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Abstract
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1 Introduction

In order to bring down greenhouse gas emissions and mitigate global climate change, the world has begun

to shift from brown energy, made by burning fossil fuels, to green energy, produced by renewable resources

like wind and solar power. The likely scale and pace of this green energy revolution are unfathomable. By

one estimate, meeting greenhouse gas abatement targets will require $131 trillion of investment in renewable

energy (IRENA, 2021). If countries follow through on their abatement pledges, solar and wind are projected

to overtake coal in global electricity production as soon as 2030 (IEA, 2021).

The green energy revolution has a special urgency in developing countries. As countries grow, green

energy serves both to head off increases in emissions and to meet rapid growth in energy demand (Wolfram,

Shelef and Gertler, 2012; EIA, 2019). Figure 1 compares electricity supply in different parts of the world.

Within the OECD, electricity produced from brown energy looks already to have reached an historic peak

(Panel A). Outside the OECD, despite increases in renewable generation, brown energy use is still growing,

to meet rising demand (Panel B).

I conjecture that hold-up—that is, foregone investment due to contractual risk—might hinder the green

energy revolution. Weak contract enforcement leads developing countries to produce less in industries that

use relationship-specific assets (Nunn, 2007). Investments in power generation are highly relationship-

specific (Joskow, 1987). Once a power plant is built, it loses bargaining power in input and output markets.

The grid may host few buyers, or only one: a state-run utility. Together, weak contract enforcement and

this asset specificity create hold-up risk (Williamson, 1975; Klein, Crawford and Alchian, 1978). Rapid

technological progress in renewable energy may exacerbate the hold-up problem by pulling down costs over

time. Buyers of green energy can always buy it more cheaply from new projects than by honoring old

contracts, signed at yesterday’s high prices.

The import of these forces is that green energy investments face a high degree of counterparty risk. This

risk has caused major renewable energy auctions around the world to be cancelled and contracts to be thrown

out.1 When counterparty risk cannot be contracted away, private firms will either be deterred from investing

or be willing to supply energy only at a premium.

1There are many examples (IRENA, 2019a). Because power distribution is a natural monopoly, and many countries do not have
well-developed wholesale markets, the buy side of the power sector tends to be thin and state-controlled. Mexico cancelled a large
solar auction after the government decided to give the power generation business back to state firms (Deign, 2019). Turkey cancelled
an auction when firms were scared off by the procuring government’s weak finances (Bellini, 2019). South Africa scrapped solar
contracts awarded at auction after its state utility went bankrupt and the government turned over (IRENA, 2018).
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This paper studies the possible hold-up of green energy in the context of procurement auctions for solar

power in India. Investment in solar power is one of the main ways that India plans to meet its intended

nationally-determined contribution under the Paris Climate Accord (Ministry of Environment, Forest and

Climate Change, 2015). I use novel data on the universe of large-scale solar procurement auctions in India

from 2012 to early 2020, basically the entire history of the Indian solar industry. In solar auctions, firms

compete to be awarded long-term (typically 25-year) contracts to supply solar power to state utilities. The

data depict a solar boom, in which prices fell by a factor of three and capacity exploded: India installed 32

GW of utility-scale solar capacity, more than a hundred-fold increase, to approach the level of utility-scale

solar in the United States (37 GW, circa 2019).

The institutions of the Indian solar market create rich variation in counterparty risk with which to study

the effects of hold-up on procurement (see Section 2). State-government-owned electricity distribution

companies are the wholesale buyers of nearly all electricity in India. Many of these buyers are perenially

bankrupt, with long track records of strategic renegotiation and default (Mathavan, 2008). The latent risk

to green energy firms from signing contracts to sell to these counterparties is therefore high. However,

both individual states, with records of late payment and default, and the central Government of India, a

trusted counterparty, run auctions to procure renewable energy. In centrally-intermediated auctions (here-

after “central auctions”), the ultimate buyers of power—risky state companies—are the same, but the central

government acts as a pass-through, on paper, insulating solar firms from state counterparty risk. It is there-

fore possible to compare the outcomes of procurement auctions for projects that are built with the same

technology, by the same firms, in the same places, but which were subject to starkly different levels of

counterparty risk. Figure 2 gives an example of two such projects, from the state of Andhra Pradesh.

The empirical analysis is in two parts. The first part of the analysis uses intermediation to estimate how

counterparty risk affects bid prices (Section 4). Counterparty risk is measured directly using ratings of state

procurers from India’s Ministry of Power. The empirical idea is to compare prices for auctions in high-

risk versus low-risk states that are or are not intermediated. The risk premium is estimated as the relative

increase in solar prices in risky states for non-intermediated auctions. This empirical strategy has the virtue

of differencing out factors other than risk, like unobserved differences in the quality of infrastructure, that

vary solar costs across states in both state-run and central auctions.

With this strategy, in the first part, I obtain three main findings. First, the counterparty risk of an average

state increases solar bid prices by 10% over what the central government would have paid. This risk premium
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is as large as the mean mark-up of bid prices over cost among all bidders (11%) and two-thirds as large as the

mean mark-up among winning bidders (16%). Alternatively, we can benchmark the risk premium against

the effect of varying solar energy on bid prices. The increase in prices due to the average state risk is the

same, by my estimates, as from moving a solar plant downwards by a massive 2.4 standard deviations in the

distribution of solar irradiance across bids. By either benchmark, risk is a major determinant of prices.

Second, central intermediation mitigates counterparty risk entirely. I find that solar bid prices are 6%

lower in central auctions relative to comparable state auctions.2 Lower prices in central auctions are consis-

tent with intermediation mitigating risk, but this estimate is not dispositive, since it is possible that central

auctions have some other advantage in cost or competitiveness, not having to do with risk. However, I addi-

tionally find that in a centrally-intermediated auction, increasing counterparty risk—for the state buying the

power, through the central intermediary—does not increase bid prices. Moreover, conditioning on explicit

controls for risk eliminates the effect of central intermediation on bid prices. The lower prices in central

auctions are therefore consistent with sellers adjusting their bids to account for the lower hold-up risk they

bear when auctions in risky states are intermediated. I use a second data set, on solar contracts, rather than

auction bids, to replicate closely and to extend these first two main findings on counterparty risk.

Third, the counterparty risk premium is due specifically to the risk of strategic default. Firms may face

high risk from states with shaky finances, even if those states do not deliberately hold them up. I test for the

importance of strategic default, as opposed to exogenous risk, using differences in bargaining power across

firms. Green energy has high fixed costs but low variable costs. Green energy projects therefore earn a

high surplus and have a weak bargaining position, once a plant is up and running, which may invite strategic

renegotiation of power contracts. I hypothesize that a firm that runs thermal power plants in the same state to

which they are selling solar power will have a stronger bargaining position, because they can more credibly

threaten to withhold power from their thermal plants if a contract is breached. I match solar firms to any

thermal power plants they own around the country. I find that, indeed, the counterparty risk premium is large

for solar-only firms but practically null for firms that hold thermal plants in the same states.

Does risk hold up investment? The counterparty risk premium could serve as adequate compensation

for bearing risk, in which case it would have no bearing on investment. I argue, however, that the risk

premium does cut green energy investment, because wholesale demand for green energy is elastic: states

2The estimated counterparty risk of an average state (10%) is larger than the estimated effect of intermediation (6%) because
the average non-intermediated auction is held in a state of lower-than-average risk (such as Gujarat, which has high solar potential).
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trade-off green energy against other power sources in order to hold down energy prices (Ministry of New

and Renewable Energy, 2010). In my sample, elastic demand was made an explicit policy in the period from

2018 to 2020, when procurers widely adopted ceiling tariffs, price caps on the bids at solar power auctions,

to try to hold prices down. During the same period, the capacity awarded at auction fell far short of what

buyers sought, and the solar boom markedly slowed (Figure 5).

