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Abstract 

Currently, U.S. residential and small commercial electricity consumers typically pay a constant 

price per kWh consumed that accounts for most of their bill. Ongoing developments in the 

power system, both on the supply and demand sides, increase efficiency gains that can be 

made from exposing consumers to widely varying wholesale spot prices. Pure spot pricing is 

not popular among consumers; consumers value price predictability and bill stability. Also, 

sudden increases in bills often become a political problem. We focus on second-best 

alternatives: time-of-use (TOU) and critical peak pricing (CPP). The existing literature has been 

skeptical about TOU rates, typically finding that they capture only about one-fifth of the 

efficiency gains compared to passing through wholesale spot prices to consumers. We 

introduce alternative assessment criteria that are tailored to a context with high volumes of 

intraday shiftable loads such as the charging of electric vehicles and the cycling of heat pumps. 

Using historical data from CAISO, ERCOT and ISO-NE, we find that out-of-sample daily 

Spearman rank correlations between TOU rates and spot prices can be relatively high 

(averaging 0.7-0.8), and simulations confirm that TOU rates can reasonably replicate the load-

shifting incentives provided under spot pricing (up to 60-70% of the potential). We recommend 

the acceleration of the adoption of TOU rates, especially when accompanied by a CPP program 

built around load control options, as a valuable intermediate step towards improved electricity 

retail rates that balance efficiency considerations and the consumer (and political) preference 

for price predictability and bill stability. 
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Email addresses: schtim@mit.edu (Schittekatte), dharik@mit.edu (Mallapragada), pjoskow@mit.edu 
(Joskow), rschmal@mit.edu (Schmalensee).  



2 

 

1. Introduction 

Currently, in the U.S., only a relatively small number of large commercial and industrial 

consumers are active in wholesale energy markets, typically through arrangements with 

wholesale intermediaries. These consumers can respond to variations in short-term prices by 

adjusting their consumption and have experience using hedging strategies to manage the risks of 

price variations on bill stability. For most end users, however, the interface between the supply 

and demand side is the retail rate offered by load-serving entities (LSE), either traditional 

distribution companies offering bundled delivery and energy services or competitive retailers 

offering unbundled energy services. Traditionally, electricity retail rates for residential and small 

commercial consumers have been mostly flat, i.e., a relatively small customer charge plus a price 

per kWh consumed. The per-kWh rate is often constant for a long period of no less than a year 

and often much longer.1 The rate reflects the recent historical or expected average cost of energy 

and delivery costs, which are mainly fixed in the short run.2 Such rate design has often been 

criticized for its failure to reflect “peak load pricing” considerations either ex-ante or in real time 

resulting in inefficient consumption and investment (Borenstein and Holland, 2005; Joskow and 

Wolfram, 2012). 

Developments on both the supply and demand sides of wholesale markets have led to an 

increased importance of retail rate designs that better reflect variations in wholesale energy 

prices. On the supply side, the share of intermittent renewable generation in the power mix is 

rising in many countries. This change in the supply mix leads to more volatility in power prices, 

more hours of very low prices, more hours of very high prices and scarcity conditions, and thus 

more value that can be derived from demand-side flexibility in the short and long run (Vijay et 

al., 2017; Ekholm and Virasjoki, 2020; Mallapragada et al., 2021; Imelda et al., 2022). On the 

demand side, opportunities for end-users to better manage their consumption are expanding, 

                                                      
1 “Flat rates” may vary by season, e.g., summer vs winter, in some states. 
2 In this paper we focus on how to reflect wholesale energy prices in the electricity bill. Other important components 
of today’s bills are per-kWh charges for network costs, taxes, and levies. Our analysis of efficient pricing assumes 
that these other components are recovered by the appropriate charges. For discussions of the recovery of fixed costs 
via fixed charges, see Burger et al. (2020) and Schittekatte and Meeus (2020). 



3 

 

enabled by digitalisation and the adoption of electric vehicles, heat pumps, stationary batteries, 

and other controllable loads (BNEF, 2022; IEA, 2021). To some extent these loads can be 

programmed in advance to respond to time-varying prices observed via smart meters or load 

control options with LSEs.  

This paper focusses on how to better reflect the time-varying conditions in the wholesale 

electricity markets in residential and small commercial retail rates while balancing consumer 

preference for price predictability and bill stability. It has long been argued that it would be 

optimal to charge end-users wholesale spot prices for energy, often termed spot pricing or real-

time pricing (RTP) (Schweppe et al., 1988).3 However, the adoption of retail rates that vary with 

spot wholesale prices has lagged far behind the deployment of smart meters with the necessary 

capabilities in the U.S.4 In practice, even though spot pricing is technically feasible, small 

consumers generally prefer predictability and bill stability. Frequently reacting to price 

information might be more costly than the potential benefits–rational inattention–and 

consumers are risk-averse, in the sense that they want to avoid large, unexpected upswings in 

their bill. The occurrence of periods of sustained high prices, in particular, besides creating 

consumer acceptability issues, also leads to political turmoil, as evidenced by the Texas energy 

crisis in February 2021 (Littlechild and Kiesling, 2021) and the European energy price crisis that 

has been ongoing since the summer of 2021 (Batlle et al., 2022a). These two barriers to the 

adoption of hourly spot pricing are not unsurmountable; a lack of predictability can be mitigated 

by introducing a high degree of automation in electricity consumption and bill stability can be 

guaranteed by complementing spot pricing with a hedge or an insurance product. However, they 

are not expected to be reduced significantly in the next years, at least not for a large share of the 

customer population.  

                                                      
3 Rates passing through wholesale prices are often called real-time pricing (RTP) in the literature, even though what 
is in most cases meant is the pass-through of hourly varying day-ahead prices. To avoid confusion, we will refer to 
the pass-through of hourly day-ahead prices to consumers as spot pricing in the remainder of this paper. 
4 The U.S. Energy Information Administration reports that in 2020 there were over 100 million advanced meters 
installed in residential (90 million) and commercial (11 million) locations (EIA, 2022). 
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Trabish (2022) reports that there were over 150 rate design initiatives in 2021 addressing new 

forms of time-varying rates in the U.S., typically acting as a sort of intermediary between flat and 

hourly spot pricing. Many of these are pilot programs. We focus on two popular rate designs of 

this sort: time-of-use rates (TOU) and critical peak pricing (CPP). TOU rates are predefined, e.g., 

at least a year ahead, and calibrated on historical price data. Typically, the TOU rate coefficients 

differ by season, type of day (workdays or weekends), and/or time of the day (e.g., peak, 

shoulder, or off-peak periods). Under TOU rates consumers are given predictable incentives to 

shift or reduce their demands and are protected from unexpected price shocks.5 Faruqui et al. 

(2020) report that while nearly 400 TOU rates have been tested in pilots around the globe, full-

scale deployment of TOU rates is quite limited. They report that in 2018 only 4% of residential 

customers were on TOU rates in the U.S. Fifteen utilities in eight states accounted for 86% of all 

TOU deployments, and the TOU rates are typically voluntary, raising adverse selection issues (Qiu 

et al., 2017).  This is despite the fact that the widespread diffusion of smart meters makes these 

alternative rate designs feasible. 

Different from TOU rates, CPP is designed to induce reductions in consumption, either through 

demand shifting or conservation during hours with the highest wholesale prices, often associated 

with the highest net demand days of the year.6 The system operator announces CPP events on a 

short notice, e.g., day-ahead– see e.g., Herter (2007). During a critical peak pricing event, a 

consumer enrolled in a CPP plan is then exposed to a significantly increased price for the duration 

of the event (typically not more than a few hours). An alternative or additional feature is for 

consumers to allow for remote load control during critical peak pricing events. In exchange for 

their consent, consumers receive a discount on their electricity bill. Consumers can typically 

override the load control but often at the expense of their bill discount or a penalty. The 

maximum number of peak events that the system operator can trigger per season or year is 

                                                      
5 Unless these price shocks last for over a year as in the ongoing energy crisis in Europe. In such case, other hedging 
instruments are warranted to protect consumers from prolonged periods of high prices. 
6 The net demand at any time is the total electricity demand minus utility-scale solar and wind generation. The 
system operator must meet net demand to “balance” the system using dispatchable generation, storage, and 
demand side actions. 



5 

 

predefined. Examples are the Peak Day Pricing plan offered by PG&E (2022) in California and the 

load management pilot offered by Xcel Energy (2022) in Texas. Both of these programs target 

commercial consumers. 

