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Abstract

Replacing conventional cars and trucks with battery electric vehicles requires a rapid expan-

sion of fast-charging infrastructure. However, private sector charging infrastructure invest-

ments are delayed by unfavorable project economics and uncertainty in future demand. Prior

research has addressed the former using standard net present value (NPV) methods, but ne-

glected the latter. To address this gap, this paper introduces a real options model of charging

investments, which quantifies the option value of delaying investment under uncertainty. We

apply our model to assess the implications of this optionality in a representative case. Our

analysis simulates how investment timing is impacted by alternative policy options: grants,

long-term contracts, demand charge re-design, and Zero Emission Vehicle standards. We

estimate that if subsidy levels are informed by a traditional NPV analysis, firms would de-

lay investing by more than 5 years. Perhaps surprisingly, even low levels of risk incentivize

long delays. We find that policies targeting optionality are substantially more cost-effective

than the more commonly used grants. Specifically, we calculate that long-term contracts-

for-differences can trigger immediate investments at a cost 68% lower than up-front grants.

A simpler but relatively cost-effective alternative is to introduce a phase-out schedule for

grants to discourage investment delay.
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1 Introduction

Accelerating the adoption of Electric Vehicles (EVs) is a policy priority for nations seeking to

reach 1.5°C or 2°C climate targets. Decarbonization scenarios for 1.5°C and 2°C envision zero-

emission vehicles accounting for 96% and 62% of all cars on the road respectively (median

values); and the 1.5°C target requires that 100% of vehicles sold annually are zero-emission

before 2030 (Dimanchev, Qorbani, and Korp̊as, 2022). However, concerns about charging

among potential buyers are discouraging EV purchases (YouGov, 2020). Availability of

charging stations has been found to be the strongest predictor of EV adoption (Sierzchula

et al., 2014; Li et al., 2021; Sæther, 2022). Of particular importance are fast chargers, which

were shown to encourage EV adoption more strongly than slow public chargers (Levinson

and West, 2018; Wei et al., 2021; Sæther, 2022). Fast charging is seen as necessary to meeting

consumer needs (Nie and Ghamami, 2013; Funke et al., 2019) even though most charging

may take place overnight or at the workplace (Hardman et al., 2018). Fast chargers are

also of particular economic concern as they account for most of the infrastructure spending

estimated to be necessary to support future EV adoption (Bauer et al., 2021).

Government incentives play a critical role in charging infrastructure expansion because of

network externalities (known colloquially as the “chicken-and-egg” problem), which lead

to sub-optimal levels of private sector investment (Li et al., 2017; Delacrétaz, Lanz, and

Dijk, 2021). An array of empirical studies has quantified the impact of charging subsidies

on EV adoption (Münzel et al., 2019). Cole et al. (2021) showed that subsidizing charging

stations is a more cost-effective way of increasing EV adoption than direct vehicle subsi-

dies. It remains unclear however how subsidies should be designed to accelerate charging

investments while spending public funding most efficiently.

Previous research showed that fast charging stations face challenging economics, in large part

due to high upfront costs and low utilization, exacerbated by $/kW demand charges (Madina,

Zamora, and Zabala, 2016; Flores, Shaffer, and Brouwer, 2016; Lee and Clark, 2018; Mura-

tori, Kontou, and Eichman, 2019; Serradilla et al., 2017; Jabbari and MacKenzie, 2017). Sev-

eral studies explored policy options to improve charging economics through grants (Lee and

Clark, 2018; Gnann, Plötz, and Wietschel, 2019; Baumgarte, Kaiser, and Keller, 2021), tax

exemptions (Serradilla et al., 2017), and electricity rate redesign (Fitzgerald and Nelder, 2019;

Muratori, Kontou, and Eichman, 2019). One of the main limitations of the current litera-

ture is the use of static Net Present Value (NPV) or similar methods that generally model

charging investment as a function of discounted future profit and investment cost. Such

methods model a “now-or-never” decision and implicitly assume that investment occurs at
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the break-even point when total revenues and costs are equal. In contrast, real options the-

ory states that investment is justified when total revenues equal not only conventional costs

but also the opportunity cost of investing now as opposed to later. Opportunity costs exist

in the presence of uncertainty, irreversibility (complete or partial), and managerial flexibility

as to when the investment is made (Dixit and Pindyck, 1994). These conditions make the

investment problem one of choosing when to exercise an option (i.e. a right, but not an

obligation) to invest. Optionality incentivizes investors to wait beyond the time when the

investment just breaks even. Real options modeling has been applied to various environmen-

tal policies (Wesseler and Zhao, 2019), including renewable energy subsidies (Kozlova, 2017;

Nagy, Fleten, and Sendstad, 2023).

To inform the design of charging station subsidies, it is necessary to account for the full set

of incentives driving firm behavior, including optionality in investment timing. Investments

in fast charging stations may be influenced by optionality because investors face considerable

uncertainty, cannot fully reverse capital outlays, and in many cases have the ability to delay

investment. Uncertainties in future EV adoption and charging demand mean investors may

not recover upfront costs (Nicholas and Hall, 2018; Lee and Clark, 2018), particularly in ru-

ral areas (Hiller, 2022). Capital expenses cannot be fully reversed because EV adoption risk

is market-wide, implying low resale values for charging hardware in unfavorable scenarios.