The second part of the analysis uses a structural model to study this trade-off between counterparty

risk and investment when demand for green energy is elastic (Section 5). The model describes optimal

bidding in a multi-unit procurement auction using the share auction framework (Wilson, 1979). The main

distinguishing feature of the model is that counterparty risk is treated as an observable payout shifter, known

and common to all bidders in an auction. I show that this formulation is equivalent to bidder costs being

inflated by the counterparty risk they face in a given state. The distributions of costs and counterparty

risks are separately identified in the model under the plausible assumption that central auctions pose no

counterparty risk. I estimate the primitive distribution of bidder costs by inferring costs from the bid data

and modeled optimal mark-ups (Kang and Puller, 2008; Hortaçsu and McAdams, 2010) (Section 6).

The model estimates allow me to trace out the aggregate supply curve for solar power that India would

face under different levels of its own counterparty risk. I trace the supply curve, for a given level of risk,

by varying ceiling tariffs and solving for the equilibrium prices and quantities that result. A ceiling price

reduces participation from potential solar bidders with costs too high to meet the ceiling. It also changes

bids, for those firms whose costs are low enough to bid beneath the ceiling. I use the model estimates of the

distribution of costs to simulate auction equilibria accounting for both of these effects. I find that the supply

curve faced by a procuring state shifts inwards sharply the higher is that state’s risk (Figure 9, panel B). The

all-India solar supply curve would shift inwards by 20% (37%) if the whole country moved from the level of

risk of the central government to that of an average-risk (high-risk) state. These large differences in supply

arise due to risk alone, as the model counterfactuals hold constant factors like market structure and the costs

of solar generation.

I apply the model to study the foregone solar investment caused by the widespread adoption of ceiling

prices from 2018 to 2020 (Figure 5) (Section 7). I find that this policy reduced capacity procured by 16%.

Risky states set ceiling prices, in imitation of the central government, to try to match the low prices that

the central government had obtained at auction. I find that the ceiling policy did not meet this goal: for the

actual level of risk in the data, the ceiling prices imposed are estimated to lower the price of solar energy

4



procured by a mere 1%. The model shows why the reduction in prices is so small. Ceiling prices reduce

participation and the remaining bidders in an auction respond by raising their mark-ups, pushing bid prices

towards the ceiling. Risky states therefore face an extreme trade-off where any attempt to suppress the risk

premium will sharply decrease investment at little gain in lower procurement costs.

The results suggest that developing countries with weaker institutions for contract enforcement are at

a disadvantage in public procurement. The prospect of a state’s strategic default creates counterparty risk.

Counterparty risk raises bid prices. When state demand is elastic, this risk feeds back to reduce invest-

ment. While I find that central intermediation mutes the risk premium in the Indian solar market, countries

with less sophisticated institutions or still higher risk may not be able to follow this example. Electricity

demand is growing fastest in developing countries with poor credit.3 Section 8 discusses whether contract

intermediation like that I study in India could be replicated elsewhere.

The main contribution of this paper is to show the importance of hold-up risk in a vital developing-

country market. It has proven hard empirically to separate hold-up risk from other, unobservable factors

that affect firm costs.4 In my context, contract intermediation provides policy variation in counterparty risk

for firms producing the same good in the same places. This institution therefore allows for the estimation

of counterparty risk conditional on the costs of production. The approach of studying contracting in a fairly

homogenous industry follows in the tradition of Joskow’s canonical validation of transactions cost theory.5

This main contribution connects the paper to work in development economics, energy economics and

industrial organization. I contribute to the literature in development economics on contract enforcement.

Counterparty risk is a dominant concern for private investors in many developing economies (Collier and

Pattillo, 2000; Fafchamps, 2003). A main theme of the literature has been how relational contracts between

firms may substitute for formal contracts (McMillan and Woodruff, 1999b,a; Banerjee and Duflo, 2000;

Macchiavello and Morjaria, 2015, 2021). The present analysis is most closely related to work on formal

3The countries in the bottom quartile of the growth rate of electricity consumption have an average sovereign credit rating of
A3, “Upper medium grade” (per Moody’s). The countries in the top quartile have an average rating in the range of B2, “Highly
speculative.” Of 21 countries in sub-Saharan Africa rated by Moody’s, 19 have sovereign credit ratings below that of India.

4The frontier of the empirical literature compares firm investment, integration or costs across countries or states with differing
contract enforcement in industries that are more or less reliant on contract-intensive inputs (i.e., inputs produced with relationship-
specific investments) (Nunn, 2007; Acemoglu, Johnson and Mitton, 2009; Boehm and Oberfield, 2020; Amirapu, 2021). This
approach assumes that unobservable factors that shape investment in contract-intensive industries, for example input quality or the
skill of the labor force, do not covary with contract enforcement.

5Joskow (1987) finds that greater asset specificity for coal power plants is associated with longer contracts, akin to integration.
In the Joskow (1987) case, specificity for power plants is due to fuel supply relationships, on the input side, rather than from
constrained output markets as I emphasize here. Contracting solves the hold-up problem when contracts can be specified and
enforced, as in the US energy market (Joskow, 1988, 1990). Contracts may not achieve efficiency when projects are complex and
contracting is therefore costly (Bajari and Tadelis, 2001) or when contracts are not strictly enforced (Ryan, 2020).
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contracting that measures the economic costs of weak contract enforcement, renegotiation or default (Laeven

and Woodruff, 2007; van Benthem and Stroebel, 2013; Blouin and Machiavello, 2019; Ryan, 2020). I offer

an unusually direct, revealed preference estimate of the importance of hold-up risk.

The paper also contributes to a fast-growing literature on the green energy revolution. Most research

on investment in renewable energy has focused on developed economies and particularly on household so-

lar adoption (van Benthem, Gillingham and Sweeney, 2008; Borenstein, 2012; Bollinger and Gillingham,

2012; Borenstein, 2017; van Benthem and Pless, 2019). A second major line of research concerns how

wholesale power markets adapt to intermittent renewable generation (Joskow, 2011; Cullen, 2013; Novan,

2015; Gowrisankaran, Reynolds and Samano, 2016; Ito and Reguant, 2016; Bushnell and Novan, 2021; But-

ters, Dorsey and Gowrisankaran, 2021; Gonzales, Ito and Reguant, 2022). Fabra and Montero (forthcoming)

study the optimal design of renewable procurement auctions when there are multiple, competing green en-

ergy technologies of uncertain cost. There is relatively little research on renewable energy in developing

countries, despite a global surge in renewable investment.6 One branch of research, parallel to the US liter-

ature on household solar adoption, studies household investment in solar micro-grids as a substitute for grid

power (Fowlie et al., 2019; Burgess et al., 2020). This paper adds to the literature by linking green energy

supply to contracting institutions. The results show that counterparty risk should be taken as a fundamental

determinant of green energy prices in developing countries.

