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Abstract

I estimate the effect of temperature on cognitive performance in online brain

training games. As this setting represents everyday cognitive tasks, the results

are indicative of how temperature affects people on a daily basis. With rising

average temperatures and more frequent extreme heat, a thorough understand-

ing of this relationship is central. I find that, above a threshold, a 1°C increase

in ambient air temperature leads to a performance reduction of 0.13%. The

effect is mostly driven by individuals living in relatively cold areas, who are less

adapted to hot temperatures.
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1 Introduction

Climate change entails vast economic and social consequences. A recent body of

research has identified adverse effects of extreme temperatures on economic growth

and production (Dell et al. 2012; Burke et al. 2015), agricultural output (Schlenker

and Roberts 2009; Lobell et al. 2011), labor productivity (Graff Zivin and Neidell

2014; Somanathan et al. 2021), mortality (Deschênes and Greenstone 2011; Barreca

2012; Mullins and White 2020; Heutel et al. 2021), conflict (Hsiang et al. 2013),

migration (Missirian and Schlenker 2017), and others.1 Under the prospect of rising

average temperatures and more frequent extreme weather events in most places of

the world, this literature naturally predicts an intensification of these effects.

One central aspect of any human activity is cognitive performance. It determines

labor productivity and serves as a prerequisite for human capital accumulation. As

extreme temperatures are a detrimental factor to the human body, it is essential to

learn how they affect cognitive performance, and ultimately, what climate change

means for this relationship. Not surprisingly, a recent body of literature (discussed

below) investigates the link between temperature and human capital, learning, and

cognitive performance.

In this paper, I estimate the effect of temperature on cognitive performance. I

use data from an online mental arithmetic training game, called Raindrops, with

more than 31,000 individuals and 1.15 million games played in 748 3-digit U.S. ZIP

Codes between 2015 and 2019. The data include only paying subscribers, many of

whom regularly train their mental arithmetic skills. This context provides a unique

opportunity to investigate how temperature affects people in a familiar environment,

representative of everyday situations. It is a setting that is currently not yet covered

in the literature.

1See Carleton and Hsiang (2016) for an overview.
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Previous studies have investigated performance either in college admission tests

(or other academic exams) or in cognitive tests from surveys.2 Test-taking students

find themselves in a particularly stressful, non-everyday situation with potentially

long-lasting effects on their career path. While understanding the role of environ-

mental factors in this context is highly relevant, individuals are potentially much

more sensitive to these factors when writing a test than they usually are. This limits

the external validity for less stressful situations people encounter every day. Mean-

while, most individuals rarely participate in surveys. They are confronted with an

unfamiliar setting, in which they play a more passive role. Again, susceptibility to

temperature might be quite different compared to when performing more frequent

tasks.

The individuals in this study engage in a non-stressful, but cognitively challeng-

ing task, and many do so very frequently. Thus, this paper fills a knowledge gap

by analyzing a setting that represents everyday-life tasks. Adding this context to

the literature is important, because most tasks people perform on their job and in

everyday life are frequent tasks that are not as decisive as admission tests, and not

as rare as cognitive tests in surveys. Therefore, the results I estimate are potentially

more representative of how temperature affects cognitive performance in a broad

range of tasks, especially in economies with a large service sector.

Two other data characteristics support the external validity of this study. First,

my analysis includes all ages from 18 to 80 from all over the contiguous United

States and, thus, covers a very broad societal range. The literature concerned with

academic exams includes mostly adolescents. The average effects I estimate in this

paper are, therefore, arguably more indicative of how temperature affects a general

population. Moreover, I can look into effect heterogeneity between younger and older

2See a summary thereof below.
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people. Second, as I observe a very broad temperature range3, I can investigate both

hot and cold temperatures in the same context. Previous studies analyzed only one

end of temperature extremes, mostly heat.

Finally, as I observe the individuals’ number of false entries per game, I add to our

understanding of the temperature-cognition relationship by differentiating between

problem-solving speed and the error rate. This is an important distinction as speed

decline and error proneness have distinct ramifications. In many settings, errors

are arguably more costly than speed, e.g., in medical procedures, or the assembly

of consumer goods. If a higher error rate is the main driver of a lower cognitive

performance, protecting people from heat exposure in settings where mistakes are

costly seems particularly important. This paper is the first to make this distinction.

I find that hot temperatures significantly reduce mental arithmetic performance.

I run both piecewise-linear regressions that allow for different slopes in two different

temperature ranges and regressions with 3°C temperature bin indicators. Using the

linear regression model, I find that, above a defined threshold, a 1°C increase in the

average air temperature during the 24 hours preceding a play lowers the number of

correct answers by 0.084, or 0.13%. The threshold value is 16.5°C and represents

the arithmetic mean of the best-performance bin (15-18°C) from the bin regressions.

Below the threshold, the corresponding coefficient is insignificant and close to zero

(0.010).

The coefficients from the temperature bin-indicator regressions tend to confirm

the assumed linearity of the temperature effect. They indicate that people attain

significantly lower scores when playing in the bins above 21°C, compared to the

bin with the highest average performance (15-18°C). The scores decrease by 0.484

(21-24°C), 0.588 (24-27°C), and 0.954 (≥27°C) points. These figures amount to a

3The lowest percentile of temperature is -11.1°C, and the highest percentile is 31.5°C.
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drop of 0.73%, 0.90%, and 1.46%, respectively. Similar to the linear regressions, I

do not find consistent evidence for adverse effects of cold temperatures.

The results exhibit an important heterogeneity: Individuals from relatively cold

ZIP Codes (below-median 2015-2019 average temperatures) experience a larger per-

formance drop than individuals from relatively hot ZIP Codes (above-median 2015-

2019 average temperatures). The estimate from the piecewise-linear regressions for

the above-threshold range is -0.142 for cold ZIP Codes (-0.21%), but only -0.042 for

hot ZIP Codes (-0.07%) and not statistically significant.

The baseline result implies that, with rising temperatures and no adaptation,

people will perform below their capacity more often. Running separate analyses

for cold and hot ZIP Codes gives insight into how adaptation to climate change

might mitigate these adverse effects (Dell et al., 2014; Auffhammer, 2018). As the

cited literature above shows, hotter regions are generally better adapted to heat. As

temperatures rise, adaptation investments in colder regions will potentially close this

gap. People living in colder regions might therefore react less to hot temperatures in

the future, similar to people currently living in hotter regions. However, as climate

change will also result in more extreme temperatures, ranges that are currently rare

will occur more frequently. Even the better-adapted, hotter regions can be expected

to experience larger performance drops. These two effects run in opposite directions.

Predictions about how climate change affects our cognitive performance thus hinge

on central assumptions about the degree of potential adaptation.

In an additional result, I provide evidence for effect accumulation: While a sin-

gle hot day or two consecutive hot days – defined as the average temperature being

greater than 21°C – only lead to minor reductions in the Raindrops score, more than

two consecutive hot days cause consistent performance reductions, even in the hot

ZIP Code sample. If temperature is above 21°C for a week, the average performance
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drop for the whole sample is -0.789, or -1.21%. This finding is of particular impor-

tance as climate models not only predict higher average temperatures but also more

frequent heat waves (Keellings and Moradkhani, 2020).

Individuals using the brain training software chose when to do so. This raises

concerns about bias from two types of potential selection issues, at the extensive and

the intensive margin. First, people might be less likely to play when temperatures are

high. This will only be an issue if more temperature-sensitive individuals (those who

experience a larger performance drop due to extreme temperatures) are less likely to

play than others when temperatures are extreme. In this case, the coefficients will

be biased toward zero. While I cannot directly test this, I show that, on average,

individuals do not have a lower probability to play on hot days. However, they do

use the software more often when it is cold. Due to the potential selection issue at

the lower end of temperatures, I only cautiously interpret the performance results

for cold temperatures.

Second, people might play fewer times on particularly hot or cold days. As they

improve their performance with the number of times they play on a day, the average

score from a very hot (or very cold) day will be lower than from a mild day if they

play fewer times due to the heat (or cold). This would be an issue independent

of the selection of people who are affected. In this case, the coefficients would be

biased downwards – my results would overestimate the true adverse effect. I show

that neither hot nor cold temperatures seem to substantially affect the intensive

margin.

