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1 Introduction

Fiscal challenges pervade the electricity sector in many developing countries. Electric

transmission and distribution losses – losses between points of generation and end-consumers

– are three times higher in low-income and lower-middle-income countries than in high-

income countries (IEA/OECD, 2018). A subset of these losses, comprised of electricity

theft and bill non-payment, cost utilities an estimated $96 billion per year worldwide

(Bellero, 2017) and often result in a low payment, low quality equilibrium, in which distri-

bution companies either ration electricity supply via load shedding (Burgess et al., 2020)

or make insufficient investments to maintain infrastructure and meet growing demand

(Carranza and Meeks, 2021). These losses negatively affect consumers as well. An es-

timated 1 billion people worldwide receive electricity through grids providing services

disrupted with frequent outages (World Bank, 2020), and such low quality electricity ser-

vices impede consumers’ economic benefits from connections to the electrical grid (Fried

and Lagakos, 2022).

Given the burning of fuels for electricity and heat is the largest single source of

global greenhouse gas emissions, the environmental impacts of losses are noteworthy.

The higher the losses, the more electricity that must be generated per unit sold to end-

consumers. Further, non-technical losses mean individuals are not paying the full cost of

electricity services consumed, which reduces their incentives to conserve. When electric-

ity generation is dominated by fossil fuels – such as in low and middle income, where 71%

of electricity production is generated from burning oil, gas, and coal sources (OECD/IEA,

2014) – these factors translate into higher CO2 emissions.

We study the effects of an infrastructure improvement, aerial bundled cables (ABCs),

in Karachi, Pakistan. ABCs are an infrastructure upgrade from basic bare electrical wires,

which are relatively low-cost but also exposed and easily tapped by illegal connections.

With ABCs, the cables are twisted together and insulated, characteristics that impede

”weathering, abrasion, tearing, cutting, and chemicals” and make illegal connections to
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the distribution system more difficult (USAID, 2009). Karachi Electric (KE), the distribu-

tion company serving the greater Karachi area, introduced ABCs within its distribution

network starting in 2015 in an effort to reduce losses. Conversions to ABC wiring in-

creased in intensity during 2018, when KE adopted the strategy of targeting high and

very high loss feeder lines. The installation work typically began by gathering commu-

nity support to carry out ABC conversion at the Pole Mounted Transformers (PMTs) level.

Once installations began, a ring fencing strategy was used in order to convert the closest

PMTs to ensure complete geographical coverage of ABCs within a feeder line.

Pakistan provides a suitable location to study both electricity losses and carbon emis-

sions from electricity generation. As of 2014, electric power transmission and distribution

losses in the country were an estimated 17% of output (EIA-OEA, 2018). The National

Power and Regulatory Authority (NEPRA) reports that in 2019-20, all 10 major distribu-

tion companies faced losses above 9%, with all but 4 reporting losses above 15%. Karachi

Electric, the distribution company we study reported transmission and distribution losses

of 19.1%, allowing substantial room for reductions. With 63% of electricity generation, as

of 2015, from oil, gas, and coal sources (EIA-OEA, 2018), these losses contribute to CO2

emissions within the country. Further, unreliable electricity service is particularly prob-

lematic in South Asia, a region that has more power outages than anywhere else in the

world (Zhang, 2018).

In this paper we investigate whether infrastructure upgrades can alleviate economic

and environmental challenges of the electricity sector affecting producers and consumers.

On the producer-side, we estimate the effects of ABC conversion on two important mea-

sures of utility financial health, losses and revenue recovery, and the channels through

which those effects occur. We investigate whether these effects translate into positive

implications for the environment, in terms of a reduction in electricity generation and

thereby CO2 emissions. Lastly, we estimate the effects of the infrastructure improvement

on consumer welfare.
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Using differences in the introduction of this infrastructure upgrade across Karachi

over time, we measure its effects on economic and environmental outcomes relevant to

both the electricity utility and its customers. We use a unique combination of datasets

provided by the electricity utility – three years of feeder-level data for financial outcomes,

as well as individual household-level panel data on billing-related outcomes over the

same time period – and complement those administrative data with consumer-level data

that we collected via a survey of 3,000 utility customers in Fall 2021.

Our analyses provides key insights into the impacts of electricity distribution in-

frastructure improvements on producers (the electricity utility), consumers (residential

customers), and the environment. First, the ABCs had economically meaningful and sta-

tistically significant impacts on utility financial measures. The conversion of distribution

lines to ABCs significantly reduced utility losses and increased revenue recovery and the

greater the intensity of lines converted to ABCs the larger the larger the effects. This

effect persists for at least 30 months post-installation. The infrastructure upgrade had

the greatest impacts on losses (revenue recovery) in the feeders with the highest losses

(lowest revenue recovery) prior to the intervention, indicating that gains greatest in the

worst-performing areas pre-intervention.

Second, we find evidence that these financial gains come via two channels: the for-

malization of customers previously informally (illegally) connected and imrpovement in

payment behaviors among the existing consumers. In support of the former channel, we

find that the number of formal utility customers significantly increased with ABC instal-

lation, an effect driven by residential customers. The timing of that increase, a few months

following ABC installation, suggests that households previously using illegal connections

learned relatively quickly that their prior method of accessing grid electricity was less fea-

sible. In support of the latter channel, ABC installations led to significant increases both

in billed units (kWh) and monetary value. Customers are more likely to paye their bills

and pay a higher ration of their bills. Reductions in evidence of theft and irregular billing
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are also documented.

Third, we fine that the improvements in billing outcomes translate into benefits to

the environment. Although ABCs led to an increase in both the total number of utility

customers and billed units (kWh) per customer, losses (unbilled consumption) fall. We

find evidence that electricity generation (proxied for by electricity transmitted to feeder

lines within the distribution system) decreased following ABC installation. Using this

estimated reduction in electricity ”sent out”, along with our calculations of the CO2 emis-

sions associated with Pakistan’s electricity generation mix, we find that the reduction in

CO2 emissions per year from ABC installations is equivalent to between 1.67% and 4.26%

of the utility’s annual emissions from electricity generation.

What does this mean for consumers? Ex ante, we expect consumers to be worse off

given the ABCs result in higher bills from the electricity utility, on average. Yet, house-

holds using “kundas” – the illegal connections (or hooks) to the low-tension cables within

the electric grid – are not receiving electricity at a zero cost. Typically, an informal group

facilitates kundas within a given region of the city and a household or business must pay

an upfront cost for the kunda and then a monthly fee for continued use.1 We calculate

the change in consumer surplus for a range of kunda prices and find a decrease between

1 USD and 2.60 USD per month. We supplement these consumer surplus calculations

with evidence from our household survey that suggests potential benefits from the re-

duction in losses and increase in revenue recovery. Customers in areas with ABCs report

experiencing significantly less load shedding than areas without ABCs and, consistent

with that, these households also have more appliances and a greater number of reported

hours of appliance use per day.

In estimating the impacts of ABCs on the utility’s non-technical losses and revenue

recovery, the paper contributes to a literature on public sector financing (Pomeranz, 2015;

Kumler, Verhoogen and Frı́as, 2020; Khan, Khwaja and Olken, 2016; Carrillo, Pomeranz

1During focus groups held in Fall 2021 by our research team in Karachi, this was commonly acknowl-
edged and kunda prices between 3 to 15 USD per month were discussed.
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and Singhal, 2017), as well as more targeted research on improving the finances of elec-

tricity and water utilities (Szabó and Ujhelyi, 2015; McRae, 2015a; Jack and Smith, 2020;

Ali, Gaibulloev and Younas, 2018). Our paper is the first to provide evidence on the

impacts of ABCs, which can help control electricity losses in contexts where smart meter-

ing or prepaid metering might be difficult to implement due to customer and employee

resistance. With analyses of not only revenue recovery (i.e., the proportion of billed con-

sumption that is paid) but losses (i.e., consumption that is not billed) at the feeder line,

we can add to the literature that assesses technological impacts of meters on bill pay-

ment (McRae, 2015a; Jack and Smith, 2020) and capture the impacts of a technology on a

common source of leakage in the electricity sector.

The rest of the paper proceeds as follows. Section 2 provides background informa-

tion on electricity distribution in Karachi, recent infrastructure improvements, as well as

information on COVID-19 and its role in electricity service delivery. Section 3 details the

data, both from Karachi Electric and from our household survey, employed in our anal-

yses. Section 4 describes the empirical models underpinning our estimations. Section 5

presents results on the impacts of ABCs on utility-level outcomes. We extend the analysis

to illustrate the implications for CO2 emissions and climate change in Section 6. Section 7

addresses changes in consumer surplus in response to the infrastructure upgrade. Section

8 concludes.

2 Background on Electricity in Pakistan

2.1 Electricity Sector in Pakistan and Generation

Pakistan’s power sector has long been beset with challenges, frustrating the core goals of

providing affordable and reliable electricity (Younas and Ali, 2021). High per unit pro-

duction costs, overburdened infrastructure, unsustainable transmission and distribution

losses, intermittent load shedding, and growing circular debt are some of the major prob-
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lems due to which the sector is trapped in a sub-optimal equilibrium. Since the early

1990s, the power sector has undergone major reforms, such as allowing independent pri-

vate producers, unbundling the country’s vertically integrated power company, and es-

tablishing a regulatory entity – National Electric Power Regulatory Authority (NEPRA).

Yet the sector has continued to suffer from financial challenges and frequent blackouts.2

A major source of financial concern for the sector is transmission and distribution (T&D)

losses.

T&D losses have been exacerbated by the outdated transmission infrastructure from

the powerhouse to the customers. High T&D losses due to rampant theft of electricity

and non-payment of bills take a heavy toll on the balance sheets of the utility companies.

As a result of the financial crunch, they are unable to make significant investments in

infrastructure upgrades.3

From an environmental perspective, Pakistan’s high-cost and largely non-renewable

generation mix means that any reduction in generation would yield both lower costs and

CO2 emissions. As of June 2021, the share of the installed capacity due to non-renewable

sources stood at close to 70%.4

2.2 Electricity Distribution in Karachi

The context of our research is electricity distribution in the city of Karachi, which is the

largest and most densely populated city in Pakistan. KE, which is a vertically integrated

2Bacon (2019) provides excellent anecdotal analysis of the various power sector reform initiatives in
Pakistan and challenges thereof.

3Studying the effect of a unique reward-reprimand policy in curbing losses by Karachi Electric, Ali,
Gaibulloev and Younas (2018) find that the policy was successful in reducing average monthly distribu-
tional losses across and within feeders by 3.1% to 6.6%.