We compute four criteria for assessing the performance of alternative retail rate designs 

compared to the status quo, flat rates, and the first-best benchmark, hourly spot pricing. The four 

criteria can be divided into two groups: time series analysis and simulation models. For each 

group, we use one criterion that has been commonly applied in the existing literature (discussed 

in Section 2 below) and we contrast the results with one novel criterion, which we argue is more 

appropriate in a context with increasing volumes of load that can be relatively easy shifted within 

the day. With regards to the time series analysis, in addition to the computation of the annual 

(standard) Pearson correlation between spot prices and the alternative rates, as relied upon in 

the previous literature, we introduce the use of the daily Spearman rank correlation between 

spot pricing and the alternative rates to better reflect incentives to shift consumption between 

hours of the day. The Pearson correlations reflect absolute wholesale price variations over time 

while the Spearman rank correlations reflect relative wholesale price variations between hours 

within a day. For the simulation models, in addition to representing load with independent hourly 

demand functions, as in the prior literature, we model load shifting with a cost-minimizing 

optimization model. The objective of the optimization model is to minimize the cost of electricity 

consumption under a particular rate design. Shiftable loads are characterized by the minimum 

anticipation and maximum delay in their electricity consumption relative to a baseline schedule. 

We compute the relevant criteria for different TOU rate designs, complemented or not by CPP. 

The TOU rates for a particular year are calibrated based on the preceding three years of wholesale 

prices. CPP is proxied by the replacement of the TOU rates by the observed wholesale price for a 

limited number of the highest priced hours per year. In that sense, we assume full consumer 

response to these high prices, which would likely require load control in practice.  

We compute the criteria using data from three different US power systems for a period between 

2011-2020: the systems operated by the Electric Reliability Council of Texas (ERCOT), the 

California Independent System Operator (CAISO) and the Independent System Operator of New 
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England (ISO-NE). ERCOT has a high penetration of wind, with 23% of electricity produced by 

wind in 2020 (ERCOT, 2021). Wind plus solar PV accounted for about 25% of generation in 2020. 

CAISO has a high penetration of grid-based solar PV; about 22% of electricity was generated by 

solar PV in 2020. Grid-based solar PV plus wind accounted for about 28% of the generation 

(California Energy Commission, 2022). ISO-NE is a gas-dominated system without significant 

penetration of grid-based intermittent renewables; about 5% of electricity generation came from 

wind and solar PV combined in 2020 (ISO-NE, 2022a). We can think of ISO-NE as a control 

representing the thermal-dominated systems upon which many of the previous papers relied.7 

The remainder of the paper is organized in six sections. In Section 2, we discuss the existing 

literature and our contribution. In Section 3, we introduce the different criteria to evaluate retail 

rate design. In Section 4, we describe the data and the process to calibrate the TOU rates. In 

Section 5, we present the results. In Section 6, we provide a discussion of our empirical analyses. 

Finally, in Section 7 we present a conclusion and policy recommendations. 

2. The existing literature and our contribution 

We divide this section in two parts. First, we describe the existing relevant literature. After, we 

highlight our contribution. 

2.1. Existing literature on alternative time-varying rate designs 

Time-varying electricity retail rates are not a recent idea. Hausman and Neufeld (1984) explain 

that electricity rates with varying price levels over the course of the day were already discussed 

around the turn of the last century when the electricity industry was still in its infancy. However, 

since then attempts to introduce them have largely been unsuccessful. A major breakthrough in 

the academic literature was the seminal work of Boiteux (1949) to whom the practical application 

of marginal cost pricing to electricity is ascribed. Boiteux elaborated upon the concept of peak-

load pricing, which implies that an efficient schedule of prices consists of a tariff that is set equal 

                                                      
7 Even though rooftop solar PV is growing rapidly just as in California and to a lesser extent in Texas. As of December 
2021, more than 240,000 behind-the-meter (BTM) PV installations span the six states in New England, with a 
combined nameplate generating capability of more than 4,800 MW (ISO-NE, 2022b). 
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to system marginal running cost when there is idle capacity (i.e., off-peak periods), and equal to 

long run marginal cost in peak periods. The peak-pricing concept was later further elaborated 

upon by Steiner (1957), Turvey (1968) and others. A discussion of the different contributions to 

the theory of marginal cost pricing applied to electricity is provided by Joskow (1976). Later, 

Schweppe et al. (1988) formulated the theory of spot pricing that respects the particular 

conditions of electric power transmission systems. 

More recently, two literature streams on time-varying retail rates for electricity have been 

developing: the analysis of consumer response to time-varying retail rates and the analysis of the 

extent to which different approaches to time-varying retail rates can approximate the incentives 

provided under wholesale spot prices. Most of the research on time-varying retail rates has 

focussed on how consumers respond to such rates. Faruqui and Sergici (2013) provide an 

extensive survey of global experiences with time-varying rates, reviewing the results of 34 studies 

encompassing 163 experimental treatments in four continents and seven countries. They argue 

that there is a surprising amount of consistency in the results of all these studies which shows 

that utilities and policymakers can be confident that time-varying prices, such as TOU rates, will 

yield significant peak-load reductions. Some studies, e.g., Liang et al. (2020), also specifically 

focussed on how time-varying rates impact consumer decisions with regards to the adoption of 

energy efficient appliances and distributed energy resources such as solar PV. 

Less research has investigated how well different time-varying rates replicate the incentives for 

load shifting that would occur under spot pricing, i.e., the quality of the approximation. We focus 

on that question. The few available studies of that question have concluded that TOU rates only 

capture a small fraction, often about one-fifth, of the welfare benefits from retail rates that vary 

with spot prices (Borenstein, 2005; Holland and Mansur, 2006; Spees and Lave, 2008; Hogan, 

2014; Jacobsen et al., 2020). Three types of approaches are used by these authors: the 

computation of correlations between spot pricing and TOU rates, simulation models computing 

short-run welfare from TOU rates versus spot pricing, and simulation models computing long-run 

welfare effects of alternative rates (including capacity investment on the supply side). By 

coincidence, all of these papers use data from the Pennsylvania-New Jersey-Maryland (PJM) 
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Interconnection, with the exception of Borenstein (2005) building his own simulation model.  

During the considered time periods in these studies, PJM was a predominantly thermal system 

with little wind and solar generation. 

Hogan (2014) and Jacobsen et al. (2020) use the first approach, i.e. the computation of 

correlations between wholesale prices and TOU rates. They compute the R2 from a regression of 

observed wholesale prices on season, day of week, or within-day price periods (which vary 

according to the exact TOU rate design). The reasoning is that the expected deadweight loss from 

applying TOU rates is proportional to the residual variance of the deviations between the TOU 

rates and spot pricing. Hogan (2014) considers the case in which each hour’s demand curve is 

linear with the same slope but a shifting intercept.  He finds for 2013 data that only 23% of the 

benefit of going from flat rates to spot pricing are captured using TOU pricing. Jacobsen et al. 

(2020) formalize a more general analytical framework and use 2012 data to compute the in-

sample yearly correlation for seven alternative TOU rates. The highest in-sample R2 value they 

find is 0.428 for their most complicated TOU rate (Hour x Day of week x Month scheme). The 

same authors also confirm these results by a simulation. Holland and Mansur (2006) and Spees 

and Lave (2008) estimate short-run welfare effects of TOU rates versus spot pricing using a 

simulation model. Holland and Mansur (2006) find a range of 15% to 30% of short-run welfare 

benefits for different TOU rates compared to spot pricing simulated for the period April 1998 to 

March 2000. Spees and Lave (2008), using 2006 data, find that peak capacity savings that are 

seven times larger with spot pricing. Finally, Borenstein (2005) introduces a simulation model 

with three generation technologies to compute the long-run welfare gains of TOU rates versus 

spot pricing. He computes that, roughly speaking, TOU rates capture 20% of the efficiency gains. 

2.2. Our contribution 

We challenge two crucial assumptions in the existing literature that assess the benefits of time-

varying rates relative to spot pricing: the characterization of the demand-side flexibility and the 

generation mix of the power system considered.  

Regarding the characterization of demand-side flexibility, both the approach looking at the R2 

between spot pricing and TOU rates and the different types of simulation models implicitly or 
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explicitly consider independent hour-specific demand functions for electricity. Aside from critical 

peak periods, in which load may be mainly reduced, not shifted, we think that demand shifting is 

the more important short-run response. This trend has been recognized by practitioners (see 

e.g., CPUC (2022)) but mostly disregarded by the surveyed literature. Especially at household 

level, a large fraction of demand flexibility is expected to come from frequent within-day “load 

shifting”, or “appliance scheduling” when considering the important and accelerating trend of 

electrification of HVAC and transport (Borlaug et al., 2020; Zhou et al., 2022). Some shifting can 

be programed in advance or just embodied in habits (e.g., “charge the EV at noon whenever 

possible”) to respond to predictable TOU rates. Frequent within-day load shifting has very 

different properties than electricity consumption represented by independent hour-specific 

demand functions. More precisely, when considering the case of within-day load shifting, relative 

price differences between hours, or groups of adjacent hours, are more important than absolute 

price differences between individual hours.  