Moreover, a substantial portion of capital expenses may be site-specific (e.g. permitting,

labor, electric grid upgrades) for which a resale market does not exist. Investors can also

likely delay investing in many cases. While this may not be true in high demand areas due to

competition for scarce sites, investors may be able to delay decisions in areas where charging

demand is currently low. For example, rural areas in the U.S. are generally characterized by

low demand and slow demand growth (Nicholas and Hall, 2018), causing concerns among

planners about unequal coverage (Massachusetts Department of Transportation, 2022). In-

vestments can also be delayed if investors already have rights to a site, which grants them an

effective monopoly over building a charging station there. This suggests that optionality is

a relevant consideration for charging investors. It can also be expected to drive decisions be-

cause, while many firms do not use real options explicitly, observed behavior has been found

to reflect an implicit accounting of optionality (Dixit and Pindyck, 1994; Fleten et al., 2016).

Thus, an understanding of optionality can help lawmakers design policies that meet desired

goals, including the acceleration of charging investments. For this purpose we introduce a

real options model for charging investments, the first such model to our knowledge.

This work extends the literature in three main ways. First, this research investigates the

implications of optionality for policy design. We assess policy advice informed by traditional
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static NPV approaches and show how such methods underestimate the amount of subsidy

required to stimulate firms to invest rather than wait (conversely these methods overesti-

mate the effectiveness of a given subsidy). Second, our analysis evaluates policy options

that address optionality in different ways and compares their cost-effectiveness. We model

long-term contracts that guarantee a certain revenue stream (Birkett and Nicolle, 2021),

also known as contracts for differences (CfDs), and we compare different ways of designing

such policies (one-sided and two-sided approaches). To our knowledge CfDs have not been

studied by previous real options literature. Third, this paper explores the potential impact

of reducing investment risk. We do so by decomposing the total risk faced by investors into

policy risk and what we call “residual risk”. We find that eliminating policy risk would only

have a limited impact on investment timing, as even low levels of risk would incentivize firms

to delay investment if they have the option.

2 Methods

2.1 Binomial lattice approach to modeling uncertainty

Investors in charging stations face uncertainty in future annual charging demand. To model

this uncertainty, we assume that annual demand follows an upward bounded geometric Brow-

nian motion (GBM) stochastic process such that: dln(d̃t) = µdt + σdz, where d̃t represents

stochastic unbounded demand with drift µ and standard deviation σ. Demand is upward

bounded such that dt = min
[
dmax, d̃t

]
, where dt represents annual demand observed by the

charging station operator. The bound is meant to reflect the threat of competition from new

entrants in a reduced-form manner.

To represent the GBM process, we generate a binomial lattice using the classical method

introduced by Cox, Ross, and Rubinstein (1979). We extend this standard approach to

account for the upward tendency in future charging demand by incorporating the approach

described by Joshi (2007). We define a finite decision making horizon of T time periods. To

build the binomial lattice, we estimate the size of the possible upward and downward jumps

in demand in each time period t, which are denoted ujump and djump respectively, as well as

the probability of an upward jump p, as shown below. Our lattice structure is recombining

since the product ujumpdjump is a constant.
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Symbol Definition

Economic parameters
πt Profit flow over period t ($)
Vt Total discounted future profit flows
Ft Value of real option ($)
dt Charging demand in year t (kWh)
pc Cost to charge, hourly average ($/kWh)
pe Price of electricity, hourly average ($/kWh)
I Investment cost ($)
cO&M Operation and maintenance cost ($)
cdemand−charge Demand charge ($/MW)
r Discount rate, annual
L Project lifetime (years)
T Decision period (years)

Stochasticity parameters
µ Average annual change in demand, i.e. drift
σ Standard deviation in annual demand changes
u Possible monthly increase in demand
d Possible monthly decrease in demand
p Probability of a monthly increase in demand

Policy parameters
s Subsidy grant (fraction)
πcfd Profit flow under contract-for-difference (CfD)
pcfd Payment received by investor from CfD
pstrike CfD strike level

Table 1: Model nomenclature
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ujump = eµ∆t+σ
√
∆t (1)

djump = eµ∆t−σ
√
∆t (2)

p = (eµ∆t − d)/(u− d) (3)

where ∆ is a fraction, which reflects the number of time periods t within one year, and is

used to adjust the annual drift µ and standard deviation σ.

2.2 Real options model of charging investment

Our model represents the decision of an investor choosing when to invest in a charging station

of a given size. The investor solves the stochastic optimization problem that maximizes the

value of the real option, Ft. This maximization problem is expressed by well-known Bellman

equation shown below.

Ft(dt) = max

[
Vt(dt)− I(1− s) , e−r∆tE

[
Ft+1(dt+1)

]]
, s ∈ [0, 1] (4)

where Vt is the total discounted future profit from operating the charging station for the

entirety of its lifetime (described in detail below), and I is the investment cost, potentially

adjusted by a grant subsidy s ∈ [0, 1]. Their difference represents the value of investing now

(i.e. the NPV of the investment). The right side of the maximization represents the value of

waiting, also known as the continuation value, expressed as the discounted expected value of

the real option in the next time period Ft+1. The right side of the maximization expression

can be interpreted as the opportunity cost of investing now. The maximization problem

thus shows that it is optimal to invest when total profits just exceed the sum of total costs

and the opportunity cost of investing. The annual discount rate r is adjusted by a time step

fraction ∆ (equal to 1/12) because of the monthly time resolution of our binomial lattice.

