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Abstract

Concerns over climate change, along with falling costs of renewable energy technologies, have
led to increased scrutiny over the role of natural gas in a low-carbon energy future. In this study,
we use a multi-stage capacity expansion modeling framework to evaluate the role of natural gas-
fired power plants (NG) in the evolving electrical grid of the U.S. Southeast. Under assumptions
of perfect foresight and high electrification, our modeling considers cost-optimal grid operations,
investments, and retirements through 2045 using a detailed representation of the U.S. Southeast’s
electrical grid which includes inter-region transmission, variable renewable energy resource char-
acteristics, brownfield capacity, and lifetime and economic retirements. We explore the impact
of key technology and policy sensitivities including three alternative CO2 emissions trajectories,
technology costs, nuclear plant lifetime extensions, upstream methane emissions, and direct regu-
lations of NG deployment and financing. In addition to the unprecedented deployments of variable
renewable energy and battery storage necessary to decarbonize, we find that investments in NG
are made across all scenarios evaluated. Results highlight the substantial emissions contributions
of the existing coal fleet and the potential for emissions reductions if lower-carbon generation re-
sources, including new NG with and without carbon capture and storage, can replace this capacity.
Furthermore, emissions limits which require the lowest mid-century CO2 emissions do not neces-
sarily lead to the greatest cumulative emissions reductions over the planning horizon. Finally, we
observe that large differences in technology and policy conditions result in only modest changes
in capacity deployments and the cost of the energy transition, allowing utilities and regulators to
move forward with confidence under a strategy primarily characterized by phasing out coal gener-
ation and deploying new renewable energy. These results support nuanced approaches to resource
planning for future low-carbon grids which consider both short-term and long-term trade-offs of
cost and emissions reductions.

1 Introduction

In recent years, the electric power sector in the U.S. has reduced its reliance on coal (2013 TWh
generation in 2005 to 965 TWh in 2019, 50% of total generation to 23%) in favor of increasing generation
from natural gas (NG, 761 TWh to 1586 TWh, 19% to 38%) and variable renewable energy (VRE)
sources, namely wind and solar (18 TWh to 403 TWh, ≤1% to 10%).[1] This has contributed to
a 32% reduction in power sector CO2 emissions, with the shift from coal to gas alone accounting
for 65% of this reduction, relative to 2005 levels.[2] Currently, NG power plants are the primary
source of flexible generation in managing the temporal variability in VRE generation. This is most
evident in regions like California, where, as the share of solar generation has increased from 0.3%
to 11.4% from 2009 to 2018, the operations of the NG power plant fleet has evolved to account for
the diurnal pattern in solar output, leading to increased startups and ramping events.[3] At the same
time, the increased penetration of VRE resources, along with low NG prices until recently, has led to
depressed wholesale electricity prices, which has adversely impacted the revenues of gas generators,
leading to premature retirements in some cases.[4][5] As costs of wind and solar are projected to
decline further and public policy emphasizes accelerated deep decarbonization of the power sector
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along with economy-wide electrification, the share and magnitude of VRE generation is expected to
grow substantially in the next few decades.[6][7] However, the long-term role for NG in the transition
to a deeply-decarbonized power system remains uncertain due to several technology and policy factors.
First, projected declines in cost for lithium-ion battery storage resources [8] could improve the cost-
effectiveness of their use in balancing mismatch the between VRE generation and electricity demand
over increasing time-scales (e.g., intra-day to inter-day). Second, potential developments and associated
cost reductions in long-duration energy storage could mitigate the need for dispatchable, low-carbon
generation as part of deep decarbonization scenarios.[9][10] Similarly, developments in low-carbon
dispatchable generation technologies using NG in conjunction with pre-combustion (e.g., H2) or post-
combustion carbon capture and storage (CCS) could create a role for NG in a deeply decarbonized
power grid. Third, while many U.S. states and utilities have committed to 100% decarbonization
of the power sector by mid-century, the evolution of policy in the interim period remains less well-
defined. Moreover, there is growing interest in minimizing investment in new fossil-fuel infrastructure
to minimize potential for stranded assets.[11] Finally, there is growing recognition about potentially
under-counted fugitive methane emissions from the NG supply chain and their near-term radiative
forcing impacts, which suggests greater climate risks associated with NG deployment than previously
thought.[12][13] Here, we use a multi-stage capacity expansion modeling framework to study the role
for new and existing NG resources in the transition to a deeply decarbonized electricity sector by
mid-century, under alternative technology and policy assumptions inspired by the uncertainty factors
highlighted above.

There is a growing body of academic literature focusing on low-carbon power grid scenarios using
various capacity expansion models (CEMs), but only a handful of papers have centrally evaluated the
role of both existing and new NG generation under varying regulatory, policy, and financial assump-
tions. Sepulveda et al. (2018) evaluate optimal resource portfolios across numerous technological
uncertainties. They explore several low CO2 emissions intensity scenarios, including fully-decarbonized
cases, and find that the availability of firm, low-carbon generation resources, such as NG combined cy-
cle (NGCC) power plants with CCS and nuclear power, reduce costs 10-62% across fully-decarbonized
scenarios without these resources. When firm, low-carbon resources are not included, NG capacity
without CCS is built across scenarios with emissions intensities as low as 1 gCO2 per kilowatt-hour
(kWh).[7] Mignone et al. (2017) use the National Energy Modeling System (NEMS) U.S. energy
system model with foresight to evaluate the effect of a rising future price of CO2 on investments in
new NG capacity before 2030. They find no material effect on new NG deployment before 2030 under
varying carbon pricing cases. However, their modeling excludes energy storage resources, which are
expected to be an important part of a VRE-dominant grid.[14] Babaee and Loughlin (2018) use
the MARKet ALocation (MARKAL) U.S.-wide energy systems optimization model to explore the role
of NGCC power plants with CCS from 2005 to 2055 under alternative moderate emissions reductions
scenarios and other technology and cost sensitivities. Though they do not explore deeply decarbonized
systems, they find that NGCC provides substantial generation along explored emissions reductions
pathways in the short-term and mid-term with the exception of runs with high natural gas prices,
and that a substantial portion of this capacity is retrofit with CCS in the long-term. Additionally,
they find the methane leakage rate to be the strongest factor in contributing to optimal deployment
of NGCC power plants with CCS.[15] Jayadev et al. (2020) develop an optimization model for
U.S.-wide electric sector capacity planning and explore four scenarios: a no-policy baseline, a no new
transmission sensitivity, a pessimistic VRE and storage cost sensitivity, and a carbon tax sensitivity.
Their results suggest five key policy insights, one of which is that “natural gas capacity growth is strong
and robust, but utilization of gas capacity declines steadily and significantly.”[16] Though their load
duration curve methodology has limits when applied to electricity systems with high VRE penetration,
Teplin et al. (2019) estimate that by 2035, new clean energy portfolios consisting of wind, solar,
battery storage, and demand flexibility will be cheaper to build than continued operation of 90% of
proposed NGCC power plants.[8]

Using a multi-stage adaptation of the GenX CEM, this study will provide several novel contribu-
tions to the growing body of knowledge surrounding the role of NG in future low-carbon electricity
systems.[17] First, it is unclear the extent to which the aforementioned studies evaluate the role of NG
in a highly electrified future with increasing electrification of the economy; our analysis will assume
high electrification, based on consumption profiles adapted from a recent study, in order to better
understand how the capacity mix responds to a growing electrical load, as would likely occur if na-
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tional decarbonization goals are to be achieved.[18][19] Second, in addition to contributing further
insight into commonly tested technology and policy sensitivities such as low VRE and storage costs,
we will explore several policy-relevant sensitivities including the effect of nuclear plant lifetimes, ac-
counting for upstream methane emissions for coal and NG, salvage value assumptions for new NG
plants without CCS, and restrictions on construction of new NG plants without CCS. Third, there is
a gap in research investigating the role for NG specifically in the transition to a deeply decarbonized,
as opposed to low-carbon, energy system. While studies such as Sepulveda et al. (2018) include deep
decarbonization scenarios with emissions intensities as low as 1 gCO2/kWh and no-emissions cases,
they take a “greenfield” approach which lacks inter-annual grid evolution trends or existing “brown-
field” capacity.[7] Existing studies which take a multi-stage approach, such as Babaee and Loughlin
(2018), fail to evaluate NG deployment under extremely low emissions scenarios.[15] By combining a
multi-stage approach with multiple deep decarbonization pathways which increase in stringency over
the planning horizon, this paper will shed light on how the capacity mix could evolve over time in a
transition to a deeply decarbonized grid. Fourth, as a case study, we will focus on the U.S. South-
east, a region that has received little attention in the academic CEM literature, but where the model
paradigm of integrated resource planning is aligned with practice. The U.S. Southeast is home to
over 30 million retail electricity consumers who consumed nearly 900 TWh in 2019, accounting for
22% of national electricity generation and 20% of powers sector CO2 emissions.[20][21][22] The rest
of the paper is organized as follows. The next section describes the methodology and the case study,
with further details provided in the supporting information (SI). This is followed by a description of
key model results and observations. Finally, we conclude by discussing the policy implications of the
findings along with summarizing the key study limitations.

2 Methods

Figure 1: Our study uses an dual dynamic programming-based solution strategy to evaluate a multi-
stage CEM that includes long-term planning and short-term operational decisions over six five-year
investment stages under perfect foresight.