4Renewable energy power plants (hydel, wind, solar and bagasse) in the generation mix was around
30% with 12,062 MW, while the share of non-renewable thermal power plants (gas, oil, coal and nuclear)
was around 70% with 27,711 MW (NEPRA, 2021). During fiscal year 2020-21, the share of gas, Regasified
Liquefied Natural Gas (RLNG), Residue Furnace Oil (RFO), coal and High-Speed Diesel (HSD) based gen-
eration in total thermal generation stood at 20.20%, 35.82%, 11.96%, 31.59% and 0.45%, respectively. The
heavy reliance on thermal generation would clearly be contributing to the environmental pollution due to
the release of CO2 from the burning of fossil fuel and contamination of waterways due to the waste water
discharged by power plants (NEPRA, 2021).
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and privately-owned power utility is the sole provider of electricity services in Karachi.

The utility has a distribution network spanning an area of 6500 square kilometers, cover-

ing 2.5 million customers including residential, commercial, industrial, and agricultural

consumers.

This distribution network is divided into local offices, known as Integrated Busi-

ness Centers (IBCs), which handle electricity distribution, billing, and collection in their

respective areas. Out of a total of 30 IBCs within the utility’s network, 12 IBCs are cat-

egorized as high loss with average distribution losses exceeding 30% and bill payment

rates below 80%. These areas have a large fraction of lower income customers residing in

semi-formal to informal settlements. ”Kundas” or illegal connections to the main electric-

ity cables are a common sight in many communities.5 When a house or business connects

via a kunda, it is not at a zero cost. Typically, an informal group facilitates kundas within

a given region of the city. Commonly customer pays an upfront cost for the kunda and

then a monthly fee for continued kunda use.6

One of the key challenges in high loss IBCs is a culture of non-payment of electricity

bills, which is a product of local political, economic, and social conditions (Ahmad et al.,

2021). There are some pockets in the city with particularly poor law enforcement where it

is difficult to remove illegal connections or disconnect defaulters due to the influence of

local mafias. There are many other communities where it is acceptable to use electricity

through temporary ”kundas,” which are put in place at night especially in the hot sum-

mer season and are removed early in the morning to avoid detection. Historically, KE

also installed temporary informal connections to extend the network to commercial es-

tablishments and residential complexes where service did not exist. Later these ”kundas”

became difficult to take down due to local resistance. In addition to illegal usage, many

5The local distribution infrastructure typically consists of a sub-station (receiving electricity from the
grid station), a 11 Kv feeder line carrying electricity from the sub-station to a pole mounted transformer
(PMT) and low-tension cables (220-440V) carrying electricity from the PMT to the customers. A ”kunda” is
usually hooked on the low-tension cables originating from the PMT.

6This was commonly acknowledged and discussed during focus groups held by our research team in
Karachi during Fall 2021.
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of the consumers connected through formal connections, find it difficult to pay their bills

fully and on time, as they are employed in daily wage work, low skilled jobs, and small

businesses, and thus face fluctuating economic conditions.

Another challenge is that consumers have low trust in the utility to deliver reliable

and affordable electricity services. High loss areas face up to 6 to 7.5 hours of planned

outages daily. Unplanned outages due to infrastructure faults are also not uncommon.

There is a common perception of over-billing by KE due to faulty meters and billing

errors. Thus, the everyday experience of electricity service provision in the high loss areas

is far from ideal. Low trust in the utility and the acceptability of using electricity without

paying for it, leads to a vicious cycle of high electricity and financial losses, overloaded

infrastructure, and unreliable electricity services.

2.3 Infrastructure Improvements: Aerial Bundled Cables

In an effort to decrease illegal electricity usage, the main infrastructure initiative launched

by KE was the conversion of cables at the Pole Mounted Transformer (PMT) level to Aerial

Bundled Cables (ABCs). Due to their intertwined cable design, ABCs are difficult to con-

nect to using ”kundas”. ABC conversion began in 2015 as pilot intervention in a handful

of PMTs, and was then expanded to a few IBC regions in Karachi.

There are two factors affecting the roll-out of ABC conversion. First, it is determined

by KE’s business strategy. Initially, ABC budgets were set by strategic department which

included targets for the number of PMTs which had to be converted to ABC. Since a ma-

jor part of the ABC Project was outsourced, these budgets were specifically set keeping

in view the execution capacity of outsourced manpower. Those selected PMTs were con-

sidered as low hanging fruit to serve as proof of concept and to simultaneously allow KE

to gain quick recoveries and meet their financial targets. After 2018, the budgets were

decentralized down to the IBC level, which consequentially allowed the IBCs to set up

practical targets depending on their resource and community realities after consultation
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with KE’s strategy department. At that time, KE adopted the policy of targeting ABC

conversion to PMTs in high and very high loss feeders.

Second, the roll-out of ABC conversion is subject to resource constraints. Before the

project could be implemented at a specific PMT site, the designated IBC/area had to be

assessed for material and human resource availability, the extent of infrastructure plan-

ning development and the level of community resistance anticipated. KE prioritized the

project in areas which had comparatively less resource and administrative constraints to

meet targets set by strategy or IBC management.

Figure 1 shows the increased coverage of ABCs, both in terms of infrastructural cov-

erage (number of PMTs) and customer coverage (number of customers), over time be-

tween 2016 and 2020. Additionally, appendix maps (see Figure A1) depict the installation

across one IBC in Karachi over time.

Although ABC conversion made it very difficult to connect illegally to electricity ca-

bles, new ways of installing ”kundas” emerged with the passage of time, which involved

puncturing of ABC. Thus it was unclear to what extent this infrastructure improvement

alone would be sufficient to address the problem of illegal usage.

3 Data

The analysis utilizes data collected from two sources. First, the utility shared extensive

data at the feeder line, PMT, and consumer levels. In addition, we collected survey data

for a sample of utility customers.

3.1 Utility Feeder line Data

We have assembled a comprehensive and unique dataset including feeder level losses,

revenue recovery, utility claims, consumer complaints, and consumer number from KE.

The final dataset is aggregated to the feeder and monthly level, which covers 2163 feeder
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lines in Karachi.

Loss and Revenue Recovery. The data on feeder-level monthly losses and revenue

recovery cover all feeder lines in Karachi, from January 2018 to October 2020. Losses are

measured as the difference between units sent out and units billed and then divided by

units sent out. Revenue recovery is defined as the ratio of net credit to billing.

Claims and Complaints. We collect utility claims from January 2018 to October 2020.

Utility claims happen when there is damage against KE infrastructure/property (e.g.,

PMT, service cable, etc.). KE then ends up filing an official claim against the suspected

party or institution. Police then investigate the claim.

We also assemble a dataset on consumer complaints from January 2018 to June 2021.

Consumer complaints are tickets submitted by KE customers regarding a variety of is-

sues, such as billing, technical problems, and service concerns for the contract account.

For each claim or complaint, we observe information on its topic, creation time, and the

corresponding feeder line. The data is then aggregated to the feeder level on a monthly

basis.

Consumer Number. For each feeder line in Karachi, we collect monthly data on the

number of active consumers in each category, including agricultural, bulk, commercial,

industry, and residential during the period between January 2018 and March 2021.

ABC Installation. KE provides dates when each PMT has ABC installed. We observe

the installation record till January 2021. To match this data with feeder-level monthly

variables, we create two measures for ABC adoption. First, we define a binary indicator

for whether a feeder line has at least one PMT with ABCs installed. Second, we calculate

the ratio of the number of PMTs with ABCs installed relative to the number of total PMTs

in a feeder line.
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3.2 Household Survey Data

In October and November 2021, we surveyed approximately 3,000 residential customers

across 150 PMTs. To select consumers to survey, we randomly selected households from

the utility’s roster of consumers in a multiple-step process. We restrict the sampling to

high-loss feeders within 8 of Karachi Electric’s IBC offices. Within these high loss feeder

lines, we restrict to PMTs with a minimum of 80 customers and a maximum of 500 cus-

tomers, to both ensure we have sufficient households to allow for replacement and to

avoid outlier transformers with particularly large number of customers. This leaves us

with more than 1,500 PMTs from which to select. We randomly select 150 PMTs, ensuring

PMTs both with and without ABCs are represented in the list. Selected PMTs serve, on

average, 202 residential customers each. Within PMTs, we limit our sample to residen-

tial customers with active accounts and then randomly select 20 customers per PMT to

survey.

The questionnaire collects information on basic house characteristics, household de-

mographics, and other outcomes related to electricity consumption. We collect data on

appliance ownership and use, as well as household expenditures (both electricity and

non-electricity related). Questions also cover household perceptions about their neigh-

bors theft and payment practices, as well as respondents’ beliefs about the utility, elec-

tricity service quality (both load shedding and voltage fluctuations), tariff, billing and

payment practices.

3.3 Utility Residential Consumer Data

For each surveyed residential customer, we obtain the corresponding individual-level

data on billing and payment behaviors from KE. The sample covers the period between

June 2018 and August 2021. In the data, we observe information on monthly billed elec-

tricity units and amount, the amount and date of payment, total due to KE, and the billing
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category mode (BCM). These data allow us to check whether a customer paid their bill in

a billing cycle or not.

The BCM variable allows us to observe whether billing occurred in a normal manner

or whether there are irregular bills. If a consumer has a normal BCM, it means that the

meter functioned properly and there were no errors in billing. There will be irregular

bills if the meter stops working, or becomes faulty, or if there are other errors in recording

units or calculating bills. Irregular bills also occur when there is a case of theft or kunda

detection by KE. According to the BCM classifications, we are able to identify customers

with irregular bills or those alleged by the utility to have engaged in thefts in a month.

4 Empirical Strategy

4.1 Utility Losses and Revenue Recovery

To estimate the economic effect of infrastructure improvements, our research design lever-

ages differences in time and space within the ABC conversion process in Karachi. The

adoption of ABCs follows a staggered process, the timing of which mainly depends on

KE’s business strategy. Since the roll-out of ABCs creates variations across feeder lines

and over time, we employ a staggered difference-in-differences (DID) approach to iden-

tify the causal effect of ABC conversion on feeder-level losses and revenue recovery.

For feeder line i of IBC region j in month t, we estimate the following regression

model throughout our main analysis.

yijt = βABCit + αi + δjt + εijt. (1)

The outcome variable includes losses and revenue recovery ratios, both measured in per-

centage points. The variable of key interest, ABCit is a binary indicator for whether a

feeder line i already had at least one PMT with ABC installed in month t.
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We add a rich set of fixed effects to control for unobservable determinants for losses

and revenue recovery. We include feeder fixed effect αi to capture feeder-level time-

invariant unobservable factors that may affect the outcome. We also control for IBC-

specific time fixed effect δjt to account for regional policy shocks or potentially different

time trends across IBCs. The standard errors are clustered at the feeder line level.

In an alternative model specification, we explore the intensity impact of the ABC

installation by replacing the ABC dummy with ABC ratio, which, as previously defined,

is the ratio of the PMTs that have been converted to ABCs in a feeder line.