We formulate and solve the investor’s problem as a stochastic dynamic program (SDP). The

solution procedure follows a classical backward recursion approach: our algorithm begins

at the last time step of the decision making horizon, denoted as T , and iteratively moves

toward the first time step. The option value of the last period is estimated as follows.
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FT (dT ) = max

[
VT (dT )− It(1− s) , 0

]
(5)

where VT represents the total discounted future profit at the last stage T . Its calculation is

expressed in the following equation. Note that no expectation operator is used for calculating

profits beyond the last decision making period. In other words, we use standard approach

of assuming that the uncertain variable (demand dT ) does not branch further than the last

decision making period T .

VT (dT ) =
L∑
i=1

e−r∆iπ(dT+i−1) (6)

Here π(dT ) denotes the investor’s profit flow during the last decision-making period, T .

Profit flow is based on charging demand dt and the margin obtained from buying electricity

from the grid (for an hourly average price pe) and re-selling electricity to EV drivers (for an

hourly average price pc). We further account for fixed operation and maintenance (O&M)

costs, denoted cO&M , and the cost of demand charges, cdemand−charge. In this formulation

the cost of demand charges is independent of demand, or utilization. It is possible for peak

power to change with utilization. However, we assume it to be constant for the utilization

values we explore. Profit flow during any period t is calculated using the following equation.

π(dt) = dt(p
c − pe)− cO&M − cdemand−charge (7)

As shown by (7), our model represents a pay-as-you-go business model whereby consumers

are charged per unit of electricity. There is currently a wide variation of payment systems

including memberships and pay-by-the-minute charges (Hardman et al., 2018; LaMonaca and

Ryan, 2022). However, the pay-as-you-go business model is likely to be most representative

of future charging trends. It was found to be preferred by consumer groups and charging

point operators in the UK (Chen et al., 2020) and is being adopted by an increasing number

of U.S. states (Benoit, 2019).

Our solution algorithm proceeds backward through the binomial tree to estimate profits

Vt(dt) at all points in time t ∈ [1 : T − 1] and scenario states (i.e. nodes on the binomial

lattice). As shown in the equation below, Vt(dt) is a function of expected profits from all

stages until the end of the decision horizon at time T (calculated in expectation to account
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for future uncertainty until T ), as well as profits from any remaining periods until the end

of the charging station’s lifetime L.

Vt(dt) = e−r∆π(dt) +
T∑

i=t+1

e−r∆iE
[
π(di)

]
+

L−1−(T−t)∑
j=1

e−r∆(j+T−t)E
[
π(dT+j)

]
(8)

As the algorithm proceeds backward through the binomial lattice, it also estimates the

option values Ft(dt) using (4) and the already estimated profit values Vt(dt). Thus, the

SDP algorithm generates a set of optimal decisions at each point on the binomial tree. To

derive actual investment decisions, we further perform many random forward passes through

the binomial tree using a Monte Carlo algorithm. Each forward pass stops as soon as it is

optimal to invest. Thus, our Monte Carlo algorithm generates a probability distribution of

the timing of charging station investments. This distribution can be further used to compute

expected charging station investment behavior, as we do in our analysis below.

2.3 Modeling Contracts for Differences

We extend the real options model described above to allow for possible long-term contracts

for charging stations similar to a recent proposal by Birkett and Nicolle (2021). These

contracts resemble contracts for differences (CfDs) commonly used to subsidize renewable

energy and we will use this term to refer to the contracts we study in this paper. CfDs

for charging stations may be designed as contracts between a public agency and private

investors that pay investors the difference between a specified level of revenue and actual

revenues obtained by investors from charging station consumers. A version of this policy has

been implemented in the Netherlands (Birkett and Nicolle, 2021). In our model, we denote

the investor’s profit under a CfD policy with πcfd(dt), which is estimated as follows.

πcfd(dt) = π(dt) + pcfd(dt) (9)

pcfd(dt) =

{
max

[
0, pstrike − π(dt)

]
, if one-sided

pstrike − π(dt), if two-sided
(10)

where pcfd(dt) represents the payment the investor may receive, which is the difference be-

tween a pre-determined strike level of profit pstrike and actual profit π(dt). We note that this
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CfD formulation is based not on revenues but short-run profit (revenues after O&M costs

and demand charges). In practice, it would be preferable for policy makers to base CfDs

on revenues to avoid distorting firms’ incentives to minimize costs and for practical reasons

(revenues are more easily observable). However, since costs are exogenous in our model,

our formulation can be considered equivalent to a CfD based on revenues. We choose the

profit-based formulation to keep the model simpler and facilitate transparency. We further

note CfDs can be expected to lower financing costs by virtue of mitigating investor’s risk

exposure. We represent this by assuming investors use a risk free discount rate of 2% when

this policy is in effect.

CfDs can be designed as either one-sided, compensating investors if π(dt) falls below the

strike level, but allowing investors to keep any revenues that may exceed the strike level.

Alternatively, CfD’s can be two-sided, in which case investors both receive compensation in

the case of a revenue shortfall and pay back any excess revenues on top of the strike level.

We model this by constraining pcfd to be nonnegative in the one-sided cases as shown in

(10). Note that a two-sided CfD is equivalent to a long-term contract with a fixed payoff.

Finally, the following expression is used to estimate the government’s cost under the CfD

policy, where ρ is the social discount rate.

Ccfd =
L∑

t=1

e−ρ∆tE pcfd(dt) (11)

2.4 Data

We compile data for a fast charging station representative of likely near-future projects. The

charging station design is based on the “Ultimate Capability” case developed by Francfort

et al. (2017). The charging station is assumed to include six 350kW charging points with

a lifetime of 10 years. The decision making horizon is also chosen to be 10 years and our

binomial lattice discretizes this period using monthly time steps.