Finally, this paper relates to the industrial organization literature on procurement.7 The present paper

is closest to a set of empirical papers on procurement when ex post performance is not contractible (Bajari,

Houghton and Tadelis, 2014; Lewis and Bajari, 2014; Bhattacharya, Ordin and Roberts, 2020). In these

papers, the contracting failure is due to the bidding firm’s ex post cost of adaptation or effort (Bajari and

Tadelis, 2001). My contribution is to show that the counterparty risk posed by the buyer affects bidding

and investment. A state’s public procurement costs will depend not only on supply side factors, like market

structure and firm performance, but also on its own ability to commit.

6The surge has been driven mainly by huge falls in capital costs (IRENA, 2019a). Falling prices have also been attributed, in
part, to policy changes like a move from feed-in tariffs to procurement auctions (Eberhard and Kåberger, 2016; Bose and Sarkar,
2019; Shrimali, Konda and Farooquee, 2016). Working against this trend, Probst et al. (2020) find, in the Indian solar market, that
domestic content requirements, mandating that some projects use domestically-made solar panels, increase solar prices.

7Tadelis (2012) studies mechanism choice in procurement and calls explicitly for more research on procurement under incom-
plete contracts. A large empirical literature has studied procurement auctions in a range of environments, featuring collusion (Porter
and Zona, 1993; Conley and Decarolis, 2016), endogenous entry (Li and Zheng, 2009; Bhattacharya, Roberts and Sweeting, 2014),
and bidder asymmetry and preference policies (Krasnokutskaya and Seim, 2011; Nakabayashi, 2013).
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2 Institutional context

2.1 Renewable energy policy in India

India has set ambitious goals for growth in renewable energy to meet its intended nationally-determined

contribution under the Paris Climate Accord: 100 GW of installed solar capacity and 60 GW of wind by

2022 (Ministry of Environment, Forest and Climate Change, 2015). At the time these targets were set,

the utility-scale solar capacity in the US was 11 GW and in India merely 5 GW. India’s goals have grown

with the solar market. In 2010, the Government of India launched the “Jawaharlal Nehru National Solar

Mission” (JNNSM). The mission sought “to scale-up deployment of solar energy and to do this keeping in

mind the financial constraints and affordability challenge in a country where large numbers of people still

have no access to basic power and are poor and unable to pay for high cost solutions” (Ministry of New and

Renewable Energy, 2010). The JNNSM set an initial target of 20 GW of solar capacity addition by 2022,

which was met with skepticism, given the high cost of solar at the time (Deshmukh, Gambhir and Sant,

2011). Nevertheless, with the cost of solar falling, a new Government in 2015 quintupled the prior target.

Investment in green energy raises an institutional tension between the central government and the var-

ious states. The central government has national and international goals in developing a renewable energy

industry and reducing greenhouse gas emissions intensity, yet the central government does not own elec-

tricity distribution companies and buys little electricity itself. The states, via wholly state-owned electricity

distribution companies (discoms), buy nearly all electricity in the country, and care mainly about keeping

down the cost of energy, rather than the broader goals laid out at the central level. The central government

therefore supports renewables through policy instruments such as tax expenditures and subsidies.8 While

these policies are an important sign of the Government’s commitment to solar power, the subsidies they

represent are small relative to the value of the solar market. I argue below that such policy support for solar

has been less important than the Government’s direct intervention in the market.

2.2 Counterparty risk in the sale of power to state buyers

Renewable energy in India is sold only through long-term contracts, which bear counterparty risk. The

main buyers of power are state-owned and run distribution companies. These state discoms have a long

8The central government lowers capital costs for renewable energy projects by exempting renewable energy capital from import
duties and by allowing accelerated depreciation of capital investments in renewable production. The government also offered capital
subsidies, for certain projects, in the form of “viability gap funding” (VGF), which pays for the estimated difference in procurement
costs between green energy and brown energy projects, to encourage states to buy green power.
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track record of strategic default against private power generators (Mathavan, 2008). States have an incentive

to default, because accumulating debt precipitates central government bailouts, including, most recently, in

2020, 2015, 2012 and 2002 (see Appendix B). The cycle of debt accumulation and bailouts has continued

in spite of structural and regulatory reforms (Kumar and Chatterjee, 2012).

Data from the Ministry of Power makes it possible to measure just how risky state distribution compa-

nies are as counterparties. The Ministry of Power issues letter grades of state discoms to rate their financial

condition and credit risk (Ministry of Power, 2013). It has also created a database of late and disputed

payments, in order to shame state discoms into paying generators for the electricity they deliver (See Sec-

tion 3 and Appendix A for a description of these data). Figure 3 plots the mean share of payments from

state distribution companies to generators that are late or in dispute, shown by the bars, against the state

distribution company rating (the overlaid point estimates, from the model, will be discussed in Section 7).

Late payment and non-payment increase for lower-rated companies. Companies rated “A+” have barely any

late or disputed payments; companies rated “C” have roughly a quarter of their payments late or disputed.

2.3 Specificity of solar investments

Firms selling to these risky state counterparties face hold-up risk because the value of their solar plant is

specific to the power purchase contract signed when their plant was set up. There is practically no secondary

market for long-term solar power purchase contracts that would allow a firm to change the buyer of their

power if trade with the original procurer breaks down after a plant is built.

I attribute the absence of this market to three factors. The first factor is common between solar and

other sources of power on long-term contracts: regulatory barriers to trade make India’s power market less-

than-perfectly integrated.9 The other two factors are specific to renewable energy. The second factor is

technological change: because renewable power prices have been declining, the outside option of states, to

break a contract and buy renewable power at lower current rates, has been improving. Third, solar plants

have only fixed costs, which may make them especially vulnerable to hold-up. Once a project is built, the

variable cost of supplying power is zero, which creates on ongoing variable surplus for the solar firm and

an incentive for the buyer to renegotiate.10 Only about half of the fixed costs are in the panels themselves

9India’s power market has lately become more physically integrated, lessening long-standing transmission constraints across
states and regions (Ryan, 2021). Yet power plants built to supply on long-term contracts still face narrow output markets. Despite
regulations for open access to the power grid, to sell across states, various “tariff and non-tariff constraints” hinder trade and create
large differences between the in-state and out-of-state prices of wholesale electricity (Forum of Regulators, 2019).

10Low variable costs are a distinguishing feature of renewable energy production. Solar and wind have zero variable costs,
whereas thermal (coal and gas) plants have variable costs ranging from 20 to 50% of the total cost of generation (Lazard, 2019;
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(Appendix B, Table B5). Because the “balance of systems” costs (acquiring land, setting up the panels and

connecting to the grid) are wholly site-specific, it is uneconomic to move a plant once built.

These factors give rise to the counterparty risk in the Indian solar market. While most contracts are

in their early years, several states have already taken advantage of falling prices by renegotiating solar

tariffs initially set at auction, making the argument that old prices were not in line with today’s market

(Chandrasekaran, 2017; Bihar Electricity Regulatory Commission, 2019).11 More common than outright de

jure renegotiation are disputed or delayed payments for electricity (as in Figure 3). When state distribution

companies do not pay, or delay payment, this reduces the present value of the contract’s stream of payments

for energy supply. Lenders that anticipate payment trouble may charge solar firms a higher interest rate,

raising the cost of capital ex ante. Firms selling to a risky counterparty have to invest more equity or carry

a cash buffer to make loan payments when their receivable energy payments are delayed (India Ratings &

Research, 2019). Counterparty risk may thus reduce the expected return on solar investments.

2.4 Intermediation in solar procurement auctions

To attempt to mitigate counterparty risk, the central government intervenes in the market for solar power

by serving as an intermediary between selling firms and buying states.