4.2 Validity of Identification Strategy

Our identification strategy takes advantage of variations in outcome measures specific to

feeder lines with ABC conversion relative to feeder lines without ABC conversion, and

in periods before and after the conversion. Based on KE’s business strategy, the roll-out

of ABC conversion depends on pre-determined feeder line characteristics in terms of loss

categories, resource constraints, and local resistance. By including our fixed effects, the

model can account for a range of omitted variables that could otherwise bias the esti-

mates. The feeder line fixed effect controls for time-invariant differences across feeder

lines, such as loss categories, available resources, and community resistance. The IBC-

by-month fixed effects capture any IBC-level policies and efforts that might affect ABC

conversion and losses, such as change in IBC management, allocation of budgets, revision

of targets, etc. After adjustment for these fixed effects, the roll-out time is conditionally

independent of unobservable factors that may affect losses and revenue recovery.

Parallel Trends Assumption. The DID approach requires parallel trends in the out-

come variable between the treatment group and the control group in the absence of the

ABC conversion. To provide evidence that the assumption holds prior to treatment, we

estimate the dynamics of losses and revenue recovery using the event-study framework.

Specifically, we include leads and lags of the ABC conversion dummy in the baseline
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regression to trace out the month-by-month effects:

Yijt = ∑
−15≤k≤15

k ̸=−1

βk1[t − τi = k] + αi + δjt + εijt. (2)

The dummy variables, 1[t − τi = k], jointly represent the ABC conversion events. Specif-

ically, τi denotes the first month when feeder line i started deploying ABCs at its PMTs,

and k measures the gap between the current month and the initial deployment month

τj. A negative k represents the pre-conversion month while a positive k represents the

post-conversion month. Controlling for leads allows us to examine the pre-treatment ef-

fects as a test for the parallel trends. Controlling for lags enables us to trace the effects in

the periods after the initial conversion. Note that the dummy for k = −1 is omitted from

Equation (2) so that the estimated effects are relative to one month prior to the conversion.

If the results show that the estimated coefficients for the leads of ABC-conversion dummy

are small in magnitude and statistically indistinguishable from zero, then there is no ev-

idence of meaningfully differential trends in losses or revenue recovery ratio in advance

of the ABC conversion. This would provide support for the parallel trends assumption.

4.3 Consumer Bill Analyses

To complement the analysis of the utility level impacts, we investigate the consumer level

response to ABCs using panel data on residential customers’ billing-related outcomes.

We conduct both event studies and difference-in-differences regression analyses of

ABCs impacts on residential customers. For residential consumer i served by PMT j in

month t, we estimate the following regression model:

yijt = βABCjt + αi + δt + γjτ(t) + εijt. (3)

The outcome variables include different consumer-level measures on billed electricity
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consumption, payment behavior, and thefts. The variable of key interest, ABCjt is a bi-

nary indicator for whether PMT j already has ABC installed in month t. We add consumer

fixed effect (αi), month fixed effect δt, and PMT by month-of-year fixed effect γjτ(t) to cap-

ture unobservable factors. Standard errors are clustered at the PMT level.

5 The Effects of ABC Installations

In this section, we present results from our baseline model that suggest that infrastructure

improvements, in the form of ABC installation, resulted in reduced losses and increased

revenue recovery. To understand the channels through which these impacts occurred, we

also investigate whether ABCs installation affected the number of utility customers or

customer bill payment behaviors.

5.1 Utility Losses and Revenue Recovery

5.1.1 Main Results

We investigate the effects of ABC installations through both event studies and regression

analyses. The event studies in Figure 2 estimate the difference between the feeders that

were “treated” via installation of ABCs on at least one PMT and those that were not (the

“untreated”), controlling for both IBC-by-month and feeder fixed effects.

These event studies provide two key results. Figure 2 shows that the estimated coef-

ficients for the leads of ABC-conversion dummy are small in magnitude and statistically

indistinguishable from zero. Hence, there is no evidence of meaningfully differential

trends in losses or revenue recovery ratio in advance of the ABC conversion, which pro-

vides support for the parallel trends assumption. The lack of differential trends in both

losses and revenue recovery provides support for the parallel trends assumption. Second,

these reults illustrate a significant negative effect on losses and positive effect on revenue

recovery from ABC installation. These effects persist for the duration of the study period,
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which lasts 30 months post-installation.

We further investigate this relationship through difference-in-differences analysis, as

depicted in Equation 1. Results showing the estimated impact of ABCs – using the binary

variable indicative of ABC installation on at least one PMT on a feeder line – on losses

are provided in Table 1, Panel A. Results from regressions using our other measure of

treatment – the intensity of ABC installation within a feeder – are presented in Panel B

of Table 1. These analyses are performed using both monthly and quarterly losses and

revenue recovery data as outcome measures. All regressions include feeder fixed effects

and an some form of IBC-time fixed effect, depending on whether the analyses are at the

monthly or quarterly-level.

The results in both panels tell a consistent story. ABC installation, whether measured

as a binary indicator or as treatment intensity, led to significant reductions in losses and

increases in revenue recovery. In Panel A, the estimates in column 1 and 3 suggest that

losses were lower by 6.2 to 8.2 percentage points in feeders with ABC wiring. This is

a reduction of 26% to 32% of the average loss level in non-ABC feeders. Similarly, the

estimates in column 2 and 4 suggest that revenue recovery was improved by 5 to 5.2

percentage points, which is an increase of 6% of the average recovery in non-ABC feeders.

Panel B provides evidence that fully replacing all lines within a feederline with ABCs

leads to even larger improvements in loss reduction and revenue recovery. more intense

treatment. However, supplemental evidence is indicates non-linearities in the effect of

ABC installation intensity, specifically we find diminishing returns to ABCs for revenue

recovery (Table A4).

Addtitionally, we investigate whether the ABCs have heterogeneous effects, depend-

ing on the severity of the losses and revenue recovery problem prior to the upgrade. We

classify the initial losses or revenue recovery rate (the monthly average losses or rev-

enue recovery rate over 2018m1 and 2018m6) of the feeder line into three percentiles,

low, medium, and high. The ABC indicator is then interacted with binary indicators for
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whether the feeder line falls into certain loss or RR categories. Results from these analy-

ses are presented in Table 2. We find that the effects of ABC installation are increasing in

the level of losses pre-intervention. In other words, losses decreased more in the feeders

that had higher levels of losses at baseline. Similarly, revenue recovery increased more

amongst the feeders with medium and low levels of baseline revenue recovery.

5.1.2 Robustness Checks

The results presented in Table 1 are robust to a number of checks (Table A3).

Contemporary Loss Mitigation Policies. Our estimated impact of ABC conver-

sion might be confounded by contemporary loss mitigation policies. While national- or

regional-level policies are common shocks to different feeder lines and therefore will be

absorbed by the IBC-by-month fixed effects, feeder-level time-variant factors however,

present a major challenge. First, there might be contemporary efforts or policies that only

targets high-loss feeder lines within IBCs. Second, seasonal patterns might differ across

feeder lines. For example, KE might spend more efforts on maintenance during peak

seasons and these might be more frequent for high-loss feeder lines. To mitigate these

concerns, we include IBC-by-loss-category-by-month or feeder-by-calendar-month fixed

effects to capture feeder-level policies within each IBC. The results, shown in Panel A and

B of Table A3, are similar to those from our baseline estimates.

Stable Unit Treatment Value Assumption. Another key identification assumption

is that there is no spillover effect on feeder lines in our control group. Specifically in our

setting, it means ABC conversions by one feeder line do not affect others that haven’t yet

adopted ABCs. This is perhaps mostly likely to occur in feeder lines that are very close

to each other. Concerns arise when there are spillovers of thefts or internal migration

into neighboring non-ABC feeder lines. In response to these concerns, KE adopted the

”ring fencing” strategy – once ABC conversion starts, they tried to cover neighboring

regions to prevent these negative spillovers. To further address this issue, we exclude
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from our sample feeder lines that are very close to each other. Specifically, we identify

the center point of each feeder line area by averaging the GPS coordinates of its PMTs,

and calculate the distance between each pair of feeder line areas. We then re-estimate

the baseline model by dropping the feeders lines that have at least one nearby feeder line

within its 100m/300m/500m buffer zone. As reported in Panel C–E of Table A3, we get

similar coefficient estimates.

Heterogeneity-Robust DID Estimator. Recent literature shows the potential esti-

mation bias of the two-way fixed effects (TWFE) estimator with varied treatment tim-

ing (De Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021; Callaway and

Sant’Anna, 2021). Under a setting with multiple periods and staggered treatment timing,

the bias arises from the comparison between later treated units and earlier treated units

that instead serve as the control. The event study model usually generates reliable esti-

mates as it breaks down treatment effects in different periods (Sun and Abraham, 2021).

To further mitigate this concern, we employ a heterogeneity-robust DID estimator pro-

posed by Callaway and Sant’Anna (2021). This estimator only compares treated units

with never-treated ones serving as controls, hence excluding all the “bad” comparisons.

In Panel F of Table A3, we report the aggregated estimates of the average treatment effect

on the treated (ATT) for all timing groups across all periods. The coefficient estimates

have the same sign and similar magnitudes with the ones from our baseline model.

5.2 Mechanisms for Utility Effects

Reductions in losses could come via multiple channels. We find evidence that the reduc-

tions in losses came with both an increase in the total number of customers and a reduc-

tion in utility claims of damage to the distribution infrastructure. Together, these results

are indicative of ABCs making kundas more difficult and as a result, more consumers

becoming formal customers of the utility. Further, customers would be more likely to

avoid disconnections due to bill non-payment in the absence of informal substitutes for
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electrification, theoretically increasing revenue recovery.

5.2.1 Effects of ABC Installation on Customer Numbers

Losses could fall due to increased formalization of customers. Customers previously con-

necting to the grid via informal, illegal connections may shift to formal connections at the

time of ABC installation. We investigate this channel for loss reduction through event

studies and regression analyses.

We perform an event study in which the outcome variable is the inverse hyperbolic

sine of number of all types of consumers on a feeder line over time. Figure 3 provides no

evidence of a statistically significant difference in pre-trends between the ABC “treated”

and “untreated” feeder lines. We do see a statistically significant increase in the number

of customers following the ABC installation. Interestingly, the increase occurs approxi-

mately 2 months after the installation of the ABCs, suggesting that customers previously

using illegal connections learn in the few months after ABC installation that kundas are

more difficult to connect with the ABCs and therefore switch to legal connections.