This paper is closest related to recent literature on the effect of temperature on

performance in either academic exams or survey tests. The seminal paper in this

literature is Graff Zivin et al. (2018). They estimate the effect of temperature on

assessments of cognitive ability from the National Longitudinal Survey of Youth,
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and find a decline in math performance for contemporaneous temperatures above

21°C (significant from 26°C), but not for reading. The authors also analyze long-

term effects, namely by looking at temperature realizations between tests, which

take place annually or biannually, and find smaller, imprecisely estimated effects.

Garg et al. (2020) use data from two Indian children surveys. They show that

the number of hot days in the year before the survey-based test negatively affects

school-age children’s math and reading scores and that reduced agricultural income

is a main channel. Yi et al. (2021) employ survey data from the China Health

and Retirement Longitudinal Study to find impaired math and verbal skills from

short-term heat stress.

Studies analyzing college admission or other academic exams are Cho (2017)

for college entrance exams in Korea, Graff Zivin et al. (2020) for China’s National

College Entrance Examination, Cook and Heyes (2020) for exams taken at the Uni-

versity of Ottawa, Park et al. (2020) for the PSATs in the U.S., Park (2022) for

the Regents Exams in New York City, Park et al. (2021) for the PISA test in 58

countries and annual math and English tests in 12,000 U.S. school districts, Melo

and Suzuki (2021) for the Exame Nacional do Enismo Mèdio in Brazil, and Roach

and Whitney (2021) for standardized tests in the U.S.

With the exception of Cook and Heyes (2020), who focus on cold temperatures,

all of these studies find hot temperatures to negatively affect students’ test scores.

The tested subjects include math (all papers), a first language (Graff Zivin et al.,

2020; Park, 2022; Melo and Suzuki, 2021; Roach and Whitney, 2021), a foreign

language (Cho, 2017; Graff Zivin et al., 2020), and other subjects, though most of

the papers use data on overall scores only, not individual subjects. Cook and Heyes

(2020) find a reduction in university exam performance with negative temperatures

(in °C). To my knowledge, the only paper that does not use survey or academic test
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data is Bao and Fan (2020), who use Chinese data from an online role-playing game.

As they only include data from March 2011 they focus mainly on cold temperatures.

2 Data

2.1 Cognitive performance

To measure cognitive performance, I use data from Lumosity’s online brain train-

ing game Raindrops.4 Individuals have to solve mental arithmetic problems that

fall down in raindrops before they hit the water at the bottom of the screen (see

Figure A1). The problems disappear when solved correctly. After the third rain-

drop has hit the water the game is over. The dataset includes 31,029 players and

1,151,059 plays from the years 2015 to 2019.5 It only covers web plays (no mobile

apps). The spatial resolution is 3-digit ZIP Codes of which the dataset contains 748.

The main outcome variable is the number of correct answers. In an extension,

I also use the error rate, measured as the number of correct entries divided by the

total number of entries. As people’s performance heavily depends on their play

behavior (e.g., how many times they have played, how long ago they last played), I

include the following three control variables: the log number of plays an individual

has played so far, the log number of plays an individual has played since taking a

break of at least one hour, and the log number of days since the last play. Further,

I interact each of the three variables with three age range indicators (50–64, 65–74,

and 75 and older).6

4Krebs and Luechinger (2021) use the same data in a different context. As they provide an
extensive data description, I only provide a short overview here. I follow their data-cleaning process.

5Note that these are not the same numbers as in Krebs and Luechinger (2021). The reason is
that I do not lose observations from missing pollution values.

6Krebs and Luechinger (2021) use the same control variables.
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2.2 Temperature and weather covariates

To generate the temperature and weather covariates I use data from the NOAA

National Centers for Environmental Information (NCEI) Global Hourly Integrated

Surface Database for the years 2015–2019.7 I only include weather monitoring sta-

tions that were operational throughout the whole period. I include the variables

air temperature, air dew point temperature, wind speed, atmospheric pressure, and

precipitation. To generate ZIP Code averages, I exert the following three steps:

First, for each station, I drop all variables that have more than 25% missing obser-

vations. Second, I interpolate missing values of all available variables at the station

level with an inverse distance-weighted average of all stations within a radius of 50

kilometers and a power parameter of 2. And third, I generate the ZIP Code average

from all stations within a ZIP Code. In case there is no station within a ZIP Code,

I use the inverse distance-weighted average of all stations within 50 kilometers of

the ZIP Code centroid, again with a power parameter of 2, to attribute the hourly

weather variables. I drop variables of ZIP Codes that have more than 25% missing

values.

The main explanatory variable is the average air temperature during the 24

hours preceding a play. In a robustness check, I use the average air temperature

during the 48 hours preceding a play and the average heat index during the 24 hours

preceding a play as the exogenous variable. The covariates are the 24-hour average

of relative air humidity, wind speed, atmospheric pressure, and precipitation, and

the quadratic function of each of those variables. The 24-hour averages include

the current hour when the game was played. At least 18 hours (75%) have to be

non-missing values, otherwise, the observation is coded as missing. I calculate the

relative humidity from a function of air temperature and dew point temperature8,

7https://www.ncei.noaa.gov/data/global-hourly/archive/
8https://bmcnoldy.rsmas.miami.edu/Humidity.html
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and the average heat index according to the National Weather Service9.

2.3 Summary statistics

Table 1 shows the means and standard deviations of the main two dependent vari-

ables (number of correct answers and the error rate), and the main independent

variable (average air temperature during the 24 hours preceding a play). It also in-

cludes two alternatives for the main explanatory variable used as robustness checks

(average air temperature during the 48 hours preceding a play and average heat

index during the 24 hours preceding a play). The table has separate columns for

the whole sample, the cold-ZIP Codes sample (below-median 2015-2019 average

temperatures), and the hot-ZIP Codes sample (above-median 2015-2019 average

temperatures). Figure A2 displays a map of the contiguous United States with

different colors for cold and hot ZIP Codes.

The overall average number of correct answers is 65.4. People living in cold

ZIP Codes, on average, score roughly 5 units higher than people living in hot ZIP

Codes, which amounts to 8.3% more correct answers. The difference in the error

rate is 5.4% (9.7% erroneous entries in hot ZIP Codes vs. 9.2% in cold ZIP Codes).

Both these differences are statistically significant at the 99% level. The average

temperature is 14.1°C. The difference between hot and cold ZIP Codes is 7.5°C.

The heat index variable is slightly lower, mainly due to the cold ZIP Codes sample,

which indicates a higher relative humidity in hot ZIP Codes.

9https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
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Table 1 Summary statistics

Variable All ZIP Cold ZIP Hot ZIP

Codes Codes Codes

No. of correct answers 65.417 68.446 63.228

(37.441) (39.804) (35.476)

Error rate 0.095 0.092 0.097

(0.071) (0.070) (0.072)

Temperature past 24h in °C 14.076 9.748 17.204

(9.940) (10.109) (8.545)

Temperature past 48h in °C 14.083 9.757 17.209

(9.812) (9.956) (8.422)

Heat index past 24h in °C 13.429 8.614 16.907

(11.105) (11.155) (9.679)

Observations 1,151,059 482,812 668,247

Notes: Means and standard deviations (in parentheses) of the two
main cognitive outcome variables, and the temperature variables for
the full sample, the cold-ZIP Codes sample (below-median 2015-
2019 average temperatures), and the hot-ZIP Codes sample (above-
median 2015-2019 average temperatures). “Temperature past 24h
in °C”, “temperature past 48h in °C”, and “heat index past 24h in
°C” are the average air temperature during the 24 hours preceding
a play, the average air temperature during the 48 hours preceding
a play, and the average heat index during the 24 hours preceding a
play, respectively, all in °C.

3 Identification

I use two different approaches to estimate the effect of temperature on cognitive

performance. Equation 1 represents the piecewise-linear regression model.

Cizt = βTjt + γAjt + δ(Tjt ×Ajt) +W ′
ztη +G′

iztθ + ιi + τt + εizt (1)

Cizt is cognitive performance of individual i in ZIP Code z at time t. Tjt is the

average air temperature during the 24 hours preceding the play in °C. Ajt is an

indicator equal to 1 if the air temperature during the past 24 hours was above a

certain threshold value. W ′
zt is a vector of weather variables described in Section

2.2. G′
izt is a vector of play covariates described in Section 2.1. ιi absorbs the
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individual effects to control for any time-invariant differences between individuals,

such as the innate ability. τt absorbs year, month-of-year, day-of-week, hour-of-day

effects. These fixed effects flexibly control for time trends, seasonal patterns, and

differences across the timing of a play between weekdays and between the hours of

a day. Finally, εizt is the error term.