2.1 Capacity Expansion Modeling

For this analysis, we implemented multi-stage investment planning as a new feature to the open-source
GenX CEM.[17] Planning for deep decarbonization with high levels of VRE deployment and evolving
carbon policies suggests detailed modeling of grid operations over multiple planning stages with consid-
eration of the turnover of existing generation assets. A multi-stage CEM also allows us to incorporate
dynamic cost information and lifetime retirements for new and existing capacity. We configured the
model with six five-year stages spanning 2020 to 2045, set carbon policies with mass-based emissions
caps, and enabled network expansion. To be consistent with historical trends and standard planning
processes, we do not model greenfield development in the first model stage, representing 2020-2025, in
any scenario. We used four main strategies to enable computational tractability of the resulting multi-
stage CEM. First, we configured unit commitment of thermal power plants under a linear relaxation
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assumption, providing a reasonable approximation of an integer unit commitment model solution while
permitting the removal of computationally taxing integer variables.[23] Second, spinning and operating
reserves were not modeled due to the substantial increase in memory and computational time that this
requires. Third, we employed time domain reduction to represent the annual grid operations per stage
using a set of fourteen representative weeks at an hourly resolution.[24] Details of this procedure are
included in the SI. Fourth, we solved the multi-stage CEM by exploiting the decomposable structure
of the model formulation along each stage using the well-known dual dynamic programming (DDP)
algorithm as described in Lara et al. (2018).[25] In this approach, we first employ a forward pass
calculation starting at the first stage that myopically evaluates least-cost investments at each stage
and carries over investment/retirement decisions to the next stage. Being myopic, the forward pass
produces an upper bound of the total system cost for the multi-stage CEM. This is followed by a
backward pass calculation that uses information of investments in future stages to update investment
decisions in previous stages. This is accomplished by adding cuts derived using the dual variables
to constraints linking capacity across stages. The backward passes enables the calculation of a lower
bound for the multi-stage CEM objective since it ignores capacity linking constraints between stages.
Iterating between the forward pass and backward pass is carried out until the upper and lower bounds
converge within a numerical value.[25][26]

Sensitivity ID
CO2

Policy

VRE and
Storage
Costs

Nuclear
SLTEs*

Include
Upstream
Emissions

in CO2

Policy

Salvage
Value for
NG w/o

CCS
After
2050

No New
NG w/o

CCS
After
2025

0 None Medium Yes No Yes No
1 High Medium Yes No Yes No
2 Medium Medium Yes No Yes No

Reference

3 Low Medium Yes No Yes No

4 High Low Yes No Yes No
5 Medium Low Yes No Yes No

Low VRE
and Storage
Costs 6 Low Low Yes No Yes No

7 High Medium No No Yes No
8 Medium Medium No No Yes No

No Nuclear
SLTEs

9 Low Medium No No Yes No

10 High Medium Yes Yes Yes No
11 Medium Medium Yes Yes Yes No

Upstream
Emissions

12 Low Medium Yes Yes Yes No

13 High Medium Yes No No No
14 Medium Medium Yes No No No

Accelerated
Depreciation

15 Low Medium Yes No No No

16 High Medium Yes No Yes Yes
17 Medium Medium Yes No Yes Yes

Only CCS NG
After 2025

18 Low Medium Yes No Yes Yes

Table 1: List of cases evaluated in the study (rows) spanning alternative technology and policy drivers
(columns). Cells in grey indicate parameters which differ from the reference scenario. *Note that
SLTE stands for “second lifetime extension.”

2.2 Model Scenarios

Our model scenarios span five key technology and policy drivers. These include (1) low cost projec-
tions for VRE and storage technologies based on available projections from the National Renewable
Energy Laboratory’s (NREL) Annual Technology Baseline (ATB),[27] (2) the allowance of second
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lifetime extensions (SLTEs) for nuclear power plants, (3) the inclusion of upstream greenhouse gas
(GHG) emissions for coal and NG in model carbon accounting, (4) accelerated depreciation strategies
for thermal power plants, and (5) a CCS requirement for new NG generation beginning in 2030. This
set of technological, economic, and policy sensitivities address key elements affecting NG deployment
as identified in the literature review above and introduce the novel consideration of accelerated depre-
ciation strategies.[15][16][7] From these sensitivities, we compose a reference scenario with moderate
VRE and storage costs, SLTEs granted for all existing nuclear capacity, upstream methane emissions
not included in carbon policies, normal depreciation rates with salvage value for NG assets assumed
beyond the model horizon, and new NG permitted after 2025 with or without CCS.

Within each sensitivity and the reference scenario, we evaluate three CO2 emissions policies which
represent different levels of deep decarbonization. In increasing order of stringency, we refer to these
as the High, Medium, and Low policy cases. From 2020 through 2045, these policies incrementally
reduce region-wide annual emissions from a regional baseline of 500 million tonnes (MT) to 250 MT in
2030 (all) followed by 50 (High), 25 (Medium), and 5 (Low) MT by 2045, respectively (see Table S1).
These amount to 90%, 95% and 99% CO2 emissions reduction compared to 2007 regional maximums.

2.3 Data

Figure 2: Geographic boundaries of the Southeast model (upper left), brownfield capacities (GW) of
each of the four respective model regions (center), and peak load (GW) and annual emissions limits
(MT) across the three CO2 policy scenarios for each of the six five-year model periods.

We model the U.S. Southeast power system considering four model regions adapted from the
Environmental Protection Agency’s (EPA) Power Sector Modeling Platform v6 (IPM model) [28] –
S C TVA, S VACA, S SOU, and FRCC, as shown in Figure 2. These four regions include parts of the
seven Southeastern states outside of wholesale power markets.

The existing, or “brownfield,” generating capacity as of 2018 of these four model regions is ap-
proximately 23% coal, 52% NG, 15% nuclear, and 3% VRE. As listed in Tables S3, S4, S5, S7, and
S6, brownfield resources represented by the model include conventional steam coal, natural gas com-
bined cycle (NGCC), natural gas combustion turbine (NGCT), natural gas steam turbine (NGST),
nuclear, reservoir hydroelectric, run-of-river hydroelectric, pumped hydroelectric storage (PHS), solar
photovoltaic (solar PV), and onshore wind. As described in detail in the SI, cost and operational
data were derived from numerous sources including the U.S. Energy Information Agency (EIA) Form
EIA-860,[29] the PowerGenome data aggregation software,[30] Sepulveda et al. (2018),[7] the NREL
ATB,[31] and the MIT Future of Storage Study.[32]

New, or “greenfield,” generating capacity permitted by the model include NGCC, NGCT, NGCC
with CCS (NGCC-CCS), nuclear, PHS, solar PV, wind, and lithium-ion battery storage (Li-ion). It is
assumed that developable capacity for reservoir and run-of-river hydropower has been exhausted, and
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new PHS capacity is only permitted in S C TVA and S SOU. Cost and operational data regarding
greenfield resources are included in Tables S8, S9, S10, S11, S12, S13, S14, S15, and S16 as well as
Figure S1. As described in detail in the SI, these data were derived from numerous sources including the
NREL ATB,[27] software tools developed in Brown and Botterud (2020),[33] the EPA IPM model,[28]
the MIT Future of Storage Study,[32] and O’Connor et al. (2016).[34] We do not permit any greenfield
development in the first model stage, representing 2020-2025.

Other input data concern network topology, fuel costs, load forecasts, and VRE resource availability.
With parameters summarized in Table S18, transmission was represented by inter-regional 500 kV
transmission lines with maximum transfer capacities taken from the IPM model,[28] and up to 30
GW of expansion was permitted on each existing inter-zonal connection, with expansion costs and
capital recovery period (40 years) adopted from the NREL ReEDs model.[35] With adjustments for
geography and inter-regional power exchange as detailed in the SI, load profiles were derived from the
2018 NREL Electrification Future Study under assumptions of “High” electrification and “Moderate”
technological advancement.[19] Historical capacity factor (CF) profiles were generated for solar PV and
wind resources using the methodology outlined in Brown and Botterud (2020) under the assumptions
of horizontal 1-axis-tracking PV for solar resources and Gamesa G126/2500 turbines at 100-meter
height for wind resources.[33] Hydroelectric CF profiles were derived from the nameplate capacity and
net monthly generation of hydroelectric plants in each model region as recorded in Form EIA-923 and
described in the SI.[20] Other key model parameters and assumptions are summarized in Table S20.
The discount rate assumed for computing the net present value of costs calculation is 4.5%.

3 Results

3.1 Reference Scenario

Under the reference scenario, deployments of solar PV and wind are comparable to NG deployment
in the case without an emissions constraint, but VRE capacity dominates total deployment under
carbon policies, accounting for 68-80% of total generation in 2045 (see Figure 3). Over the thirty-year
planning horizon, the model deploys a cumulative 202-249 GW of solar PV and 143-160 GW of wind
under carbon policy cases, with greater deployment occurring in scenarios with lower CO2 emissions
limits. Annual installation limits (nearly 10 and 16 GW/year for PV and wind respectively – see Table
S13 in the SI) are binding for solar PV in 2035 across all CO2 emission scenarios. For context, the
resulting 2035 annual average deployment rates of 10 GW/y for solar PV and 6-9 GW/year for wind
are about comparable to or larger than the 2019 nationwide annual deployment rates of about 4 GW
for solar PV and 11 GW for wind. As compared to the High policy case, the Medium and Low cases
also witness earlier deployment of VRE capacity to enable increased VRE generation by the end of
the model horizon. Li-ion storage deployment is limited in the unconstrained case but increases with
carbon policies by 154-263%, with an average installed storage duration of 2.5-5.3 hours in 2045 across
the CO2 emissions policies.1 The increased VRE and Li-ion storage deployments are supplemented
by 4-7 GW of new transmission capacity across the three emissions-constrained scenarios, compared
with only 1 GW in the unconstrained case, to connect solar deployment in FRCC and S C TVA
with load in other regions (see regional distribution of capacity provided in Figure S4). Existing
nuclear generation, with SLTEs granted for eligible plants under the reference scenario, retains its full
capacity throughout the planning horizon and across all cases (unless stated otherwise), indicating
the significant value of this zero-carbon baseload capacity regardless of policy. Despite this, no new
nuclear capacity is deployed throughout the planning horizon, likely due to high assumed capital costs
relative to competing low-carbon resources, notably VRE generation.

Under the reference scenario, new NG remains a large part of the resource mix, but increasingly
strict carbon policies, which become binding starting in 2030 across all emissions constrained cases,
can reduce cumulative new NG capacity by 47-64%, as shown in Figure 3. In the unconstrained case,
NG without CCS still accounts for 48% of generation in 2045, but carbon policies decrease this value
to 11%, 5%, and 1% in increasing order of strictness (see the 1st row of Figure 3). As CO2 emissions
limits become more constraining, NGCC with CCS is favored, resulting in 4 GW in the final stage
under the Medium policy and 23 GW in the final stage under the Low policy. The evolution of the

1PHS is also deployed to its maximum available capacity of 7 GW in all model scenarios, only differing by the timing
of its deployment.
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Figure 3: Reference Scenario: System-wide capacity (GW), annual generation (TWh), and annual
emissions (MT) without CO2 policies and with High, Medium, and Low policies.
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Figure 4: Low VRE and Storage Costs – Changes in system-wide capacity (GW) and annual CO2

emissions (MT) under the High, Medium, and Low policies with respect to the reference scenario.

existing thermal generation fleet is impacted by long-term expectations of carbon policy, with coal
retirements happening faster under the High policy than under the Low, due to the above-mentioned
changes in new NG deployment in the early stages (2025-2035) across these scenarios. Compared to the
Low policy, the High policy allows for greater use of NG generation without CCS in later investment
stages, making investment in new NG in early-stages more attractive. For similar reasons, existing
NG capacity is retired more slowly under the High policy compared to the Low. Overall, the trend in
accelerated coal retirement and replacement with new NG contributes to the lower cumulative CO2

emissions outcomes in the High policy as compared to Medium and Low (reductions of 2.2 gigatonnes
(GT) CO2 vs. 1.7 GT vs. 1.9 GT, or 32% vs. 24% vs. 27% compared to the unconstrained emissions
case, as noted in Table 2). Correspondingly, these carbon policies increase the net present cost of the
system by a relatively modest 2%, 5%, and 6% (see Table 2).