Like before, we implement two forms of regression analyses to estimate the impact

of ABCs on the number of consumers, one using the binary indicator of ABC installation

as the treatment variable, the other using the proportion of PMTs in a feeder covered by

ABCs as the measure of treatment intensity. Results are in Table 3. In Column 1, the

outcome variable is the inverse hyperbolic sine of number of consumers – of all types –

in each feeder line. We see a significant effect of ABCs on total consumers in both Panel

A (using the ABC binary treatment indicator) and Panel B (using the treatment inten-

sity variable). Columns 2 through 6 in the table show the estimated impacts of ABCs on

different categories of consumers (agricultural, bulk, commercial, industrial, and residen-

tial). We find that ABC installation led to a 6.5% increase in total number of customers at

the feeder line level. Column 6 suggests that these changes were driven primarily by an

increase in residential consumers.
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5.2.2 Consumers’ Payment for Electricity Services

Event studies in Figure 4 indicate that, following the installation of ABCs, both residential

consumers’ quantity of billed units and the monetary billed amount significantly, both of

which are consistent with a reduction in kundas and an increase in consumption of elec-

tricity services through formal connections to the grid. These came with reductions in the

probability of customers not paying their bill and an increase in the payment ratio (the

proportion of the billed amount paid for the month), coinciding with the increases in rev-

enue recovery found in the feeder-level analysis. Lastly, there is evidence of a reduction

in irregular billing and billing following detection of theft.

The difference-in-differences regression analyses in Table 4 provide further insights.

Panel A shows the average treatment effects of ABCs, similar to those in the event studies.

With our binary treatment variable ”ABC”, we interpret these coefficients as the impact

of a PMT being upgraded from the old distribution wires to ABCs. In columns 1 and

2, the outcome variables are the inverse hyperbolic sine of billed units (kWh) and billed

monetary amounts (rupees). Results indicate the ABC conversion led to a 9% increase

in kWh of billed units (column 1) and a 9.8% increase in billed amount (column 2). In

addition, the probability of a customer not paying one’s monthly electricity bill on-time

decreased by 5.2 percentage points (column 3) and the ratio of monthly billed quantity

paid increased by 1.6 percentage points (column 4). Finally, the probability of a meter

related issue within a month and whether there were thefts during a month reduced by

11.1 and 3.8 percentage points, respectively.

Panel B shows heterogeneity by expenditure group. Interestingly, the effects of the

ABCs on the low expenditure and high expenditure groups are of similar magnitude for

all outcomes except one. In column 5, the group with expenditures greater than $2 per

day are significantly less likely to have irregular bills within a month than those house-

holds with expenditures less than $2 per day. This might be reflective of relatively better

metering infrastructure, metering, and billing practices in richer neighborhoods covered
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by ABC installations.

6 Implications for Climate Change Mitigation

Ex-ante, the implications of the ABC intervention for electricity generation and, therefore,

CO2 emissions are not obvious. If anything, our results to this point suggest that emis-

sions may increase as a result of infrastructure upgrades: ABCs led to an increase in both

the total number of utility customers and billed units (kWh) per customer, which together

indicate an increase in electricity supplied and therefore electricity generated. In a setting

such as Pakistan, where 62% of electricity generation is via fossil fuels (NEPRA, 2021), an

absolute increase in electricity generation likely means an increase in CO2 emissions.

6.1 Estimating Reductions in Emissions

In this section, we explore the implications of the infrastructure upgrade for climate

change mitigation through a multi-step process. First, we estimate the impacts of ABCs

on a proxy for electricity generation. Then, we calculate the marginal changes in CO2

emissions per kWh change in electricity generated. Third, using the results of the prior

two steps, we perform back-of-the envelope calculations to estimate ABCs’ influence on

CO2 emissions. Lastly, to provide some prospective, we compare these estimates to the

CO2 emissions from Karachi Electric’s annual generation.

For the first step, given generation occurs at a higher level than the ABC intervention,

we use the quantity of electricity ”sent out” (kWh) to a feeder line per month (in other

words, the quantity delivered to a feeder line) to proxy for generation per feeder line.7 To

estimate the impact of ABCs on electricity generation, we run regressions akin to those

described in Equation 1, but with the quantity ”sent out” as the outcome variable. Results
7Electricity sent out includes metered consumption, unmetered (illegal) consumption as well as tech-

nical losses. A reduction in technical losses can be considered a pure welfare gain as CO2 emissions are
averted but consumption is not reduced. However, a reduction in in metered or unmetered consumption
might have welfare consequences for consumers which we are unable to capture in this calculation.
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in Table 5 show that ABCs led to a decrease in generation of 97,213.3 kWh per feeder line

per month (column 1). In logs, the intervention led to a 10.2% decrease in generation

per feeder line per month (column 2). These results indicate that not only did ABCs

reduce losses, they also reduced the total electricity delivered, and therefore, the quantity

generated.

To translate these generation reductions per month into avoided CO2 emissions, we

perform calculations of the estimated reduction in CO2 emissions per kWh reduction of

electricity generated that are specific to Pakistan’s generation mix. Details of these cal-

culations are in Appendix A3, though broadly speaking, we create a mix of fuels that

would most likely be used to respond to changes in demand. This ”responsive mix” con-

stitutes mostly of generation attributed to fossil fuels, as these technologically allow for

changes relatively easier changes in production, when compared to other sources. Our

calculations indicate that the reduction in CO2 per kWh reduction of electricity services

consumed to be 0.76 kg CO2/kWh for our responsive mix.

Note that the above estimates is one of many alternatives. If, alternatively, if we

assume that marginal production takes place solely through natural gas (the least carbon

intensive of Pakistan’s fossil fuel generation mix) or residual fuel oil (the most carbon

intensive of the country’s fossil fuel generation mix), our estimates change to 0.46 kg

CO2/kWh and 1.06 kg CO2/kWh, respectively. Our responsive mix then is a conservative

estimate, between both bounds, though we provide estimates using all three.

Finally, we calculate the change in CO2 emissions per change in electricity generated

by generation fuel type and, to put these numbers in perspective, we compare them to

Pakistan’s annual CO2 emissions. Results are in Table 6. In column 1, we present the re-

sult of multiplying each of these estimated changes in CO2 per kWh change in generation

– according to fuel type of natural gas, residual fuel oil, coal, and a responsive blend of the

three fuels – by the estimated reduction in generation: 97,213.3 kWh per feeder line per

month (from column 1 of Table 5). This provides us with a range of estimated reductions
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in CO2 emissions per year per feeder line, by fuel source of the marginal generator. We

can aggregate these numbers to all high loss feeders (column 3) and compare them the

estimated CO2 emissions from Karachi Electric’s generation in a year (column 4). This

reduction in CO2 emissions is non-trivial, equal to roughly 1.67% to 4.26% of Karachi

Electric’s annual emissions due to generation.

6.2 Comparing ABCs with with Energy Efficiency

To provide a sense of magnitude for these calculations, we compare the ABCs’ reductions

in billed electricity consumption with the technologically feasible reductions from other

technologies. To do so, we convert the ABCs’ feeder-line level reductions into residential

consumer-level reductions. From our regressions, we know that ABCs reduced the feeder

line level quantity ”sent out” by 97,213.3 kWh per feeder line per month. We divide that

by the number of residential consumers per feederline (1,685), which provides an ABC-

induced reduction in electricity consumption of 57.7 kWh per residential customer per

month.

To put this reduction in perspective, we perform back of the envelope calculations

for electricity savings that would occur if a household replaced 3 incandescent light bulbs

with more efficient LED light bulbs. We perform these calculations based on Carranza

and Meeks (2021), who through a randomized experiemnt in the Kyrgyz Republic found

that in the absence of positive spillovers, the reductions in electricity consumption due to

a randomized energy efficient light bulb intervention, performed close to those predicted

in engineering models.

First, we calculate the power reduction (kW) per household from making this switch

to LEDs. We assume households would replace a 100 W incandescent with a 100 W equiv-

alent LED. Actual wattage listed for LEDs is typically 10 W for a 100W equivalent bulb.

Therefore for each incandescent bulb replaced by a LED, there is a reduction of 90 W (100

W - 10 W). If the household has 3 lightbulbs and replaces all of them, this is a power
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reduction of 270 W or 0.27 kW.

We use that estimated reduction to calculate three scenarios – for winter, spring/fall,

and summer – for expected reduction in billed electricity (kWh) per month. We use these

to estimate the expected reductions (Table A14). Given lighting is used differently over

the course of a year, we make these calculations by season. These three scenarios place

the per household kWh reduction due to switching 3 incandescent light bulbs to LEDs

at between 24.3 and 44.55 kWh per month, which is just below the 57.7 kWh per month

ABC-induced reduction we calculated per consumer. Therefore, the reduction from ABCs

is equivalent to that of lighting efficiency.

7 Changes in Consumer Surplus

7.1 Conceptual framework

In the preceding sections we analysed the effect of ABC installation on the utility’s bottom-

line, showing that it reduced losses and increased revenue, suggesting that the interven-

tion raised producer surplus. In this section we look at the effects ABC had on consumers,

and analyse it from two angles; first we estimate changes in consumer surplus, and gov-

ernment subsidies. Second, we extend the discussion of effects beyond quantitative mea-

sures, and report evidence of improvements in the quality of electricity services.

When calculating changes in consumer surplus, we note that given our previous re-

sults, in particular the decrease in units sent out and increase in billed units, we expect

consumer surplus to fall. This is because for any decreasing demand function, we would

anticipate that a switch from kundas to formalised connections would increase the effec-

tive price of electricity and reduce consumption, and therefore lower consumer surplus.

However there are two important caveats to this results. The presence of kundas

effects the ”price” the consumers pay for electricity, indeed they allow consumers to ac-

cess electricity at zero marginal cost. For simplicity we assume that the kunda price is a
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lump-sum transfer from consumers to kunda operators,8 then the decrease in consumer

surplus also incorporates a decrease in these lump-sum transfers. In our calculations

then, we separate out these effects.

Second, we note that as ABC installation does not change the pricing structure for

pre-existing formal customers, any fall in consumer surplus is driven by consumers who

were previously using kundas to bypass billing. In such a case, while it is true that ABCs

decrease CS, it is driven by a switch from informal to formal consumption. It is then

reasonable to assume that it lowers the cross-subsidisation of consumption of electric-

ity from formal to informal consumers, and may indeed yield higher quality of service

for the utility’s formal customers, such as lower incidence of load-shedding and voltage

fluctuations. These latter quality effects are not captured by our surplus calculations.

Finally, a note on total welfare. We note that with fewer units sent out, the amount of

subsidy paid by the government falls. This would under a perfectly competitive market

result in an increase in welfare, but a utility is the quintessential natural monopoly, and in

the presence of market power, welfare may increase or decrease, depending on whether

the subsidy causes the utility to over or under-produce relative to the optima. While

we find evidence that total surplus falls, we must highlight that the results reported on

welfare do not account for externalities such as carbon emissions from production, and

that the decrease in technical losses is a pure welfare gain.

7.2 Empirical Evidence

We now quantify the welfare impacts of ABC installation. We measure the costs to the

subsidized consumers, the benefits to the electric utility, and the change in government

expenditures. We restrict our analysis to the high-loss IBCs and amoung the feeder lines

that ultimately have ABCs installed.