Regarding the characterization of the supply side, we note that essentially almost all the studies 

in the surveyed literature were performed before there was significant penetration of 

intermittent wind and solar generation. That is, they reflected wholesale price variations for 

primarily thermal systems. This does not reflect either the present or, more importantly, the 

future as electric power systems decarbonize. As wind and solar penetration increases, wholesale 

price distributions will change dramatically with many more zero or very low-price hours and 

many more high-price and scarcity hours (Mallapragada et al., 2021). These changing wholesale 

price distributions along with the increasing penetration of within-day shiftable loads are likely 

to change the net social benefits of incentivizing within-day load shifting.  

Further, in the proposed framework for analysis, we also want to estimate the additional impact 

of complementing TOU rates with a CPP program. While frequent load shifting is becoming more 

important and should be considered when assessing alternative rate designs, a crucial driver of 

the value of flexibility in electricity consumption remains demand reductions during infrequent 

scarcity conditions. TOU rates are not dynamic enough to capture these infrequent scarcity 

events. As a result, any time-varying rate would benefit from the addition of a CPP program, 
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especially a program entailing load control. Blonz (2022), applying a capacity expansion model 

calibrated on data from the North Californian PG&E service territory, estimates that a well-

targeted peak pricing program could capture 83% of the savings relative to spot pricing.8 Mays 

and Klabjan (2017) emphasize the important role of CPP in the presence of capacity costs. 

3. Criteria to evaluate time-varying retail rates 

Section 3.1 describes the criteria based on the time series analysis. Section 3.2 introduces the 

simulation models with different representations of demand. 

3.1. Time series analysis: annual Pearson correlation and daily Spearman rank correlation 

Hogan (2014) and Jacobsen et al. (2020) compute the R2 from a regression of observed hourly 

day-ahead spot prices on season, day of week, or within-day price periods (which vary according 

to the exact TOU rate design). Both calculate the in-sample R2 between a time series of TOU rates 

and day-ahead prices from PJM. In line with the existing literature, the first criterion that we 

compute is the annual Pearson correlation of spot prices and the TOU rates. The main difference 

being that we compute the out-of-sample correlation, rather than the in-sample R2. By out-of-

sample we mean that the TOU rates are calibrated based on day-ahead hourly price data from 

the three preceding years, not from the observed year, corresponding roughly to current 

ratemaking practice. More information is provided in Section 4.  

As the annual Pearson correlation is strongly driven by scarcity price events, we also compute 

the annual Pearson correlation between the spot prices and the same TOU rate but with the ten 

highest observed priced hours in the spot market replacing the respective TOU rate during those 

hours. This rate design can be interpreted as TOU rates complemented with centralized load 

control under CPP. An example of an annual time series of spot prices, i.e., the day-ahead prices 

for the CAISO SP15 Hub, a TOU rate calibrated based on historical prices, and CPP hours is shown 

in  Figure 1. For the example shown, the annual Pearson correlation is, respectively, 0.32 between 

the spot prices and the TOU rate and 0.74 when CPP complements the TOU rate. In this case, 

                                                      
8 Blonz (2022) estimates for an existing CPP program of PG&E that a refinement of the trigger to call an event day 
and adjustments to the peak price level can nearly double the welfare gains of the programme. 
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passing through the ten highest priced hours (0.1% of all hours) in the retail rate, more than 

doubles the correlation. 

 
Figure 1: Day-ahead (DA) CAISO SP15 Hub prices in 2020, a calibrated TOU rate based on the preceding 3 years, 
and a CPP rate passing through the ten highest priced hours of the year. 

Besides the annual Pearson correlation, we propose an alternative criterion: the daily Spearman 

rank correlation to better reflect load-shifting incentives. We use daily time series of hourly day-

ahead prices as that is typically the time window during which shiftable appliances are scheduled. 

The rationale for considering rank correlations is that when scheduling an appliance, relative 

price differences at different times of day are more relevant than absolute price differences. The 

Spearman rank correlation measures how well TOU rates can capture relative within-day price 

differences and is less sensitive than the Pearson correlation to strong outliers– scarcity prices in 

the case of electricity markets. Figure 2 shows the spot price and TOU rate calibrated on historical 

prices for CAISO on January 6th of 2020 as an example.  

We see that at least for the considered day, the TOU rate reasonably captures the relative price 

differences at different times of the day. Like the annual Pearson correlation, we also compute 

the daily Spearman correlations including the replacement of the TOU rate during the ten highest 

priced hours by the spot price in those hours. For the example shown in Figure 2, the daily 

Spearman correlation is 0.84. Adding CPP does not have an impact on the Spearman rank 
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correlation for the day shown, as no high price event took place that day. The annual average of 

the daily Spearman correlations between the spot prices and the TOU rate with and without CPP 

for the considered year is 0.75.9 The impact of CPP is minimal because Spearman's ρ limits the 

impact of an outlier to the value of its rank. 

 
Figure 2: Day-ahead (DA) CAISO SP15 Hub prices for 01/06/’20 and a calibrated TOU rate based on the preceding 
3 years (for details on the methodology to design the TOU rates, see Section 4) 

3.2. Simulation models: hourly demand functions and load-shifting optimization 

In this section we first elaborate on the load-shifting optimization and then we introduce the 

metric of interest that is computed based on the results of the simulations. In Appendix A, we 

briefly discuss the simulation approach based on hourly demand functions and provide a 

numerical example to explain the difference with the load scheduling optimization. We are 

critical of the simulation with hourly demand functions but use it to contrast the results of the 

load-shifting optimization. Different from Borenstein (2005), Holland and Mansur (2006), and 

Spees and Lave (2008), no equilibrium is calculated for either simulation model. The price-

sensitive load is a price taker. As long as the flexible load volumes are relatively small, this 

assumption is not considered to influence the results significantly. We come back to this 

simplification in the discussion (Section 6).  

                                                      
9 The increase in the annual average Spearman rank correlation with CPP is negligible (0.01% here). All ten peak 
pricing events happen during two days, thus only (mildly) impacting the daily correlations for those two days. 
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3.2.1. Formulation of the load-shifting optimization 

The load-shifting optimization is inspired by the demand-flexibility module within the open-

source capacity expansion model GenX (MIT Energy Initiative & Princeton University ZERO lab, 

2022). Part of the total load is considered inflexible; the other part consists of different flexible 

loads. The objective function is to minimize the cost of supplying the total load as shown in Eq. 

1. The first term represents the supply cost per hour with Pt standing for the applied retail rate 

and 𝐿𝐿𝑡𝑡 the final total load (exposed to the time-varying rate Pt). The second term accounts for a 

cost associated with load shifting with  Π𝑡𝑡,𝑓𝑓 standing for the decrease in load of flexible load f in 

hour t relative to the baseline schedule and VCf is a variable cost associated with load shifting of 

flexible load f. Each flexible load f is characterized by the flexible demand that can be reduced or 

increased per hour relative to the baseline (ρf
max ∗ Δ𝑓𝑓,𝑡𝑡), a maximum time delay (τf

delay) and 

advancement (τf
advance) of the, respectively, deferred or anticipated load, and the specific cost 

associated with load shifting (VCf).  

min.∑ �Pt ∗ 𝐿𝐿𝑡𝑡 + ∑ VCf ∗ 𝛱𝛱𝑡𝑡,𝑓𝑓
𝑁𝑁
𝑓𝑓=1 � 𝑇𝑇

𝑡𝑡=1   [1] 

s.t:    𝐿𝐿𝑡𝑡 = Lt,0���� + ∑ 𝛩𝛩𝑡𝑡,𝑓𝑓
𝑁𝑁
𝑓𝑓=1 − ∑ 𝛱𝛱𝑡𝑡,𝑓𝑓

𝑁𝑁
𝑓𝑓=1  ∀ 𝑡𝑡 [2] 

Γ𝑡𝑡,𝑓𝑓 = Γ𝑡𝑡−1,𝑓𝑓 − 𝛩𝛩𝑡𝑡,𝑓𝑓 + 𝛱𝛱𝑡𝑡,𝑓𝑓    ∀ 𝑡𝑡 ≠ 1,𝑓𝑓 [3] 