3.2 Low Cost Projections for VRE and Storage

Figure 4 shows that lower VRE and storage cost projections lead to increased cumulative deployment
of solar PV compared to wind across the emissions policies, which is partly explained by the increases
in Li-ion storage deployment. The average storage duration of 4.5-6.2 hours installed by 2045 in the
low VRE and storage cost scenario points to the economic value of using Li-ion storage for shifting
solar generation to the evening hours when demand is relatively high. Other studies have arrived at
similar conclusions regarding the preferential synergy between Li-ion storage and solar PV compared
to wind.[36]

Compared to reference scenario cost assumptions, low cost projections for VRE and storage to lead
to reductions in cumulative new NG capacity without CCS by 14%, 17%, and 19% under the High,
Medium, and Low policies, respectively. In this scenario, there is less need for CCS expansion, leading
to only 6 GW of NGCC-CCS installed in 2045 under the Low policy. However, there is greater need
for network expansion, with 1-4 GW more transmission deployed compared to the reference scenario.
As shown in Figure 4, most of the incrementaly displaced NG capacity is replaced by more, lower-
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Figure 5: No Nuclear Second Lifetime Extensions – Changes in system-wide capacity (GW) and annual
CO2 emissions (MT) under the High, Medium, and Low policies with respect to the reference scenario.

cost VRE and storage, but it also encourages some extended coal use in the interim. With perfect
foresight, the model anticipates increased deployment of VRE and storage capacity in future stages
that discourages new NG deployment in earlier periods, which explains the extended coal use compared
to the reference scenario. In fact, under High and Low policies, cumulative emissions increase by 7%
and 2% compared to corresponding reference cases due to extended use of existing coal assets, whereas
the Medium policy leads to extended use of existing NG instead of coal, leading to marginally lower
cumulative emissions (1%). Finally, the low VRE and storage cost scenario is the only sensitivity in
consideration that decreases costs with respect to the reference scenario (up to 3% across all three
emissions policy cases and the no emissions policy case). However, this result is intuitive since all
other scenarios impose additional constraints whereas this scenario models a reduced cost for VRE
and storage deployment.

3.3 Nuclear Second Lifetime Extensions

Compared to the reference scenario, disallowing nuclear SLTEs leads to modest increases in cumulative
new NG capacity without CCS (see Table 3), and leads to greater need for low-carbon dispatchable
generation capacity in the form of NGCC-CCS in the later stages (0-31 GW vs. 0-23 GW NGCC-CCS).
As shown in Figure 5, most of the lost nuclear capacity, which retires in the latter half of the planning
horizon, is replaced by VRE and Li-ion storage. Compared to the reference scenario, cumulative solar
PV capacity increases by 12-24%, wind capacity by 21-32%, and Li-ion capacity by 9-25%. At the
same time, we note a shift in the thermal generation fleet towards new and existing NG over coal,
particularly for 2030 and earlier, likely because the expected nuclear retirements makes incremental
NG and VRE investment in these stages more attractive, thereby impacting the merit-order dispatch
in these periods. Collectively, these contribute to a 2-3% increase in system cost compared to the
reference scenario. At the same time, by decreasing reliance on coal in favor of NG, VRE, and storage,
retirement of nuclear capacity after only one lifetime extension leads to lower cumulative emissions
compared to corresponding reference cases, with reductions of 1%, 6%, and 8% from High to Low
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Figure 6: Including Upstream Emissions within CO2 Limits – Changes in system-wide capacity (GW)
and annual CO2 emissions (MT) under the High, Medium, and Low policies with respect to the
reference scenario.

policy.

3.4 Accounting for Upstream Emissions

In the upstream emissions scenario, we account for the non-combustion GHG emissions associated with
delivering coal and NG to the power generation site in the annual sector-wide CO2 emissions limit (see
Table S2). This scenario approximates a lifecycle GHG emissions-based policy.2 Naturally, tallying
upstream GHG emissions within sectoral CO2 emissions limits leads to reductions in cumulative new
NG capacity compared to the corresponding reference cases, decreasing by 12%, 10%, and 13% from
High to Low policy. Not only capacity installations but capacity utilization of NG plants are reduced,
leading to a shift from higher capital cost (and high-efficiency) NGCC to lower capital cost (and lower
efficiency) NGCT as the favored NG resource to be deployed, most noticeable under the High and
Medium policies. At the same time, because CCS technology only curbs combustion-level emissions,
NGCC-CCS deployment is also decreased, with only 12 GW installed in the final stage of the Low
policy case, a decrease of 48% with respect to the Low reference case. The reduced availability of CCS
under the Low policy resulted in a 2045 addition of 3 GW of new nuclear capacity, the only scenario
to result in nuclear installations. As shown in Figure 6, this downward pressure on carbon emitting
capacity intuitively leads to increased and earlier deployment of VRE and Li-ion storage. Compared
to the reference scenario, cumulative solar PV capacity increases by 6-10%, wind capacity by 3-8%,
and Li-ion capacity by 12-13%. Finally, despite considering an expanded system boundary for the
sector-wide emissions constraint, combustion-related CO2eq emissions decline by 3%, 11%, and 8%
from High to Low policy compared to respective reference cases. This emission reduction incurs only
modest increases in net present cost of 1%, 1%, and 2%, respectively.

2This is only an approximation and not an exact formulation of such a policy, since we have ignored the upstream
GHG emissions associated with renewable resources and battery storage manufacturing.
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Figure 7: Accelerated Depreciation of Natural Gas – Changes in system-wide capacity (GW) and
annual CO2 emissions (MT) under the High, Medium, and Low policies with respect to the reference
scenario.

3.5 Direct Regulations on New Natural Gas Deployment

We consider the impact of two regulatory measures being contemplated to avoid the potential for
significant stranded costs associated with new NG power generation: 1) accelerated depreciation of
NG assets without CCS that presume that there is no salvage value for these assets beyond the model
planning horizon (see Section S1.2.5) and 2) a ban on new NG installations without CCS after the 2025
model period (see Section S1.2.6). Because the impact of these two regulatory measures are found to
be similar, we address only the former and leave the latter to the SI (see Figure S5).

As shown in Figure 7, accelerated depreciation leads to much earlier deployment of new NG and the
earlier retirement of existing NG assets compared to the reference scenario. Despite this, cumulative
additions of non-CCS NG capacity are still reduced by 5-12% across the emissions policies. There were
no additions of NGCT in this scenario, so all NG additions used a combined cycle design. Despite a
significant change in NG deployments, accelerated depreciation affected only the stage-wise deployment
of VRE, not cumulative installations by the end of the planning horizon. The solar PV and wind
installations fluctuated only up to 1% in either direction regardless of emissions policy. Li-ion storage
deployment was the same with the exception of a 3% increase under the High policy.

Compared to the reference scenario, the early NG deployment stimulated by accelerated deprecia-
tion regulations leads to shortened lifetimes of existing coal assets under Medium and Low policies and
extended lifetimes under the High policy. In the latter case, the increased emissions budget allows for
greater utilization of coal capacity in later periods, when its marginal cost of operation is lower than
than both new and existing NG assets as per the assumed fuel price trajectory (see Figure S3 in the
SI). Consequently, requiring accelerated depreciation of NG assets increases cumulative CO2 emissions
by 6% under the High policy but decreases emissions by 10% and 6% under the Medium and Low
policies compared to respective reference cases. Interestingly, the impact of accelerated depreciation on
system net present cost is relatively minor, corresponding to an increase of 0-3% across the emissions
policies (see Table 2).

11



Sensitivity Cost (%) Emissions (%)

CO2 Policy High Med Low High Med Low
Reference 2.2 5.0 6.0 -31.8 -23.5 -26.9
Low Cost VRE and Storage -2.9 -1.6 -0.4 -27.0 -24.5 -25.5
No Nuclear SLTEs 5.6 7.1 9.1 -32.6 -27.7 -33.0
Upstream Emissions 4.7 5.5 7.8 -34.1 -44.1 -40.2
Accelerated Depreciation 4.9 5.0 7.5 -27.9 -31.0 -31.2
Only CCS NG After 2025 5.3 5.6 7.2 -33.2 -29.3 -31.6

Table 2: Changes in net present cost (left) and cumulative emissions (right) with respect to the
unconstrained reference scenario.

Sensitivity
Natural Gas
without CCS

Additions (GW)

Natural Gas
with CCS

Additions (GW)

CO2 Policy High Med Low High Med Low
Reference 78.8 61.9 53.6 0.0 4.3 23.4
Low Cost VRE and Storage 67.8 51.5 43.3 0.0 0.0 5.8
No Nuclear SLTEs 81.2 61.2 58.6 0.0 12.2 30.9
Upstream Emissions 69.5 59.8 48.4 0.0 0.0 6.4
Accelerated Depreciation 74.9 58.7 47.1 0.0 4.8 23.6
Only CCS NG After 2025 73.6 60.3 49.4 0.0 4.4 23.7

Table 3: Cumulative deployments of new non-CCS natural gas (left) and CCS natural gas (right).

4 Discussion

This study provides a quantitative perspective on the long-term evolution of NG resources in the
transition to a deeply decarbonized power system. Under the assumption of perfect foresight, we assess
how the stringency of deep decarbonization policies, as well as other technology and policy drivers,
impact NG and other resource deployment and utilization, as well as overall cumulative emissions
and system cost outcomes, for the U.S. Southeast. We summarize our key results below and describe
their implications for utilities and regulators to consider in planning for deep decarbonization of power
systems.

First, in the absence of CO2 emissions policies, NG generation could remain a substantial part of
the resource mix in the U.S. Southeast (see Figure 3). In this case, new NG capacity is installed in
every stage and annual CO2 emissions remain relatively stable throughout the model horizon, with
emissions from new NG displacing those of existing thermal plants, both NG and coal. Nonetheless,
the 2045 grid looks notably different than the 2020 grid as VRE and Li-ion battery storage grow from
almost nothing to nearly half of system capacity, with VRE accounting for 26% of annual generation
in 2045. While useful as a model benchmark, this scenario does not reflect the regional ambition and
enabling policy measures to achieve deep decarbonization of the power sector by mid-century.