8Which is also in line with our focus group discussions and other work (see for example Haider (2020)),
that suggests kunda operators charge a fixed monthly fee for the kunda.
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ABCs make illegal electricity connections or thefts more difficult. As is shown in

previous sections, there is an increase in consumers’ billed amount and payment ratio

after the ABC installation. Hence, we characterize the ABC installation as an informal tax

to consumers for their electricity usage. The change in billed amount and payment ratio

can be approximated by an average price increase faced by consumers in feeder lines with

ABC installed. Therefore, for tractability, we consider the tax as a price tax.

To measure the change in consumer surplus, we need to estimate price elasticities

of electricity demand. We leverage the monthly feeder-level data on electricity sent-out,

bill payment, and the number of customers to conduct the estimation. For each feeder

line, We first calculate the average electricity consumption per consumer (yit) as the total

consumption divided by the average number of customers in the post-ABC period.9

The average electricity price (pit) faced by consumers is measured as the total expen-

diture on electricity usage divided by the total consumption. Consumers’ expenditures

on electricity usage include the amount they pay to KE (for legal connections).10

With the calcuated average electricity consumption and average electricity price, we

estimate the price elasticity of electricity demand using the 2SLS approach. For feeder

line i in IBC region j in month t, the first and second stage regressions are:

ln(pijt) = γABCit + αi + δjt + εijt

ln(yijt) = β ln( p̂ijt) + ϕi + κjt + uijt.

In the above equations, γ captures the change in electricty price after the ABC installation

and β captures the price elasticity of electricity demand. With these parameters, we can

calculate the change in consumer surplus as a result of average price increase induced by

9The total electricity consumption at each feeder line is measured by the electricity sent-out × (1-
technical loss rate). Here, we assume an 8% technical loss rate based on NEPRA’s estimation. Implicitly, we
assume a balance between the electricity supply and demand.

10As kunda pricing is considered a lump-sum transfer, we ignore them for the purposes of calculating
the average price.
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the ABC installation.

The changes in consumer surplus calculated above contain with them the lump-sum

transfers made to kunda-operators pre-ABC. To account for this we estimate the amount

of transfer using results from our household survey. According to the household survey,

we assume the proportion of households using Kunda is 10% and test different Kunda

price assumptions ranging from 0 to 3500 PKR. Then, we calculate the total payment

for Kunda usage by multiplying the Kunda price with the number of households using

Kunda in each feeder line. Note that we assume consumers are no longer paying for

Kunda for the post-ABC period since illegal connections will be terminated.

The change in producer surplus is measured by the change in consumer payment to

KE. We first estimate the average change in the proportion of electricity paid relative to

the electricity sent-out (Rit) after the ABC installation.11 The total change in consumer

payment is then calculated by multiplying Rit with the average electricity sent-out per

feeder line, average electricity price, and the number of feeder lines.

Lastly, the change in government subsidies is calculated by multiplying the change

in electricity consumption per customer with the average subsidy rate (i.e., 4.7 PKR ac-

cording to KE) and the total number of customers.

Table 7 presents the welfare calculations under different Kunda price assumptions.

7.3 Supporting Evidence

We supplement these consumer surplus calculations with evidence from our household

survey that suggests potential benefits from the reduction in losses and increase in rev-

enue recovery. Customers in areas with ABCs report experiencing significantly less load

shedding than areas without ABCs and, consistent with that, these households also have

more appliances and a greater number of reported hours of appliance use per day.

11The proportion of electricity paid relative to the electricity sent-out is calculated by RR×(1-Loss) where
RR is the revenue recovery ratio and Loss is the loss rate. We then estimate the average change by regression
this outcome variable on ABC dummy controlling for feeder line and IBC-by-month fixed effects.
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7.3.1 Consumer Complaints

With ABCs making illegal connections more difficult to achieve, consumers might make

more frequent complaints to the utility (e.g., complaints regarding deterioration of ser-

vice quality or disputes of bills), which we investigate here. We use the utility’s feeder

line level data on consumer complaints, and the type of complaints filed, to estimate im-

pacts of ABCs on these outcome measures. Regression results are presented in Table 8,

with Panel A reporting results where the outcome variable is the number of complaints

and Panel B normalising these to be relative to the number of consumers at a feeder line.

Estimated impacts across the two panels suggest that the rise in complaints was propor-

tional to the increase in consumers. Panel A indicates an increase in total complaints,

which is the result of an increase in bill complaints and service requests in combination

with a decrease in arrears disputes. In contrast, after dividing the total complaints by

the number of consumers provided services within the feeder, the magnitude of the es-

timates in Panel B are smaller. These results suggest that consumer complaints overall

decrease with the ABCs; it appears to be a function of a significant reduction in technical

complaints, which is consistent with improvements in service quality.

7.3.2 Suggestive Evidence from Survey Data

We use our household survey data to help us better understand the mechanisms through

which the ABC impacts may have occurred. Given our residential consumer survey is

cross-sectional, we interpret these results as correlational and supplemental to our main

results. Historically, the electricity utility has targeted load shedding according to feeder-

line level losses. Given the utility’s financial indicators improved – losses fell and revenue

recovery increased – with ABCs (Table 1) and the utility links load shedding to losses, we

expect to see less load shedding in these ABCs relative to other high loss areas that had

not had ABCs installed. Table 9 presents differences in reported service quality for house-

holds covered by ABC, relative to those not yet covered by ABCs. There are significantly
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fewer hours per day of reported load shedding in both the summer (column 1) and winter

(column 2) among the ABC areas, relative to the non-ABC areas. This suggests that the

utility is reducing the hours of load shedding within these areas, possibly because losses

have decreased following the ABC conversion. The estimated reduction in load shedding

is approximately one fewer hour of load shedding in areas with ABCs, depending on

the season and the expenditure group. Notably, the mean load shedding in the control

group is 8.5 hours per day in the summer and 6.9 hours in the winter. With fewer hours

of load shedding, household appliance ownership and use may differ across ABC and

non-ABC areas as households can use the appliances more when there are more hours

of electricity available. We see great number of both appliances (column 3) and hours of

daily appliance usage (column 4).

Lastly, we use data from a number of survey questions designed to elicit respondents’

beliefs and perceptions to understand if there are differences across ABC and non-ABC

households with respect to the electricity utility, load shedding, and bills/bill-payment.

Results are presented in Figure 5. Households in ABC areas are, on average, less likely to

believe that their electricity bills accurately reflect their consumption and more likely to

report that bill errors are a concern; however, they are also less likely to believe electricity

quality issues (both electricity shortages and load shedding) are problems.

8 Conclusions

High T&D losses and low revenue recovery are major impediments in providing reliable

and high quality electricity services in a sustainable manner. We study the effectiveness of

an infrastructure improvement program targeted to high loss areas in Karachi, Pakistan.

The program involved an extensive and fairly rapid conversion of bare electric service

wires by Aerial Bundled Cables, beginning in 2015. ABCs, due to their thick insulated

covering and intertwined design, ABCs make hooking illegal connectors to them more
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difficult. We use the variation in timing of ABC installations at feeder lines, together with

administrative and customer-level survey data to identify the impact of ABCs using an

event study and difference-in-differences approach. The intensity of the ABC roll-out

over time was dependent on the business strategy of the utility, while the placement of

ABCs began in neighborhoods with least anticipated community resistance. However,

we find that there are no significant differences in the trends in losses, revenue recoveries,

and customer outcomes prior to ABC installation.

Differences in the timing of infrastructure upgrades across space allow us to use

panel data techniques to measure their impact on relevant outcome variables. Comple-

menting our analysis of KE’s administrative data, we also estimate individuals’ responses

to ABCs using residential customer-level data, which we collected in Fall 2021.

We find that ABC conversion both significantly reduced monthly losses and increased

revenue recoveries. ABCs yielded greatest impact on losses (revenue recovery) in the

feeders with the highest loss (lowest revenue recovery) levels prior to the intervention.

We find evidence that ABCs achieved these impacts by increasing the total number of for-

mal metered residential customers, increasing the quantity of billed units (and therefore

the billed monetary amounts) as well as the payment ratio, while decreasinf irregular bull

payments and indicators of theft. Together, these results are indicative of ABCs making il-

legal connections to the distribution wires more difficult and, as a result, more customers

becoming formal customers of the utility.

The results from our household surveys are mostly consistent with our findings from

the data provided by the utility. Customers in areas with ABCs reported considerably

less load shedding than those in areas without ABCs. However, there is no significant

difference in levels of trust in the utility across the intervention. In fact, we find that

households in areas with ABCs are less likely to think that utility billing is accurate. It

is difficult to draw a clear connection between infrastructure upgrades and trust in the

utility, as it is likely to be a function of customer beliefs about how much they should be
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paying for electricity, which will depend on the economic, social and political context.

From the environmental perspective, despite an increase in both the total number of

customers and the billed units per customer, the amount of electricity sent out over the

distribution system decreased after ABC installation. We estimate that the reduction in

CO2 emissions from ABC installations to be between 1.7% and 4.3% of the utility’s annual

emissions from electricity generation. In a country that depends on thermal power plants

to produce 70% of the total electricity, the carbon-reducing impact of ABCs is non-trivial.
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Figure 1: Trend of ABC Installation

Notes: This figure shows the cumulative number of PMTs (pole mount transformers) and customers covered
by ABCs over time in Karachi, Pakistan.
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Figure 2: Event Study Estimates of the ABC Impact on Losses and Revenue Recovery

Notes: Figure shows the coefficients and their 95% confidence intervals from an event-study regression
estimating the ABC impact on losses and the revenue recovery rate. Data are at the feeder level on a
monthly basis. Regressions include IBC-by-month and feeder fixed effects. One month prior to the ABC
installation (-1) is the reference group and the corresponding coefficient is normalized to zero. Standard
errors are clustered at the feeder level.
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Table 1: Impact of ABC Installation on Losses and Revenue Recovery

Monthly Quarterly

Loss RR Loss RR

(1) (2) (3) (4)

Panel A: DID Estimates
ABC -0.082*** 0.052*** -0.062*** 0.050***

(0.009) (0.009) (0.008) (0.009)

Panel B: Intensity of Treatment
ABC Ratio -0.176*** 0.090*** -0.175*** 0.105***

(0.013) (0.013) (0.013) (0.013)

Control Mean 0.260 0.792 0.243 0.813
Observations 47,575 37,353 18,219 15,157
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder line level. There are 2163 feeder lines in Karachi during the
study period. ABC is a binary indicator that equals 1 when the feeder line has PMTs with
ABC installed, and equals zero otherwise. ABC Ratio is defined as the number of PMTs
with ABC installed divided by the number of total PMTs in a feeder line. All regres-
sions include feeder and IBC-by-month or IBC-by-quarter fixed effects. Standard errors
in parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 2: Heterogeneous Impacts by High/Low Loss Feeders

Monthly Quarterly

Loss RR Loss RR

(1) (2) (3) (4)

ABC -0.024* -0.033*** -0.006 -0.024***
(0.014) (0.010) (0.014) (0.009)

ABC × Medium Loss -0.061*** -0.057***
(0.016) (0.016)

ABC × High Loss -0.135*** -0.126***
(0.030) (0.029)

ABC × Mediam RR 0.098*** 0.073***
(0.013) (0.014)

ABC × Low RR 0.182*** 0.153***
(0.022) (0.023)

Control Mean 0.260 0.792 0.243 0.813
Observations 43,041 23,461 16,495 9,635
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder line level. There are 2163 feeder lines in Karachi during the study
period. ABC is a binary indicator that equals 1 when the feeder line has PMTs with ABC in-
stalled, and equals zero otherwise. We classify the initial losses or revenue recovery rate (the
monthly average losses or revenue recovery rate over 2018m1 and 2018m6) into three per-
centiles, low, medium, and high. The ABC indicator is then interacted with binary indicators
for whether the feeder line falls into certain loss or RR categories. All regressions include feeder
line and IBC-by-month fixed effects. Standard errors in parentheses are clustered at the feeder
line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 3: Event Study Estimates of the ABC Impact on the Number of Consumers

Notes: Figure shows the coefficients and their 95% confidence intervals from an event-study regression
estimating the ABC impact on the number of consumers measured in inverse hyperbolic sines. Data are at
the feeder level. From the top to the bottom, the figure shows the number of all claims, ABC-related claims,
and non-ABC-related claims. Regressions include IBC-by-month and feeder fixed effects. One month prior
to the ABC installation (-1) is the reference group and the corresponding coefficient is normalized to zero.
Standard errors are clustered at the feeder level.