Demand for charging in the first year is assumed to be such that the average annual utilization

of the charging station is 5%, which is typical for fast charging stations in the U.S. (Lee and

Clark, 2018; Fitzgerald and Nelder, 2019; PwC, 2021). We assume a maximum utilization

(denoted dmax in our model), of 30%, representative of a mature market for fast charging

(Fitzgerald and Nelder, 2019; Jabbari and MacKenzie, 2017).
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Parameter Value

Charging points (number) 6
Charging capacity per point (kW) 350
Total capacity (MW) 2.1
Investment cost (DCFC hardware) per point ($) 128,000
Investment cost (other*) per station ($) 258,000
Total investment cost ($) 1,026,000
O&M cost ($) 97,268
Demand charge ($/kW-month) 8.62
Maximum power (MW) 1.060
Demand charge ($/year) 109,646
Electricity cost ($/kWh) 0.12
Price to charge ($/kWh) 0.30

Table 2: Data assumptions
*“Other” includes: permitting, grid interconnection, concrete pads, cables, and other mate-
rials for site preparation, and labor costs

Table 2 displays our cost parameters. O&M costs cover the site lease, site maintenance,

communications, and equipment warranty and are sourced from Francfort et al. (2017).

Demand charges are based on an average rate across U.S. utilities of $8.62/kW charged

every month (Kettles and Raustad, 2017). Demand charge costs are then calculated using

a maximum power of 1.060 MW (Francfort et al., 2017). For investment costs, we combine

data from two different sources. For the largest component, Direct Current Fast Charging

hardware, we use data from Nelder and Rogers (2019) to account for the recent decline in

hardware costs. As a result our assumed cost is also more in line with other recent research

(LaMonaca and Ryan, 2022). All remaining investment costs are sourced from Francfort

et al. (2017) and include: permitting, grid interconnection, concrete pads, cables, and other

materials for site preparation, and labor costs.

The charging station investor derives revenues from selling electricity to EV drivers at a

charging price, pc, for which we assume a value of $0.3/kWh. This is consistent with rates

charged at the time of writing by Tesla (Benoit, 2019) and EVGO (EVGO, 2022). We also

choose this value because it is roughly competitive on a per-mile basis with the cost to fuel

a gasoline vehicle (Hall and Lutsey, 2017). For example, Lee and Clark (2018) estimate

gasoline recharging to $0.28/kWh for a 24 mile-per-gallon vehicle with a gasoline price of

$2.50 per gallon. Our assumed EV charging cost is also comparable to rates in the UK of

£0.3-0.4/kWh (Chen et al., 2020). The electricity price the charging station operator pays

for electricity, pe, is $0.12/kWh (Francfort et al., 2017). This is similar to the US average
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transportation sector electricity price of $0.119/kWh (EIA, 2022).

To parameterize the discount rate used by the investor, we use a Capital Asset Pricing Model

(CAPM) approach. We assume a standard risk free rate Rf of 2% and a market risk premium

Rm of 5%. For the β of a fast charging station investment, we average values of three publicly

traded charging station operators (CNBC, 2022a; CNBC, 2022b; CNBC, 2022c), resulting

in a relatively high β of 3. Using the CAPM model, the investor’s discount rate is given

by: r = Rf + βRm. This results in an overall risk-adjusted discount rate of 17%. For the

purposes of calculating CfD costs born by the government, we use a social discount rate

ρ = Rf .

2.4.1 Cases

To explore uncertainty in future demand, we develop two cases. First, our “Base Case”

uses longitudinal monthly data on charging per point collected from Level 2 public charging

stations in the area of Amsterdam and covering a period of seven years from 2015 to 2021

(G4+MRA-E, 2022). We derive annual values in charging per point by averaging across

months. On average charging demand grew by 9% per year. To estimate the drift and

volatility parameters used in the binomial lattice, we compute the average and standard

deviation for the annual changes in the natural logs, which leads to a drift µ of 9% and a

standard deviation σ of approximately 11%.

In the second case, denoted “EV Mandate”, we assume that governments act to reduce

policy risks. Here we define policy risk as that which stems from uncertainty in future EV

adoption. Policy makers may wish to place priority on such risks, because they may be

considered under their control (also known as endogenous risks) and thus can be reduced.

We distinguish policy risk from all other risks, for which we use the term “residual risk”. Such

risk can be described as exogenous to policy makers as they cannot be reduced but are merely

transferred from one party to another (the CfD policies we study de-risk the investment for

the investor but imply risk for the policy maker). For EV charging investments, residual risk

may refer to changes in driving demand, EV technology (energy consumption and battery

sizes in particular), or consumer behavior.

In the EV Mandate case, future EV adoption is known with certainty. This may represent

policies such as Zero Emission Vehicle (ZEV) standards, which have been implemented for

example in the U.S., Canada and China (Axsen, Hardman, and Jenn, 2022). This case is

modeled in a reduced-form manner as an illustration of how reducing risk impacts charging
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station economics. To represent the uncertainty facing the investor in the EV Mandate case,

we first estimate policy risk and then deduct it from the amount of risk captured by our

Base Case, which we assume captures both policy and residual risks. To estimate policy

risk, we compile market analyst scenarios1 for the total number of EVs in the U.S. in 2030

(BloombergNEF, 2021; IEA, 2021; EPRI, 2021; EIA, 2021). We estimate EV growth rates

from 2020 to 2030 and isolate the highest and lowest such projections. The highest annual

growth rate is found in the EPRI “50x30 E+” scenario equal to 60%, which we denote ghigh.