Second, employing CO2 policies reduces new NG deployment by 47-71% while simultaneously
reducing cumulative emissions through the planning horizon compared to the unconstrained reference
case by 23-33%, with similar trends noted in the sensitivity scenarios (see Table 2). Interestingly,
across the sensitivities explored here, even though new NG installations decrease monotonically with
increasing policy strictness (i.e., High to Low policy), cumulative CO2 emissions do not always follow
a monotonic trend (look across rows of Table 2). Stricter 2045 emissions policies discourage near-term
NG additions3 and favor increased utilization of existing capacity beyond 2030, including both coal
and existing NG power plants (see Table 4), leading to greater cumulative CO2 emissions. In fact, in
4 out of 6 scenarios considered here (rows in Table 2), system costs and cumulative CO2 emissions are
lower under the High policy than the Low policy, which suggests that a balanced view of near-term and
long-term emissions reductions would be prudent in regions with significant existing coal generation.

3Because the policy constraints are most binding in later model stages, they limit the operation of new NG installations
more than existing thermal plants with shorter remaining lifespans.
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Sensitivity
2020-2030 Coal

Retirements (GW)
2020-2030 Gas

Retirements (GW)

CO2 Policy High Med Low High Med Low
Reference 49.0 31.8 32.1 15.6 30.9 20.5
Low Cost VRE and Storage 41.3 32.8 29.6 17.9 16.4 26.3
No Nuclear SLTEs 48.3 39.0 41.2 19.9 18.8 17.2
Upstream Emissions 39.4 49.8 41.5 24.1 15.6 18.3
Accelerated Depreciation 41.9 43.9 38.9 44.4 31.8 34.3
Only CCS NG After 2025 47.7 40.9 39.3 41.3 51.4 43.7

Table 4: Ten-year retirements of coal (left) and natural gas (right).

Sensitivity
Solar PV

Additions (GW)
Wind

Additions (GW)
Li-ion

Additions (GW)

CO2 Policy High Med Low High Med Low High Med Low
Reference 202.4 227.5 248.8 143.0 156.7 159.9 71.7 89.7 102.3
Low Cost VRE and Storage 215.6 247.6 281.5 132.8 151.1 171.0 89.1 107.1 118.0
No Nuclear SLTEs 250.8 258.6 278.4 179.6 189.9 210.5 89.5 98.1 111.7
Upstream Emissions 220.8 238.6 276.0 150.1 179.6 161.6 84.8 92.4 117.5
Accelerated Depreciation 204.3 226.3 248.7 141.6 155.1 160.0 73.5 90.3 102.2
Only CCS NG After 2025 207.8 227.9 248.2 138.3 156.3 160.1 77.5 89.4 102.4

Table 5: Cumulative deployments of solar PV (left), wind (center), and Li-ion discharge capacity
(right).

Third, all else remaining equal, we find that policies discouraging new NG deployment, such as
accelerated depreciation and no new gas without CCS after 2025, generally lead to greater cumulative
emissions reductions compared to the reference scenario (i.e., the cases without these policies but all
else remaining equal) along with marginal increases in systems costs (e.g., 1-3% higher in system cost
as shown in Table 2). We find that such policies make it attractive to support early build out of NG
generation to displace coal generation in the near term, while at the same time limiting cumulative NG
deployment in a way that minimizes asset stranding in later periods when emissions constraints are
increasingly stringent. At the same time, it should be noted that new NG may operate differently in
a low-carbon power system. As shown in Figure S6, we observe steep declines in NG capacity factors
over time across scenarios. This suggests a changing role for NG plants focused primarily towards
contributing to system reliability by providing power due to periods of high net load (i.e., load minus
VRE generation).

Fourth, not granting SLTEs for nuclear power plants result in the highest cost outcomes, but
because nuclear capacity is phased out in later model periods when carbon emissions are most con-
strained, the cumulative emissions impacts are estimated to be relatively small. In this case, the
absence of nuclear capacity is made up for by other low-carbon generation in the form of wind, solar
PV, Li-ion storage, and NGCC-CCS. If nuclear capacity were to be retired in the near-term without
long-term policy directive on power system emissions trajectory, the retired capacity could be replaced
with either increased use of emissions-heavy coal generation or new thermal capacity as opposed to
zero- or low-carbon technologies.

Fifth, nearly all of the scenarios under the Low policy include the late deployment of NGCC-
CCS as a means of dispatchable, low-carbon generation, a result that existing literature has shown
to be influential in reducing the cost of deep decarbonization of power systems.[7] An important
caveat is the need to reduce upstream emissions associated with the NG supply chain below currently
estimated levels. Specifically, our analysis suggests that if current estimates of upstream emissions
are maintained and accounted for in power sector CO2 emissions limits, it will not only discourage
near-term NG deployment, but also discourage NGCC-CCS deployment even under the most stringent
emissions policies (i.e., the Low policy).

Overall, the specific system impacts of the sensitivity factors described in Table 1 (i.e, Low VRE
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and Storage Costs, No Nuclear SLTEs, etc.) are more varied and subtle than those resulting from deep
decarbonization emissions policies (i.e., the High, Medium, Low policies). Importantly, utilities and
regulators should take confidence from the fact that a broad distribution of key uncertainties results
in only marginal differences in expected net present costs of decarbonization, cumulative emissions,
and even system capacity (see Table 2). This suggests that there are many possible pathways for deep
decarbonization with similar cost and cumulative emissions outcomes, all of which emphasize rapidly
expanding VRE deployment in the near-term and displacing coal generation.

Future research should seek to address limitations from this work which notably relate to our least-
cost modeling framework as well as our representation of new and existing generating technologies.

While this analysis utilizes an advanced, multi-period capacity expansion model, key limitations
include: (1) an assumption of perfect foresight over the entire planning horizon, which does not reflect
the practical reality of long-term cost and policy uncertainty facing grid planners and regulators; (2)
disregarding operating or planning reserve requirements, a consideration which many states require in
integrated resource planning processes, and which could incentivize deployment of balancing resources
like battery storage as well as additional NG plants as peaker resources; and (3) ignoring certain
upstream and downstream costs of new capacity, such as additional NG infrastructure costs. Some
of these new considerations, such as reserves requirements, are possible within the existing framework
but were foregone for the sake of computational efficiency. The adequate representation of uncertainty
in long-term drivers of system evolution, namely, policy uncertainty, technology cost uncertainty and
demand uncertainty, can be formulated as part of a multi-stage stochastic programming framework, but
these approaches are limited in the number of discrete scenarios that can be considered and often need
specialized solution algorithms.[37] Methodological advances to improve the scalability of multi-stage
stochastic programming CEM formulations are thus an important area of future work. The implications
of NG deployment in the power sector on gas infrastructure can be studied by expanding the planning
problem to consider gas-electric interactions as has been proposed by other recent studies.[38][39]
In addition, given the many possible decarbonization pathways with similar cost outcomes, a multi-
criteria analysis that evaluates these scenarios on other metrics of interest (e.g., employment effects,
distributional impacts, local air pollution related health impacts) could be valuable to narrow down
the list of scenarios to be prioritized.

Achieving the resource portfolios selected across the scenarios considered would require an unprece-
dented scale and speed of new investments. As noted above, the 2035 annual average deployment rates
of solar PV and wind are about comparable or larger than the 2019 nationwide annual deployment
rates. Moreover, installations increase dramatically beyond this rate for both solar PV and wind begin-
ning in 2040, the first model period where the installation limit constraints are removed. For example,
the annual rate of solar PV and wind capacity additions are 1.7x and 1.5x greater, respectively, than
their 2035 instillation rates in the High policy reference case. The results from scenarios evaluating
direct regulations on new NG deployment suggest a similarly unprecedented buildout, except in the
near-term. For example, 52 GW of new gas capacity is built between 2025 and 2030 in the High
accelerated depreciation case. By comparison, about 35 GW of new NG capacity is currently planned
nationwide between 2021 and 2025.[29] It must be emphasized that our modeling results not be inter-
preted as predictive of investment, operational, or emissions outcomes under the technology and policy
pathways evaluated; rather, results should inform evaluation of the risks and opportunities of various
emissions reductions pathways.

With regard to emerging technologies, our model does not consider promising options including
long-duration energy storage, advanced nuclear technologies, and hydrogen-fired power plants.[9][10][7]
Additionally, our analysis is limited to supply-side resources: we do not consider the effects of demand-
side energy management or energy efficiency on resource planning outcomes even when these options
may become much more flexible and available in a highly electrified future. This is particularly notable
given that results show NG operating at low capacity factors in later model stages, indicating that
much of the value of NG in a decarbonized system lies in providing the same sort of reliability that
can potentially be offered by a combination of demand-side resources. Finally, we do not consider
the possibility of retrofitting existing power generation resources to shift them to serve as low-carbon
generation or storage. Existing coal-fired power plants have already been retrofit with CCS technology
in the United States and Canada, and retrofitting existing NGCC plants is technically feasible.[40] Re-
cently announced partnerships to explore molten-salt thermal storage retrofits of an existing coal plant
are another possibility.[41] Furthermore, major turbine manufactures are developing the technology to
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allow for high-volume hydrogen firing of NGCC turbines, aiming to demonstrate 100% hydrogen firing
in the coming years.[42] The ability to model retrofits of new or existing resources for CCS, molten-salt
thermal storage, or hydrogen co-firing could present a more accurate representation of how the grid
may evolve in practice.
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Sarah Torkamani, Tevita Akau, and Emre Gençer. Highlighting and overcoming data barriers:
creating open data for retrospective analysis of US electric power systems by consolidating publicly
available sources. Environmental Research Communications, 2(11):115001, November 2020.

[4] U.S. Department of Energy. Staff Report to the Secretary on Electricity Markets and Reliability.
Technical report, U.S. Department of Energy, August 2017.

[5] Kathy Hipple, Tom Sanzillo, and Tim Buckley. New Risk Factors Emerge as GE Shutters Cal-
ifornia Power Plant — 20 Years Early. Technical report, Institute for Energy Economics and
Financial Analysis, July 2019.

[6] Joseph R Biden. Executive Order on Tackling the Climate Crisis at Home and
Abroad. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-
order-on-tackling-the-climate-crisis-at-home-and-abroad/, Jan 2021.

[7] N. A. Sepulveda, J. D. Jenkins, F. J. de Sisternes, and R. K. Lester. The Role of Firm Low-Carbon
Electricity Resources in Deep Decarbonization of Power Generation. Joule, 2(11):2403–2420, 2018.

[8] C. Teplin, M. Dyson, A. Engel, and G. Galzer. The Growing Market for Clean Energy Portfolios:
Economic Opportunities for a Shift from New Gas-Fired Generation to Clean Energy Across the
United States Electricity Industry. Technical report, Rocky Mountain Institute, 2019.

[9] N. A. Sepulveda, J. D. Jenkins, A. Edington, D. S. Mallapragada, and R. K. Lester. The De-
sign Space for Long-Duration Energy Storage in Decarbonized Power Systems. Nature Energy,
6(5):506–516, May 2021.

