyns, K., Haesen, E., Driesen, J.: The impact of charging plug-in
hybrid electric vehicles on a residential distribution grid. IEEE Transac-
tions on Power Systems 25(1), 371–380 (2010). https://doi.org/10.1109/
TPWRS.2009.2036481

[2] Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: Integration of electric vehi-
cles in the electric power system. Proceedings of the IEEE 99(1), 168–183
(2011). https://doi.org/10.1109/JPROC.2010.2066250

[3] Muratori, M.: Impact of uncoordinated plug-in electric vehicle charging
on residential power demand. Nature Energy 3, 193–201 (2018). https:
//doi.org/10.1038/s41560-017-0074-z

[4] Xue, C., Zhou, H., Wu, Q., Wu, X., Xu, X.: Impact of incentive policies
and other socio-economic factors on electric vehicle market share: A panel
data analysis from the 20 countries. Sustainability 13(5), 2928 (2021).
https://doi.org/10.3390/su13052928

[5] Lee, R., Brown, S.: Social & locational impacts on electric vehicle own-
ership and charging profiles. Energy Reports 7, 42–48 (2021). https:
//doi.org/10.1016/j.egyr.2021.02.057

[6] Sovacool, B.K., Kester, J., Noel, L., de Rubens, G.Z.: Income, politi-
cal affiliation, urbanism and geography in stated preferences for electric
vehicles (evs) and vehicle-to-grid (v2g) technologies in northern europe.
Journal of Transport Geography 78, 214–229 (2019). https://doi.org/
10.1016/j.jtrangeo.2019.06.006

[7] Kelly, J.C., MacDonald, J.S., Keoleian, G.A.: Time-dependent plug-
in hybrid electric vehicle charging based on national driving patterns
and demographics. Applied Energy 94, 395–405 (2012). https://doi.org/
10.1016/j.apenergy.2012.02.001

[8] Gauglitz, P., Ulffers, J., Thomsen, G., Frischmuth, F., Geiger, D., Schei-
dler, A.: Modeling spatial charging demands related to electric vehicles
for power grid planning applications. ISPRS International Journal of
Geo-Information 9(12), 699 (2020). https://doi.org/10.3390/ijgi9120699

[9] Carley, S., Konisky, D.M.: The justice and equity implications of the clean
energy transition. Nature Energy 5(8), 569–577 (2020). https://doi.org/
10.1038/s41560-020-0641-6

[10] Brockway, A.M., Conde, J., Callaway, D.: Inequitable access to distributed
energy resources due to grid infrastructure limits in california. Nature
Energy 6(9), 892–903 (2021). https://doi.org/10.1038/s41560-021-00887-

https://doi.org/10.1109/TPWRS.2009.2036481
https://doi.org/10.1109/TPWRS.2009.2036481
https://doi.org/10.1109/JPROC.2010.2066250
https://doi.org/10.1038/s41560-017-0074-z
https://doi.org/10.1038/s41560-017-0074-z
https://doi.org/10.3390/su13052928
https://doi.org/10.1016/j. egyr.2021.02.057
https://doi.org/10.1016/j. egyr.2021.02.057
https://doi.org/10.1016/j.jtrangeo.2019.06.006
https://doi.org/10.1016/j.jtrangeo.2019.06.006
https://doi.org/10.1016/j. apenergy.2012.02.001
https://doi.org/10.1016/j. apenergy.2012.02.001
https://doi.org/10.3390/ijgi9120699
https://doi.org/10.1038/s41560-020-0641-6
https://doi.org/10.1038/s41560-020-0641-6
https://doi.org/10.1038/s41560-021-00887-6
https://doi.org/10.1038/s41560-021-00887-6


20 Another source of inequity?

6

[11] Diezmart́ınez, C.V., Short Gianotti, A.G.: Us cities increasingly integrate
justice into climate planning and create policy tools for climate justice.
Nature communications 13(1), 5763 (2022). https://doi.org/10.1038/
s41467-022-33392-9

[12] Scheier, E., Kittner, N.: A measurement strategy to address
disparities across household energy burdens. Nature communica-
tions 13(1), 288 (2022). https://doi.org/10.1038/s41467-021-27673-
yapenergy.2014.09.091

[13] Green, R.C., Wang, L., Alam, M.: The impact of plug-in hybrid elec-
tric vehicles on distribution networks: A review and outlook. Renewable
and Sustainable Energy Reviews 15(1), 544–553 (2011). https://doi.org/
10.1016/j.rser.2010.08.015

[14] Fernandez, L.P., Gomez San Roman, T., Cossent, R., Mateo Domingo,
C., Frias, P.: Assessment of the impact of plug-in electric vehicles on
distribution networks. IEEE Transactions on Power Systems 26(1), 206–
213 (2011). https://doi.org/10.1109/TPWRS.2010.2049133

[15] Salah, F., Ilg, J.P., Flath, C.M., Basse, H., van Dinther, C.:
Impact of electric vehicles on distribution substations: A swiss case
study. Applied Energy 137, 88–96 (2015). https://doi.org/10.1016/
j.apenergy.2014.09.091

[16] Richardson, D.B.: Electric vehicles and the electric grid: A review of mod-
eling approaches, Impacts, and renewable energy integration. Renewable
and Sustainable Energy Reviews 19, 247–254 (2013). https://doi.org/
10.1016/j.rser.2012.11.042

[17] Mowry, A.M., Mallapragada, D.S.: Grid impacts of highway electric vehi-
cle charging and role for mitigation via energy storage. Energy Policy
157, 112508 (2021). https://doi.org/10.1016/j.enpol.2021.112508

[18] German Government: Koalitionsvertrag 2021-2025 (2021)

[19] International Energy Agency: World energy outlook 2021, 142 (2021)
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[81] Meinecke, S., Sarajlić, D., Drauz, S.R., Klettke, A., Lauven, L.-P.,
Rehtanz, C., Moser, A., Braun, M.: Simbench—a benchmark dataset of
electric power systems to compare innovative solutions based on power
flow analysis. Energies 13(12), 3290 (2020). https://doi.org/10.3390/
en13123290
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