Γ𝑡𝑡,𝑓𝑓 = Γ𝑇𝑇,𝑓𝑓 − 𝛩𝛩𝑡𝑡,𝑓𝑓 + 𝛱𝛱𝑡𝑡,𝑓𝑓    ∀ 𝑡𝑡 = 1,𝑓𝑓 [4] 

𝛱𝛱𝑡𝑡,𝑓𝑓 ≤  ρf
max ∗ Δf,t  ∀ 𝑡𝑡,𝑓𝑓 [5]  

𝛩𝛩𝑡𝑡,𝑓𝑓 ≤  ρtmax ∗ Δf,t  ∀ 𝑡𝑡,𝑓𝑓 [6] 

  ∑ 𝛩𝛩𝑒𝑒,𝑓𝑓 ≥
t+τf

delay

e=t+1 Γ𝑡𝑡,𝑓𝑓 ∀ 𝑡𝑡,𝑓𝑓 [7] 

  ∑ 𝛱𝛱𝑒𝑒,𝑓𝑓 ≥
t+τf

advance

e=t+1 −𝛤𝛤𝑡𝑡,𝑓𝑓 ∀ 𝑡𝑡,𝑓𝑓 [8] 

𝐿𝐿𝑡𝑡  ≥ 0,𝛩𝛩𝑡𝑡,𝑓𝑓 ≥ 0,𝛱𝛱𝑡𝑡,𝑓𝑓  ≥ 0,𝛤𝛤𝑡𝑡,𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∀ 𝑡𝑡,𝑓𝑓 [9] 

Eq. 2 describes the demand balance equation for the entire system per hour t. The final load in 

an hour is equal the baseline load (Lt,0����), plus the sum of the change in f consumption of the 

flexible loads relative to their baseline. Π𝑡𝑡,𝑓𝑓 stands for the decrease in load of flexible load f in 

hour t relative to the baseline schedule, while 𝛩𝛩𝑡𝑡,𝑓𝑓 stands for the increase in load of flexible load 
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f in hour t relative to the baseline schedule. The other Eq. 3-9 describe the constraints and 

variables of the flexible loads. Eq. 2-4 keep track of the shifted loads (Γ𝑡𝑡,𝑓𝑓 ). Eq. 5-6 ensure that 

the amount of demand that deviates from the baseline schedule cannot exceed the maximum 

flexible demand that is available per hour. Eq. 7-8 constrain the maximum hours delay and 

anticipation of flexible loads. B.9 put bounds on the variables.  

The parameterization of the load-shifting optimization model can be found in Appendix B. To 

limit the computational burden, the load-shifting optimization for the length of the dataset is 

split up into separate optimizations, with each a horizon of one week (T=168). As the considered 

load flexibility is typically limited to a few hours with exceptions up to 12 hours within a day (see 

Table B.1), this optimization horizon should not have a significant impact on the results.  

3.2.2. The relevant metric: realized cost reduction potential [%] 

We want to assess how well TOU(+CPP) rates replicate the incentives for load shifting that occur 

under spot pricing. In other words, we want to know whether TOU rates incentivize load to shift 

in the “right direction” (indicated by the observed hourly spot prices), especially when it matters 

most (i.e., during days when the within-day differences between high and low hourly spot prices 

are the highest). Therefore, we introduce a metric which we call the “realized cost reduction 

potential” (RCRP). The RCRP metric indicates how much of the reduction in average supply costs 

are obtained under an alternative time-varying rate (TOU or TOU+CPP) compared to the 

theoretical first best of load response to spot prices (Eq. 10). What we mean by the average 

supply cost under a certain rate design is the average spot price paid to serve the (partly) price-

responsive load, after being exposed to an alternative time-varying rate. The more aligned the 

incentives provided by the alternative rate are with the spot price, the more beneficial load 

response under the alternative rate will be from a system point of view. In case the incentives for 

the load response under the alternative rate are perfectly aligned with the spot price, the average 

supply costs will be the same and the RCRP will be 100%. 
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RCRP = (FlatASC − AltASC) (FlatASC − SpotASC)⁄  [10] 

With: FlatASC =  ∑ �Lt,0 ∗ Spot𝑡𝑡� T
𝑡𝑡=1 ∑ Lt,0T

𝑡𝑡=1�   [11] 

SpotASC =  ∑ �𝐿𝐿𝑡𝑡
Spot ∗ Spot𝑡𝑡 + β ∗ ∑ VCf ∗  𝛱𝛱𝑡𝑡,𝑓𝑓

SpotN
𝑓𝑓=1 � T

𝑡𝑡=1 ∑ 𝐿𝐿𝑡𝑡
SpotT

𝑡𝑡=1�   [12] 

AltASC =  ∑ �𝐿𝐿𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇(+𝐶𝐶𝐶𝐶𝐶𝐶) ∗ Spot𝑡𝑡 + β ∗ ∑ VCf ∗  𝛱𝛱𝑡𝑡,𝑓𝑓

𝑇𝑇𝑇𝑇𝑇𝑇(+𝐶𝐶𝐶𝐶𝐶𝐶)N
𝑓𝑓=1 � T

𝑡𝑡=1 ∑ 𝐿𝐿𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇(+𝐶𝐶𝐶𝐶𝐶𝐶)T

𝑡𝑡=1�  [13] 

To obtain the RCRP, we first calculate the average supply costs under the original inelastic load 

(FlatASC), which is equivalent to having a flat rate in place, as shown in Eq. 11. Next, we calculate 

the minimum average supply costs of the load (partially having a certain elasticity or a set of 

shiftable loads) under spot prices (SpotASC) as in Eq. 12 with β being 0 in case of the linear 

demand function and 1 in the case of the load-shifting optimization.10 In the latter case, a variable 

cost for shifting load is accounted for. Importantly, the minimum average supply costs (SpotASC) 

assumes a constant optimization by consumers responding to daily updated hour-by-hour 

changes in spot prices, which is more complicated than standard TOU rates that vary depending 

on the time period within the day, day-type and season but are recurring and determined at least 

one year in advance. For that reason, the RCRP of a TOU rate might be considered a lower bound. 

Finally, in Eq. 13 the average supply cost under an alternative rate (TOU+(CPP)) is the load under 

the alternative rate multiplied by the spot price (AltASC).  

4. TOU rate design process 

We compute four different TOU rate designs for the period 2014-2020 for each spot price series 

considered (CAISO SP15, ERCOT Houston Hub, ISO-NE Boston hub prices from 2011-2020). To 

limit complexity, in line with observed practice, our TOU rates vary seasonally (four seasons), per 

day-type (two day-types) and within-day time blocks (depending on the TOU rate design). For all 

the TOU rate designs, the coefficients of the TOU rates, i.e., the magnitudes of the rates, are 

determined using regressions with as input data the preceding three years of spot prices data 

                                                      
10 The average and not the absolute supply cost is calculated as in the case of a linear hourly demand functions the 
total electricity consumed is conditional upon the retail rate. Under the load-shifting optimization the total load is 
independent of the rate, as no losses are assumed. 
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i.e., a rolling 3-year window of training data, and dummies per season (4), day-type (2) and the 

hours belonging to the different within-day TOU periods. Jacobsen et al. (2020) use the same 

regression approach with the difference that they calculate the in-sample R2 and not the out-of-

sample correlation.11 The TOU coefficients are updated each year and scaled proportionally to 

make the load-weighted average price under any TOU rate equal to that under the observed 

hourly day-head spot prices.12 For the load data, we use hourly load data for 2014-2020 of the 

entire CAISO and ISO-NE system as no disaggregated load data for the specific hubs was available 

for the considered time period (S&P Global, 2022). For ERCOT, we used the more granular ERCOT 

Coast load data (ERCOT, 2022). The same load data is used in Section 5 in Figure 4 and for the 

computation of the results of the simulation models. Appendix C provides a complete overview 

is provided explaining how the TOU rates are computed.  

The different TOU designs that are computed are differentiated in the way the within-day 

partitioning of hours in different TOU periods is done. The following TOU rate designs are used: 

• One benchmark TOU rate design with eight equally long within-day TOU periods of 3-hours.  