[10] Paul Albertus, Joseph S. Manser, and Scott Litzelman. Long-duration electricity storage appli-
cations, economics, and technologies. Joule, 4(1):21–32, 2020.

[11] Emily Grubert. Fossil electricity retirement deadlines for a just transition. Science,
370(6521):1171–1173, 2020.

[12] IEA. Methane Tracker 2020. Technical report, International Energy Agency, March 2020.

[13] NREL. Closing the Gap in Inventories for Emissions From U.S. Oil and Natural Gas Pro-
duction. https://www.nrel.gov/news/program/2021/closing-the-gap-in-inventories-for-emissions-
from-us-oil-and-natural-gas-production.html, August 2021.

[14] B. K. Mignone, S. Showalter, F. Wood, H. McJeon, and D. Steinberg. Sensitivity of natural
gas deployment in the US power sector to future carbon policy expectations. Energy Policy,
110:518–524, 2017.

[15] S. Babaee and D. H. Loughlin. Exploring the role of natural gas power plants with carbon capture
and storage as a bridge to a low-carbon future. Clean Technologies and Environmental Policy,
20(2):379–291, 2018.

[16] Gopika Jayadev, Benjamin D. Leibowicz, and Erhan Kutanoglu. U.S. electricity infrastructure
of the future: Generation and transmission pathways through 2050. Applied Energy, 260:114267,
2020.

[17] N. A. Sepulveda, J. D. Jenkins, D. S. Mallapragada, A. M. Schwartz, N. S. Patankar, Q. Xu,
J. Morris, and S. Chakrabarti. GenX v0.2.0. https://github.com/GenXProject/GenX/, January
2022.

16



[18] Christine Shearer, John Bistline, Mason Inman, and Steven J Davis. The effect of natural gas
supply on US renewable energy and CO2 emissions. Environmental Research Letters, 9(9):094008,
September 2014.

[19] Trieu T. Mai, Paige Jadun, Jeffrey S. Logan, Colin A. McMillan, Matteo Muratori, Daniel C.
Steinberg, Laura J. Vimmerstedt, Benjamin Haley, Ryan Jones, and Brent Nelson. Electrification
Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United
States. May 2018.

[20] U.S. EIA. Form EIA-923 detailed data with previous form data (EIA-906/920).
https://www.eia.gov/electricity/data/eia923/, July 2021.

[21] U.S. EIA. Monthly Energy Review. https://www.eia.gov/totalenergy/data/monthly/archive/
00352003.pdf, March 2020.

[22] U.S. EIA. How much of U.S. carbon dioxide emissions are associated with electricity generation?
https://www.eia.gov/tools/faqs/faq.php, May 2021.

[23] Kris Poncelet, Erik Delarue, and William D’haeseleer. Unit commitment constraints in long-term
planning models: Relevance, pitfalls and the role of assumptions on flexibility. Applied Energy,
258:113843, 2020.

[24] Dharik S. Mallapragada, Dimitri J. Papageorgiou, Aranya Venkatesh, Cristiana L. Lara, and
Ignacio E. Grossmann. Impact of model resolution on scenario outcomes for electricity sector
system expansion. Energy, 163:1231–1244, 2018.

[25] Cristiana L. Lara, Dharik S. Mallapragada, Dimitri J. Papageorgiou, Aranya Venkatesh, and
Ignacio E. Grossmann. Deterministic electric power infrastructure planning: Mixed-integer pro-
gramming model and nested decomposition algorithm. European Journal of Operational Research,
271(3):1037–1054, 2018.

[26] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to energy
planning. Mathematical Programming, 52(1):359–375, May 1991.
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Supplemental Information

S1 Methods

S1.1 Capacity Expansion Modeling

For this analysis, we used GenX – an open-source, high resolution, least-cost capacity expansion model
– as described in the online documentation.[17] GenX has traditionally been used to model a single
year of grid operations, including a single investment stage. However, planning for future grids with
high levels of variable renewable energy (VRE) and evolving carbon policies requires detailed modeling
of grid operations over multiple planning stages. A multi-stage model also allowed us to incorporate
dynamic cost information and lifetime retirements for new and existing capacity. We employed the
well-known dual dynamic programming (DDP) algorithm – as described in Lara et al. (2018) – to
adapt GenX to a multi-stage planning environment with perfect foresight.[25]

We configured the GenX model with six, five-year planning stages spanning from 2020 to 2045.
Beginning with the 2025 model period, investment cost assumptions and fixed O&M (FOM) cost
assumptions from 5 years prior were used, to capture the fact that project financing typically occurs
years before plants become operational. Additionally, we configured GenX to model unit commitment
of thermal power plants under a linear relaxation assumption, which has been shown to be a reasonable
approximation when considering capacity expansion under decarbonization constraints.[23] Network
expansion of existing transmission was also enabled. However, operating reserves were not modeled
due to the substantial increase in memory and computational time that this would require. Only
retirements, not investments in new capacity, were allowed during the first planning stage; retirements
and capacity additions were allowed in all subsequent planning periods.

S1
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S1.2 Model Scenarios

S1.2.1 Carbon Emissions Reduction Policies

We consider the effects of three emissions reduction policies – High, Medium, and Low – with in-
creasingly stringent limits on annual CO2 emissions, in addition to a fourth, “no emissions policy”
case used only in the reference scenario. All emissions reductions policies were computed relative to
a 2007 baseline level of CO2 emissions, the maximum emissions year for the U.S. Southeast. Using
2019 U.S. Energy Information Agency (EIA) state-level summary tables, this baseline was computed
as approximately 500 million tonnes (MT) of CO2 per year over the entire model region and was used
as the 2020 emissions cap.[43] All three policies require emissions reductions of 50% by 2030 compared
to this baseline, or a model region-wide annual emissions limit of 250 MT CO2 (see Table S1). In 2045,
the High policy requires a 90% emissions reduction (50 MT annual CO2 limit), the Medium policy
a 95% reduction (25 MT annual CO2 limit), and the Low policy a 99% reduction compared to this
baseline. These three policies were chosen to represent various mid-century emissions targets that a
deep decarbonization strategy may aim for, with varying levels of expected emissions offsets.

In addition to the limits imposed in the 2020, 2030, and 2045 model periods, emissions caps were
imposed on interim stages. These limits were computed via linear interpolation of emissions caps from
2020 to 2030 and from 2030 to 2045. This resulted in an annual emissions limit of 375 MT in 2025
under all three policies, and policy-dependent limits for 2035 and 2040.

Annual CO2 Emissions (MT)
CO2 Policy 2020 2025 2030 2035 2040 2045

High CO2 Limit 500 375 250 183 117 50
Medium CO2 Limit 500 375 250 175 100 25
Low CO2 Limit 500 375 250 168 87 5

Table S1: Annual model region-wide CO2 emissions limits (MT) by emissions reduction policy.

S1.2.2 Low VRE and Storage Costs

We evaluate “moderate” and “advanced” technological advancement trajectories for solar PV, wind,
and battery storage as specified in the National Renewable Energy Laboratory’s (NREL) 2020 An-
nual Technology Baseline (ATB) where “moderate” represents mid-level future cost projections and
“advanced” represents low-level future cost projections.[27] Though capital costs and FOM costs de-
cline, variable O&M (VOM) costs do not change for any technologies between the two forecasts. The
“advanced” and “moderate” ATB scenarios correspond to the “low” and “medium” (i.e., “baseline”)
VRE cost scenarios, respectively.

S1.2.3 Second Lifetime Extensions for Existing Nuclear Plants

Our default assumption is that all existing nuclear plants in the Southeast receive a second lifetime
extension (SLTE), which would lead to an 80-year assumed operational lifetime for existing nuclear
capacity. Under this assumption, there would be no retirements in the existing nuclear fleet before
2050. We assume that there are no re-licensing or refurbishing costs associated with SLTEs, and plants
continue to operate under the same cost and performance assumptions.

We test the impact of nuclear SLTEs by including a scenario where none are granted. This results
in a 60-year operational lifetime assumption for all existing nuclear power plants in the Southeast, and
for assumed operational capacity to decline from 32.9 GW in the 2020 model period to 23.6 GW, 18.6
GW, and 9.5 GW in the 2035, 2040, and 2045 model stages, respectively.[29]

S1.2.4 Upstream GHG Emissions for Coal and Natural Gas

Our default assumption is that power sector-focused carbon policies only consider combustion-level
CO2 emissions. As a sensitivity, we consider the impact of including upstream, non-combustion emis-
sions rates for natural gas (NG) and coal assets in these policies by using the supplemented emissions
rates, in Table S2, taken from the Argonne National Laboratory GREET Model.[44]. Here, non-CO2
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greenhouse gasses (GHG) like methane and N2O are converted to CO2-equivalents (CO2eq) using their
100-year global warming potential (GWP), where the GWP of methane is 30 CO2eq and the GWP
for N2O is 265 CO2eq.

CO2 Content (tons/MMBtu)

Fuel Type
Combustion

Only
Combustion
+ Upstream

Uranium 0 0
Coal 0.0953 0.1014
Natural Gas 0.0531 0.0662
Natural Gas w/ CCS 0.0053 0.0184

Table S2: CO2 content of fuel sources. (Sources: EIA, 2021;[45] Argonne National Laboratory,
2021.[44])

S1.2.5 Salvage Value for Natural Gas Without CCS After 2050

We explore the effect of financial assumptions related to the salvage value of new natural gas combustion
turbine (NGCT) and natural gas combined cycle (NGCC) power plants without carbon capture and
storage (CCS). We consider two financial models – one which assumes that undepreciated costs of
these plants after the model horizon are fully recoverable, and a second which requires that all capital
costs be paid in full before the end of the model horizon. We refer to the first as the “rental” financial
model, and the second as the “full-cost” financial model.

In the rental financial model, annualized investment costs are modeled as rental payments for
each year’s use of a capital asset. We only pay for the years in which the capital asset is able to be
used – i.e., the model does not consider annualized investment costs which would occur after the model
horizon. The annualized investment cost AIC of an asset in period p with weighted annual cost of
capital WACC and overnight capital cost Covernight is computed using the following formula:

AICp =
WACC · Covernight

1 − (1 + WACC)−L

where L is the economic lifetime of the asset. The adjusted total capital cost under the “rental”
financial model, Crental, the discounted sum of the annual “rents” paid within the model horizon, is
computed as follows:

Crental
p =

min(L,Yp)∑
i=1

AICp

(1 + WACC)i

where Yp is the number of years remaining between the start of period 0 and the end of the planning
horizon for resource type p. Note that when L ≤ Yp, Crental

p = Covernight; that is, the sum of rental

payments is equal to the overnight capital cost. When L > Yp, however, Crental
p < Covernight; that is,

the sum of rental payments is less than the overnight capital cost.
For example, suppose we build a capital asset in 2030 with an overnight capital cost of $1,000,000

and an economic lifetime of 30 years. With a WACC of 4.5%, this translates to an annualized
investment cost of about $67,000. However, if the model horizon only extends through 2050, we would
only pay this amount annually for 20 years, not the full 30 years of the asset’s economic life. This
means that from the model’s perspective, the adjusted total capital cost equals the discounted sum of
these rents over this 20-year period, which is about $800,000.