The two coefficients of interest are β and δ. β represents the effect of tempera-

ture on cognitive performance below the threshold value. To investigate the effect

of temperature on cognitive performance above the threshold value, I run a linear

combination test for β + δ ̸= 0. I report the results in the regression tables. The

threshold value is 16.5°C and is determined as the arithmetic mean of the temper-

ature bin with the highest performance from the indicator regression (Equation 2).

A major advantage of Equation 1 is that the coefficients report average marginal

effects over the full temperature range above and below the threshold value. How-

ever, the model hinges on the linearity assumption. Therefore, I also estimate the

temperature bin-indicator regression model represented in Equation 2.

Cizt = T ′
jtθ +W ′

ztη +G′
iztθ + ιi + τt + εizt (2)

T ′
jt is a vector of temperature bin indicators. The temperature is, as in Equation 1,

the average air temperature during the 24 hours preceding the play in °C. The bins

correspond to 3°C temperature bins from 0 to 27, plus one bin for temperatures

below 0, and one for temperatures above 27. I chose < 0 as the bottom bin as 0 is

the (rounded) 10th percentile of the temperature distribution (with the exact value

being 0.47). Likewise, 27 is the closest (rounded) number dividable by 3 to the

90th percentile (with the exact value being 26.1). I define the bin with the highest

average performance in the regression as the reference.

The model in Equation 2 flexibly allows for non-linearity in the effect of temper-
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ature on cognitive performance. It is therefore a suited complement to Equation 1

to test the linearity assumption. A drawback of this approach is that the highest bin

might be statistically significantly different from other bins by chance. This would

make it seem like people perform worse in all other bins even if this was not the

case. As the linear decline with higher temperatures in Section 4.1 does not support

this concern, I refer to Equation 1 as my main results.

4 Results

4.1 Performance

Table 2 shows the coefficients from the piecewise-linear regression model outlined in

Equation 1. The coefficients in the first row (“Air temperature”) correspond to β.10

The linear combination test in the second row (“Air temp. + air temp. × above

threshold”) reports the effect of air temperature on performance when temperature

is above the threshold. This corresponds to a test of β+δ ̸= 0 from Equation 1. I do

not report the coefficient from the air temperature × above threshold interaction, δ,

as it is simply equal to the coefficient reported in the linear combination test minus

β.

When focusing on all ZIP Codes included in my dataset (column 1), cold tem-

peratures do not seem to affect people’s performance in the Raindrops game. The

coefficient of air temperature below the threshold value is positive but very close

to zero (0.010) and statistically insignificant. Above the threshold, temperatures

negatively affect performance. An increase of 1°C decreases the number of correct

answers by 0.084, which amounts to 0.13%.

To evaluate potential adaptation effects, I run separate regressions for relatively

10Note that air temperature is measured in °C and, if not indicated otherwise, is calculated as
the average air temperature during the 24 hours preceding the play. The threshold temperature is
16.5°C.
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cold and relatively hot ZIP Codes.11 Columns 2 and 3 of Table 2 report the respec-

tive results. They show that it is the cold ZIP Codes that drive the overall result.

In the cold-ZIP Codes sample, a temperature increase of 1°C lowers the number of

correct answers by 0.142, which is 0.21%. The effect for hot ZIP Codes is -0.042

(0.066%) and statistically insignificant.

Table 2 Air temperature and cognitive performance:
piecewise-linear regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Air temperature 0.010 0.010 0.012

(0.021) (0.017) (0.017)

Linear combination test: -0.084** -0.142*** -0.042

Air temp. + air temp. × above theshold (0.038) (0.048) (0.030)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from piecewise-linear regressions of the number of correct answers
on the average air temperature during the 24 hours preceding the play (in °C),
and an interaction with the above-threshold indicator. The standard errors (in
parentheses) are clustered on ZIP Codes. “Air temperature” denotes the coeffi-
cient below the threshold, and the linear combination test amounts to the slope
above the threshold. The threshold is 16.5°C. The regression in column 1 includes
all observations. Columns 2 and 3 show the results from separate regressions for
the cold-ZIP Codes sample (below-median 2015-2019 average temperatures), and
the hot-ZIP Codes sample (above-median 2015-2019 average temperatures). The
control variables include individual effects, time effects, play controls, weather
controls, and an indicator for above threshold temperature (see Section 3).

This result suggests that hot ZIP Codes are at present better equipped to cope

with high temperatures. However, as colder regions’ temperature distributions shifts

towards what hotter regions experience today, individuals living in colder regions

might adapt and, therefore, become less susceptible to hotter temperatures than

they currently are. Concurrently, temperatures that have been rare in the past

11I differentiate based on the ZIP Code mean temperature over the sample period of 2015 to
2019. I define cold (hot) ZIP Codes as the ones that had a below-median (above-median) average
temperature during these years.
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will become more common. As discussed in the introduction, these opposing effects

hinder a thorough analysis of future developments.

The temperature bin-indicator regressions broadly confirm the results from the

piecewise-linear regressions. Panel A of Figure 1 (equivalent to column 1 of Ta-

ble A1) shows that the coefficients for the temperature bins below the reference bin

of 15-18°C are mostly small and insignificant, with two of them being significant at

the 90% level. The coefficient from the 18-21 bin is almost zero. Above that bin,

there seems to be a linear trend with the coefficients and t-values becoming larger

in absolute terms. These results tend to support the linearity assumption made in

Equation 1.

Panel B of Figure 1 (equivalent to columns 2 and 3 of Table A1) confirms the

findings from the cold-hot differential piecewise-linear regressions. There are no

significant effects for below-reference temperatures, except for one outlier (6-9°C)

for cold ZIP Codes. This outlier does not withstand the robustness checks I present

in Section 4.3. All bins above 21°C are statistically significant at the 95% level

for cold ZIP Codes. They are roughly twice the size (in absolute terms) as the

coefficients from all ZIP Codes and seem to follow a linear trend as well. The

results from the hot-ZIP Codes regressions are not significant, except for the top

bin, which is significant at the 95% level. While there is a slight downward trend

above 19.5°C, it seems likely that the 18-21°C bin is an upward outlier.

How do these results compare to the results from the literature? In Table A2 I

summarize the main results from the relevant papers. I include all papers discussed

in Section 1 that investigate short-term effects and use a linear approach. The table

shows the temperature variable, the outcome variable, the temperature cutoff, the

mean of the outcome variable, and the estimated coefficient. From the latter two, I

calculate the percentage change of the outcome variable in percent for a 1°C increase

14



Figure 1 Air temperature and cognitive performance: 3°C-bins regressions

Panel A. All ZIP Codes

Coefficient

Temperature bins (°C)

-3

-2

-1

0

1

< 0 3 6 9 12 15 18 21 24 27<

Panel B. Hot vs. cold ZIP Codes

No. of observations

Hot

Cold

0

75K

150K

< 0 3 6 9 12 15 18 21 24 27<

Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of the number of correct answers on 3°C-bin indicators of the average air temperature
during the 24 hours preceding the play (x-axis) as presented in Table A1. The standard errors are clustered
on ZIP Codes. The reference bin is 15-18°C. The regression in Panel A includes all observations. Panel B
shows the results from separate regressions for the cold-ZIP Codes sample (below-median 2015-2019 average
temperatures), and the hot-ZIP Codes sample (above-median 2015-2019 average temperatures). The control
variables include individual effects, time effects, play controls, and weather controls (see Section 3).

in temperature (semi-elasticity) and display them in the last column. This makes

comparisons across papers more convenient.

The five papers that meet the mentioned requirements all estimate larger effects

than my main result, by a magnitude of 3 to 13. What might be a possible expla-

nation for this? In contrast to previous studies using assessment tests, the stakes in

brain training games are low. People might be less affected by heat in non-stressful,

everyday settings. Künn et al. (2019) report similar findings for particulate matter

pollution, another environmental stressor, in the context of cognitive performance.