The lowest is found in the EIA Annual Energy Outlook of 10% and is here denoted glow.

We assume that this range captures 95% of a normal uncertainty distribution and use the

corresponding Z-score of the the 97.5 percentile, z.975, to estimate the standard deviation

implied by EV adoption uncertainty, σEV , as shown below.

µEV = ln

(
1 +

ghigh + glow

2

)
(12)

σEV =
ln
(
1 + ghigh

)
− µEV

z.975
(13)

This results in a σEV of 9%. Assuming independence between policy risk and residual risk,

the following standard approach can be used to estimate residual risk σresidual =
√
σ2 − σEV 2,

which after rounding equals 7%. The EV Mandate case uses this standard deviation for the

generation of the binomial lattice, along with the previously calculated drift µ of 9%. This ap-

proach is relatively sensitive to our choice of Z-score and therefore serves only an illustrative

purpose. Another limitation of this method is that it implicitly assumes that EV adoption

equals the mandated amount, while in practice ZEV standards could be overachieved or

underachieved (the latter in the case of Alternative Compliance Payment features).

1The scenarios include: the International Energy Agency (IEA) STEPS and SDS scenarios, The Energy
Information Administration (EIA) Reference case, the Bloomberg New Energy Finance (BNEF) Economic
Transition and Net Zero scenarios, and the Electric Power Research Institute (EPRI) Reference, 50x30 and
50x30 E+ scenarios

12



3 Results and Discussion

3.1 Investment timing without subsidies

We first use our real options model to simulate optimal timing of investment in a fast

charging station. Figure 1 shows the estimated timing within the decision making horizon

as a Cumulative Distribution Function (CDF) of outcomes generated by our Monte Carlo

algorithm. The results show that, in the Base Case, investment is only 45% likely to occur

within 10 years; in other words, demand does not rise high enough to trigger investment in

55% of model runs. This result can be explained by two different aspects of EV charging

station economics. First, at low demand levels (recall that the utilization in the first period

is 5%), revenues are insufficient to cover the investment cost, resulting in a negative NPV of

-$0.9 million in the Base Case. Second, the optionality inherent in the investment decision

incentivizes waiting past the time when revenues just equal investment cost.

Figure 1 also shows, notably, that the EV Mandate case has a relatively limited impact on

the investment timing. This is due to two countervailing effects, which were described by

Sarkar (2000). On the one hand, reducing demand volatility lowers the threshold value of

demand that justifies investment in a charging station. On the other hand, lower volatility

decreases the probability that a given threshold value is reached by a given point in time. To

further understand the impact of the EV Mandate case, we explore the relative contribution

of the level of risk in section 3.2.
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Figure 1: Timing of investment in a fast charging station without subsidies
Lines represent Cumulative Distribution Functions (CDFs) of simulated investment out-
comes. The decision making horizon was chosen to equal ten years.

3.2 Effects of optionality on investment timing

To isolate the impact of optionality, here we run our model with a grant subsidy of a magni-

tude sufficient for the investment to break even in the first period based on static NPV, where

discounted profits break even with the investment cost (we call this a “break-even grant”).

We estimate that this requires a grant equal to 86% of the investment cost in the Base Case.

The magnitude of this value is relatively high because this grant must help cover not only

investment costs but also the substantial site lease costs and demand charges. Figure 2 shows

the resulting distribution of investment timing, illustrated using CDFs. Each circle shows

the point at which investment becomes likely, for which we use the median timing (the point

at which each CDF line crosses the 50% horizontal line).

We estimate that an investor would delay optimal investment by 5.6 years on average in the

Base Case even after receiving a break-even grant (blue line in either panel of Figure 2).

This contrasts with what would be expected when using a traditional static NPV method.

Static NPV suggests that firms would invest immediately if given a grant sufficient to break

even. This difference indicates the effect of optionality on the investor’s optimal decision.

The result suggest that static NPV methods may substantially overestimate the impact of
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a given subsidy.

To understand the factors driving investment timing, we vary the level of risk (standard

deviation in future demand growth) in the left panel and the expected demand growth in

the right panel. As shown in the left panel of Figure 2 the average timing to invest is

relatively unaffected by changes in the level of risk. On the other hand, the right panel

shows that the timing to invest is sensitive to the level of demand drift µ in our model

(equal to 9% in the Base Case). This is because in the early periods total profit grows faster

than the investor’s discount rate - in other words, investing now forfeits the option to invest

later when discounted profits would be higher - which incentivizes waiting even when the

investor knows the future with certainty. This dynamic has already been described in the

real options literature (Dixit and Pindyck, 1994), and is robust to our assumption of a finite

project lifetime. Appendix A provides an analytical explanation of this effect.

Figure 2: Timing of investment including a break-even grant for different levels of risk
(left) and expected demand growth (right)
Assumes the investor receives a grant sufficient for the investment to break even on an NPV
basis in the first period. Circles show the point at which investment becomes likely. Lines
show Cumulative Distribution Functions (CDFs) of simulated investment outcomes.

Next, we isolate the impact of risk on investment timing by controlling for demand growth.