In the full-cost financial model, we assume that there is no salvage value for NG assets without
CCS beyond the model horizon. After 2050, they become “stranded assets” without any useful eco-
nomic value. Therefore, the full-cost financial model requires that all capital costs of new NG plants
without CCS be paid in full within the model horizon. This means that Cfull−cost

p = Covernight for all
stages.
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S1.2.6 CCS Requirement for New Natural Gas Beginning in 2030

We consider the effect of requiring all deployment of new NG capacity beginning in 2030 to include
CCS. This constraint implies that NG power plants without CCS may only be built in the 2025 model
stage.

S1.2.7 Reference Scenario

A reference scenario is established as a baseline against which to compare how the sensitivities described
above impact relative costs, emissions, and capacity mixes. The reference scenario includes a case
for each CO2 policy and the unconstrained “no emissions policy” case, uses “moderate” technology
advancement assumptions (i.e., baseline costs for VREs and battery storage), assumes that SLTEs are
granted for all existing nuclear power plants (i.e., all existing nuclear capacity remains online through
the final 2045 model period), considers only combustion-level emissions (i.e., does not include the CO2

equivalent of fugitive methane and N2O emissions), assumes full salvage value for all resources post-
planning horizon (i.e., “rental” financial model for all assets), and after the first model period, imposes
no constraints on when new NG capacity may be deployed (i.e., new NG capacity may be built any
model period beyond the first, where no new investments of any kind are allowed).
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S1.3 Data

Four model regions from the United States Environmental Protection Agency’s (EPA) Power Sector
Modeling Platform v6 (IPM model) – S C TVA, S VACA, S SOU, and FRCC – were used to define
the boundaries of the Southeast model (see Figure 2).[28] These four model regions include parts of
the seven Southeastern states outside of wholesale power markets.

The Southeast model is configured to represent 17 unique generating technologies in each model
region listed in Table S3. Seven of these resource types exclusively represent existing, or “brownfield”
capacity, and are not eligible for new capacity additions but may be retired due to lifetime or economic
considerations. Brownfield thermal resource types not eligible for new capacity additions include exist-
ing NGCC plants, existing NGCT plants, existing natural gas steam turbine (NGST) plants, existing
conventional steam coal plants, and existing nuclear plants. Brownfield hydroelectric resources not
eligible for new capacity additions include run-of-river hydroelectric plants and reservoir hydroelectric
plants. Other resource types are used to exclusively represent new, or “greenfield,” capacity additions.
These resources include new NGCC plants, new NGCC plants with CCS (NGCC-CCS), new NGCT
plants, new nuclear plants, and new utility-scale Li-ion battery storage facilities (Li-ion). Finally, some
resource types are used to represent both existing capacity and new capacity additions. These include
utility-scale solar photovoltaic facilities (solar PV), pumped hydroelectric storage facilities (PHS), and
onshore wind turbine (wind) facilities. The wind resource type is broken down into three sub-types
in each model region, representing the different qualities of developable sites in that region by wind
availability and grid interconnection costs, as per Brown and Botterud (2021).[33]

Resource Name Label
Includes
Brownfield
Capacity?

Eligible for
Capacity
Expansion?

Conventional Steam Coal B Coal Yes No
Reservoir Hydroelectric B Hydro Yes No
Run-of-River Hydroelectric B Hydro Yes No
Natural Gas Combined Cycle (Existing) B NG Yes No
Natural Gas Combustion Turbine (Existing) B NG Yes No
Natural Gas Steam Turbine (Existing) B NG Yes No
Nuclear (Existing) B Nuclear Yes No
Pumped Hydroelectric Storage PHS Yes Yes
Solar Photovoltaic Solar PV Yes Yes
Onshore Wind Turbine (1) Wind Yes Yes
Onshore Wind Turbine (2) Wind Yes Yes
Onshore Wind Turbine (3) Wind Yes Yes
Li-ion Battery Storage Li-ion No Yes
Natural Gas Combined Cycle NGCC No Yes
Natural Gas Combined Cycle with CCS NGCC CCS No Yes
Natural Gas Combustion Turbine NGCT No Yes
Nuclear Nuclear No Yes

Table S3: List of resources included in the Southeast model, including whether each resource type
includes representations of brownfield capacity and whether it is eligible for capacity additions.

S1.3.1 Brownfield Capacity

The 2018 Form EIA-860 was used to compute total existing capacity of brownfield resource types in
each region (see Figure 2 and Table S4). We include the following subset of technologies from the
EIA-860 form: “Solar Photovoltaic,” “Onshore Wind Turbine,” “Nuclear,” “Natural Gas Steam Tur-
bine,” “Natural Gas Fired Combined Cycle,” “Natural Gas Fired Combustion Turbine,” “Conventional
Steam Coal,” “Conventional Hydroelectric,” and “Hydroelectric Pumped Storage”.[29] We subdivided
“Conventional Hydroelectric” into two subsets – “Run-of-River Hydroelectric” and “Reservoir Hydro-
electric” – based on individual plant classifications from the 2019 Oak Ridge National Laboratory
Existing Hydropower Assets Plant Data Set.[46] Additionally, values for existing nuclear capacity in
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the S SOU region as computed from the EIA-860 data were augmented by 2.50 GW, the combined
capacities of the Vogtle 3 and 4 units under construction in Georgia, expected to be completed in
2023. Although Form EIA-860 includes several additional resource types that contribute to existing
capacity, this selection accounts for 95% of existing capacity across the four model regions.[29]

S C TVA S VACA S SOU FRCC

Conventional Steam Coal 7,150 16,746 19,000 7,307
Reservoir Hydroelectric 2,735 834 2,939 0
Run-of-River Hydroelectric 1,537 1,623 1,144 12
Natural Gas Combined Cycle 9,924 9,363 19,846 32,343
Natural Gas Combustion Turbine 5,268 10,904 12,398 9,000
Natural Gas Steam Turbine 63 589 4,064 2,543
Nuclear 8,475 12,270 8,318 3,797
Pumped Hydroelectric Storage 1,809 2,657 1,635 0
Solar Photovoltaic 293 3,584 1,239 1,282
Onshore Wind Turbine 29 0 0 0

Table S4: Brownfield capacity (MW) by region for each of the technology types. (Source: EIA-860.[29])

The PowerGenome data aggregation software was used to obtain the FOM costs, VOM costs,
average heat rates, and minimum power outputs for existing thermal power plants in each of the four
model regions.[30] These parameters are summarized in Table S6.

Economic and operational characteristics of existing nuclear power plants are taken from Sepulveda
et al. (2018).[7] Unlike those of existing fossil fuel-fired power plants, the operational characteristics of
existing nuclear power plants are assumed to be identical across all model regions. These parameters
are summarized in Table S6.

To model unit commitment of thermal resources, GenX requires parameters characterizing start-up
costs, start-up fuel requirements, ramp-up and ramp-down rates, minimum up-times, and minimum
down-times. Taken from Sepulveda et al. (2018), PowerGenome, Kumar et al. (2012), and UT Austin
(2018), these unit commitment parameters for existing thermal resources, which are identical across
model regions and all model periods, are summarized in Table S5.[7]

Brownfield
Resource

Start Cost
($/MW/

start)

Start Fuel
(MMBtu/
MW/start)

Ramp
Up

Ramp
Down

Up
Time
(Hrs.)

Down
Time
(Hrs.)

NGCC 79 9.00 100% 100% 1 1
NGCT 52 0.22 100% 100% 4 4
NGST 75 9.00 16% 16% 12 12
Coal 120 13.70 57% 57% 24 24
Nuclear 1,000 0.00 25% 25% 36 36

Table S5: Unit commitment operational parameters for brownfield resources (Sources:
PowerGenome;[30] Sepulveda et al. (2018);[7] Kumar et al. (2012);[47] and UT Austin (2018).[48])

Like existing nuclear capacity, existing reservoir, run-of-river, and pumped storage hydroelectric
facilities are assumed to have the same cost and operating characteristics across model regions. FOM
and VOM costs for run-of-river and reservoir hydropower were taken from the 2018 NREL ATB’s
“Powering Non-Powered Dams” (NPD) hydropower resource type under “moderate” technology ad-
vancement assumptions.[31] FOM costs for PHS were taken from the MIT Future of Storage Study
(while VOM costs are specified as $0/MWh in the MIT Future of Storage study, we apply a marginal
$1/MWh cost to disincentivize excessive cycling in our model).[32] These are summarized in Table S6.

Each technology was assigned an operational lifetime equal to its economic lifetime, which was
used to compute annual investment costs. Plant retirement data from the EPA’s eGRID2019 data set
was used to compute capacity-weighted average lifetimes of fossil fuel-fired power plants.[49] Lifetimes
for new and existing NGCC, NGCT, and NGST power plants were computed based on nationwide
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Region
FOM Cost
($/MW-yr)

VOM Cost
($/MWh)

Heat Rate
(MMBtu/MWh)

Minimum
Power Output

Existing Natural Gas Fired Combined Cycle

S C TVA 10,019 3.50 6.92 37%
S VACA 10,641 3.56 7.27 42%
S SOU 11,606 3.58 7.27 53%
FRCC 12,078 3.58 7.35 70%

Existing Natural Gas Fired Combustion Turbine

S C TVA 7,326 11.30 14.75 46%
S VACA 7,477 11.30 12.17 54%
S SOU 7,546 11.30 11.84 58%
FRCC 7,697 11.30 12.92∗ 45%

Existing Natural Gas Fired Steam Turbine

S C TVA 17,798 7.35 10.35 40%
S VACA 49,776 1.00 11.55 28%
S SOU 30,518 1.00 11.58 34%
FRCC 29,173 1.00 11.17 15%

Existing Conventional Steam Coal

S C TVA 60,901 1.80 10.93 45%
S VACA 59,806 1.80 10.18 34%
S SOU 59,412 1.80 10.32 49%
FRCC 58,567 1.80 10.65 38%

Existing Nuclear

All 118,988 2.32 10.46 50%

Existing Reservoir Hydroelectric

All 14,000 0.02 – 10%

Existing Run-of-River Hydroelectric

All 14,000 0.02 – 0%

Existing Pumped Hydroelectric Storage

Region
FOM Cost
($/MW-yr)