• Per power system one TOU rate design for which the partitioning of the different hours in 

TOU periods is inspired by existing TOU rates. The partitioning of the hours in the different 

TOU periods is kept constant over the years of the test period (2014-2020): 

o CA static: the TOU-D-4-9PM rate from Southern California Edison (SC&E, 2022) with 

three within-day periods: 8am-4pm, 4pm-9pm, 9pm-8am (only applied in weekdays 

and the same periods apply for all seasons) 

o TX static: an optional TOU rate plan in Texas (Shop Texas Electricity, 2021) with four 

within-day periods: 10am-1pm, 1pm-7pm, 7pm-9pm and 10pm-10am (only applied in 

weekdays and the same periods apply for all seasons) 

                                                      
11 The R2 is a direct output from the regression with as input the spot prices and output the TOU rates. 
12 Additional sensitivity analysis has been performed by computing all criteria without including the scaling of the 
TOU rates. Scaling only has a minor impact on the results for the simulation with the linear hourly demand function 
as the anchor price (being the load-weighted average price of the rate) is an important parameter. 
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o MA static: a TOU rate offered for large commercial and industrial customers in the 

greater Boston area by Eversource (2022). There are two within-day periods during 

weekdays. In summer (June-September), a peak period from 9am-6pm and the 

remainder off-peak. For the rest of the year, a peak period 8am-9pm and the remainder 

off-peak.  

• Two TOU rate designs for which the partitioning of hours in TOU periods is calibrated based 

on the price patterns in the preceding three years and updated each year using a clustering 

algorithm based on Yang et al. (2019). We consider TOU designs with maximum three and 

maximum four periods within a day, labelled “Optimized 3-periods” and “Optimized 4-

periods”.13 A period can be repeated within the same day (e.g., off-

peak/shoulder/peak/shoulder with the same TOU rate coefficient in both shoulder periods 

for a day-type x season x year combination). We require from the algorithm that each 

within-day period needs to last at least three consecutive hours. 

For the benchmark TOU design and the three TOU designs for which the period partitioning is 

based on existing TOU rates, we assume the within-day TOU periods to be the same for four 

seasons and two day-types. Also, we allow TOU coefficients to vary per within-day TOU time-

block (thus not having a period being repeated within a day). This implies that for each year we 

obtain 64, 24, 32 and 16 unique TOU coefficients for the, respectively, benchmark TOU, CA static, 

TX static, and MA static TOU design.14 In that sense, these TOU designs inspired by existing TOU 

designs are slightly more advanced than in practice. In practice, typically only two seasons 

(summer and the rest of the year) are considered, the different TOU periods are only introduced 

in weekdays, and it can be that periods are repeated within a day (e.g., off-peak during the night 

as well as around noon).15  

                                                      
13 The algorithm does not necessarily choose to have the maximum number of possible periods within a day. 
14 The number of unique TOU coefficients per year is calculated as the multiplication of the number of time blocks, 
the number of seasons, and the number of day-types. 
15 Typically, during weekends and holidays the off-peak rate applies for the entire day. 
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Finally, we also introduce a benchmark Y-1 rate, which is the hourly day-ahead price of the 

preceding year during the same hour, this could be interpreted as the most extreme partitioning 

and implies 8760 rate coefficients. No data processing is needed for this benchmark.16 Table 1 

provides a summary of the rate designs that we examine and the methods that we utilize. 

Table 1: Summary of the different computed TOU rates 

 Unique 
rates per Within-day TOU periods Update TOU 

coefficients 
Update partitioning of hours 
per within-day TOU period 

Benchmark Y-1 Hour 24 Annually 

Does not change over the 
considered test period 

(2014-2020) 

Benchmark TOU 

Season x 
Day-type 

x TOU 
period 

1-3/4-6/7-9/10-12/13-
15/16-18/19-21/22-24 

Annually using a 
regression with 

as input the 
three preceding 

years of price 
data 

Static CA 8-15/16-20/21-7 
Static TX 10-12/13-18/19-20/21-7 
Static MA 9-17/18-8 (summer) 

8-20/21-7 (winter) 
Optimized 3-periods Max. 3 periods (>= 3hours 

each and repeatable) 
Annually using a partitioning 
algorithm with as input the 

three preceding years of 
price data 

Optimized 4-periods Max. 4 periods (>= 3hours 
each and repeatable) 

5. Results 

We first discuss the results of the time series analysis, then the results of the simulations. 

5.1. Time series analysis: annual Pearson correlation and daily Spearman rank correlation 

Figure 3 shows the results for the out-of-sample annual Pearson correlation between the TOU 

rates without CPP (left panels) and with CPP (right panels) and the hourly day-ahead prices for 

the three considered power systems. We make two observations. 

First, looking at the left panels, the Pearson correlations between TOU rates and the spot prices 

are rather low, in the range of 0.2-0.6. These results are in line with the existing literature (Hogan, 

2014; Jacobsen et al., 2020), despite the large increase in the penetration of wind and solar in 

ERCOT and CAISO since 2014. We can see that the correlation depends on the considered power 

system, year, and, to a lesser extent, the TOU rate design. 

 

                                                      
16 For simplicity we remove the 29th of February from the dataset in the leap years (2012, 2016 and 2020). For the 
hours missing due to the day-light savings time we use the average of the preceding and succeeding hour.  
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Figure 3: Annual Pearson correlations between the TOU rates without CPP (left panels) and with CPP (right panels) 
and the day-ahead prices for CAISO SP 15 (top), ERCOT Houston Hub (middle) and ISO-NE Boston Hub (bottom). 

Second, looking at the right panels, when replacing the TOU coefficients during the ten highest 

priced hours per year by the spot price during those hours, the out-of-sample Pearson correlation 

between TOU rates and the spot prices improves significantly for CAISO and, especially ERCOT, 

while the results for ISO-NE remain the same. Recall that ISO-NE is primarily a thermal system 
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today. These results show that Pearson correlation results are to a very large extent driven by a 

few hours of very high prices, which are not captured by a TOU rate. This is confirmed when 

looking deeper at the day-ahead hourly price series of these power systems (shown in Appendix 

D); scarcity prices, both in frequency and magnitude, are most common in ERCOT, to a lesser 

extent in CAISO, and mostly absent in ISO-NE.17 These results are a first indication of the 

usefulness of a CPP program targeting exactly these high price moments as a supplement to a 

stable TOU regime. The low correlations for Benchmark Y-1 are because they introduce very high 

prices during the wrong hours (the hours when very high prices occurred the year before). 

Figure 4 shows the results for the out-of-sample average daily Spearman rank correlations 

between the TOU rates and the day-ahead prices for the three considered power systems (left 

panels). The results when complementing the TOU rates with CPP are almost identical to the ones 

shown and therefore not separately displayed. As stated before, in most cases scarcity price 

events happen during only a few days, thus only (mildly) impacting the daily rank correlations for 

those few days and not having an impact on the average over all the days of the year. Again, we 

make two observations. 

First, the average daily Spearman rank correlations are in almost all cases significantly higher than 

the annual Pearson correlations. The results illustrate that the computed TOU rates, while not 

able to capture sudden scarcity price events, are relatively good at anticipating the relative price 

differences within days. They give an indication that TOU rates can perform quite well in 

replicating the within-day load-shifting incentives provided by spot prices. 

                                                      
17 An important driver for the lower frequency and magnitude of scarcity prices in ISO-NE and CAISO compared to 
ERCOT is because of the presence of capacity remuneration mechanisms in ISO-NE and CAISO (forward capacity 
market and capacity obligations, respectively, see Spees et al. (2013)). These payments would effectively be 
allocated through the Operations Reserve Demand Curve (ORDC) in ERCOT and the equivalent scarcity prices in 
CAISO and ISO-NE would then be higher, ignoring the much lower effective price caps in CAISO and ISO-NE. 
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Figure 4: Yearly averaged daily Spearman rank correlations between the TOU rates and day-ahead prices (left 
panels) and the daily Spearman rank correlation between the TOU rates and spot prices when averaged per day 
in the 2014-2020 period (right panels left axis) for CAISO SP 15 (top), ERCOT Houston Hub (middle), and ISONE 
Boston Hub (bottom). 

Second, the benchmark TOU rate design with many degrees of freedom and the TOU rate design 

with annually updated period partitioning (“Optimized 3/4-periods”) perform significantly better 

than the static TOU designs with fewer, non-updated, within-day TOU periods. These results can 
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be explained by the fact that over the years, as the supply and demand pattern changes within 

the power systems, with higher penetration of renewables with near zero short-run marginal 

generating costs, the wholesale price patterns change.18 Changes in price patterns require 

updates of the partitioning of the within-day TOU periods. If this is not done, as in the “static” 

TOU designs, the ability of TOU rates to anticipate relative within-day price differences is 

reduced. The alternative to regularly updating the partitioning of the hours in different within-

day TOU periods is to allow for many within-day TOU periods as in the benchmark TOU rate 

design. In that case, the TOU rate is very flexible and adjusts to changing price patterns merely 

by updating the (many) TOU coefficients on a yearly basis. But having many within-day TOU 

periods increases complexity for the end user. Having less TOU periods and gradually revising the 

exact partitioning of the hours belonging to the different within-day TOU periods seems a more 

sensible approach. 