For this purpose we assume no growth on average (equating the drift term µ to zero), and

we vary the volatility in future demand growth σ. As shown by the red line in Figure

3, investment occurs immediately if investors know the future with certainty (recall these

results assume investors receive a break-even grant). In this case, optionality is eliminated

and optimal investment can be determined using static NPV. However, Figure 3 also shows

15



that the presence of risk leads to substantial delays in optimal investment. Assuming the

Base Case level of volatility of 11% results in a likely investment in year 4 (as shown by the

blue line and circle). Reducing risk as in the EV Mandate case only accelerates investment

to 3.4 years (purple line and circle). This limited sensitivity to the level of risk is once again

caused by the two countervailing impacts of demand volatility discussed above: namely,

lower uncertainty decreases the threshold value of demand that justifies investment but

also decreases the likelihood that this demand level is reached. Under a volatility of 1%,

investment does not become likely for 5.3 years (red circle); this result illustrates that the

latter of the two countervailing forces mentioned in the previous sentence dominates at low

levels of risk. This context-dependent relationship between risk and investment timing is

broadly similar to results in previous work (Sarkar, 2000).

Figure 3: Impact of risk on investment timing (without demand growth)
Assumes the investor receives a grant sufficient for the investment to break even on an NPV
basis in the first period. Circles show the point at which investment becomes likely. Lines
show Cumulative Distribution Functions (CDFs) of simulated investment outcomes.

Overall, we find that both risk and expected demand growth incentivize delaying investment.

Demand growth dominates the incentive to delay (as shown by the left panel in Figure 2),

but risk plays a role when we control for demand growth (as shown by Figure 3). The

magnitude of delay caused by risk is roughly 4 years in the Base Case. This exceeds the

additional delay caused by demand growth, which is 1.6 years (difference between the blue

circles in Figures 2 and 3).
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3.3 Implications of optionality for subsidy size

Here we assess the size of grant subsidy necessary to stimulate immediate investment. To

do so, we quantify the relationship between the option value and the NPV relative to the

size of a subsidy grant by running our SDP algorithm iteratively (Figure 4). NPV can be

interpreted as the value of investing immediately, and the option value represents the value

of waiting. In line with our previous estimate, the NPV line (in orange) crosses the zero-level

for a grant equal to 86% of the investment cost, which we showed in the previous section.

Investing is not optimal however as the value of waiting far exceeds the value of investment

(as shown by the blue line relative to the orange). As the subsidy is increased, the value of

investing immediately converges with the value of waiting. Real options theory holds that

investment becomes optimal when the NPV equals the value of waiting (at the intersection

of the blue and orange lines).

The results in Figure 4 suggest that immediate investment will occur if investors receive a

grant equal to 160% of the investment cost. This shows that static NPV methods substan-

tially underestimate the level of grant subsidy needed to accelerate investment. The size

of subsidy needed to trigger immediate investment is approximately twice as large as that

suggested by a static NPV approach.

Figure 4: Option value relative to level of grant subsidy
Results represent the Base Case. In the EV Mandate case, the option values are only slightly
different and the intersection point is the same.
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3.4 Impacts of a demand charge re-design on charging investment

Given the adverse effect of demand charges on EV infrastructure economics, it has been

recommended that demand charges be adjusted according to utilization (Fitzgerald and

Nelder, 2019). A simple approach is for utilities to recover costs through volumetric, $/kWh,

tariffs (Fitzgerald and Nelder, 2018). Accordingly, here we test the impact of replacing the

traditional, $/MW, demand charge with a volumetric tariff. We set the level of the tariff so

that the utility would recover the same amount of revenue at a charging station utilization of

30% (this increases the price of electricity in our model from $0.12/kWh to $0.14/kWh). At

lower levels of utilization, this tariff constitutes an effective subsidy from the utility to the

charging station owner. While utility cost recovery is out of the scope of this paper, we note

that utilities may justify such subsidies if EVs provide grid benefits through smart charging

or vehicle-to-grid services (though such grid services are unlikely to be performed at fast

charging stations). Alternatively governments may compensate utilities for insufficient cost

recovery, or utilities may adjust volumetric tariffs as load changes.

The NPV of the project in the first period is still negative, equal to -$0.5 million. This

is relative to -$0.9 million without the policy, which shows the large economic impact of

demand charges. This policy is approximately equivalent to a grant equal to 39% of the

project’s investment cost.

We find that investment becomes likely after 7.2 years under this alternative demand charge

policy. This is in contrast to our result in Figure 1, which showed that investment does not

become likely before year 10. However, investment is still only 70% likely to occur within

the ten-year decision making horizon. We conclude that demand charge re-design has a

limited impact on accelerating investment. Within the context of our model, this result is

not surprising as this policy does not directly address the optionality that characterizes the

investment decision.

3.5 Impacts of Contracts for Differences on charging investment

Long-term contracts address optionality in investment timing, but we find that the extent to

which they stimulate investment depends on their design. Two-sided CfDs guarantee a fixed

revenue stream because, regardless of market demand, the investor receives the strike level

stipulated in the contract. To evaluate this policy, we numerically estimate the strike level

necessary for the project’s NPV to break even in the first period, which equals approximately
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$4,500/month in our Base Case. As expected, this level incentivizes immediate investment.

While investors have the option of not accepting the contract, our numerical model shows

that it is optimal to choose the contract in the first period, at the strike level where NPV

just breaks even. This can be explained by the fact that the NPV is very low in the first

period (as discussed previously). It is worth mentioning, though outside of our scope, that

for projects with positive NPVs investors may choose not to take a two-sided CfD that only

offers break-even NPV, in expectation of revenues exceeding that level (Décamps, Mariotti,

and Villeneuve, 2006).