VOM Cost
($/MWh)

Charging
Efficiency

Discharge
Efficiency

All 41,000 1.00 89% 89%

Table S6: Economic and operational parameters for brownfield natural gas, coal, nuclear, and hydro-
electric resource types. The value marked with an asterisk (*) represents a manually adjusted data
field; to address a data anomaly in the PowerGenome data in the average heat rate of existing natural
gas-fired steam turbines in the Florida model region, the original value was replaced by the average of
heat rates from the other three model regions. (Sources: PowerGenome;[30] Sepulveda et al. (2018);[7]
2018 NREL ATB;[31] and the MIT Future of Storage Study.[32])
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capacity-weighted averages of plant retirement ages whereas lifetimes for existing coal plants approx-
imate the capacity-weighted average retirement age of coal plants within each Southeast model re-
gion using data from the closest approximate eGrid region (“SRTV” eGrid region corresponding to
S C TVA, “SRVC” corresponding to the S VACA, “SRSO” corresponding to S SOU, and “FRCC”
corresponding to FRCC). Nuclear power plants are assumed to have either a 60- or 80-year opera-
tional life, based on whether we assume that existing nuclear plants receive SLTEs. See Table S7 for
operational lifetimes of all resources across model regions. Using these region- and resource-specific
lifetimes, expected lifetime retirements were computed for existing capacity of each resource type for
each model stage. For each existing generating facility, we added its assumed operational lifetime to
the year the facility began operation (as specified by the “Operating Year” field in Form EIA-860) to
obtain the year we expect that facility to retire.[29] We require the model to retire that facility at the
start of the first model stage whose year exceeds or equals the expected retirement year.

Lifetime (years)
Resource S C TVA S VACA S SOU FRCC

Conventional Steam Coal 59 54 51 40
Pumped Hydroelectric Storage 50 50 50 50
Natural Gas Combined Cycle 27 27 27 27
Natural Gas Combustion Turbine 44 44 44 44
Natural Gas Steam Turbine 55 55 55 55
Nuclear 60/80 60/80 60/80 60/80
Onshore Wind Turbine 30 30 30 30
Reservoir Hydroelectric 100 100 100 100
Run-of-River Hydroelectric 100 100 100 100
Solar Photovoltaic 30 30 30 30
Li-ion Battery Storage 15 15 15 15
Natural Gas Combined Cycle with CCS 30 30 30 30

Table S7: Operational and economic lifetime assumptions for resources in the Southeast model. Note
that nuclear resource lifetimes are assumed at either 60 or 80 years depending on whether SLTEs are
granted. (Sources: 2020 NREL ATB;[27] and EPA eGrid2019.[49])

S1.3.2 Greenfield Capacity

The 2020 NREL ATB was used to obtain economic and operational characteristics of new natural
gas-fired power plants (NGCC, NGCT, and NGCC-CCS), nuclear power plants, utility-scale solar PV,
onshore wind, and Li-ion storage.[27] We supplemented these parameters with additional data sources
noted below. We assume a 30-year capital recovery period (CRP) and “Market Factor” financial
parameters for all these technologies with the only exception of Li-ion battery storage, which uses a
20-year CRP. For all technologies, we assume an after-tax weighted average cost of capital (WACC)
of 4.5%. See Table S20 for a summary of key model parameters and assumptions.

For the three greenfield NG technologies, we used the “AverageCF” capacity factor rating.[27] Table
S8, Table S9, and Figure S1 summarize the cost and operational parameters for new thermal power
plants in 2020, overnight investment cost projections for new thermal power plants through 2045, and
additional technical characteristics of thermal power plants required for modeling unit commitment.

For VRE technologies, we referred to the 2020 NREL ATB for investment costs and FOM costs.[27]
“Class 5” assumptions were used for wind resources. Although the 2020 ATB specifies a $0/MWh VOM
cost for onshore wind, we set this value to $.01/MWh to ensure that solar PV is dispatched first by the
model. Model region-specific interconnection costs (added to the ATB overnight investment costs),
average capacity factors, and maximum developable capacity were generated via the software tools
introduced in Brown and Botterud (2020).[33] Lastly, solar PV and wind resources were subject to
maximum single-stage installation limits for the 2025, 2030, and 2035 model stages, derived from the
2030 “Step 1” capacity limit used in the EPA IPM model as specified in Table 4-14 in “2020 Update”
documentation.[28] A single installation limit was applied to the three wind resource bins in aggregate.
These nationwide annual capacity limits were scaled down proportional to the share of 2019 U.S.-wide
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Figure S1: Overnight investment cost projections ($/kW or $/kWh) for new natural gas, nuclear,
VRE, an Li-ion capacity. (Source: 2020 NREL ATB.[27])

annual generation attributed to the Southeast model regions and multiplied by 5 to reflect the 5-year
duration of each stage. Tables S10, S11, S12, S13, and S14 as well as Figure S1 summarize these
assumptions.

For Li-ion battery storage, we supplemented 2020 NREL ATB with another NREL report’s cost
projections for utility-scale battery storage.[27][50] Note that costs for discharging power (MW) and
energy capacity (MWh) are considered separately in the model, which allows it to optimize the duration
of storage discharged at rated power within a specified range. These cost and operational assumptions
are summarized in Table S15 and Figure S1.

Pumped hydroelectric storage supply curves from the 2018 Hydropower Vision study at the Re-
gional Energy System Deployment (ReEDs) model balancing area (BA) level were used to estimate
capital costs and maximum capacity limits for new facilities.[34][35] ReEDs BAs were aggregated to
approximate the PHS storage potential within each of the four Southeast model regions. Where the
ReEDs BA intersected only a portion of an IPM region, the resource potential was scaled down pro-
portional to the intersected area. The supply curve data suggests that there is potential for new PHS
investment only in the S SOU and S C TVA model regions even though Form EIA-860 indicates that
there is existing PHS capacity in the S VACA model region.[29] For each ReEDs BA, four bins were
provided which represent PHS sites at different costs per MWh. We limit new allowable PHS capac-
ity to that of the lowest-cost bin in each respective region and only allow new PHS capacity to be
built in the S SOU and S C TVA regions. Costs, maximum new capacity, and additional technical
assumptions are summarized in Tables S6 and S16.
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Resource
FOM

($/MW-year)
VOM

($/MWh)

Start Cost
($/MW/

start)

Start Fuel
(MMBtu/
MW/start)

NGCT 11,395 4.50 140 0.19
NGCC 12,863 2.16 61 0.20
NGCC–CCS 26,994 5.72 97 0.20
Nuclear 118,988 2.32 1,000 0.00

Table S8: Cost parameter assumptions for new thermal power plants for the 2020 model stage.
(Sources: 2020 NREL ATB;[27] and Kumar et al. (2021).[47])

Resource
Capacity

Size
(MW)

Heat Rate
(MMBtu
/MWh)

Ramp
Up

Ramp
Down

Up
Time
(Hrs.)

Down
Time
(Hrs.)

Minimum
Stable
Output

NGCT 237 9.51 100% 100% 0 0 25%
NGCC 573 6.40 100% 100% 4 4 30%
NGCC-CCS 377 7.12 100% 100% 4 4 50%
Nuclear 1,000 10.46 100% 100% 36 36 20%

Table S9: Operational parameter assumptions for new thermal power plants. (Sources: Sepulveda
et al. (2020);[7] 2020 NREL ATB;[27] EIA-860;[29] Mallapragada et al. (2020);[36] Kumar et al.
(2021);[47] EIA Annual Energy Outlook Electric Market Module;[51] Jenkins et al. (2018);[52] Oates
et al. (2014);[53] and GE 7HA Fact Sheet.[54])

Resource
Technology

Advancement
Assumption

Overnight
Investment

Cost ($/MW)

FOM
($/MW-year)

VOM
($/MWh)

Solar PV
Advanced 1,340,034 15,694 0
Moderate 1,353,543 15,852 0

Wind
Advanced 1,556,755 41,734 0.01
Moderate 1,578,350 42,496 0.01

Table S10: Cost and operational parameter assumptions for solar PV and wind resources for the 2020
model period. (Source: 2020 NREL ATB.[27])

Interconnection Cost Adder ($/MW)
Region Solar PV Wind (1) Wind (2) Wind (3)

S C TVA 74,563 114,464 157,338 102,886
S VACA 43,015 68,955 70,192 66,547
S SOU 53,837 78,887 114,347 130,954
FRCC 30,200 37,898 68,386 93,796

Table S11: Interconnections cost adders ($/MW) for solar PV and wind resources. (Source: Computed
via software tools introduced in Brown and Botterud (2020).[33])

Maximum Capacity Limits (MW)
Region Solar PV Wind (1) Wind (2) Wind (3)

S C TVA 2,420,648 179,342 96,299 23,181
S VACA 2,035,425 157,135 73,001 11,349
S SOU 2,758,571 155,550 190,210 54,325
FRCC 933,392 18,245 73,346 31,618

Table S12: Maximum capacity limits (MW) for solar PV and wind resources. (Source: Computed via
software tools introduced in Brown and Botterud (2020).[33])
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Stage-Level Maximum Installation Limits (MW)
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Solar PV N/A 48,053 48,053 48,053 None None
Wind N/A 78,941 78,941 78,941 None None

Table S13: Maximum installation limits (MW/stage) for solar PV and wind resources. “N/A” is spec-
ified in Stage 1 because no capacity additions of any kind are allowed. (Source: EPA IPM model.[28])

Average Capacity Factors (%)
Region Solar PV Wind (1) Wind (2) Wind (3)

S C TVA 24% 37% 31% 21%
S VACA 25% 37% 29% 20%
S SOU 26% 35% 32% 28%
FRCC 27% 33% 31% 29%

Table S14: Average capacity factors (%) of solar PV and wind resources. (Source: Hourly capacity
factor profiles computed via software tools introduced in Brown and Botterud (2020).[33])

Lithium-ion Battery Storage (Li-ion)
Technology Advancement Advanced Moderate

Overnight Discharge Investment Cost ($/MW) 214,966 260,021
Overnight Energy Investment Cost ($/MWh) 246,899 298,647
FOM Discharging Cost ($/MW-yr) 250 750
FOM Energy Cost ($/MW-yr) 1,420 2,230
VOM Cost ($/MWh) 1.00 1.00
Charging Efficiency 92% 92%
Discharging Efficiency 92% 92%
Minimum Duration (Hrs.) 0.25 0.25
Maximum Duration (Hrs.) 200 200
Self-Discharge (Fraction/Hr.) 0.002 0.002

Table S15: Cost and operational parameter assumptions for Li-ion battery storage in the 2020 model
period. Note that while VOM costs are specified as $0/MWh in the NREL ATB, we apply a marginal
$1/MWh cost to disincentivize excessive cycling in our model. (Source: NREL ATB 2020;[27][50] and
the MIT Future of Storage Study.[32])

Pumped Hydroelectric Storage (PHS)

Region
Maximum

Capacity (MW)
Overnight Investment

Cost ($/MW)

S C TVA 4,450 1,509,439
S SOU 2,535 1,894,728

Table S16: Investment costs ($/MW) and maximum capacity limits (MW) for PHS. (Source: Analysis
of 2018 Hydropower Vision study PHS supply curves.[34])
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S1.3.3 Fuel Costs

The 2020 EIA Annual Energy Outlook (AEO) Reference Case was used for the fuel costs associated
with NG, coal, and nuclear power plants. “Electric Power” fuel costs in $/MMBtu for “natural gas,”
“steam coal,” and “uranium,” were used for each of these resource types, respectively.[55] Additional
EIA data were used to establish CO2 content for each fuel type.[56] As coal-fired power plants in the
Southeast use coal from both the western and eastern United States, we used the average of CO2

emissions per MMBtu of bituminous and subbituminous coal to approximate the emissions rates from
these facilities.[57] NGCC-CCS plants were assumed to have a 90% CO2 capture rate, and a capture
and sequestration cost of $20/tonne CO2. Fuel CO2 content and costs are summarized in Tables S2
and S17.