There are three main ways solar procurement is done. First, states can negotiate bilateral contracts to

procure energy (a “state bilateral”). Second, state discoms can buy power through procurement auctions (a

“state auction”). In both of these methods, states act on their own; selling firms can draw on central tax

exemptions and other policies, but the central government is not otherwise involved. Third, states can buy

power via an auction run by a central government entity, either SECI or NTPC (a “central auction”).12 Both

state and central auctions use a multi-unit discriminatory auction format. Firms offer quantities of solar

capacity at different bid prices. The lowest-price bidders that together offer enough quantity to meet the

demand of the procurer win contracts, at the prices they bid.

EIA, 2021). This range will vary with the type of generation, interest rates and the price of fuel.
11Bihar provides a well-documented example. Bihar has above-average state risk (2012 rating of “B”). The state regulator in

2019 rejected the result of a solar procurement auction that yielded higher prices than in other auctions in India and in neighboring
states. The ruling states: “Comparing the rates of these states with that of Bihar, the difference is too large to be accepted and
adopted. The Commission views that buying solar energy which is at this rate which is obviously much higher than the prevailing
market rates, will be injustice to the end electricity consumers as they have to bear the brunt of higher cost of power” (Bihar
Electricity Regulatory Commission, 2019). This rejection resulted in a state-ordered downward renegotiation of the solar price that
had been revealed at auction.

12The Solar Energy Corporation of India (SECI) is a central-government-owned company, controlled by the Ministry of New
and Renewable Energy, that was established in 2011 to implement the JNNSM. The National Thermal Power Corporation (NTPC)
is an incumbent, central-government-owned generation company with a large portfolio of power plants. Both of these companies
run solar auctions for the central government to procure power on behalf of the states.
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The central government’s role in central auctions is purely intermediation. The true buyer of power is

still a state or a collection of states. The solar power is produced with the same technology, by many of the

same firms, with plants in many of the same places, as for state auctions. Figure 2 shows an example of how

similar projects can be, regardless of whether their procurement was intermediated. The left-hand panels (A

and C) show a solar power plant bought in a central auction. The right-hand panels (B and D) show a solar

power plant bought in a state auction. The two projects are of the same scale, in the same district of Andhra

Pradesh, and have strikingly homogeneous physical layouts.

The salient economic difference between state and central auctions is that in central auctions the central

government assumes the counterparty risk faced by solar firms. If the distribution companies later do not

pay for solar power bought at a central auction, those payments are made by the central agency. The central

obligation to pay has been tested, and upheld, on regulatory review.13 Market observers attribute low solar

prices to this guarantee: “It is understood that this fall in solar tariffs is the result of [a] combination of

various factors, most important being the decision of the Government of India to cover solar power by SECI

. . . against defaults by State distribution companies” (Market Screener, 2017).

The center and the states run auctions in parallel and do not coordinate auctions with each other, or

even plan their own schedules much in advance (Rustagi and Chadha, 2020). The central government does

not choose to intermediate certain auctions out of some pre-determined schedule. The main motive of the

center is to run enough auctions to make progress towards national capacity targets (Prateek, 2018). The

“completely haphazard” and overlapping nature of auction schedules from different procurers has led to

complaints from project developers (Saurabh, 2018). Notwithstanding this lack of coordination, because

states can choose whether to run their own auctions, there could be auction selection: risky states may run

fewer of their own auctions, to procure power through intermediated auctions instead. Consistent with some

degree of selection into who runs auctions, I show that risky states have tended to intermediate more of their

procurement in recent years (see Section 7 and Appendix B). Section 4.3 explains why such selection does

13The guarantee was briefly, at the start of intermediation, implicit: firms expected SECI would pay because it is owned by
the central government and exists to implement a high-priority policy (Rustagi and Chadha, 2020). Astute market watchers noted
that counterparty risk, “virtually absent in projects bid out by SECI and NTPC, exists mostly in projects bid out by state agencies”
(Aggarwal and Dutt, 2018). In 2016, the Government of India formalized this absorption of counterparty risk by changing the terms
of SECI contracts, so that the central agency was not only an auctioneer, but a formal intermediary party to the power purchase
contract, which was obligated to pay solar firms if states did not. States, in turn, were obligated to compensate the central agency
on a “back to back” basis. This intermediation arrangement would later be tested when solar power sellers sought an increase
in contract prices from SECI to offset an unexpected increase in taxes. SECI argued that solar power buyers themselves should
be responsible for any increase. However, in a series of rulings, India’s apex electricity regulator asserted that SECI, the central
agency, was indeed liable in its role as contract intermediary (though solar buyers were also liable to the agency, in turn) (CERC,
2020a,b,c).
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not bias my estimates of counterparty risk.

3 Data and summary statistics

This section introduces the data sources and describes the recent transformation of the Indian solar market.

3.1 Data sources

The main data sources cover all utility-scale solar procurement auctions and solar projects in India.14

Utility-scale solar is the dominant form of renewable energy investment in India and comprises 93% of solar

capacity installed (circa 2019) (MNRE, 2020). There are two distinct databases, on solar auctions and on

solar projects.

The auction database gives the date, procurer, tendering authority, capacity sought and capacity awarded

for each auction. The tendering authority refers to the party that runs an auction and assumes the payment

obligation for power procured through that auction, which may be either a state or a central agency (see

Section 2). The tendering authority is often not the final buyer of power; in central auctions, for example,

SECI might be the tendering authority even if the power procured at auction is being bought by a state

distribution company in Andhra Pradesh. I impose sample restrictions to produce a set of homogenous auc-

tions: an auction is retained if it seeks more than 5 MW of power from ground-mounted solar photovoltaic

plants. The restrictions yield a sample of 232 auctions with 1264 bids totaling 124 GW of capacity bid (see

Appendix A). I link auction-level data to the bids in each auction. Most analyses of bid prices and costs are

further restricted by requiring that data be available on all individual bids in an auction.15

A second database on solar projects tracks investment in solar power plants rather than bids at auction.

There are two main differences in coverage, relative to the auction data. First, the solar prices in the project

data are the prices of power purchase contracts, not of offered bids. The projects database therefore does

not include any data on bids that lost at auction, which do not yield any contract or investment. Second, the

projects database includes solar plants and contracts procured through either auctions or negotiated contracts

14Utility-scale refers to installations above a minimum size of 1 MW that are connected to the transmission grid (as opposed
to small-scale, rooftop solar projects connected to the distribution network). These data were purchased from Bridge to India, a
consulting firm that provides data and analysis on renewable energy in India. Bridge to India in turn gathers data on renewable
auctions from public documents of the utilities and central agencies that procure power.

15A total of 102 auctions have data on all bids, whether winning or not, and 31 have data on some bids. Most bids are priced per
unit of energy. A minority of bids are priced per unit capacity or have capital subsidies per unit capacity; in those cases, I calculate
per unit energy equivalent prices to make prices comparable across all bids (Appendix A).
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(Section 2). The projects database includes variables on the procurer, the selling firm, the contract price, and

plant capacity, state, district and commissioning date.