One-sided CfDs guarantee a revenue stream equal to the strike level but also allows investors

to keep any additional earnings. An investor avoids downside risk but retains upside po-

tential, which improves the project’s economics on the basis of NPV relative to a two-sided

CfD. We estimate that only a strike level of $3,300/month is sufficient for the project’s NPV

to break even in the first period (as opposed to $4,500/month with two-sided CfDs). Thus,

one-sided CfDs may be expected to strongly encourage investment. However contrary to

this intuition, we find that one-sided CfDs provide a weaker investment incentive compared

to two-sided contracts because the former does not sufficiently address the investor’s op-

tionality. Our model simulates that investment is not likely to occur for 6.6 years assuming

a one-sided CfD with the estimated break-even strike level. If we used an strike level of

$4,500/month, investment is not likely for 6.4 years. The reason for these results is that,

initially, the expected profit from investing in the project grows faster than the investor’s

discount rate. It is notable that investment delay under a one-sided CfDs is greater than

under a break-even grant (Table 3). This is driven by the assumed discount rate of 2% with

the CfD relative to the higher discount rate used for the grant subsidy (17%). We further

test the sensitivity of this result to the drift parameter µ (demand growth). If we set this

parameter to zero, our model estimates that investment still only becomes likely in year 4.2

(which can be explained by the fact that the investor’s profits still grow on average under a

one-sided CfD).

3.6 Cost-effectiveness of alternative policy design options

Previous sections explored how investment timing varied across different subsidies that offer

a certain amount of financial support (enough to allow the investment to break even in the

first period). On the other side of the coin, this section evaluates how financial support (or

government cost) varies across policies that all trigger investment in the first period. For

each policy type, we estimate optimal subsidy levels, which we define as the least amount
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Table 3: Timing of investment for selected policy options

Policy option
Investment timing
(years until investment
is more than 50% likely)

Probability of investing
within 10 years

No policy 10+ 45%
Grant
(project breaks even in period 1)

5.6 98%

One-sided CfD
(project breaks even in period 1)

6.6 100%

Two-sided CfD
(project breaks even in period 1)

0 100%

Demand charge policy 7.2 70%

of public spending necessary to trigger immediate investment. We do this by running our

real options model iteratively and gradually increasing subsidy support until investment is

triggered in the first period.

In Figure 5, we first report the required size of a traditional grant to trigger immediate

investment. This is equivalent to the result shown in Figure 4. Next, we test a declining

grant, which is linearly phased out over 5 or 10 years. The results show that a declining

grant phased out over 10 years costs 32% less than traditional grants in the Base Case. This

result reflects the fact that this policy partly addresses the investor’s optionality in timing

as it decreases the attractiveness of waiting. Grants declining over 5 years reduce costs by

39% relative to traditional grants. This shows that the marginal savings from shortening the

phase-out schedule from 10 to 5 years is relatively small. The cost-effectiveness of declining

grants is relatively unchanged in the EV Mandate case (equivalent to savings of 34% and

41% relative to the standard grant respectively for the 10-year and 5-year phase outs).

A two-sided CfD reduces policy costs by 68% relative to traditional grants in the Base Case.

This cost reduction is equivalent in the EV Mandate case, as expected, because the contract

makes the project independent of future uncertainty. The cost savings are partly driven

by differences in the investor’s discount rate under grants (17%) and under the CfD (recall

that a risk free rate of 2% is assumed for both the investor and the government). If we

instead assumed a 17% discount rate for the investor, our model estimates CfD savings of

11%. This small magnitude can be explained by the fact that the investor’s discount rate

is now far larger than the government’s (equal to 2%)2. Therefore, CfD cost savings are

2We confirm this by observing that applying the same 17% rate to both the investor and the government
results in a cost-saving of roughly 45%, which is in line with results we showed previously in Figure 4.

20



dependent on the extent to which such contracts decrease an investor’s discount rate. More

specifically, our model estimates that for two-sided CfDs to yield savings larger than the

ones achieved by the 10-year declining grant (32%) requires that they reduce the investor’s

discount rate to approximately 12.5% (from 17%). So far, we have excluded one-sided CfDs

from this analysis, but we note that they are less cost-effective than grants according to

our model, since the former provides a stronger incentive to delay investment as discussed

in the previous section. As a result, one-sided CfDs require a greater amount of financial

support to trigger immediate investment. Our model estimates one-sided CfDs to cost 75%

more than an equivalent grant that triggers immediate investment, a result which is again

strongly driven by the previously discussed differences in discount rates.

Figure 5: Costs of subsidies that trigger immediate investment

4 Conclusions and Policy Implications

Significant public resources are being dedicated to stimulating private sector investment in

EV charging infrastructure. In the U.S., firms can access grants made available by the re-

cently passed Infrastructure Investment and Jobs Act and Inflation Reduction Act (National

Conference of State Legislatures, 2022). The question this paper addresses is how state and

local governments can make the most of such public funding to accelerate investment in fast

charging stations for EVs. To do so, we provide the first analysis of charging subsidy design
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that considers optionality in investment timing. Our analysis is relevant to cases where firms

have the option to delay investing. This is particularly likely to be the case in low-demand

rural regions. Our analysis can therefore help public agencies understand and stimulate

investment decisions in areas that may otherwise be under-served, reducing inequalities in

vehicle electrification and more effectively alleviating range anxiety concerns.