Another potential explanation is age. Most of the discussed studies focus on

adolescents, while the median age in this study is 56 years and ranges from 18 to 80

years. As there are only relatively few adolescents in my dataset, I lack the power

to test for differential effects between such small age groups. Yet, in an extension in
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Section 4.3 I estimate effect heterogeneity across two age groups (below and above

the median age of 56 years) and find no evidence for differences between those

groups.

I see two main limitations to interpretations of why I estimate smaller effects than

the previous literature. First, all studies differ in a multitude of dimensions. E.g.,

the choice of temperature cutoff might affect the estimated slope. And second, some

of the previous studies focus on a relatively constrained location. These locations

might be better or worse adapted to heat, compared to the average effect across the

contiguous United States I estimate in this paper.

4.2 Selection

One central difference to the previous literature is that individuals using the brain

training software chose when to play. This is in contrast to college admission exams

that have a predetermined date, or telephone surveys that come unexpected to study

participants. In this section, I provide two selections test mentioned in Section 1.

The first test concerns the extensive margin. I construct a dataset that includes

an observation for every hour from each individual’s first to last play in the data.

The observations contain the respective ZIP Code’s weather variables and the in-

dividual’s play covariates. The main outcome variable is an indicator equal to 1 if

an individual played during a specific hour, and 0 otherwise. Table A3 shows the

summary statistics for this dataset. As mentioned, I am not able to test whether

susceptible individuals are more or less likely to refrain from playing than others on

a particularly hot or cold day. Instead, I test whether people, on average, are more

(or less) likely to play depending on the temperature.

Figure A3 (equivalent to Table A5) shows the results from the bin regressions

similar to the main result. Note that I multiply the outcome variable by 100 to make
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the coefficients more readable. As the bin regressions imply a different underlying

functional form compared to the main results, I do not estimate a linear model. The

results in Panel A of Figure A3 for the whole sample suggest that temperatures do

not affect the probability of playing, except for the coldest bins. The coefficient of

0.0107 for temperatures below 0°C means that people have a 3.06% higher proba-

bility of playing (0.0107 / 100 / 0.0035), compared to the reference bin (15-18°C).

Separating between cold and hot ZIP Codes, I find no effects for hot temperatures

either. The positive effect of cold temperatures seems to kick in earlier in cold ZIP

Codes.

These findings suggest that there is no extensive margin selection for hot tem-

peratures. However, people are more likely to play when it is cold. This could

potentially bias the results if, e.g., it is mostly non-susceptible people who are more

likely to play during cold weather. In that case, a potential negative effect of cold

temperatures would be biased toward zero. Therefore, I interpret the null result

from Section 4.1 with caution.

To address intensive-margin selection, I construct a dataset that has an observa-

tion for every hour during which an individual used the software. As the dependent

variable, I use the log number of plays for each of these observations.12 Thus, a co-

efficient of 0.01 corresponds to a 1% increase in the number of plays. This allows me

to test whether people play more (or less) often, conditional on playing at all, when

temperatures are extreme. The summary statistics for this dataset are in Table A4.

Figure A4 (equivalent to Table A6) shows the 3°C-bins regression results. As for

the extensive margin I do not estimate the linear model, as the bin regressions do

not support a corresponding functional form. The results do not provide consistent

evidence for a change in the number of plays for hot temperatures. While the

12Note that the number of plays is at least 1.
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coefficient for the 18-21°C bin is significantly negative, purely driven by the hot

ZIP Codes, there is no trend and the pattern indicates that this is likely an outlier.

People in cold ZIP Codes seem to play somewhat more during cold weather, but the

extent is very small. All in all, I find little evidence for selection at the intensive

margin.

4.3 Robustness

To test the robustness of my estimates, I run three alternations of my baseline re-

sults: First, instead of averaging temperature over 24 hours, I take the average of

air temperature during the 48 hours preceding each play. The degree to which past

temperatures affect people’s cognitive performance has an underlying function that

is ex-ante unclear. A 24-hour cutoff is obviously random and neglects that temper-

atures from longer ago might still affect people’s performance. If temperatures in

the 24-to-48-hours range do not affect cognitive performance, the coefficients should

be closer to zero than in the main results regression, due to attenuation bias.

The results are robust to using the 48-hours average. Table A7 shows the linear

regression results, and Figure A5 (equivalent to Table A8) the coefficients from

the bin regressions. The coefficients for the linear combination test are somewhat

larger in absolute terms for the whole sample (-0.093 vs. -0.084) as well as for the

cold-ZIP Codes sample (-0.177 vs. -0.142). This suggests that temperatures in the

24-to-48-hour range are indeed relevant.

In the second robustness check, I use a heat index instead of air temperature.

The effect of hot temperatures on the human body varies with relative humidity13.

The heat index, a function of temperature and relative humidity, takes that into

account directly, rather than solely controlling for relative humidity.

13https://www.weather.gov/ama/heatindex
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Again, the results stay qualitatively unchanged. I present the piecewise-linear

regression results in Table A9, together with the bin regression results in Figure A6

(equivalent to Table A10). The coefficient from the cold-ZIP Code sample is some-

what smaller (-0.117 vs. -0.142), while the coefficient from the hot-ZIP Code sample

is slightly larger (-0.050 vs. -0.042), both in absolute terms.

Finally, I use the natural logarithm of 1 plus the number of correct answers as

the dependent variable. As temperature effects on the number of correct answers

might depend on individuals’ baseline performance or average score, this specifica-

tion would be a more suited functional form.

Again, there are no qualitative changes to the results. The coefficients for the

linear combination test in Table A11 can be interpreted as percentage changes for

a 1°C change in temperature above the threshold of 16.5°C. The figures are smaller

than in Section 4.1 (-0.08% vs. 0.13% for the whole sample, -0.11% vs. -0.21% for the

cold-ZIP Codes sample, and -0.06% vs. 0.07% for the hot-ZIP Codes sample). While

the cold-ZIP Codes sample coefficient is less precisely estimated, the precision of the

hot-ZIP Codes sample coefficient increases. The bin regression results in Figure A7

(equivalent to Table A12) look fairly similar as well.

4.4 Extensions

The main finding of this paper raises the question about the underlying mechanism.

Do people simply solve the arithmetic problems more slowly and, thus, achieve

fewer points, or do they make more mistakes and, thereby, lose time to find the

right answer?

One way to investigate these mechanisms is to look at the error rate, the number

of erroneous entries per total number of entries. Figure 2 (equivalent to Table A14)

reports the bin regressions results. None of the estimated bin indicators returns a
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significant coefficient and there seems to be no trend, neither for cold nor for hot

temperatures. This is confirmed in the liner regression results in Table A13. These

results provide suggestive evidence that hot temperatures affect the solving speed,

rather than the error rate.

Figure 2 Air temperature and error rate: 3°C-bins regressions

Panel A. All ZIP codes

Coefficient

Temperature bins (°C)
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< 0 3 6 9 12 15 18 21 24 27<

Panel B. Hot vs. cold ZIP Codes

No. of observations

Hot

Cold

0

75K

150K

< 0 3 6 9 12 15 18 21 24 27<

Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of the error rate (number of incorrect answers / total answers) on 3°C-bin indicators of
the average air temperature during the 24 hours preceding the play (x-axis) as presented in Table A14.
The standard errors are clustered on ZIP Codes. The reference bin is 15-18°C. The regression in Panel A
includes all observations. Panel B shows the results from separate regressions for the cold-ZIP Codes sample
(below-median 2015-2019 average temperatures), and the hot-ZIP Codes sample (above-median 2015-2019
average temperatures). The control variables include individual effects, time effects, play controls, and
weather controls (see Section 3).

Another central aspect is how cumulative heat exposure affects cognitive perfor-

mance. Specifically, is ongoing heat for multiple days worse than a single heat day

alone?

Figure 3 (equivalent to Table A15) summarize the results of different heat period

lengths. I run regressions similar to Equation 2, except that I use only one dummy

variable equal to 1 if the average air temperature during the 24 hours preceding a

play is greater than 21°C (baseline). This is the lower end of the bin with a negative
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coefficient at the 90% level in the main results. The coefficients for this dummy are

-0.489 (all ZIP Codes), -0.666 (cold ZIP Codes), and -0.263, (hot ZIP Codes), all

significant at the 95% level. These numbers correspond to a performance reduction

of 0.75%, 0.97%, and 0.42%, respectively.