38



Table 3: Impact of ABC on Consumer Number

VARIABLES (IHS) Total Agriculture Bulk Commerce Industry Resident

(1) (2) (3) (4) (5) (6)

Panel A: DID Estimates
ABC 0.065*** -0.002 -0.004 -0.023 -0.009 0.064**

(0.022) (0.019) (0.006) (0.029) (0.035) (0.028)

Panel B: Intensity of Treatment
ABC Ratio 0.138*** 0.005 -0.008 -0.053 -0.015 0.159***

(0.033) (0.009) (0.008) (0.047) (0.052) (0.043)

Outcome Mean 1,582.96 1.24 0.09 263.41 11.71 1,306.51
Observations 67,602 67,602 67,602 67,602 67,602 67,602
Feeder FE ✓ ✓ ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓ ✓ ✓

Notes: The outcome variable is the log number of consumers in each feeder line. Columns 2-6 refers to dif-
ferent consumer categories. ABC is a binary indicator that equals 1 when the feeder line has PMTs with
ABC installed, and equals zero otherwise. ABC Ratio is defined as the number of PMTs with ABC installed
divided by the number of total PMTs in a feeder line. All regressions include feeder line and IBC-by-month
fixed effects. Standard errors in parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Figure 4: Event Study: Effect of ABC on Customer Behavior

Notes: Figure plots coefficients and their 95% confidence intervals from the event study estimates of the ABC
effect. The outcome variables include billed electricity units (in inverse hyperbolic sine), billed electricity
amount (in inverse hyperbolic sine), an indicator for whether the customer does not pay electricity bills on
time, the proportion of payment relative to the total dues to KE (payment ratio), an indicator for whether
there are irregular bills in that month, and an indicator for whether there are thefts in that month. All
regressions include customer, month, and PMT-by-Month-of-Year FEs. Standard errors are clustered at the
PMT level.
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Table 4: Effect of ABC on Customer Behaviors

IHS
Billed
Units

IHS
Billed

Amount

Not Pay Payment
Ratio

Irregular
Bills

Thefts

(1) (2) (3) (4) (5) (6)

Panel A: Average Treatment Effect
ABC 0.090*** 0.098*** -0.052*** 0.016*** -0.111*** -0.038***

(0.024) (0.029) (0.012) (0.005) (0.021) (0.008)

Panel B: Heterogeneity by Expenditure Groups
ABC × Below2 0.090*** 0.096*** -0.050*** 0.017*** -0.106*** -0.038***

(0.024) (0.030) (0.012) (0.005) (0.020) (0.008)
ABC × Above2 0.087 0.118* -0.076*** 0.014 -0.159*** -0.039***

(0.060) (0.070) (0.027) (0.011) (0.041) (0.015)

Outcome Mean 241.05 3,369.08 0.33 0.20 0.20 0.05
Observations 88,296 88,296 88,296 88,296 88,296 88,296
Number of HHs 3047 3047 3047 3047 3047 3047
Customer FE ✓ ✓ ✓ ✓ ✓ ✓
Month FE ✓ ✓ ✓ ✓ ✓ ✓
PMT-MoY ✓ ✓ ✓ ✓ ✓ ✓

Notes: Customer-level data are provided by KE. The outcome variables include billed electricity units (in
inverse hyperbolic sine), billed electricity amount (in inverse hyperbolic sine), an indicator for whether the
customer does not pay electricity bills on time, the proportion of payment relative to the total dues to KE
(payment ratio), an indicator for whether there are irregular bills in that month, and an indicator for whether
there are thefts in that month. ABC is a binary dummy that equals 1 if the household is served by a PMT that
has ABCs installed already. Above2 = 1 if the household’s expense per capita is above $2 each day and Be-
low2 = 1 if the household’s expense per capita is below $2 each day. All regressions include customer, month,
and PMT-by-month-of-year FEs. Standard errors are clustered at the PMT level. * p < 0.1, ** p < 0.05, ***
p < 0.01.

41



Table 5: Effect of ABC on Electricity Sent-Out

Quantity Sent Out
(kWh per month)

Level IHS

(1) (2)

ABC -97,213.292*** -0.102***
(18,433.656) (0.023)

Outcome Mean Level 920,981 920,981
Observations 47,575 47,575
Feeder FE ✓ ✓
IBC-Month FE ✓ ✓

Notes: Data are at the feeder line level. ABC is a binary indicator that
equals 1 when the feeder line has PMTs with ABC installed, and equals
zero otherwise. All regressions include feeder line and IBC-by-month
fixed effects. Standard errors in parentheses are clustered at the feeder
line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 6: Change in CO2 Emissions per Change in Electricity Generated, by
Generation Fuel

Aggregated: High-loss feeders

∆ in CO2 ∆ in CO2 ∆ in CO2 % of KE’s
(t CO2) / emissions emissions annual CO2

∆ generation per feeder per year emissions
(MWh) (tons) (tons) from generation

Generation Fuel(s) (1) (2) (3) (4)

Natural Gas - 0.46 - 536.6 - 213,574 1.67%
Responsive Blend - 0.76 - 886.6 - 352,861 2.77%
Residual Fuel Oil - 1.06 - 1,236.6 - 492,148 3.86%
Coal - 1.17 - 1,364.9 - 543,190 4.26%

Notes: The steps leading to these results are detailed in Appendix A3. Column 1 is based on the num-
bers reported in Table A12. Column 2 is calculated by multiply the values in column 1 by -97,213
kWh per month, which is the reduction estimated in Table 5, as the reduction in quantity sent out to
a feeder line per month as a result of the ABC installation. Column 3 is calculated by multiplying
Column 2 by 398, based on the utility’s 398 ”high loss” feeders. Column 4 is calculated by dividing
column 3 by 12,754,639 tons of CO2, which was our estimate for the total CO2 emissions for generat-
ing the KE units of electricity purchased per year.
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Table 7: Effect of ABCs on Welfare

Kunda
Price

∆CS per
Consumer

∆CS Total ∆Kunda
Revenue

∆PS ∆Subsidy ∆Welfare

(1) (2) (3) (4) (5) (6) (7)

0 -682 -473,548,704 0 331,708,768 -133,894,840 -7,945,079
750 -607 -421,442,915 -52,105,772 331,708,768 -133,894,840 -7,945,079
1500 -532 -369,337,143 -104,211,544 331,708,768 -133,894,840 -7,945,079
2000 -482 -334,599,962 -138,948,725 331,708,768 -133,894,840 -7,945,079
2500 -432 -299,862,781 -173,685,906 331,708,768 -133,894,840 -7,945,079
3500 -332 -230,388,418 -243,160,269 331,708,768 -133,894,840 -7,945,079

Notes: All values are in Pakistani Rupees. Exchange rate during this period was approximately 1 USD = 150 PKR. Kunda
prices are based on prices reported in our focus groups in summer and fall 2021. The change in total consumer surplus is
calculated by multiplying the per customer change (column 2) by the number of customers in high loss areas following the
ABC intervention (694,743 customers). The change in producer surplus is measured by the change in the amount of customer
payment to KE. ∆Subsidy is measured by the change in government subsidies for electricity. Details for the calculation is de-
scribed in Section 7.2.
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Table 8: Impact of ABC on Consumer Complaints

VARIABLES (IHS) All Bill
Complaints

Service
Requests

Technical
Complaints

(1) (2) (3) (4)

Panel A: Total Measures
ABC -0.079*** 0.223*** -0.126*** -0.238***

(0.023) (0.031) (0.041) (0.032)
Outcome Mean 85.58 5.48 1.73 12.32

Panel B: Per Consumer Measures
ABC -0.016*** 0.001*** 0.002* -0.018***

(0.002) (0.000) (0.001) (0.002)
Outcome Mean 0.264 0.011 0.086 0.166

Observations 71,918 71,918 71,918 71,918
Control ✓ ✓ ✓ ✓
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓

Notes: Data are at the feeder line level. The outcome variable is the inverse hyperbolic sine of
the number of consumer complaints, including all types of complaints, bill complaints, ser-
vice request. In panel A, We add consumer number as control variable. In panel B, we use
per consumer measures defined as the number of complaints divided by the number of con-
sumers covered by a feeder line. All regressions include feeder line and IBC-by-month fixed
effects. Standard errors in parentheses are clustered at the feeder line level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 9: Evidence on ABCs, Household-Reported Service Quality, and
Appliances

Daily Hours of Load
Shedding/Power Cuts

Total
Number of
Appliances

Total Hours
of Daily
Usage

Summer Winter
(1) (2) (3) (4)

ABC -1.173*** -1.015*** 0.506*** 3.487***
(0.260) (0.322) (0.156) (0.847)

Control Mean 8.541 6.872 6.833 18.409
Observations 3,068 3,068 3,068 3,068
R-squared 0.125 0.302 0.372 0.198
Control ✓ ✓ ✓ ✓
IBC FE ✓ ✓ ✓ ✓

Notes: Outcome variables are collected via our household survey implemented in late
2021. ABC is a binary dummy that equals 1 if the household is served by a PMT with
ABCs installed. Control variables included are: total number of family members, num-
ber of rooms, years in the neighborhood, indicators for house owners, indicators for
owning a car, and indicators for having financial accounts. Standard errors are clus-
tered at the PMT level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 5: Effect of ABC on Household Beliefs