In addition, we also show the daily Spearman rank correlation for each day of the year averaged 

over the seven years of the test period (2014-2020) for the two optimized TOU designs (right 

panels in Figure 4). On the 2nd y-axis in the right panels in Figure 4 we show the load in the 

considered power system during that day of the year averaged over the same period. These 

results show that the daily rank correlations show a strong seasonal pattern. The rank correlation 

is highest when the system load is highest. This indicates that when it matters most, the TOU 

rates are most likely to signal the correct relative price differences within a day. 

5.2. Simulation models: hourly demand functions and load-shifting optimization 

Figure 5 compares the results for the two simulation models for the different power systems. All 

results are relative to the first-best demand response under spot pricing considering a particular 

representation of demand, being the hourly linear demand function or, alternatively, a set of 

shiftable loads optimizing their schedule. We make three observations. 

                                                      
18 The figures in Appendix E shows how the price profiles per season and day-type evolve over the years. This is 
especially true for CAISO SP15. 
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Figure 5: Left panels- Results for the realized cost reduction potential metric under linear hourly demand functions 
with a constant hourly elasticity of -0.1 for 50% of the load. Right panels- Results for the realized cost reduction 
potential metric under the load shifting optimisation with 10 flexible loads with varying characteristics 
representing at maximum 5% of the peak load. 
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First, the results for both simulation models are very different. TOU rates perform significantly 

better under the load-shifting optimization model. An explanation is that under the hourly 

demand function (left panels), a significant share of the value lies in reducing demand during the 

few scarcity price hours. This is especially apparent from the results for ERCOT but also for CAISO. 

While TOU rates do not capture these scarcity price hours; CPP does, as illustrated for the same 

systems. This is less the case for ISO-NE as there are fewer scarcity events. In the load-shifting 

optimization, the added value of CPP is important but significantly lower. The rationale behind 

this result is that very high price events often happen during periods with already high prices 

(thus relatively high TOU rates). Contrary to the simulation with an hourly demand function, 

under the optimization the load is already scheduled away from these moments when such 

events are most likely to occur. This observation relates to Figure 4 (right panels), which shows 

that the relative price differences are easier to anticipate during the seasons that load (and 

prices) are highest and scarcity events tend to occur, and thus demand flexibility is most 

valuable.19 This result reiterates the idea that for load shifting the relative price differences 

between hours matter a lot more than the absolute price differences between hours.  

Second, the results for the ISO-NE power system, used as a sort of benchmark primarily thermal 

power system in this paper, are quite different from the results from CAISO and ERCOT, which 

are systems with significantly more intermittent renewables in the generation mix. This finding 

holds independently of the way load response is characterized. The results for TOU rates under 

hourly demand functions for ISO-NE are in line with existing literature based primarily on thermal 

systems, i.e., TOU capturing about one fifth of the benefits of spot prices. Adding CPP to the TOU 

rates does not have a strong effect on the results for ISO-NE contrary to the other power systems. 

For the other power systems, the performance of TOU rates under hourly demand functions are 

even lower than in ISO-NE and are largely impacted by peak pricing events. Comparing the results 

of the load-shifting optimizations for all three power systems, better results are obtained for the 

                                                      
19 The Texas crisis of February ’21 was an outlier in that respect (Busby et al., 2021; Littlechild & Kiesling, 2021). 
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systems with higher penetration of renewables, possibly due to more pronounced relatively 

predictable multi-hourly price swings at times with very high or very low renewable output. 

Third, when comparing the results for the TOU rate designs, in nearly all cases and independent 

of the representation of demand and the considered power system, the benchmark Y-1 performs 

best and the benchmark TOU second best. This means that prices lagged with one year are a 

relatively strong indicator of the relative price difference for the observed year, as also can be 

seen from the results for the rank correlations (Figure 4, left panels). The benchmark TOU gives 

a lot of degrees of freedom and can also capture well the relative price differences. More 

importantly is that the more realistically implementable TOU designs with fewer periods (max. 3 

or 4 per day) that are (slightly) revised from one year to another also perform relatively well 

(capturing 60-70% of the theoretical maximum). 

6. Discussion 

This paper is a first attempt in the analysis of TOU(+CPP) rates in the context of easily shiftable 

within-day loads and power systems with increasing penetration of intermittent renewables. 

Considering the results from the time series analysis for CAISO SP15 and ERCOT Houston Hub, we 

confirm that the out-of-sample annual Pearson correlations between TOU rates and spot prices 

are low (averaging 0.3-0.5) but show that these significantly improve when passing through a 

limited number of high-priced “scarcity” hours replacing the respective TOU rate in those hours 

(averaging 0.6-0.8). This reinforces the usefulness of CPP to deal with scarcity events (Blonz, 

2022). These results are especially relevant for assessing the impacts of TOU/CPP rates on short-

term load reductions. We find that out-of-sample daily Spearman rank correlations of TOU rates 

and spot prices are relatively high (averaging 0.7-0.8) and that rank correlations are especially 

high during summer when load is highest for all three systems (up to 0.9). This implies that, 

conditional upon power system characteristics and their specific design, TOU tariffs can provide 

a high proportion of socially efficient load-shifting incentives. Further, the simulation models 

show that the relative performance of TOU rates, complemented or not with a CPP program, 

compared to spot pricing is a function of how flexibility in the consumption of electricity is 

characterized.  
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Based on these results and considering that a large fraction of demand flexibility, especially at 

the residential and small commercial level, is expected to increasingly manifest itself in different 

forms of load shifting, we can say that TOU rates can better replicate the efficiency incentives 

that would result from spot prices signals than previously assumed in the literature. This 

statement holds especially true for CAISO SP15 and ERCOT Houston Hub, systems with relatively 

high penetrations of wind and solar generation. The results for ISO-NE, acting as a sort of control 

representing the thermal-dominated systems upon which many of the previous papers relied, 

indicate that these findings are to a certain extent conditional upon changes in the supply mix 

but that the introduced alternative assessment criteria play a bigger role. Overall, TOU rates, 

when having yearly updated coefficients and within-day periods based on historical data, 

perform relatively well in indicating relative price differences within days, and, as such, provide 

relatively effective load-shifting incentives.  

While TOU rates do not capture sudden scarcity price events, it is important to note that 

important peak pricing events often occur within periods of relative high prices. As such, flexible 

load, reacting to relative price differences, already has an incentive to reduce load during those 

scarcity price events just by having TOU rates in place. In any case, there is significant value in 

mobilizing additional demand reduction during those moments. In that regard, complementing 

TOU rates with a CPP program is valuable. The value of CPP can be seen to a certain extent in the 

results shown in Figure 5 (right panels) but would be even more pronounced if additional 

“emergency demand shifting/reduction potential” were added to the modelling. 

Methodologically this is not a complication; the question is what the ratio is between “regular 

flexible intraday shiftable load” (e.g., charging an EV) versus “emergency demand 

shifting/reduction potential” (e.g., rather abruptly stopping an air conditioner for two hours 

when it is hot and accepting less comfort for a monetary reward). This ratio will depend on the 

power system. With regards to the implementation of a CPP program, we recommend promoting 

load control programs where, e.g., at the reward of a discount on the bill, a third party (LSE or 

other) can regulate an appliance for a limited period. We prefer such approach over actually 

passing through very high prices during scarcity price moments. The former approach is also how 

we model the CPP program: as if a third-party entity sees the very high spot price and schedules 
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the load accordingly. The latter approach of passing through the very high spot prices is not in 

line with one of the main reasons to think about alternative rate designs, namely keeping the 

electricity bill predictable. Significantly increased rates to a level between the regular TOU rate 

and the actual spot price during scarcity events might be an approach in the middle. However, 

we tend to think that load control with an option to opt out (e.g., overriding load control and 

giving up the price discount) will perform better than having consumers react to an unexpected 

increased rate during scarcity events.  

Two methodological limitations of the current analysis and two future sensitivity analyses seem 

particularly important.  

Regarding the methodological aspects, first, a limitation of our simulation models is that we 

modelled flexible load as a price taker. With increasing load flexibility, shifts in demand will in 

turn impact power prices. In that regard a more holistic welfare analysis is required. Second, we 

did not include cross-elasticities in the simulation approach with hourly demand functions, which 

could, to a certain extent, replicate load shifting. However, calibrating the cross-elasticities to 

replicate the outcome as under the load-shifting optimization is far from a trivial problem.  