Current policy in the U.S. and beyond focuses primarily on the use of grants to subsidize

charging stations. This paper shows that the effectiveness of this policy is strongly dependent

on the analytical framework used to inform its design. We test a version of this policy that

would be recommended by the traditional static NPV approach: namely, a grant large

enough to allow the project to break even. Our real options model shows that an investor

offered such a grant would nevertheless wait to invest until demand is higher. The median

investment delay estimated by our case study is 5.6 years (assuming a ten-year planning

horizon). To accelerate investment and trigger immediate investment, grants must be large

enough to cover the opportunity cost of investment (equivalently, the value of waiting), and

our model estimates this to require a grant roughly twice as large as that suggested by a

static NPV approach.

This paper finds that several policy design changes can improve the effectiveness of charging

subsidies in the presence of optionality. A recently proposed option is for governments to

provide long-term contracts that provide investors with guaranteed revenue streams (Birkett

and Nicolle, 2021). This could involve the extension of the type of public-private partner-

ships public agencies are currently considering (Massachusetts Department of Transporta-

tion, 2022). Our results show that a two-sided CfD is substantially more cost-effective than

providing the grant needed to trigger investment (this depends on the extent to which CfDs

lower the investor’s discount rate). Two-sided CfDs are the most cost-effective option of the

policies we analyze. Counter-intuitively, they also provide a more effective investment incen-

tive than one-sided CfDs in the presence of optionality. However, a disadvantage of CfDs is

that they transfer risk from the investor to the contract’s counter-party (public agencies in

our context). Such contracts also entail higher policy complexity and administrative burden.

A simple policy alternative is the introduction of a phase-out schedule for grant subsidies.

We find that this would provide a substantial improvement in cost-effectiveness (compared

to the standard grant) by decreasing the value of delaying investment. Our results show

that the length of the phase-out schedule is inversely proportional to its cost-effectiveness.

However, short phase-out schedules may be impractical if they do not allow enough time for

firms to take advantage of the subsidy. Additionally, we find that the marginal gain in cost-
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effectiveness from a 10-year to a 5-year phase-out is relatively small. Overall, these results

highlight grants with a 10-year phase-out schedule as a pragmatic way to cost-effectively

accelerate charging investments.

The paper also shows that, perhaps surprisingly, reducing (but not eliminating) investment

risk has relatively little impact on investment timing. Specifically, our EV Mandate tests

the impact of mitigating the EV adoption risk that firms face by implementing a regulation

such as a ZEV standard. The limited impact of the EV Mandate case on investment timing

suggests that effective de-risking would require that governments take on residual (i.e. non-

policy) risks as well. However, ZEV mandates can still play an important role in charging

infrastructure policy. Our analysis shows such a policy materially reduces EV adoption (and

thus revenue) uncertainty. This may decrease investors’ financing costs (e.g. by allowing

access to lower interest loans), which our case study did not explore. Additionally, if a

public agency takes on risk from private firms by signing long-term contracts such as CfDs,

ZEV mandates would substantially reduce the financial risk the public agency would face.

Finally, the limited impact of these standards in our analysis is due to our experimental

design’s focus on measuring the effect of risk. Specifically, we only represent ZEV standards

as a reduction in the uncertainty in future EV adoption. Thus, the analysis assumes that

the standard is equivalent to the mode of the EV adoption distribution. But if such policies

serve to increase EV adoption they would by extension have a positive effect on charging

investments.

A limitation of this work is that we assume investors always have the option to delay in-

vestment. This may not be the case for projects in highly competitive areas. However, such

areas may not require government subsidies in the first place. Our analysis also does not

capture the full range of project characteristics, as we have instead aimed to model a single

representative charging station investment. Therefore, quantifying the impact of subsidies

on aggregate charging capacity is left for future work. We also do not consider sources of

revenue other than the re-sale of electricity. In practice, charging station costs may be re-

covered through cross-subsidization from vehicle sales (for closed networks) or through the

operation of co-located convenience stores. Our analysis also omits any possible portfolio

effects from sharing risk across multiple charging stations.
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Appendices

A The role of expected demand growth in investment

timing

Here we show analytically how demand growth incentivizes investment delay even in a de-

terministic setting without risk. Our investor’s problem is to choose investment timing T

that maximizes the value of the real option. The value of the investment at time T then is:

FT =

(
VT − I

)
e−rT (14)

In our model VT is a function of discounted future revenues from selling electricity minus

discounted O&M costs and demand charges. To simplify this exposition, we reformulate our

notation into a functionally equivalent version where, at time T , RT represents the total

stream of discounted revenues from selling electricity and CT represents the total stream of

discounted O&M costs and demand charges. Note that costs are assumed constant so that

CT = C0 and IT = I0 so we use C and I respectively for simplicity. We further note that

RT is equal to the revenues in the first period, R0, times expected future growth, or R0e
µT .

The previous equation is then converted to:

FT =

(
R0e

µT − C − I

)
e−rT (15)

Maximizing this expression with respect to T yields an optimal timing to invest T ∗ as follows:

dFT

dT
= r(C + I)e−rT − (r − µ)R0e

−(r−µ)T = 0 (16)

T ∗ = max

{
1

µ
ln

[
r(C + I)

(r − µ)R0

]
, 0

}
(17)

This shows it will be optimal to delay investment (i.e. T ∗ > 0) when the ratio of (C+ I)/R0

is not close to zero. The condition necessary for the investment to occur immediately can

be found by setting T ∗ = 0 in (16), resulting in R∗
0 =

r(C+I)
r−µ

.
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The derivation in (16)-(17) is a close analogue to the example showed by Dixit and Pindyck

(1994:ch.5), with the addition of non-capital costs C in our case. Our numerical model also

features the maximum demand term dmax, which brings the timing to invest forward in time

by effectively decreasing expected demand growth.
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