Notes: Figure plots coefficients and their 95% confidence intervals from regressing outcome variables on
the interactions between ABC (a binary dummy that equals 1 if the household is served by a PMT with
ABCs installed) and two categorical income variables (Above2 and Below2). Above2 = 1 if the household’s
expense per capita is above $2 each day and Below2 = 1 if the household’s expense per capita is below $2
each day. Data were collected via our household survey implemented in late 2021 in response to questions
asking respondents to indicate whether they agreed or disagreed with the belief statement. The outcome
variables here are binary indicators equaling 1 if the respondent indicated some level of agreement (between
mildly to strongly agree) with the statement and zero otherwise. Regressions include control variables:
total number of family members, number of rooms, years in the neighborhood, indicators for house owners,
indicators for owning a car, indicators for having financial accounts, expenditures on food items, and binary
indicators for household income categories. Standard errors are clustered at the PMT level.
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APPENDIX: FOR ONLINE PUBLICATION

A1 ABC Installation Over Time by PMT

(a) 2016m6

(b) 2018m12

(c) 2020m12

Figure A1: ABC Installation at PMTs

Notes: The figures show the location of PMTs in one of the IBCs with high losses. Light colored circles
indicate PMTs without ABCs, and darker colored circles indicate PMTs that have been converted to ABCs..
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A2 Additional Figures and Tables
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Table A1: Summary Statistics: General Household Characteristics

Variable mean sd min max

Household Characteristics
Number of Adults 4.34 2.84 1 46
Number of Children 2.66 2.35 0 27
Total Number of People 7.00 4.06 1 47
Years in the Neighborhood 22.37 18.53 1 80
% Housing Owners 0.79 0.41 0 1
% Housing Renters 0.21 0.41 0 1
House Characteristics
Number of Rooms 2.71 1.33 1 12
% Pakka 0.76 0.42 0 1
% Katcha 0.19 0.39 0 1
% Both Pakka and Katcha 0.05 0.21 0 1
Connectivity
% Cellphone 0.60 0.49 0 1
% Mobile Internet 0.60 0.49 0 1
Expenditures
Total Monthly Expenditures 33426.02 25095.02 0 418300
Expenditure on Food 18543.54 13283.91 0 300000
Expenditure on Electricity 5001.27 8851.94 0 250000
Expenditure on Water 983.88 1939.43 0 40000
Expenditure on House Rent 1759.76 4427.53 0 90000
Expenditure on Other Rent 257.70 1259.82 0 22000
Expenditure on Other Utilities 250.19 878.24 0 25000
Expenditure on Durables 80.57 1450.02 0 50000
Expenditure on Transportation 2221.53 4502.02 0 90000
Expenditure on Other Recurring 175.48 1097.79 0 30000
Expenditure on Healthcare 2747.38 11354.45 0 350000
Expenditure on Education 2557.88 6811.91 0 200000
Asset Ownership and Financial Accounts
% Own Vehicles 0.04 0.19 0 1
% Own Motorcycles 0.59 0.49 0 1
% Own Land 0.05 0.22 0 1
% Financial Account 0.32 0.47 0 1

Notes: Statistics are calculated from our household survey conducted in 2021.
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Table A2: Summary Statistics: Electricity-Related Household Characteristics and Reports

Variable mean sd min max

Electricity Connection Details
Years with KE Connection 20.98 19.04 1 80
% Households Paying KE for Electricity 0.87 0.33 0 1
% Households Paying Other Entity for Electricity 0.09 0.28 0 1
% Meter Installed 0.96 0.19 0 1
% Meter Calculating Peak Consumption 0.19 0.39 0 1
% Households Checking Meter Regularly 0.06 0.23 0 1
% Share Meter with Other Households 0.01 0.11 0 1
Summer Monthly Electricity Expense (PAK) 5,635.48 6,988.37 500 200000
Winter Monthly Electricity Expense (PAK) 3,885.55 7,812.55 300 250000
Lighting Sources
% Use Candle 0.12 0.32 0 1
% Use Lantern 0.01 0.09 0 1
% Use Kerosene Oil 0.01 0.11 0 1
% Use Battery Light 0.34 0.47 0 1
% Use Solar Powered Light 0.14 0.35 0 1
% Use Generator 0.06 0.23 0 1
% Use Mobile Light/Torch 0.06 0.24 0 1
Electricity service quality
Summer Outage/Load Shedding Hours per Day 7.63 2.72 0 24
Winter Outage/Load Shedding Hours per Day 5.62 3.08 0 24
% Experience Appliance Damages 0.27 0.45 0 1
% Use Device to Protect Against Voltage Fluctuation 0.38 0.49 0 1
% Report Electricity Shortage 0.46 0.50 0 1
% Report Voltage Fluctuation 0.12 0.33 0 1
% Report Unplanned Load Shedding 0.73 0.45 0 1
% Report High Expense Electricity 0.72 0.45 0 1
% Report Frequent Billing Errors 0.28 0.45 0 1
Appliance ownership
% Own Refrigerator 0.75 0.43 0 1
% Own Microwave Oven 0.01 0.10 0 1
% Own Washing Machine 0.72 0.45 0 1
% Own Air Conditioner 0.03 0.16 0 1
% Own TV 0.48 0.50 0 1
% Own Electric Water Pump 0.69 0.46 0 1
Total Number of Appliances 7.41 3.01 0 37
Light bulb Types
% Use Incandescent 0.01 0.07 0 1
% Use CFLs 0.26 0.44 0 1
% Use LEDs 0.84 0.36 0 1

Notes: Statistics are calculated from our household survey conducted in 2021.
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Table A3: Robustness Checks of ABC Impacts on Losses and Revenue Recovery

Loss RR

A. Feeder & IBC-by-Loss-Category-by-Month FE -0.066*** 0.048***
(0.008) (0.009)

B. Feeder-by-Calendar-Month & IBC-by-Month FE -0.092*** 0.053***
(0.010) (0.010)

C. Keep Feeders with >100m Distance from Others -0.081*** 0.053***
(0.009) (0.009)

D. Keep Feeders with >300m Distance from Others -0.088*** 0.053***
(0.010) (0.010)

E. Keep Feeders with >500m Distance from Others -0.095*** 0.046***
(0.017) (0.015)

F. Heterogeneity-Robust DID Estimator -0.073*** 0.066***
(0.013) (0.012)

Notes: Data are at the feeder line level. The coefficient estimate in each cell is from a separate re-
gression. In Panel A, we control for Feeder and IBC-by-Loss-Category-by-Month FEs. In Panel B,
we control fro feeder-by-calendar-month and IBC-by-month FEs. In Panel C–E, we only keep the
feeder lines with at least 100m/300m/500m distance from its nearest neighbors. In Panel F, we
report the aggregated ATT for all the timing groups across all periods using the heterogeneity-
robust DID estimator proposed by Callaway and Sant’Anna (2021). * p < 0.1, ** p < 0.05, ***
p < 0.01.
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Table A4: Nonlinearity in Impacts of ABCs

Monthly Quarterly

Loss RR Loss RR

(1) (2) (3) (4)

ABC Ratio -0.159*** 0.176*** -0.130*** 0.185***
(0.030) (0.039) (0.035) (0.041)

ABC Ratio2 -0.019 -0.092** -0.048 -0.086**
(0.032) (0.042) (0.037) (0.043)

Control Mean 0.260 0.792 0.243 0.813
Observations 47,575 37,353 17,626 14,664
Feeder FE ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓
IBC-Quarter FE ✓ ✓

Notes: Data are at the feeder line level. ABC Ratio is defined as the number of PMTs
with ABC installed divided by the number of total PMTs in a feeder line. All regres-
sions include feeder line and IBC-by-month/quarter fixed effects. Standard errors in
parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A5: Impact of ABC on Consumer Number: Before and After COVID

VARIABLES Total Agriculture Bulk Commerce Industry Resident

(1) (2) (3) (4) (5) (6)

ABC 0.074*** 0.000 -0.006 0.032 0.017 0.072***
(0.021) (0.019) (0.006) (0.025) (0.035) (0.025)

ABC × COVID -0.045 -0.015 0.013 -0.279*** -0.132** -0.041
(0.041) (0.012) (0.012) (0.074) (0.063) (0.053)

Outcome Mean 1,582.96 1.24 0.09 263.41 11.71 1,306.51
Observations 67,602 67,602 67,602 67,602 67,602 67,602
Feeder FE ✓ ✓ ✓ ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓ ✓ ✓ Yes

Notes: The outcome variable is the number of consumers in each feeder line, measured in inverse hyper-
bolic sine. Columns 2-6 refers to different consumer categories. ABC is a binary indicator that equals 1
when the feeder line has PMTs with ABC installed, and equals zero otherwise. COVID is a binary in-
dicator for the post-COVID period (i.e., after March 2020). All regressions include feeder line and IBC-
by-month fixed effects. Standard errors in parentheses are clustered at the feeder line level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Figure A2: Event Study Estimates of the ABC Impact on KE Claims

Notes: Figure shows the coefficients and their 95% confidence intervals from an event-study regression
estimating the ABC impact on the number of KE claims measured in inverse hyperbolic sines. Data are at
the feeder level. From the top to the bottom, the figure shows the number of all claims, ABC-related claims,
and non-ABC-related claims. Regressions include IBC-by-month and feeder fixed effects. One month prior
to the ABC installation (-1) is the reference group and the corresponding coefficient is normalized to zero.
Standard errors are clustered at the feeder level.
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Table A6: Impact of ABC on KE Claims

VARIABLES (IHS) All ABC
Related

Non-ABC
Related

(1) (2) (3)

Panel A: DID Estimates
ABC -0.058*** 0.063** -0.063***

(0.018) (0.024) (0.018)

Panel B: Intensity of Treatment
ABC Ratio -0.170*** 0.051 -0.175***

(0.029) (0.033) (0.029)

Outcome Mean 9.278 0.159 9.118
Observations 41,536 41,536 41,536
Feeder FE ✓ ✓ ✓
IBC-Month FE ✓ ✓ ✓

Notes: The outcome variable is the number of KE claims, including all types of
claims, ABC-related claims, and non-ABC-related claims, all measured in in-
verse hyperbolic sine. These claims happen when there is damage against the
KE infrastructure/property and then KE files a claim against the public or an
individual for damage, and then the police investigates the claim. ABC is a bi-
nary indicator that equals 1 when the feeder line has PMTs with ABC installed,
and equals zero otherwise. ABC Ratio is defined as the number of PMTs with
ABC installed divided by the number of total PMTs in a feeder line. All re-
gressions include feeder line and IBC-by-month fixed effects. Standard errors
in parentheses are clustered at the feeder line level. * p < 0.1, ** p < 0.05, ***
p < 0.01.
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A3 Calculations: Reductions in CO2 Emissions

In this section, we detail the steps involved in calculations pertaining to CO2 emissions
and the impacts of ABCs on them. First, we calculate the CO2 emissions produced for
all electricity generated and delivered to the service area covered by Karachi Electric.
Second, we estimate the reduction in CO2 per kWh reduction of electricity services con-
sumed, in order to estimate the reduction in CO2 emissions resulting from the introduc-
tion of the ABCs. Lastly, we use these two calculations together to compare the CO2

emissions reductions from ABCs with the overall emissions from electricity purchased
for the KE territory.