Regarding the sensitivity analysis, first, we considered several alternative TOU rate designs, but 

more analysis can be done regarding the simplicity versus efficiency trade-off for TOU rate 

designs. We need to investigate in more depth which parameters have the most significant 

impact on the performance of TOU rates relative to spot pricing. Second and most important, it 

is unclear whether our findings still hold in future heavily decarbonized power systems 

dominated by solar PV, wind, and different types of storage. It might be that the relative price 

differences within a day are a lot harder to anticipate than at present. In such a context, other, 

more complicated, retail rate plans may need to be developed. Examples of such ideas are having 

consumers hedge part of their load while real-time deviations from the contracted capacity are 

settled at spot prices (Chao, 2011; Wolak and Hardman, 2020) or the introduction of an insurance 

mechanism that accompanies the passed-through spot prices to consumers (see e.g., Batlle et al. 

(2022a, 2022b)). The cost of the insurance could be a function of the extent to which load control 
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is granted by the consumer to the insurance provider. The more complex the rate design, 

however, the less certain one can be about the responses by small customers. 

7. Conclusion and policy recommendations 

Increasing volatility in wholesale prices due to high penetrations of intermittent renewables with 

near-zero short-run marginal generating costs on the supply side and expanding opportunities to 

shift loads on the demand side increase efficiency gains that can be made by the introduction of 

time-varying retail rates. The theoretical first-best solution of passing through wholesale spot 

energy prices to consumers is not widely popular now, as consumers typically place a high value 

on predictability and bill stability, and we expect it to be even less popular in the future. We have 

introduced novel criteria to assess how well second-best alternatives, time-of-use (TOU) and 

critical peak pricing (CPP), can replicate incentives to load provided under spot price signals. The 

proposed assessment criteria are tailored to a context with increasingly shiftable load such as the 

charging of electric vehicles, cycling heat pumps, and operating other flexible appliances. We 

have computed results using historical data from three diverse power systems: CAISO, ERCOT 

and ISO-NE. 

We conclude that well-designed TOU rates, especially when accompanied with a CPP program 

involving load control during infrequent scarcity price events, are more attractive from an 

efficiency perspective than the existing literature suggests. We recommend the acceleration of 

the adoption of TOU rates accompanied by CPP as a valuable intermediate step towards 

improved electricity retail rates that balance efficiency considerations and consumer/political 

pressures for price predictability and bill stability. An important question, which we plan to 

investigate, is whether the presented results still hold in systems with significantly higher 

penetration of intermittent renewables and storage. In any case, we urge more research to 

investigate retail rate plans potentially including hedging and/or insurance mechanisms. 
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Appendix A: The hourly demand function simulations and a numerical example 

Borenstein (2005), Holland and Mansur (2006), and Spees and Lave (2008) represent flexibility in 

the consumption of electricity via hourly linear demand functions. The discretized version of a 

linear demand function is provided by Eq. A.1. With Lt being the total load after exposure to a 

time-varying rate in hour t, α𝑡𝑡 being the fraction of the load that is considered flexible in hour t, 

Lt,0���� being the total original (anchor) load in hour t, 𝜀𝜀𝑡𝑡 the elasticity which can vary from one hour 

to another, Pt the retail rate for the hour t, and P0�  the original flat rate for the year. 

Lt =  Lt,0����+ εt ∗
α𝑡𝑡∗Lt,0�����

P0����
∗ (Pt − P0� )   [A.1] 

The original flat rate for the year is calculated as the load-weighted average price of the spot 

prices.20 In simple terms, the elastic portion of the load increases when prices are lower than the 

flat rate and vice-versa, and the magnitude of change is proportional to the difference between 

the flat rate and the time-varying rate.  

The left panels in Figure A.1 show an example of the impact of, respectively, spot prices (top) and 

a TOU rate (bottom) on the aggregated load profile of CAISO of 01/06/’22 under the assumption 

of an hourly linear demand function. We assume 50% of (original) load to have a constant hourly 

elasticity of -0.1. At least for the considered day, the load response is not very different under 

both rates. The right panels in Figure A.1 show an example of the impact of, respectively, spot 

prices (left) and a TOU rate (right) on the aggregated load profile of CAISO of 01/06/’22 under 

the assumption of a load-shifting optimization. Ten flexible loads with varying characteristics are 

modelled, in total representing at maximum 5% of the maximum system load. The parameters 

are described in Appendix B.2.  

 

                                                      
20 The load-weighted average price under a TOU rate is not necessarily the same as the load-weighted average price 
under spot prices, as TOU rates are calibrated based on historical data. TOU rates are proportionally scaled to obtain 
the same load-weighted average price as under spot prices as explained in Section 4. 
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Figure A.1: Left panels- Load response under a linear demand function to day-ahead prices from CAISO SP15 on 
01/06/’22 (top) and to a calibrated TOU rate (bottom). 50% of load is assumed to have a constant hourly elasticity 
of -0.1. Right panels - Load response under the load-shifting optimization to day-ahead prices from CAISO SP15 on 
01/06/’22 (top) and to a calibrated TOU rate under the load-shifting optimization (bottom). Ten flexible loads are 
modelled with varying characteristics. Load data is from the entire CAISO area for 01/06/’22. 

When comparing the left and right panels of Figure A.1, we can note for example that the load 

response in the morning peak (7-10am) is higher for the load optimization relative to the linear 

demand function, especially under spot pricing. This is an illustration of the major difference 

between these approaches. The hourly demand function responds to absolute price differences 

compared to an anchor price (which is limited for the morning peak), while the load-shifting 

optimization is sensitive to relative price differences within the day (which are significant for the 

morning peak versus the adjacent hours in the night and around noon). Another manifestation 

of the difference between both approaches of modelling demand can be seen in the hours 10-12 
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and 14-17 under the TOU tariffs. For the simulation with hourly demand functions, there is nearly 

no change in the load compared to the baseline as the TOU price is very close to the anchor price. 

In contrast, for the load-shifting optimization, the load increases during those moments as, 

respectively, some load that was deferred during the morning peak is satisfied “in delay” and 

some load is satisfied “in advance” to allow for a load reduction during the evening peak. 
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Appendix B: Parameters for the numerical example of the load-shifting optimization 

Table B.1 summarizes the key parameters used for the numerical example of the load-shifting 

optimization. Each flexible load has the same size (ρf
max) but different random availability profiles 

(Δf,t).  The maximum possible total flexible load at any hour is 5% of the highest demand in the 

specific power system observed during the test period (2014-2020). This parameterization does 

not intend to replicate the characteristic of any specific real-world flexible load but serves an 

illustrative purpose. Further sensitivity analysis with a characterization of loads inspired by 

certain real-world loads is a possibility for future work. There might be a minor impact of the 

characterization of the flexible load on the exact results of the load-shifting optimization shown 

in Figure 5, but no qualitative differences are expected as all results are computed relative to the 

load-shifting response under spot pricing for the same flexible loads. Please note that we include 

two flexible loads with very high variable cost for shifting, respectively 75 and 150 $/MWh, for 

which there is a lot of flexibility in their scheduling. These loads are thought as being “emergency 

load-shifting options” and are only activity under scarcity price events (via spot prices or CPP 

event). 

Table B.1.: Parameters for the load-shifting optimization 

 Explanation Value 
T Horizon of the optimization period 168 
N Number of flexible loads 10 
ρf
max Max size flexible load f [MW] 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡∈{2014−2020}{𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑓𝑓𝑆𝑆_𝑙𝑙𝑙𝑙𝑀𝑀𝑙𝑙𝑡𝑡} ∗ 0.005 
Δ𝑓𝑓,𝑡𝑡 Availability factor flexible load Random profiles: Δ𝑓𝑓,𝑡𝑡 ∈ {0,1}  
VCf Variable cost to shift a MWh of load 

[$/MWh] per flexible load f 
[1, 2, 2, 3, 3, 4, 4, 5, 75, 150] 

τf
advance Maximum time the flexible demand 

can be advanced [h] 
[1, 1, 2, 2, 3, 3, 4, 4, 6, 8] 

τf
delay Maximum time the flexible demand 

can be delayed [h] 
[4, 4, 5, 5, 6, 6, 7, 7, 10, 12] 
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Appendix C: Details on the TOU rate design process 

This appendix is split into two parts. First, we discuss the different steps of the TOU rate design 

process. After, we provide more detailed information about the TOU partitioning algorithm. 

C.1 Overall process 

Figure C.1 provides a complete overview of the process from the raw spot price data to the 

different TOU rates. We discuss this process in four steps as indicated on the figure.  