Fuel Cost ($/MMBtu)
Fuel Type 2020 2025 2030 2035 2040 2045

Uranium 0.67 0.68 0.69 0.70 0.71 0.72
Coal 2.05 1.94 1.94 1.94 1.94 1.94
Natural Gas 2.64 3.29 3.61 3.72 3.78 3.83
Natural Gas w/ CCS 3.60 4.25 4.57 4.68 4.75 4.79

Table S17: Fuel cost projections from 2020 to 2045. NGCC plants with CCS were assumed to have
a 90% CO2 capture rate and a capture and sequestration cost of $20/tone CO2. (Source: 2020 EIA
AEO Reference Case.[55])

S1.3.4 Network Topology

The Southeast model includes representations of four high-voltage transmission lines which connect,
from source to sink, S SOU to S C TVA, S VACA to S C TVA, S SOU to FRCC, and S VACA
to S SOU. Transmission lines were assumed to be 500 kV, and line distances were computed by
approximating the straight-line distance between the geographic center of each model region. Maximum
transmission line capacity values were taken from Table 3-20 of the EPA IPM model documentation.[28]
Transmission loss percentages were approximated as 0.01% of line distance. These parameters are
summarized in Table S18.

Transmission network expansion was enabled in GenX, and all transmission lines were eligible for
reinforcement up to 30 GW of capacity. New transmission lines were assumed to have a CRP of 40
years and after-tax WACC of 4.5%. Line reinforcement costs, adopted from Section 6.2 of the ReEDs
Version 2019 documentation, were assumed to be $960 /MW-km for new 500 kV transmission lines.[35]

Transmission Line Line Capacity (MW) Line Distance (km) Transmission Loss

S SOU to S C TVA 5554 370 0.037
S VACA to S C TVA 276 590 0.059
S SOU to FRCC 3600 600 0.06
S VACA to S SOU 3000 500 0.05

Table S18: Transmission line representations in the Southeast model. (Source: Line capacities from
the EPA IPM model.[28])

S1.3.5 Load Forecasts

State-level load data were derived from load profiles in the 2018 NREL Electrification Futures Study
(EFS).[19] Load for even years (2020, 2030, 2040, and 2050) was taken directly from the study’s
data set, and load for odd years (2025, 2035, 2045) was approximated by interpolating data from the
even-numbered years. Load profiles represent the “High” electrification and “Moderate” technological
advancement scenarios, and leap days were removed.

State-level load data from the EFS data set were aggregated to approximate total load for each of
the four model regions. Utility customer sales data from the 2018 Form EIA-861, labeled by BA, were
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used to approximate the percentage of each state’s total load to be assigned to each model region.[58]
Then, state-level load profiles from the EFS data set were aggregated using weightings proportional
to these values to generate region-specific load profiles. The percentage of each state’s load assigned
to each model region is summarized in Table S19.

Percent of Total Customer Sales
State S C TVA S VACA S SOU FRCC

Tennessee 98.0% 0.0% 0.0% 0.0%
Alabama 26.2% 0.0% 73.8% 0.0%
North Carolina 0.6% 95.3% 0.0% 0.0%
South Carolina 0.0% 100.0% 0.0% 0.0%
Georgia 2.4% 0.0% 97.6% 0.0%
Florida 0.0% 0.0% 5.6% 94.4%
Mississippi 32.3% 0.0% 23.3% 0.0%

Table S19: Percent of statewide 2018 utility customer sales attributed to each of the four Southeast
model regions, aggregated by balancing area. (Source: 2018 EIA-861.[58])

The region-specific load profiles were then adjusted to account for power interchange between BAs
within the four Southeast model regions and those outside of them. There are nine interconnections to
consider which allow for such power interchange: SOCO-MISO, DUK-PJM, CPLE-PJM, CPLW-PJM,
TVA-AECI, TVA-EEI, TVA-LGEE, TVA-MISO, and TVA-PJM. EIA-930 form data downloaded via
the EIA’s hourly electric grid monitor includes hourly interchange, in MWh, between each of these BA
interconnections, starting from July 2015.[59] Negative interchange values represent power flows into a
BA, while positive interchange values represent power flows out of a BA. It also includes net-generation
within each BA. The EIA-930 form data contained several missing values, so we used equivalent hours
in future or past years as proxies for missing data. Hourly net interchange from the TVA model region
was computed by taking the sum of hourly interchange between TVA-AECI, TVA-EEI, TVA-LGEE,
TVA-MISO, and TVA-PJM. Hourly net interchange from the Carolinas model region was computed
by taking the sum of hourly interchange between DUK-PJM, CPLE-PJM, and CPLW-PJM. Since the
MISO BA is the only non-model BA connected to the S SOU model region, hourly transfers from
the SOCO BA to the MISO BA represent the entire external net hourly interchange in the S SOU
model region. Next, for the three model regions with net interchange, an hourly scaling factor was
computed by taking the point-wise difference between net-generation and interchange and dividing by
net-generation. We defined outlier hours as those with a scaling factor greater than 1.5 or less than 0.5,
representing power flows into the region greater than 50% of the net-generation within that region in
that hour, or power flows out of the region greater than 50% of the net-generation within that region in
that hour, respectively. These outlier hours were replaced by the average of all hourly scaling factors
excluding outlier hours in their respective regions. Next, the hourly scaling factors for each region
were averaged across years to compute an average scaling factor for each hour. Finally, each hour in
the annual load profile projections computed for each model region was scaled by its corresponding
hourly scaling factor to obtain an interchange-adjusted representation of regional load.

S1.3.6 Variable Renewable Energy Capacity Factor Profiles

Seven years of historical capacity factor (CF) profiles (2007-2013) were generated for solar PV and wind
resources using the methodology outlined in Brown and Botterud (2020).[33] We assumed a horizontal
1-axis-tracking PV array for solar PV resources and a Gamesa G126/2500 turbine at 100-meter height
for wind resources.

EIA-923 data were used to compute historic monthly net-generation, in gigawatt-hours (GWh), of
all run-of-river and reservoir hydroelectric plants in each of the four model regions from 2007-2013.[20]
Monthly net-generation was then downscaled to hourly resolution by dividing monthly generation by
the number of hours in each month (for leap years, non-leap year number of hours per month were used).
Finally, the average hourly CF for each hydroelectric plant type in each model region was computed
by dividing the hourly net-generation by the nameplate capacity of the respective hydroelectric plant
type.
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Figure S2: Load profiles (GW) and solar PV and wind capacity factor (CF) profiles for the model-wide
peak load week, included as one of the extreme weeks in the model. Peak capacity grows from 151 GW
in 2020 to 263 GW in 2045. Solar PV and wind CF profiles are named according to the convention
PV [Region] 0 and Wind [Region] [Bin], where 1, 2, 3, and 4 correspond to the S C TVA, S VACA,
S SOU, and FRCC regions, respectively.

S1.3.7 Time Domain Reduction

Representative and extreme weeks were selected from among the seven years of CF and load profiles
in order to reduce the required computational and memory requirements of GenX model simulations.

Extreme weeks were chosen from each of the four Southeast model regions. Average weekly CFs
were computed for solar PV and wind resources. For solar PV resources, the week with the lowest
average solar PV CF in each model region was included in the set of extreme weeks. For wind resources,
we included an extreme week with the lowest average CF, selected from the bin with the lowest average
CF over the whole seven-year duration. Finally, the week with the greatest hourly load in each model
region was included in the set of extreme weeks, as well as the week with the greatest hourly total
system load across the model regions (shown in Figure S2). Due to overlap, a total of nine unique
extreme weeks were selected in this manner.

Representative period selection followed the methodology outlined in Mallapragada et al. (2018).[24]
First, each time series was normalized to values between 0 and 1 (inclusive). Next, load and CF pro-
files were split into week-length groupings, and “stitched together” as in Mallapragada et al. (2018)
to form 365 vectors, one for each week of the seven years represented by the historic VRE time series
data (the six, year-long time series representing hourly load from 2020, 2025, . . . , 2045 were repeated
seven times so that they could be combined with the VRE time series data). Vectors corresponding
to extreme weeks were dropped, and k-means clustering was applied to the set of remaining vectors
to group them into clusters of similar weeks such that the total number of extreme weeks and clusters
summed to 14, resulting in 5 clusters. The 5 representative weeks used in the model were selected
from each cluster by choosing the vector with the lowest Euclidean distance from the cluster centroid.
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Figure S3: Marginal cost of generation of greenfield and brownfield (bf) thermal technologies in the
S C TVA model region.

Assumption Value

Dollar Year 2018
WACC 4.50%
CRP (Li-Ion) 20 years
CRP (Transmission) 40 years
CRP (All Other Resources) 30 years
NREL ATB Financials Market Factor
NREL ATB Wind Class Class 5
NREL EFS Technology Advancement Moderate
NREL EFS Electrification High
Number of Extreme Periods 9
Number of Representative Weeks 5
Value of Lost Load $50,000

Table S20: Summary table of key model parameters and assumptions.
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S2 Additional Results

Figure S4: Regional deployments of solar PV and wind under the reference scenario (GW).

Figure S5: No New Natural Gas without CCS After 2025 – Changes in system-wide capacity (GW) and
annual CO2 emissions (MT) under the High, Medium, and Low policies with respect to the reference
scenario.
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Figure S6: Average capacity factors (%) by CO2 policy, thermal technology, model stage, and scenario.
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