These calculations are conducted using information specific to Pakistan, from NEPRA’s
2021 Annual State of the Industry Report (NEPRA, 2021).

A3.1 Part 1: CO2 Emissions for Units of Electricity Purchased by Karachi Electric

We first calculate the CO2 emissions for all units purchased for KE’s service territory.
NEPRA’s report provides information on Karachi Electric system generation, as well as
the purchases KE makes from the Central Power Purchasing Agency (CPPA-G). As shown
in Table A7, the generation mix differs accross the two sources.

Table A7: Generation Mix for Pakistan, 2021

KE Generation CPPA-G Generation
Fuel Generation Percent Generation Percent

Quantity (GWh) (%) Quantity (GWh) (%)

Natural gas 3,420.59 26.08 14,496.43 11.22
Liquefied natural gas (LNG) 4,778 36.43 26,983.81 20.89
Residual fuel oil (RFO) 4,265 32.52 6,331.06 4.90
Coal 453 3.45 27,547.78 21.33
Hydro 0 0.00 38,800 30.04
Nuclear 0 0.00 10,871 8.42
Other renewables (solar, wind) 200 1.52 4,122 3.19

Total 13,116.6 100% 129,152.1 100%

Source: Data in this table are from the 2021 NEPRA annual report (NEPRA, 2021).

In FY 2020-21, Karachi Electric procured a total of 19,486 GWh. This was comprised
of electricity generated within the KE system (13,116 GWh), as well as outside purchases
from CPPA-G (6,370 GWh) (NEPRA, 2021).

We calculate the average emissions intensity by generation fuel type. We assume
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a plant efficiency and apply an emissions factor to estimate the kg of CO2 per MWh.
We assume that LNG is same as natural gas throughout the calculations. We multiply
the average heat rate for the [natural gas/RFO/coal] power plants in Pakistan, based on
NEPRA’s reports (NEPRA, 2021) by the carbon intensity of the [natural gas/RFO/coal]
fuel. These calculations allow us to account not only for the generation fuel type, but also
the efficiency of plants operating in Pakistan.

These calculations of emissions intensities are shown in Table A8.

Table A8: Average Plant Heat Rates and Emissions Intensities on Fuels

Power Plants’ Carbon Intensity Emissions
Generation Average Heat Rate of Fuel Intensity
Fuel (MMBtu/MWh) (kg CO2/MMBtu) (kg CO2/MWh)

Natural gas 8.7 52.9 460
RFO 14.1 75 1,060
Coal 97 12 1,170

We use these emissions intensities by fuel type, in conjunction with the generation
mix information in Table A7, to calculate the emissions for KE.

We first do so for the units KE purchased from its own generation basket. This is
quite straightforward to calculate as we can know the quantities generated by fuel type
for the KE system generation. We multiply these by the emissions intensities from above.
Results are presented in Table A9.

Table A9: Emissions from KE system electricty generation

Generation Contribution to Contribution to Emissions Emissions total
Fuel KE KE intensity by fuel

(GWh) (MWh) (kg CO2/MWh) (kg CO2)

Natural gas 8198.59 8198590 460 3,771,351,400
RFO 4,265.00 4265000 1060 4,520,900,000
Coal 453.00 453000 1170 530,010,000

Sum 8,822,261,400

Calculating the emissions from generation of the electricity purchased from CPPA-
G requires a few additional steps. First, we assume that the generation mix of the units
purchased from CPPA-G matches the proportions of the CPPA-G’s overall generation. We
calculate those proportions, still assuming that LNG is the same as natural gas. Results
are in Table A10.
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Table A10: CPPA-G Generation

Generation CPPA-G generation proportion of
Fuel (GWh) CPPA-G’s generation

Natural gas 41,480.24 0.321
RFO 6,331.06 0.049
Coal 27,547.78 0.213
(Hydro) 38,800 0.300
(Nuclear) 10,871 0.084
(Renewables) 4,122 0.032

We know from the NEPRA report (NEPRA, 2021) that KE purchased 6,370 GWh
from CPPA-G in the 2020-21 FY. We assume that these units that KE purchased from
CPPA-G were generated according to the overall CPPA-G mix shown in Table A10. With
this information, we can calculate the CO2 emissions from the electricity units that KE
purchased from CPPA-G. We multiply the proportions in the far right column of Table
A10 with 6,370 GWh and get results in Table A11.

Table A11: Emissions from the electricity generation of KE’s purchases from CPPA-G

Generation Contribution to Contribution to Emissions Emissions total
Fuel KE KE intensity by fuel

(GWh) (MWh) (kg CO2/MWh) (kg CO2)

Natural gas 1,964.94 1,964,940.16 460 903,872,472
RFO 299.91 299,905.55 1,060 317,899,879
Coal 1,304.95 1,304,952.41 1,170 1,526,794,320

Sum 2,748,566,671

We next sum the emissions from the electricity units purchased from KE (8,822,261,400
kg CO2) in Table A9 and the emissions from the electricity units purchased from CPPA-G
(2,748,566,671 kg CO2) in Table A11. We then convert this total of 11,570,828,071 kg CO2

to tons, resulting in an estimated 12,754,639 tons of CO2 per year from the generation of
the electricity units purchased by Karachi Electricity.

A3.2 Part 2: CO2 Emissions Avoided due to ABC Installation

We first calculate the proportion of generation attributed to each of the fuels potentially
responding to the changes in demand. First, we assume that the marginal units pur-
chased are from the Karachi Electric generation basket, not CPPA-G. Further, we assume
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that the fossil fuel (natural gas, residual fuel oil, and coal) generation in the KE genera-
tion is responding to the changes in demand and that this response is proportional to their
generation mix. It is reasonable to assume that nuclear and renewables are not respond-
ing. Hydro could be the marginal responder, but it is very unlikely; the zero marginal
cost of hydropower makes it much cheaper than oil, coal or gas generation.

Based on these assumptions, we calculate the proportion of responding generation
that is contributed by each of these fossil fuels:

Natural gas: (17.9+31.8)/(17.9+31.8+10.6+28.0) = 49.8/88.3 = 56%
Residual fuel oil: 10.6/88.3 = 12%
Coal: 28.0/88.3 = 32%

We then deploy the average emissions intensity for each of the fossil fuel sources, as
shown in Table A8.

To calculate a blended estimate of the reduction in CO2 per kWh reduction of elec-
tricity services consumed, we assume that the marginal generators are proportional to the
generation from oil, coal and gas and weight these according to the proportion that each
fuel contributes to the generation mix, as follows:

= (460 X 56%) + (1060 X 12%) + (1170 X 32%) = 760 kgCO2/MWh = 0.76 kg CO2 / kWh

This calculation provides our basic estimation of the reduction in CO2 per kWh re-
duction of electricity services consumed: 0.76 kg CO2 /kWh.

There are some caveats to this calculation. As mentioned above, this assumes plants
generating with fossil fuels respond. If hydro responds, the emissions response would
be lower. This calculation also ignores upstream fuel effects, like methane leakage, which
would make the result higher if included. Further, it is possible that the generation re-
sponse is not proportional across the fossil fuels.

To provide upper and lower bound estimates of the reduction in CO2 per kWh re-
duction of electricity services consumed, we can alternatively assume that the marginal
generation is either strictly natural gas (the least carbon intensive of the three fuels) or
residual fuel oil (the most carbon intensive of the three fuels). This provides us with the
range of estimates in Table A12.

We use these calculations to estimate the change in the CO2 emissions from electricity
generated, depending on which of these fuels in the marginal fuel: natural gas, residual
fuel oil, coal, or the responsive blend calculated earlier. We present these calculations in
Table 6.
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Table A12: Change in CO2 emissions per change in electricity
generated, by fuel

Fuel(s) Change in CO2 per generation change
(kg CO2 /kWh)

Natural gas 0.46
Blended generation fuels 0.76
Residual fuel oil 1.06
Coal 1.17

Source: We use these numbers in our calculations in Section 6 of the paper.

We know from Table 5 that the change in the quantity sent out per feed line as a re-
sult of the ABC intervention is -97,213 kWh per month. We multiply that amount by the
change in the CO2 per kWh generated via each fuel, and convert to metric tons of CO2 per
feeder line per year. To aggregate these avoided CO2 emissions up, we mutiply the per
feeder line numbers by either the 398 high loss feeder lines in Karachi (our conservation
estimate) or the 2000 total feeder lines in Karachi (an upper bound estimate), providing us
with two estimates of the aggregates tons per year in avoided CO2 emissions in Karachi,
as a result of the intervention. Lastly, we compare these reductions to the overall emis-
sions that are from the electricity units purchased by Karachi Electric, as calculated above
in Section A3.1.

We see in Table 6 that the reduction in CO2 emissions resulting from the approxi-
mately 400 high-loss feeder lines being converted to ABCs, would result in a reduction of
CO2 emissions somewhere between 1.67% and 4.26% of the emissions due to electricity
generated for KE.
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Table A13: Change in CO2 Emissions per Change in Electricity Generated, by
Generation Fuel

Aggregated: High-loss feeders

∆ in CO2 ∆ in CO2 ∆ in CO2 % of KE’s
(t CO2) / emissions emissions annual CO2

∆ generation per feeder per year emissions
(MWh) (tons) (tons) from generation

Generation Fuel(s) (1) (2) (3) (4)

Natural Gas - 0.46 - 536.6 - 213,574 1.67%
Responsive Blend - 0.76 - 886.6 - 352,861 2.77%
Residual Fuel Oil - 1.06 - 1,236.6 - 492,148 3.86%
Coal - 1.17 - 1,364.9 - 543,190 4.26%

Notes: Column 1 is based on the numbers reported in Table A12. Column 2 is calculated by multiply
the values in column 1 by -97,213 kWh per month, which is the reduction estimated in Table 5, as the
resuction in quantity sent out to a feeder line per month as a result of the ABC installation. Column 3
is calculated by multiplying Column 2 by 398, based on the utility’s 398 ”high loss” feeders. Column
4 is calculated by dividing column 3 by 12,754,639 tons of CO2, which was our estimate for the total
CO2 emissions for generating the KE units of electricity purchased per year (see end of Section A3).

Table A14: Scenarios of expected household reductions in monthly electricity bill,
by season

Winter Spring/Fall Summer

(a) kW reduction per household 0.27 0.27 0.27
(b) Average hours of bulb use per day 5.5 4.5 3
(c) Days in month 30 30 30

Expected LED savings per month (kWh) 44.55 36.45 24.30
= a × b × c

Notes: Average hours per day are based on differences in sunrise and sunsets across seasons.
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