In addition to these main data, I also gather sundry data sources to measure solar irradiance and other

determinants of solar power costs (see Appendix A). The most important such data source is that used to

measure counterparty risk. The Ministry of Power, Government of India rates distribution companies on

their financial positions with letter grades, on an academic scale from F to A+. The grade is assigned on the

basis of an index of the distribution companies’ financial health, in order to “facilitate realistic assessment by

Banks/FIs [financial institutions] of the risks associated with lending exposures to various state distribution

utilities” (Ministry of Power, 2013, see Appendix A.3 for details). I use a normalized version of the Ministry

of Power rating to measure state-level counterparty risk in the empirical analysis. Let GPAs ∈ [0,4.3] be the

GPA equivalent of the state’s distribution companies’ mean letter grade from the Ministry of Power in 2012,

at the start of the auction sample.16 I define counterparty risk as:

CounterpartyRisks =
4.3−GPAs

4.3−GPAs
. (1)

This measure is normalized so that zero represents no risk (a grade of A+, GPAs = 4.3) and one represents

a state of average risk. Figure 3, discussed above, validates this risk measure by showing that higher risk (a

lower letter grade) is associated with more late or disputed payments.

3.2 Summary statistics

Table 1 presents summary statistics on the two main datasets, on solar procurement auctions and solar

power projects. Panel A gives summary statistics in the auction data at the auction level, separately for all

auctions, central auctions and state auctions. Panel B shows statistics in the auction data at the bid level.

Panel C shows summary statistics at the project level. As noted above, projects are distinct from auctions:

an auction may yield one or multiple projects, depending on the number of successful bids that then lead to

signed contracts and plants, while the power from a project may have been procured without an auction.

There are two main findings with respect to the auction data. First, there are no significant differences in

participation and competitiveness between state and central auctions. Central auctions have fewer bidders

on average than state auctions and seek to procure somewhat more capacity (panel A). This apparently

higher participation in state auctions turns out to be an artifact of more state auctions being run earlier in

16When states have multiple distribution companies, I use the average rating across discoms within a state to represent that state.
It is appropriate to think of risk as varying at the state level because states own all the public distribution companies and indirectly
determine, through common state holding companies and appointments to regulatory commissions, what contracts they will honor.
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the sample, when auctions had more bidders. After controlling for the year of an auction, there are no

significant differences in the number of bidders, whether an auction is over-subscribed, or competitiveness

(HHI of offered bids) between state and central auctions (see Appendix B, Table B4). Since auctions are

for multiple units of capacity, the number of bidders is a misleading measure of competition; an auction

with many bidders may not be very competitive, if only one or two of them offer most of the capacity.

I therefore measure competitiveness with the Hirschman-Herfindahl Index (HHI) for the concentration of

offered capacity across bidders at auction, which is similar for central (0.34) and state (0.30) auctions.

Second, while the auction types differ in scale, on average, the distributions of auction size heavily overlap

(Appendix B). For central (state) auctions, the 25th, 50th and 75th percentiles, respectively, of the number

of bidders are 2 (2), 4 (6) and 9 (13) and of the capacity sought are 50 (52), 250 (200) and 750 (500) (all in

MW). Despite being marginally less competitive, central auctions have lower prices on average than state

auctions (INR 3.70 per kWh versus INR 4.69 per kWh).

Table 1, Panel B reports summary statistics at the bid level. The average bid offers 118.6 MW of

capacity. A project of this size would require solar panels with a surface area of 500 acres. Slightly less than

half of bids win. Offered bids are allocated 52.5 MW of capacity on average.

Table 1, Panel C reports summary statistics on solar power projects. Procurement in the market has

shifted over time from state bilateral contracts to auctions. The projects database therefore includes many

earlier plants that differ from those bought at auction. The average project is smaller (25 MW) and has a

much higher tariff than the average bid at auction.

3.3 Two revolutions in the Indian solar market

Figure 4 shows the two revolutions in the Indian solar market in the last decade. The dashed line

represents the capital costs of solar panels per kWh of energy produced (IRENA, 2019b). The solid line

represents the capacity-weighted average annual price of solar electricity at auction. The scattered data

points represent the capacity-weighted average prices of each auction contributing to the annual average,

plotted against the date of each auction. The cross (red ×) markers show auctions run by states and the

circle (black ◦) markers show auctions run by central government agencies.

The first revolution is in price, as bid prices chase after rapidly falling capital costs. From 2010 to 2019,

the capital cost of a solar panel, shown by the dashed line, fell by a staggering 82%, an annual geometric

mean decline of 17%. The plummeting costs of solar panels are responsible for growing solar generation
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investment around the world (IRENA, 2017, 2019a). The fall in solar energy prices in India lags the fall in

costs, but is ultimately about as large.

The second revolution is in the means of procurement. The nature of the market has shifted, from one

in which states buy their own power to one in which the central government often buys it on their behalf.

In the period from 2012 to 2015, most auctions were run by the states (× symbol). In the period from

2015 onwards, states still run many auctions, but central agencies begin to run a large number of auctions

themselves (◦ symbol). The shift from mainly state to a mix of state and central auctions, in 2015 and after,

coincides with the steepest period of decline in realized auction prices. Within any given year, the lowest

prices are nearly all in central auctions, while state auctions yield middling or high prices.

3.4 Growth of the solar market and the ceiling price policy

The revolutions of Figure 4 led an historic solar boom. Figure 5 shows the capacity sought at auction

and the capacity awarded at auction by year. The total height of the bar is the capacity sought at auction. The

black segment of the bar is the capacity awarded at auction. The market saw enormous growth in capacity

sought and awarded from 2013 to 2018, with capacity addition increasing from a few GW per year to nearly

20 GW in 2018 alone, before falling back slightly. As a point of comparison, the total utility-scale solar

generation capacity in the United States in 2019 was 37 GW. India, therefore, awarded as much utility-scale

capacity at auction in the years 2017 to 2019 alone as the total then installed in the United States.

The imposition of ceiling prices, maximal prices allowed for bids at auction, may be responsible for

the market slowdown after 2018. After seeing newly low prices, but high price dispersion, for auctions

in 2017 and 2018 (Figure 4), states and the central government sought to limit the admissible prices for

energy from solar projects. The solid red line in Figure 5, against the right-hand axis, shows the fraction of

capacity sought in auctions with ceiling prices each year. Ceiling prices were not used prior to 2018, but

were applied in the majority of auctions in 2019 and the first quarter of 2020. Ceiling prices may reduce

capacity procured by precluding some potential higher-cost bids from submission. After 2018, the capacity

awarded (bottom bar segment) makes up a smaller share of the capacity sought at auction (total bar height).

The counterfactual analysis will consider the impact of this rapid policy change on the solar market.

4 Solar prices and the counterparty risk premium

This section tests the hypothesis that the price of solar power depends on the counterparty risk a buyer poses.
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4.1 Counterparty risk and solar bids at auction

We start by studying the prices bid in different kinds of auctions. A first specification for bidder i’s log

bid in auction t in state s and year y is

logbit =Centraltβ1 + Irradiancesβ2 +δy + γi + f (qt)+ εit . (2)

The data are at the bid level. The main explanatory variable of interest is Centralt , an indicator for whether

an auction was intermediated by a central tendering authority, namely SECI or NTPC (see Section 2),

as opposed to a state distribution company. I control for determinants of solar production costs: solar

Irradiances in the state or group of states where an auction is run, year fixed effects δy, to pick up falling

capital costs, and deciles of the capacity qt sought at auction. Some specifications also include bidder fixed

effects γi. Standard errors are clustered at the auction level. Table 2, column 1 estimates this regression.