 
Figure C.1: Overview of the process to design and calibrate the different TOU rates 

Step 1: Input data and pre-processing 

We use day-ahead hourly price data for the period of 2011-2020 from three hubs in the three 

different power systems: the south of path 15 (SP15) CAISO hub, ERCOT Houston Hub, and ISO-

NE Boston Hub (S&P Global, 2022). As we calibrate the TOU rates based on the preceding three 

years (see step 2 and 3), the test period consists of seven years (2014-2020). The first step 

consists of sorting the spot price data into bins per year, season, day-type, and hour. We opt for 

four seasons, being spring (March-May), summer (June-August), autumn (September-

November), and winter (December-February), and two day-types, being working days and 

weekends plus official holidays. For the load data, which is not of importance for the TOU rate 

design up to step 4, we downloaded hourly load data for 2014-2020 of the entire CAISO and ISO-

NE system as no disaggregated load data for the specific hubs was available for the considered 
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time period (S&P Global, 2022). For ERCOT, we used the more granular ERCOT Coast load data 

(ERCOT, 2022). 

Step 2: The partitioning of hours in periods 

We use three approaches to determine the partitioning of hours into different periods within a 

day. For the first two approaches the periods remain the same for all seven test years of the TOU 

rates, while for the third approach the periods are updated on an annual basis. 

The first approach (Option A in Figure C.1) is a benchmark TOU design to compare more realistic 

TOU designs against: 

• Benchmark TOU: a TOU rate with eight periods per day of equal length per day-type and 

season (8 combinations) 

As a second approach (Option B in Figure C.1) we use three partitioning schemes inspired by 

existing TOU rate designs: 

o CA static: the TOU-D-4-9PM rate from Southern California Edison (SC&E, 2022) with 

three within-day periods: 8am-4pm, 4pm-9pm, 9pm-8am (only applied in weekdays 

and the same periods apply for all seasons) 

o TX static: an optional TOU rate plan in Texas (Shop Texas Electricity, 2021) with four 

within-day periods: 10am-1pm, 1pm-7pm, 7pm-9pm and 10pm-10am (only applied in 

weekdays and the same periods apply for all seasons) 

o MA static: a TOU rate offered for large commercial and industrial customers in the 

greater Boston area by Eversource (2022). There are two within-day periods during 

weekdays. In summer (June-September), a peak period from 9am-6pm and the 

remainder off-peak. For the rest of the year, a peak period 8am-9pm and the remainder 

off-peak.  

The third approach (Option C in Figure C.1) is to do the period partitioning based on historical 

data and update the periods annually. To determine the periods we use an adapted version of 

the algorithm described by Yang et al. (2019). We describe the algorithm in more detail in the 2nd 

subsection of this appendix. In short, for each test year (2014-2020) within-day periods are 
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determined per season per day-type based on the price pattern of the three preceding years of 

spot prices, i.e., a sort of rolling window. We consider TOU designs with maximum three and 

maximum four periods within a day, labelled “Optimized 3-periods” and “Optimized 4-periods”. 

Note that the algorithm does not necessarily choose to have the maximum number of possible 

periods within a day. A period can be repeated within the same day, but each period needs to 

last at least three hours. 

Finally, we also introduce a benchmark Y-1 rate, which is the hourly day-ahead price of the 

preceding year, this could be interpreted as the most extreme partitioning and implies 8760 rate 

coefficients. No data processing is needed for this benchmark.21 

Step 3: obtaining the TOU coefficients 

Having determined the partitioning of hours into a set of time blocks per season and per day-

type, the TOU coefficients can be calculated. The TOU coefficients are obtained by a simple 

regression with dummies per season (4), day-type (2) and the number of TOU time blocks as in 

Jacobsen et al. (2020). The input for the regression is the spot price data of the preceding three 

years (this is different from Jacobsen et al. (2020) who calculate the in-sample R2). The 

coefficients are updated annually for all TOU rate designs. For the benchmark TOU design and 

the three TOU designs for which the period partitioning is based on existing TOU rates, we 

assume the hours to be divided in the same periods for four seasons and two day-types. Also, we 

allow TOU coefficients to vary per within-day TOU time-block (thus not having a period being 

repeated within a day). This implies that per year we obtain 64, 24, 32 and 16 unique TOU 

coefficients for the, respectively, benchmark TOU, CA static, TX static, and MA static TOU 

design.22 In that sense, these TOU designs inspired by existing TOU designs are slightly more 

advanced than in practice. In practice, typically only two seasons (summer and the rest of the 

                                                      
21 For simplicity we remove the 29th of February from the dataset in the leap years (2012, 2016 and 2020). For the 
hours missing due to the day-light savings time we use the average of the preceding and succeeding hour.  
22 The number of unique TOU coefficients per year is calculated as the multiplication of the number of time blocks, 
the number of seasons and the number of day-types. 

 



40 

 

year) are considered, the different TOU periods are only introduced in weekdays, and it can be 

that periods are repeated within a day (e.g., off-peak during the night as well as around noon).23  

Step 4: scaling the TOU coefficients 

In the final step the TOU coefficients are scaled proportionally, i.e., increased/decreased with the 

same percentage, to make the load-weighted average price under any TOU rate equal to that 

under the observed spot prices. This could be interpreted as using the 1-year forward prices of 

the spot market to scale any TOU rate to remain revenue neutral, at least before considering any 

demand response. 

C.2. The partitioning algorithm 

The raw hourly day-ahead price data of the three power systems for 2011-2020 is processed in 

three steps before entering the partitioning algorithm that is based on Yang et al. (2019).  

1. The days are sorted per year, season, and day-type.  

2. Each day is normalized by dividing all prices per day by the maximum price of that day.  

3. For each year x season x day-type combination for which a partitioning needs to be 

determined, the average of the normalized prices for a particular hour in the three 

preceding years, for that specific season and day-type is calculated.  

We end up with 56 normalized price profiles (7 test years x 4 seasons x 2 day-types) for which 

each of the profiles serves as an input for the partitioning algorithm. The partitioning algorithm 

works as shown in Figure C.2. which is adapted from Yang et al. (2019). The text in bold indicates 

the additions to the original algorithm. Figure C.2. shows the partitioning algorithm when 

allowing for four within-day periods that can be repeated within a day but must last at least a 

minimum number of hours (parameter mind) per repetition. The entire mathematical 

formulation can be found in Yang et al. (2019). In simple terms, the objective function of the 

algorithm is the minimisation of the root mean square distance (RMSD) between the normalized 

price profile per season and day-type and the approximation of the partitioning. However, rather 

                                                      
23 Typically, during weekends and holidays the off-peak rate applies for the entire day. 
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than an being an optimization the problem is formulated as a heuristic where many combinations 

of partitionings are computed and the partitioning with the minimal distance is finally selected. 

The key parameter N determines the trade-off between the precision of the partitioning 

(closeness to the theoretical optimal) and computational time. N is set equal to 210 for the 

“Optimized 3-period” TOU rate and to 90 for the “Optimized 4-period” TOU rate. 

 
Figure C.2: Schematic representation of partitioning algorithm based on Yang et al. (2019). In bold the addition of 
the filter to respect the minimum duration per within-day TOU time-block. 
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Appendix D: Day-ahead price series for the considered power systems 

Please note that the y-axis has a different scale for each time series. 

 
Figure D.1: Day-ahead power price series for CAISO SP15 from 2011-2020 

 
Figure D.2: Day-ahead power price series for ERCOT Houston Hub from 2011-2020 
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Figure D.3: Day-ahead power price series for ISO-NE Boston Hub from 2011-2020 
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Appendix E: Illustrations of changing price patterns from 2014-2020 

Figure E.1-3 show the average normalized price profiles for working days per season per 

considered power system for the period of 2011-2020. These figures give an intuition that the 

optimal within-day partitioning of hours into TOU periods evolves over the years. This particularly 

the case for the CAISO SP15 data. 

The raw day-ahead price data is processed in four steps. First, the days are sorted per year, 

season, and day-type. Second, each day is normalized by dividing all prices per day by the 

maximum price of that day. Third, the average of the normalized prices for a particular hour in a 

particular year, season and day-type is calculated. Fourth, the average normalized price profile is 

plotted per year, season, and day-type. We work with prices that are normalized to avoid scarcity 

prices having an excessive impact on the “typical” price profiles per year, season, and day-type.  

 
Figure E.1: Average normalized price profiles for working days per season for CAISO SP15 (2011-2020) 
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Figure E.2: Average normalized price profiles for working days per season for ERCOT Houston Hub (2011-2020) 

 

 
Figure E.3: Average normalized price profiles for working days per season for ISONE Boston Hub (2011-2020) 
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