To disentangle, I calculate the average temperature of seven different time peri-

ods: period 1 is hours 0 to 23 preceding a play (the same as above and throughout

the paper), period 2 is hours 24 to 47 preceding a play, etc. Accordingly, period 7

is hours 144 to 167. I then generate three indicator variables based on the average

temperature of these seven periods. The first indicator is equal to 1 if the average

temperature in period 1, but not 2, or in periods 1 and 2, but not 3 was greater

than 21°C. This indicator refers to hot temperatures for one or two days, but not

longer (”1-2 days...” in Figure 3). The second indicator is equal to 1 if the average

temperature in periods 1, to 3, but not 4, or in periods 1 to 4, but not 5, or in periods

1 to 6, but not 7 was greater than 21°C. This indicator refers to hot temperatures

for at least three but not more than six days (”3-6 days...” in Figure 3). Finally,

the third indicator is equal to 1 if the average temperature in all seven periods was

greater than 21°C. This indicator refers to hot temperatures for at least seven days

in a row. I then run similar regressions to the baseline, but with these three heat

period length indicators instead of just one indicator. The reference is a day with

an average temperature below or exactly 21°C.

The estimated coefficient strictly increases with the length of the heat period,

from -0.220 (-0.34%) for 1 or 2 days, to -0.568 (-0.87%) for 3 to 6 days, and -

0.789 (-1.21%) for 7 or more days with average temperatures above 21°C. This

pattern is consistent for both cold and hot ZIP Codes. The performance drop is

-0.413 (-0.60%), -0.857 (-1.25%), and -1.075 (-1.57%) for cold ZIP Codes, and -

0.014 (-0.02%), -0.27 (-0.43%), and -0.479 (-0.76%) for hot ZIP Codes, respectively.
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While these coefficients are not statistically different from each other, all coefficients

increase with the length of the heat period.

Figure 3 Effect accumulation

Coefficient

Observations

...of average temperature > 21°C

0

200K

400K-2

-1

0

1

Baseline 1-2 days... 3-6 days... 7 or more days...

All ZIP codes
Cold ZIP codes
Hot ZIP codes

Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of the number of correct answers on and indicator = 1 if the average temperature was above
21°C during different temporal periods before a play (x-axis) as presented in Table A15. The standard errors
are clustered on ZIP Codes. The baseline is 24 hours preceding a play. The reference is a day with an average
temperature below or exactly 21°C. I run separate regressions for all observations, the cold-ZIP Codes sample
(below-median 2015-2019 average temperatures), and the hot-ZIP Codes sample (above-median 2015-2019
average temperatures). The control variables include individual effects, time effects, play controls, and
weather controls (see Section 3).

Analyzing the channels for this potential increase in the effect of heat on cognitive

performance is beyond the scope of this paper. At least two mechanisms could be at

play: First, a recent paper shows that people sleep less when temperatures are high

(Minor et al., 2022). The observed pattern would be what to expect if the lack of

sleep is a principal reason for reduced cognitive performance, and continuing sleep

deprivation worsens cognitive performance. The second channel is more mechanical:

Buildings take time to heat up. Without air conditioning, homes will usually be

hotter after more days of heat. Hence, the effect might worsen with consecutive hot
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days.

The final extension I provide is on effect heterogeneity across ages. I estimate

separate regressions for people who are below, or exactly, 56 years old, and people

who are above 56 years old. 56 years is the median age. Table A16 shows the

piecewise-linear results, Figure A8 and Table A17 show the temperature bins results,

respectively. While the coefficients from the piecewise-linear regressions reveal a

slightly larger effect for older people, the bins regressions coefficients are somewhat

higher (in absolute terms) for younger people. The differences are generally very

small and the coefficients are close to the baseline results for both age groups. They

are, however, less precisely estimated. These results do not provide any evidence

for effect heterogeneity.

5 Conclusion

I estimate the effect of temperature on cognitive performance for a broad population

in the United States using a rich dataset on mental arithmetic from a brain training

software. I find that hot temperatures reduce people’s performance, with larger

effects in colder, less adapted regions. The driver for the lower performance seems

to be slower problem-solving, rather than higher error proneness. I do not find any

significant effects of cold temperatures. The results for the cold-temperatures range

should be taken with a grain of salt, as there are potential selection issues.

This paper fills a gap in the literature by focusing on a setting that is more

representative of everyday-live situations and studying a broader population than

the previous literature. The estimated coefficients are small, compared to studies

that apply a similar approach in an educational or survey setting. Understanding

the drivers behind temperature sensitivity in cognitively demanding settings seems

like great potential for future research.
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Appendix. Figures

Figure A1 The Raindrops game

Source: Krebs and Luechinger (2021)

Figure A2 Hot and cold 3-digit ZIP Codes

Notes: Map of 3-digit ZIP Codes of the contiguous United States with the hot-ZIP Codes sample (above-
median 2015-2019 average temperatures) in red and the cold-ZIP Codes sample (below-median 2015-2019
average temperatures) in blue. Gray areas are ZIP Codes without a play observation. The average temper-
ature of each ZIP Code is based on the NOAA data described in Section 2.2.
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Figure A3 Air temperature and probability of playing: 3°C-bins regressions

Panel A. All ZIP codes
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Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of play (indicator variable = 100 if an individual played during a specific hour) on 3°C-bin
indicators of the average air temperature during the 24 hours preceding the play (x-axis) as presented in
Table A5. The standard errors are clustered on ZIP Codes. The reference bin is 15-18°C. The regression
in Panel A includes all observations. Panel B shows the results from separate regressions for the cold-ZIP
Codes sample (below-median 2015-2019 average temperatures), and the hot-ZIP Codes sample (above-
median 2015-2019 average temperatures). The control variables include individual effects, time effects, play
controls, and weather controls (see Section 3).
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Figure A4 Air temperature and frequency of playing: 3°C-bins regressions

Panel A. All ZIP codes
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Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of the log number of plays (the log number of plays an individual engaged in during the
current hour) on 3°C-bin indicators of the average air temperature during the 24 hours preceding the play
(x-axis) as presented in Table A6. The standard errors are clustered on ZIP Codes. The reference bin
is 15-18°C. The regression in Panel A includes all observations. Panel B shows the results from separate
regressions for the cold-ZIP Codes sample (below-median 2015-2019 average temperatures), and the hot-
ZIP Codes sample (above-median 2015-2019 average temperatures). The control variables include individual
effects, time effects, play controls, and weather controls (see Section 3).
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Figure A5 Air temperature past 48 hours and cognitive performance: 3°C-bins
regressions

Panel A. All ZIP codes
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Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of the number of correct answers on 3°C-bin indicators of the average air temperature
during the 48 hours preceding the play (x-axis) as presented in Table A8. The standard errors are clustered
on ZIP Codes. The reference bin is 15-18°C. The regression in Panel A includes all observations. Panel B
shows the results from separate regressions for the cold-ZIP Codes sample (below-median 2015-2019 average
temperatures), and the hot-ZIP Codes sample (above-median 2015-2019 average temperatures). The control
variables include individual effects, time effects, play controls, and weather controls (see Section 3).
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Figure A6 Heat index and cognitive performance: 3°C-bins regressions

Panel A. All ZIP codes
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Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of the number of correct answers on 3°C-bin indicators of the average heat index during
the 24 hours preceding the play (x-axis) as presented in Table A10. The standard errors are clustered on
ZIP Codes. The reference bin is 15-18°C. The regression in Panel A includes all observations. Panel B
shows the results from separate regressions for the cold-ZIP Codes sample (below-median 2015-2019 average
temperatures), and the hot-ZIP Codes sample (above-median 2015-2019 average temperatures). The control
variables include individual effects, time effects, play controls, and weather controls (see Section 3).
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Figure A7 Air temperature and log cognitive performance: 3°C-bins regressions