The first finding in Table 2 is that centrally-intermediated auctions have lower prices than comparable

state auctions, as suggested by Figure 4. The coefficient on the central auction dummy in the column 1

specification is -0.060 log points (standard error 0.022), meaning prices are 6% lower in an intermediated

auction. As expected, solar irradiance has a large, negative and highly significant effect on bid prices. The

standard deviation of irradiance across bids is 0.22 kWh/m2− day. A one standard deviation increase in

irradiance decreases bid prices by 6% (= 0.22×−0.29× 100). Solar bid prices are predictable: the R2 of

even this simple model is 0.92.

Lower prices in central auctions are consistent with intermediation mitigating risk, but this estimate is not

dispositive, since it is possible that central auctions have some other advantage in cost or competitiveness,

not having to do with risk. To test the hypothesized mechanism, that central intermediation lowers prices by

mitigating counterparty risk, I modify the specification to include counterparty risk explicitly:

logbit = Centraltβ1 + Irradiancesβ2 +CounterpartyRisksβ3 +

Statet ×CounterpartyRisksβ4 +δy + γi + f (qt)+ εit . (3)

This specification resembles (2), but adds the risk measure CounterpartyRisks (1) and the interaction of

counterparty risk with an indicator Statet = 1−Centralt for whether an auction is state-run (i.e., not inter-

mediated). The coefficient β3 therefore measures the baseline effect of state risk, in centrally-intermediated

auctions, and the coefficient β4 the effect of state risk in state-run auctions, relative to centrally-intermediated

auctions. Table 2, columns 2 through 4 estimate variants of equation (3).
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The second finding in Table 2 is that counterparty risk increases bid prices, but only in auctions that are

not intermediated. In the column 2 specification, which does not differentiate by intermediation, the effect

of counterparty risk on bids is estimated to be small and not statistically different than zero. The column 3

specification includes both a main effect of risk and an interaction of risk with whether an auction is state-run

(not intermediated). The coefficient on counterparty risk in a state-run auction, relative to a central auction,

is 0.15 log points (standard error 0.042), which is large, positive, and significantly different from zero. The

total risk effect in state auctions (the sum of the main effect of counterparty risk and the interaction) is 0.10

log points, which is statistically different than zero (p-value = 0.001 for a test of the hypothesis that there

is no effect of counterparty risk on prices in state auctions). The estimated main effect of risk in central

auctions is to decrease prices. However, I discount this estimate, and interpret that there is no marked effect

of risk on prices in central auctions, since a range of alternative specifications yield null results.17

Risk effects operate through changes in bids rather than the selection of what firms are willing to bid

in an auction. The column 4 specification adds firm fixed effects for each of the 441 firms that bid in any

auction. The estimated coefficient on counterparty risk in state run auctions is slightly smaller (0.11 log

points) but remains highly significant. Most of the estimated effect of risk on bid prices is therefore present

within-firm. This result and the fact that participation is the same in comparable state and central auctions

(Appendix Table B4) suggest that the risk premium does not arise from differences in competitiveness or

firm selection in intermediated auctions. The column 3 and 4 specifications have R2 = 0.93 and 0.96,

respectively. The small residual variation in solar bid prices underscores the relatively homogenous nature

of utility-scale solar projects.

The counterparty risk premium is economically large. The units of the counterparty risk measure are

scaled so that increasing risk from zero to one means moving from a no-risk state (grade: A+) to an average-

risk state (grade: B+). By the Table 2, column 3 estimates, increasing counterparty risk from zero to the state

average, in a state auction, increases bid prices by 10% of the average bid price. Section 6.2 estimates that

the mean mark-up of bid over cost is 16% for winning bids and 11% for all bids. The average mark-up for

all bids is thus very similar to the counterparty risk premium in an average state; the effect of counterparty

risk on bids is roughly the same as the effect of imperfect competition. Alternately, we can benchmark the

risk effect against the estimated effect of solar irradiance on bid prices. The increase in prices due to the

17For example, the main effect of counterparty risk in central auctions is not statistically different from zero in regressions: in
logs with firm fixed effects (Table 2, column 4); in levels instead of logs (Appendix Table B3, columns 3 and 4); and in the contract,
as opposed to the auction data (Table 3, columns 3 and 4).
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risk of an average state is the same as that from moving a solar plant downwards by a massive 2.4 standard

deviations in the distribution of solar irradiance across bids.18

The third finding in Table 2 is that central intermediation has no effect on prices in low-risk states. In

columns 3 and 4, after conditioning on risk and its interaction with intermediation, the main effect of the

central auction dummy, in the first row, is diminished and no longer statistically different from zero. The

estimated risk premium for an average state, at 10% of mean bid prices, is larger than the estimated effect

of intermediation, at 6%, because the average non-intermediated auction is in a state of lower-than-average

risk (such as Gujarat or Rajasthan, which have high solar potential).

The pattern of results in Table 2 supports the idea that counterparty risk is a major driver of bid prices.

Prices bid at central auctions are lower than those bid in state auctions. State counterparty risk is associated

with higher prices, but only when an auction is run by the state, not when an auction is centrally intermedi-

ated. This result speaks against the estimated counterparty risk premium being due to a generally high cost

of investment in high-risk states, for example due to poor infrastructure; if that were so, we would expect to

see risk associated with higher prices even in intermediated auctions. Moreover, lower bid prices are not due

only to the selection of participants, but are observed within-bidder, across bids offered by the same firms in

auctions run by different counterparties. This result argues against explanations for the risk premium based

on differences in costs or participation at the firm level.

4.2 The counterparty risk premium across modes of procurement

This part extends the analysis of solar prices with data on solar contract prices from the projects database.

This extension may be valuable for two reasons. First, it provides a chance to validate the auction bidding

results, in a separate data set on the prices of contracts signed after an auction. Second, the projects data

include both contracts awarded at auction and contracts set in bilateral negotiations. It therefore allows to

test for a counterparty risk premium in bilateral contract prices. I expect bilateral contracts should have such

a risk premium, since they are not intermediated, but signed directly with the states.

Table 3 presents the results in the same format as for Table 2. Because the sample includes state bilat-

eral contracts, all specifications now include a main effect for bilateral contracts. The omitted category of

contract in all specifications is contracts procured at state auctions, as in Table 2.

18The irradiance coefficient in Table 2, column 3 is β̂Irr = −0.19 log points per kWh/m2− day and the standard deviation of
irradiance across bids is 0.22 kWh/m2−day. Therefore the counterparty risk coefficient equals 0.102/(0.19×0.22) = 2.4 standard
deviations of irradiance. Solar bids and projects are selected for sunnier locations. The counterparty risk effect equals 1.3 standard
deviations in terms of the variation in irradiance across all Indian districts (0.40 kWh/m2−day).
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There are two findings from the contract data. First, the pattern of risk and intermediation effects esti-

mated in contract prices closely replicates that in auction bids. I find that: (i) contracts procured in central

auctions have lower prices than state contracts (column 1); (ii) contracts procured by the state have higher

prices in states with higher counterparty risk (column 2); (iii) conditional on explicit controls for risk, in-

cluding interactions with intermediation, there is no direct effect of central auctions on prices (column 3);

(iv) the estimated risk premium is similar with firm fixed effects (column 4).

The magnitudes of the coefficients on risk and intermediation initially appear larger in the contract

data than in the auction data; for example, the interaction of a state-run contract with counterparty risk is

0.23 log points (standard error 0.060) (Table 3, column 3) instead of 0.15 log points (standard error 0.042)

(Table 2, column 3). However, state-run projects include contracts procured through both state auctions

and bilateral negotiations. To investigate differences between these procurement modes, the column 5 and

6 specifications allow for separate interactions of counterparty risk with whether a project was procured

through a state auction or a state bilateral contract, relative to a central auction.