Panel A. All ZIP codes
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Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of log(number of correct answers + 1) on 3°C-bin indicators of the average air temperature
during the 24 hours preceding the play (x-axis) as presented in Table A12. The standard errors are clustered
on ZIP Codes. The reference bin is 15-18°C. The regression in Panel A includes all observations. Panel B
shows the results from separate regressions for the cold-ZIP Codes sample (below-median 2015-2019 average
temperatures), and the hot-ZIP Codes sample (above-median 2015-2019 average temperatures). The control
variables include individual effects, time effects, play controls, and weather controls (see Section 3).
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Figure A8 Air temperature and cognitive performance by age: 3°C-bins regres-
sions
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Notes: Coefficients with 95% confidence intervals (left y-axis), and number of observations (right y-axis)
from regressions of the number of correct answers on 3°C-bin indicators of the average air temperature during
the 24 hours preceding the play (x-axis) as presented in Table A17. The standard errors are clustered on ZIP
Codes. The reference bin is 15-18°C. The figure shows the results from separate regressions for individuals
below, or exactly, 56 years old, and individuals above 56 years old. The control variables include individual
effects, time effects, play controls, and weather controls (see Section 3).
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Appendix. Tables

Table A1 Air temperature and cognitive per-
formance: 3°C-bins regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Air temp. < 0°C -0.428 -0.614 -0.699

(0.500) (0.625) (0.459)

Air temp. 0-3°C -0.506 -0.872 -0.130

(0.458) (0.667) (0.308)

Air temp. 3-6°C -0.376 -0.736 0.037

(0.367) (0.555) (0.311)

Air temp. 6-9°C -0.388* -0.670** -0.119

(0.205) (0.309) (0.308)

Air temp. 9-12°C -0.121 -0.045 -0.171

(0.146) (0.216) (0.180)

Air temp. 12-15°C -0.270* -0.256 -0.253

(0.154) (0.226) (0.224)

Air temp. 18-21°C -0.046 -0.518 0.208

(0.209) (0.321) (0.227)

Air temp. 21-24°C -0.484* -0.913** -0.171

(0.270) (0.437) (0.178)

Air temp. 24-27°C -0.588** -0.995** -0.212

(0.293) (0.412) (0.162)

Air temp. ≥ 27°C -0.954** -1.817*** -0.452*

(0.425) (0.551) (0.244)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from regressions of the number of correct an-
swers on 3°C-bin indicators of the average air temperature
during the 24 hours preceding the play as depicted in Fig-
ure 1. The standard errors (in parentheses) are clustered on
ZIP Codes. The reference bin is 15-18°C. The regression in
column 1 includes all observations. Columns 2 and 3 show the
results from separate regressions for the cold-ZIP Codes sam-
ple (below-median 2015-2019 average temperatures), and the
hot-ZIP Codes sample (above-median 2015-2019 average tem-
peratures). The control variables include individual effects,
time effects, play controls, and weather controls (see Section
3).
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Table A2 Results from previous literature

Paper Temperature Outcome Temperature Mean of Coefficient ∆ outcome

variable variable cutoff outcome var. (Std. err.) var. in %

Krebs (2022)
Average temp. during Mental arithmetic

16.5°C 65.4
-0.084

-0.13
24h preceding play performance (0.038)

Graff Zivin et al. (2018)
Same-day number of National Longitudinal Survey

21°C 49.7
–0.211

-0.42
degree days of Youth (0.090)

Graff Zivin et al. (2020)
Same-day number of China’s National College

14°C 519
-0.0034i

-0.34
degree days Entrance Examination (0.0004)

Park (2022)
Average temp. around Regents Exams in New York

noneii 64.9 -0.290iii -0.45
test time City

Melo and Suzuki (2021) Temp. during exam
Exame Nacional do Enismo

noneii 506.5 -0.879iii -1.73
Mèdio in Brazil

Yi et al. (2021)
Same-day heat stress China Health and Retirement

25°C 2.8
-0.025

-0.89
degree days Longitudinal Study (0.013)

i Coefficient and standard error from log-lin regression. ii Tests taken during relatively warm weather. iii No standard error is provided because
the coefficient is translated from a regression on the standardized test score.
Notes: Comparison of the main result of this paper to the main result of five other papers that focus on short-term effects and apply a linear
approach. The table shows the temperature variable, the outcome variable, the temperature cutoff, the mean of the outcome variable, and the
estimated coefficient. I calculate the percentage change of the outcome variable in percent for a 1°C increase in temperature, displayed in the last
column.
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Table A3 Summary statistics of extensive-margin selec-
tion

Variable All ZIP Cold ZIP Hot ZIP

Codes Codes Codes

Played 0.0035 0.0036 0.0034

(0.0589) (0.0596) (0.0583)

Temperature past 24h in °C 14.5942 10.3918 17.5256

(9.7932) (10.1184) (8.3951)

Observations 226,926,601 93,249,007 133,677,594

Notes: Means and standard deviations (in parentheses) of the extensive
margin selection variable (indicator variable = 1 if an individual played
during a specific hour), and the average air temperature during the 24
hours preceding a play in °C. See Section 4.2 for a sample construction
description.

Table A4 Summary statistics of intensive-margin
selection

Variable All ZIP Cold ZIP Hot ZIP

Codes Codes Codes

Number of plays 1.4541 1.4475 1.4590

(1.5234) (1.5149) (1.5295)

Temperature past 24h in °C 14.0711 9.7705 17.2051

(9.9291) (10.1390) (8.4982)

Observations 789,305 332,720 456,585

Notes: Means and standard deviations (in parentheses) of the in-
tensive margin selection variable (the number of plays an individual
engaged in during an hour in which the individual played), and the
average air temperature during the 24 hours preceding a play in °C.
See Section 4.2 for a sample construction description.
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Table A5 Air temperature and probability of
playing: 3°C-bins regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

Play Codes Codes Codes

Air temp. < 0°C 0.0107*** 0.0120*** 0.0130**

(0.0035) (0.0043) (0.0055)

Air temp. 0-3°C 0.0069** 0.0081** 0.0085*

(0.0031) (0.0040) (0.0048)

Air temp. 3-6°C 0.0058** 0.0093** 0.0032

(0.0028) (0.0039) (0.0039)

Air temp. 6-9°C 0.0005 0.0054 -0.0034

(0.0027) (0.0039) (0.0036)

Air temp. 9-12°C -0.0001 0.0086*** -0.0059*

(0.0025) (0.0032) (0.0032)

Air temp. 12-15°C 0.0008 0.0069* -0.0024

(0.0021) (0.0037) (0.0026)

Air temp. 18-21°C -0.0025 -0.0022 -0.0024

(0.0017) (0.0028) (0.0022)

Air temp. 21-24°C -0.0024 -0.0008 -0.0034

(0.0022) (0.0036) (0.0028)

Air temp. 24-27°C -0.0008 -0.0008 -0.0015

(0.0025) (0.0041) (0.0029)

Air temp. ≥ 27°C -0.0007 0.0049 -0.0030

(0.0032) (0.0057) (0.0034)

Observations 226,926,601 93,249,007 133,677,594

Individuals 30,081 12,344 17,737

ZIPs 745 373 372

Notes: Results from regressions of play (indicator variable = 100 if
an individual played during a specific hour) on 3°C-bin indicators
of the average air temperature during the 24 hours preceding the
play as depicted in Figure A3. The standard errors (in parentheses)
are clustered on ZIP Codes. The standard errors (in parentheses)
are clustered on ZIP Codes. The reference bin is 15-18°C. The re-
gression in column 1 includes all observations. Columns 2 and 3
show the results from separate regressions for the cold-ZIP Codes
sample (below-median 2015-2019 average temperatures), and the
hot-ZIP Codes sample (above-median 2015-2019 average tempera-
tures). The control variables include individual effects, time effects,
play controls, and weather controls (see Section 3).
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Table A6 Air temperature and frequency of
playing: 3°C-bins regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

Log no. of plays Codes Codes Codes

Air temp. < 0°C -0.0010 0.0052 -0.0070

(0.0032) (0.0047) (0.0052)

Air temp. 0-3°C 0.0073** 0.0127*** 0.0040

(0.0030) (0.0047) (0.0045)

Air temp. 3-6°C 0.0023 0.0062 0.0013

(0.0028) (0.0045) (0.0040)

Air temp. 6-9°C 0.0007 0.0063* -0.0028

(0.0024) (0.0038) (0.0037)

Air temp. 9-12°C 0.0026 0.0042 0.0025

(0.0021) (0.0034) (0.0031)

Air temp. 12-15°C -0.0015 -0.0038 0.0004

(0.0019) (0.0032) (0.0025)

Air temp. 18-21°C -0.0051** -0.0037 -0.0065**

(0.0021) (0.0034) (0.0027)