The second finding from the contract data is that the estimated risk premium is larger in contracts

awarded through bilateral negotiations than through state auctions. The estimated state risk premium is

0.13 log points (standard error 0.073) in state auctions and a striking 0.33 log points (standard error 0.062)

in bilateral contracts (column 5). The risk coefficient in contracts awarded for state auctions is therefore very

similar to the risk coefficient for state auction bids in the auction data (Table 2) (0.13 versus 0.15). What

differs is the level of risk across procurement modes: bilateral contracts have a larger risk premium than

contracts procured at auction. In the column 5 specification, I reject the hypothesis that counterparty risk is

equal across state auctions and state bilateral contracts (p-value = 0.014). The results are again similar with

firm fixed effects (column 6).

The large risk premium for bilateral contracts suggests that procurement via a state auction may itself

reduce the counterparty risk premium, though not entirely, as does central intermediation. There are at least

two reasons for why the risk premium in bilateral state contracts is greater than in state-run auctions. It

may be that the increased competitiveness of auctions lowers prices, especially in risky states. This benefit

of auctions over negotiations is expected in the procurement of a homogenous good (Bajari, McMillan and

Tadelis, 2009). It may also be due in part to the nature of an auction, which is transparent and public in the

award of a contract, and may therefore induce a stronger commitment to pay on the part of the procurer.
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4.3 Interpretation and robustness of the estimated counterparty risk premium

The results in Tables 2 and 3 argue that bidders increase their offered prices when exposed to state

counterparty risk. Here I consider alternative interpretations of these results. I do not find the results

consistent with alternatives like selection into intermediation or unobserved differences between central

and state auctions in project costs or in exposure to corruption.

Selection into intermediation.—The empirical strategy is based on a difference-in-differences across

central and state-run auctions in more versus less risky states. Selection by risky states into running inter-

mediated auctions would not bias my estimates, because of the added contrast between state-run and central

auctions, conditional on risk. Selection could reduce the power of my empirical strategy. If few risky states

chose to run their own auctions, prices in the remaining auctions, in low-risk states, may not much differ

between central and state auctions, falsely suggesting that risk is not important because of a lack of vari-

ation in risk. This concern does not appear borne out since states of many risk levels run state auctions

(Appendix B). My estimates of the counterparty risk premium are therefore reasonably precise (Table 2).

Omitted determinants of cost.—The counterparty risk premium is estimated from the interaction

of higher state risk and the absence of intermediation. In order to bias the estimates of risk, an omitted

variable affecting solar costs would have to be correlated at the auction level with the interaction of a state

auction dummy and higher state counterparty risk. A candidate factor would be, for example, if bidders in

central auctions had better access to infrastructure, not on average, but specifically within risky states. There

is no a priori evidence of such differential treatment; rather, state and central auctions have similar siting

options and infrastructure (as in Figure 2). In the project data, the location of each plant is observed down to

the district level, making it possible systematically to test this alternative hypothesis that the estimated risk

premium is due to unobserved cost heterogeneity.

Table 4 uses the project location data to replace the state-level controls of Table 3 with state- and district-

level fixed effects. Because counterparty risk is measured at the state level, the specifications drop the main

effect of counterparty risk and state-level controls. I find a pattern of results within state, district and firm

that closely replicates that in Table 3: (i) central auctions have lower prices than state auctions (column 1);

(ii) bilateral contracts have higher prices than state auctions (column 1); (iii) conditional on controls for

risk, the prices in central auctions are not statistically different from the prices in state auctions (columns

5 through 7); (iv) the prices in state auctions increase relative to the prices of central auctions in states of

19



higher risk (columns 5 through 7); (v) the prices in state bilateral contracts increase relative to the prices of

central auctions in states of higher risk (columns 5 through 7). The estimated counterparty risk premium

is practically invariant to whether I control for state fixed effects, district fixed effects, or district and firm

fixed effects (compare across columns from columns 2 to 4 or 5 to 7, where 4 and 7 both include 223 district

and 441 firm effects.). Moreover, the magnitude of the counterparty risk premium is similar to, or perhaps

slightly larger than, that estimated with state-level controls.19

This additional evidence argues strongly against attributing the estimated counterparty risk premium

to unobserved heterogeneity in cost. The specifications in Table 4 match the granularity of Figure 2 by

comparing contract prices for solar power plants within the same district and the same firm. The location

of a solar plant dictates solar irradiance and many of its input costs, such as the price of land and access

to transmission. If it were the case that bidders in central auctions had access to unobservably lower-cost

sites, specifically in risky states, we would expect the inclusion of district fixed effects for the location of

each solar plant to attenuate the estimated risk premium. Observable factors are powerful predictors of solar

prices: the R2 of the regression with both district and firm fixed effects reaches 0.98 (Table 4, column 7).

Yet I find no evidence of selection into intermediation at the plant level on observables, such as district or

firm fixed effects, that determine the prices of solar contracts.

Corruption.—Large infrastructure projects like solar plants may have to offer kickbacks or bribes

to move a project along (though I have found no specific reports to this effect in the context of the Indian

solar industry). Such side-payments would increase project costs and therefore bids. The analysis suggests

that corruption varying across states is unlikely to account for my results. Land acquisition is, by far, the

greatest obstacle to getting solar plants built (Kumar and Thapar, 2017). The side payments that would be

envisioned in response—such as in land deals, or in securing environmental clearance—are based on where

a project is built. This kind of payment therefore would be, like other cost-based factors, common across

central and state auctions in the same place, and would not generate a pattern of higher bids for projects in

risky states only when procured via state auctions.

19For example, in the column 6 estimates, the counterparty risk premium in a state auction is 0.21 (0.078) log points for a state of
average risk, as compared to 0.13 log points in Table 2, column 5, and 0.25 (0.069) log points in a bilateral contract, as compared
to 0.33 log points in Table 2, column 5.
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4.4 Is counterparty risk due to hold up?

Solar prices are higher when bidders are exposed to risk. This finding does not necessarily imply that

risk arises due to strategic default. Strategic default is a widespread concern among investors and some cases

of strategic default by Indian discoms are well-documented (see Section 2). However, it may be that certain

states are risky for exogenous reasons, such as an unpredictable supply chain for infrastructure, but do not

deliberately hold up green energy producers.

To investigate whether counterparty risk is strategic, I consider heterogeneity in the risk premium across

firms that may be differentially exposed to risk. One of the main reasons a renewable energy project is

exposed to risk is that renewable energy has high fixed costs but low variable costs. Therefore ex post

a threat to withhold energy is not credible, since projects will have a positive continuation value, after

investments are sunk, even at a much lower, renegotiated price. By this logic, I hypothesize that renewable

energy projects owned by companies that also generate electricity from thermal power plants may be less

exposed to risk. A company integrated in this way may be protected against hold-up, because it can threaten

to withhold thermal power if a state attempts to renegotiate renewable power prices.

To test this idea, I link the solar auction bidding data to the thermal generation capacity owned by each

bidding firm, both overall across India and in the specific state holding the solar auction. I then estimate

versions of (3) allowing the counterparty risk premium to differ by whether a firm holds thermal power

generation capacity in a state or not. Table 5 shows the estimates in a format mimicking Table 2.