Air temp. 21-24°C -0.0022 -0.0051 -0.0010

(0.0021) (0.0035) (0.0027)

Air temp. 24-27°C -0.0013 0.0006 -0.0013

(0.0029) (0.0049) (0.0034)

Air temp. ≥ 27°C -0.0038 -0.0042 -0.0021

(0.0034) (0.0075) (0.0038)

Observations 789,305 332,720 456,585

Individuals 30,081 12,344 17,737

ZIPs 745 373 372

Notes: Results from regressions of the log number of plays
(the log number of plays an individual engaged in during the
current hour) on 3°C-bin indicators of the average air temper-
ature during the 24 hours preceding the play as depicted in
Figure A4. The standard errors (in parentheses) are clustered
on ZIP Codes. The reference bin is 15-18°C. The regression in
column 1 includes all observations. Columns 2 and 3 show the
results from separate regressions for the cold-ZIP Codes sam-
ple (below-median 2015-2019 average temperatures), and the
hot-ZIP Codes sample (above-median 2015-2019 average tem-
peratures). The control variables include individual effects,
time effects, play controls, and weather controls (see Section
3).
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Table A7 Air temperature past 48 hours and cognitive per-
formance: piecewise-linear regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Air temperature 0.013 0.016 0.013

(0.023) (0.019) (0.018)

Linear combination test: -0.093** -0.177*** -0.045

Air temp. + air temp. × above theshold (0.041) (0.054) (0.030)

Observations 1,150,343 482,500 667,843

Individuals 31,027 12,706 18,321

ZIPs 748 374 374

Notes: Results from piecewise-linear regressions of the number of correct answers
on the average air temperature during the 48 hours preceding the play (in °C),
and an interaction with the above-threshold indicator. The standard errors (in
parentheses) are clustered on ZIP Codes. “Air temperature” denotes the coeffi-
cient below the threshold, and the linear combination test amounts to the slope
above the threshold. The threshold is 16.5°C. The regression in column 1 includes
all observations. Columns 2 and 3 show the results from separate regressions for
the cold-ZIP Codes sample (below-median 2015-2019 average temperatures), and
the hot-ZIP Codes sample (above-median 2015-2019 average temperatures). The
control variables include individual effects, time effects, play controls, weather
controls, and an indicator for above threshold temperature (see Section 3).
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Table A8 Air temperature past 48 hours and
cognitive performance: 3°C-bins regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Air temp. < 0°C -0.327 -0.519 -0.688

(0.468) (0.512) (0.550)

Air temp. 0-3°C -0.330 -0.784 0.328

(0.533) (0.659) (0.299)

Air temp. 3-6°C -0.364 -0.616 -0.087

(0.328) (0.439) (0.308)

Air temp. 6-9°C -0.264 -0.487** -0.051

(0.176) (0.215) (0.295)

Air temp. 9-12°C -0.009 0.034 -0.011

(0.161) (0.202) (0.191)

Air temp. 12-15°C -0.074 0.024 -0.091

(0.111) (0.150) (0.157)

Air temp. 18-21°C 0.158 -0.282 0.372

(0.213) (0.212) (0.299)

Air temp. 21-24°C -0.477* -1.124** -0.048

(0.288) (0.446) (0.190)

Air temp. 24-27°C -0.553** -0.925*** -0.204

(0.246) (0.349) (0.178)

Air temp. ≥ 27°C -0.945** -1.855*** -0.466*

(0.390) (0.571) (0.262)

Observations 1,150,343 482,500 667,843

Individuals 31,027 12,706 18,321

ZIPs 748 374 374

Notes: Results from regressions of the number of correct an-
swers on 3°C-bin indicators of the average air temperature
during the 48 hours preceding the play as depicted in Fig-
ure A5. The standard errors (in parentheses) are clustered on
ZIP Codes. The reference bin is 15-18°C. The regression in
column 1 includes all observations. Columns 2 and 3 show the
results from separate regressions for the cold-ZIP Codes sam-
ple (below-median 2015-2019 average temperatures), and the
hot-ZIP Codes sample (above-median 2015-2019 average tem-
peratures). The control variables include individual effects,
time effects, play controls, and weather controls (see Section
3).

39



Table A9 Heat index and cognitive performance: piecewise-
linear regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Heat index 0.011 0.012 0.012

(0.020) (0.016) (0.015)

Linear combination test: -0.081*** -0.117*** -0.050*

Air temp. + air temp. × above theshold (0.031) (0.043) (0.026)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from piecewise-linear regressions of the number of correct answers
on the average heat index during the 24 hours preceding the play (in °C), and an
interaction with the above-threshold indicator. The standard errors (in paren-
theses) are clustered on ZIP Codes. “Air temperature” denotes the coefficient
below the threshold, and the linear combination test amounts to the slope above
the threshold. The threshold is 16.5°C. The regression in column 1 includes all
observations. Columns 2 and 3 show the results from separate regressions for
the cold-ZIP Codes sample (below-median 2015-2019 average temperatures), and
the hot-ZIP Codes sample (above-median 2015-2019 average temperatures). The
control variables include individual effects, time effects, play controls, weather
controls, and an indicator for above threshold temperature (see Section 3).
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Table A10 Heat index and cognitive perfor-
mance: 3°C-bins regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Heat index < 0°C -0.573 -0.641 -0.582*

(0.506) (0.590) (0.330)

Heat index 0-3°C -0.516 -0.722 -0.066

(0.432) (0.543) (0.322)

Heat index 3-6°C -0.386 -0.384 -0.284

(0.267) (0.300) (0.450)

Heat index 6-9°C -0.570*** -0.624* -0.389

(0.211) (0.323) (0.243)

Heat index 9-12°C -0.141 0.099 -0.253

(0.124) (0.193) (0.172)

Heat index 12-15°C -0.404* -0.308 -0.393

(0.215) (0.218) (0.318)

Heat index 18-21°C -0.122 -0.495 0.085

(0.178) (0.335) (0.151)

Heat index 21-24°C -0.574** -0.913** -0.314*

(0.257) (0.435) (0.166)

Heat index 24-27°C -0.617** -1.082*** -0.229

(0.281) (0.397) (0.184)

Heat index ≥ 27°C -0.914** -1.159** -0.520**

(0.378) (0.544) (0.237)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from regressions of the number of correct an-
swers on 3°C-bin indicators of the average heat index during the
24 hours preceding the play as depicted in Figure A6. The stan-
dard errors (in parentheses) are clustered on ZIP Codes. The
reference bin is 15-18°C. The regression in column 1 includes all
observations. Columns 2 and 3 show the results from separate
regressions for the cold-ZIP Codes sample (below-median 2015-
2019 average temperatures), and the hot-ZIP Codes sample
(above-median 2015-2019 average temperatures). The control
variables include individual effects, time effects, play controls,
and weather controls (see Section 3).
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Table A11 Air temperature and log cognitive performance:
piecewise-linear regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Air temperature -0.003 0.008 -0.010

(0.016) (0.016) (0.018)

Linear combination test: -0.079** -0.113** -0.057*

Air temp. + air temp. × above theshold (0.031) (0.049) (0.030)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from piecewise-linear regressions of log(number of correct answers
+ 1) on the average air temperature during the 24 hours preceding the play
(in °C), and an interaction with the above-threshold indicator. The standard
errors (in parentheses) are clustered on ZIP Codes. “Air temperature” denotes
the coefficient below the threshold, and the linear combination test amounts
to the slope above the threshold. The threshold is 16.5°C. The regression in
column 1 includes all observations. Columns 2 and 3 show the results from
separate regressions for the cold-ZIP Codes sample (below-median 2015-2019
average temperatures), and the hot-ZIP Codes sample (above-median 2015-2019
average temperatures). The control variables include individual effects, time
effects, play controls, weather controls, and an indicator for above threshold
temperature (see Section 3).
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Table A12 Air temperature and log cognitive perfor-
mance: 3°C-bins regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

Log (no. of correct answers + 1) Codes Codes Codes

Air temp. < 0°C -0.054 -0.285 -0.082

(0.389) (0.522) (0.427)

Air temp. 0-3°C -0.327 -0.596 -0.131

(0.356) (0.527) (0.378)

Air temp. 3-6°C 0.046 -0.224 0.366

(0.301) (0.467) (0.343)

Air temp. 6-9°C -0.187 -0.381 0.026

(0.227) (0.323) (0.353)

Air temp. 9-12°C -0.002 0.297 -0.189

(0.181) (0.256) (0.232)

Air temp. 12-15°C -0.182 -0.054 -0.223

(0.182) (0.235) (0.253)

Air temp. 18-21°C -0.038 -0.526** 0.220

(0.185) (0.257) (0.228)

Air temp. 21-24°C -0.585** -0.780** -0.427*

(0.247) (0.383) (0.248)

Air temp. 24-27°C -0.575** -0.898** -0.307

(0.255) (0.399) (0.234)

Air temp. ≥ 27°C -0.820** -1.332** -0.504

(0.349) (0.573) (0.306)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from regressions of log(number of correct answers + 1)
on 3°C-bin indicators of the average air temperature during the 24 hours
preceding the play as depicted in Figure 1. The standard errors (in paren-
theses) are clustered on ZIP Codes. The reference bin is 15-18°C. The re-
gression in column 1 includes all observations. Columns 2 and 3 show the
results from separate regressions for the cold-ZIP Codes sample (below-
median 2015-2019 average temperatures), and the hot-ZIP Codes sample
(above-median 2015-2019 average temperatures). The control variables
include individual effects, time effects, play controls, and weather con-
trols (see Section 3).
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Table A13 Air temperature and error rate: piecewise-linear
regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Air temperature 0.000 -0.001 0.002

(0.002) (0.002) (0.004)

Linear combination test: 0.001 0.004 -0.002

Air temp. + air temp. × above theshold (0.004) (0.006) (0.004)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from piecewise-linear regressions of the error rate (number of
incorrect answers / total answers) on the average air temperature during the
24 hours preceding the play (in °C), and an interaction with the above-threshold
indicator. The standard errors (in parentheses) are clustered on ZIP Codes. “Air
temperature” denotes the coefficient below the threshold, the linear combination
test amounts to the slope above the threshold. The threshold is 16.5°C. The
regression in column 1 includes all observations. Columns 2 and 3 show the
results from separate regressions for the cold-ZIP Codes sample (below-median
2015-2019 average temperatures), and the hot-ZIP Codes sample (above-median
2015-2019 average temperatures). The control variables include individual effects,
time effects, play controls, weather controls, and an indicator for above threshold
temperature (see Section 3).
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Table A14 Air temperature and error rate:
3°C-bins regressions

Dependent variable: All ZIP Cold ZIP Hot ZIP

Error rate Codes Codes Codes

Air temp. < 0°C -0.016 0.004 -0.074

(0.046) (0.055) (0.078)

Air temp. 0-3°C 0.006 -0.019 0.061

(0.044) (0.054) (0.067)

Air temp. 3-6°C -0.015 -0.013 -0.042

(0.040) (0.055) (0.053)

Air temp. 6-9°C 0.003 -0.000 -0.019

(0.036) (0.051) (0.052)

Air temp. 9-12°C -0.014 -0.065 0.005

(0.029) (0.044) (0.038)

Air temp. 12-15°C 0.006 -0.018 0.010

(0.028) (0.041) (0.037)

Air temp. 18-21°C -0.027 0.014 -0.048

(0.028) (0.036) (0.037)

Air temp. 21-24°C -0.040 -0.015 -0.058

(0.033) (0.045) (0.042)

Air temp. 24-27°C -0.005 0.060 -0.045

(0.038) (0.051) (0.047)

Air temp. ≥ 27°C -0.034 -0.015 -0.068

(0.047) (0.092) (0.051)

Observations 1,151,059 482,812 668,247

Individuals 31,029 12,708 18,321

ZIPs 748 374 374

Notes: Results from regressions of the error rate (number
of incorrect answers / total answers) on 3°C-bin indicators
of the average air temperature during the 24 hours preced-
ing the play as depicted in Figure 2. The standard errors
(in parentheses) are clustered on ZIP Codes. The refer-
ence bin is 15-18°C. The regression in column 1 includes
all observations. Columns 2 and 3 show the results from
separate regressions for the cold-ZIP Codes sample (below-
median 2015-2019 average temperatures), and the hot-ZIP
Codes sample (above-median 2015-2019 average tempera-
tures). The control variables include individual effects, time
effects, play controls, and weather controls (see Section 3).
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Table A15 Effect accumulation

Dep. var.: All ZIP Cold ZIP Hot ZIP

No. of correct answers Codes Codes Codes

Av. air temp. past 24h > 21°C (baseline) -0.4894** -0.6657** -0.2630**

(0.2270) (0.2579) (0.1290)

Av. air temp. > 21°C for 1 or 2 days -0.2206 -0.4130* -0.0139

(0.1934) (0.2345) (0.1806)

Av. air temp. > 21°C for 3 to 6 days -0.5682** -0.8578*** -0.2696**

(0.2288) (0.2899) (0.1364)

Av. air temp. > 21°C for 7 days or more -0.7886** -1.0750** -0.4790**

(0.3446) (0.5032) (0.2086)

Observations 1,142,089 1,142,089 478,616 478,616 663,473 663,473

Individuals 31,006 31,006 12,702 12,702 18,304 18,304

ZIPs 747 747 374 374 373 373

Notes: Results from regressions of the number of correct answers on and indicator = 1 if the average temperature was
above 21°C during different temporal periods before a play as presented in Figure 3. The standard errors are clustered
on ZIP Codes. The reference is a day with an average temperature below or exactly 21°C. I run separate regressions
for all observations, the cold-ZIP Codes sample (below-median 2015-2019 average temperatures), and the hot-ZIP Codes
sample (above-median 2015-2019 average temperatures). The control variables include individual effects, time effects, play
controls, and weather controls (see Section 3).
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Table A16 Air temperature and cognitive perfor-
mance by age: piecewise-linear regressions

Dependent variable: Below or 56 Above 56

No. of correct answers years old years old

Air temperature -0.012 0.024

(0.021) (0.030)

Linear combination test: -0.068 -0.091*

Air temp. + air temp. × above theshold (0.049) (0.049)

Observations 431,871 719,188

Individuals 15,758 15,271

ZIPs 722 728

Notes: Results from piecewise-linear regressions of the number of correct
answers on the average air temperature during the 24 hours preceding
the play (in °C), and an interaction with the above-threshold indicator.
The standard errors (in parentheses) are clustered on ZIP Codes. “Air
temperature” denotes the coefficient below the threshold, and the lin-
ear combination test amounts to the slope above the threshold. The
threshold is 16.5°C. Columns 1 and 2 show the results from separate re-
gressions for individuals below or 56 years old, and individuals above 56
years old. The control variables include individual effects, time effects,
play controls, weather controls, and an indicator for above threshold
temperature (see Section 3).
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Table A17 Air temperature and cogni-
tive performance by age: 3°C-bins regres-
sions

Dependent variable: Below or 56 Above 56

No. of correct answers years old years old

Air temp. < 0°C 0.155 -0.794

(0.468) (0.715)

Air temp. 0-3°C -0.183 -0.724

(0.472) (0.671)

Air temp. 3-6°C -0.032 -0.584

(0.472) (0.501)

Air temp. 6-9°C -0.379 -0.396*

(0.380) (0.231)

Air temp. 9-12°C -0.107 -0.130

(0.297) (0.159)

Air temp. 12-15°C -0.102 -0.366*

(0.251) (0.194)

Air temp. 18-21°C -0.162 0.015

(0.280) (0.281)

Air temp. 21-24°C -0.491 -0.472

(0.351) (0.369)

Air temp. 24-27°C -0.627* -0.564

(0.363) (0.412)

Air temp. ≥ 27°C -1.057** -0.890

(0.513) (0.586)

Observations 431,871 719,188

Individuals 15,758 15,271

ZIPs 722 728

Notes: Results from regressions of the number of cor-
rect answers on 3°C-bin indicators of the average air
temperature during the 24 hours preceding the play
as depicted in Figure A8. The standard errors (in
parentheses) are clustered on ZIP Codes. The refer-
ence bin is 15-18°C. Columns 1 and 2 show the results
from separate regressions for individuals below or 56
years old, and individuals above 56 years old. The
control variables include individual effects, time ef-
fects, play controls, and weather controls (see Section
3).
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