The main result of the table is that firms with thermal capacity in the state where an auction is held are

less exposed to counterparty risk. In a state of average risk, the bid prices of firms with thermal capacity

rise 0.10 log points less than the 0.14 log point increase in bid prices for firms without thermal capacity

(column 2). Columns 3 and 4 differentiate between the effect of having thermal capacity in a risky state in

auctions that are or are not intermediated. The risk effect for different types of firms can be calculated as the

appropriate sum of coefficients in column 3. For firms without thermal capacity in the procuring state, the

estimated effect of increasing risk from zero to average risk is 0.11 log points (standard error 0.034, p-value

0.0026). For firms with thermal capacity, the same counterparty risk premium is 0.040 log points (standard

error 0.032, p-value 0.21). These estimates are marginally statistically different from each other (p < 0.10).

The same result holds with firm fixed effects in column 4.

The result suggests that thermal capacity insulates firms against counterparty risk. I interpret this result
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as evidence that thermal capacity changes a firm’s bargaining position. If risk were purely an exogenous

shock that differed across states, then we would not expect differential risk effects for firms with and without

thermal capacity, since all would be subject to the same shock. The specifications are subtle, since they

include main effects for having thermal capacity in a state and even firm fixed effects. It is not that firms

with thermal capacity have lower bids (in fact, they are somewhat higher), but that their bids rise less in risky

states in state auctions relative to central auctions, compared to the bids of firms without thermal plants.

4.5 Implications of counterparty risk for efficiency

Does the counterparty risk premium bear on economic efficiency? Wholesale power demand is often

thought of as inelastic in aggregate. If demand for green energy were inelastic, the risk premium could be

viewed only as an advance transfer from states to firms, to compensate for later non-payment.

In the Indian solar market, demand for green energy is best thought of as elastic to some extent. States

trade-off green energy against other sources of power. States explicitly declared their demand to be elastic

by setting ceiling prices, maximum allowable bid prices, for some solar auctions during my sample period.

When ceiling prices were introduced, market observers worried that this policy would stifle solar investment

in states with higher costs.20 Figure 5 shows how auctions awarded a lesser share of the capacity they sought

after the imposition of ceiling tariffs.

The policy of setting ceiling prices creates a trade-off such that counterparty risk can have real effects on

investment. The severity of this trade-off depends on the composition of bids. If bids have high mark-ups,

then a ceiling price could lower bid prices, and procurement costs, without scaring off higher-cost bidders.

If bids are instead driven mainly by bidder costs and risk, then a ceiling price will deter auction participation

and reduce investment, particularly in risky states. A given state cannot precisely forecast the effects of

imposing a ceiling price without knowing what determines bid prices.

The second part of the empirical analysis, beginning in the next section, will introduce and estimate a

model to separate observed bids into costs, risk and mark-ups. The model estimates are then used to quantify

the effect of counterparty risk on investment when demand is elastic. This analysis can be thought of as

combining the risk premium estimated in this section with declared state demand to measure the quantity of

hold-up and its sensitivity to risk.

20Raj Prabhu, the CEO of Mercom Capital Group, warned that the prices obtained by the central government might not be
realistic for other parties: “The downside is that all other state and government agencies will want to set similar tariff levels [i.e.,
ceilings] no matter what the project economics are in that state and this has happened over and over in the past. The tender and
auction activity typically comes to a halt after something like this is announced” (Kabeer, 2018).
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5 A model of solar power procurement

The model is a multi-unit auction model in the share auction framework of Wilson (1979). The main

distinguishing feature of the model is that bidders care about the counterparty risk of the procurer.

5.1 Set-up

A number N of firms i bid in auction t to supply solar power. Firms draw a type θit = (cit ,qit) ∼F

for each auction. Types are assumed to be private information and independently and identically distributed

across bidders and auctions. The first component represents a firm’s idiosyncratic cost of developing a solar

project, expressed as the unit cost of energy produced in INR per kWh. Idiosyncratic costs include factors

like the cost of planning and financing a project, acquiring land on which to build, and connecting the plant

to the transmission network. The second component of the type is the project capacity in MW. Bidders are

envisioned as having potential project sites of different sizes.

The profit a bidder earns for winning depends on the procuring counterparty. A bid consists of two

components σit = (bit ,qit) for price and quantity. I assume that all firms bid in their full exogenous quantity

type.21 The auctions are discriminatory, in the model as in the data; the lowest bidders are awarded a power

purchase contract at the price they bid. However, each procuring state s has some counterparty risk factor

δs ≥ 0. A bidder awarded qit at a bid price of bit values this payment at (1−δs)bit and earns profit

Πit(bit ,qit) = qit((1−δs)bit − cit).

States with high counterparty risk have greater risk factors δs. The risk factor is assumed to be common

across all bidders in an auction.22 A literal interpretation of this parameter is that firms expect delays in

payment and outright non-payment to decrease the present value of the payment stream from a project by

a share δs. More broadly, δs may also encompass other, hard-to-measure factors, such as higher financing

costs imposed by banks in risky states or the costs of legal action against counterparties.

Each bidder faces a residual demand curve. The state seeks to procure quantity QDt in the auction. The

21This assumption not very restrictive here. The data consist of single “steps” for each bidder at a fixed price. Withholding can be
achieved in expectation by raising the bid price, but bidders cannot increase their quantity. Fabra and Llobet (forthcoming) show that
this logic implies that bidders with capacity less than the total auction demand will not wish to withhold in the multi-unit auction.
Other work on multi-unit auctions makes an analogous assumption that valuations for quantities beyond those demanded are zero,
such that bidder demand can be at most the quantity demanded in the data (Kang and Puller, 2008; Hortaçsu and McAdams, 2010).

22This assumption allows the major simplification that bidders can be of a single type ex ante. The cost is some tension with
the results of Table 5, which show heterogeneity in the sensitivity to risk across firms with and without thermal plants. I find the
simplification justified because only 4% of solar bids are from firms with thermal plants. The model estimates will be found to
match patterns of bidding out-of-sample very well (see Section 7).
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residual demand curve in auction t is therefore

RDt(p|σ−it) = QDt −∑
j 6=i

q jt1
{

p≥ b jt
}
.

The residual demand curve is a step function that discretely decreases as the price crosses each price bid b jt

at which a quantity was offered. The quantity awarded for a bid depends on residual demand

Qt(p,q|σ−it) =


0 if RDt(p|σ−it)≤ 0

RDt(p|σ−it) if 0 < RDt(p|σ−it)≤ q

q if q < RDt(p|σ−it).

(4)

When i offers the marginal step in an auction, the quantity awarded will be rationed based on the residual

demand of the procurer. We define a function to return the expected quantity won with a given bid

Ht(p,q) = Eσ−it [Qt(p,q|σ−it)]

There is uncertainty about the quantity awarded for a given bid because i does not know the bids of other

firms. We assume that Ht(p,q) is continuous and differentiable in p, and in the empirical part approximate

Ht(·, ·) as a smooth function to guarantee that this is the case.

5.2 Equilibrium bids

Consider the firm’s choice of the bid price. A necessary condition for the optimality of a bid is that the

choice of bit maximizes expected firm profits

max
b

((1−δs)b− cit)Ht(b,qit).

The first-order condition for this problem yields

bit =
cit

1−δs
− Ht(bit ,qit)

∂Ht(bit ,qit)/∂ p
. (5)

The condition for an optimal price bid contains two terms. The first term is the cost of supply, inflated by a

factor of 1/(1−δs); firms bid as if they have higher costs, to account for counterparty risk. The second term

is the mark-up term: the firm’s expected quantity won divided by the derivative of the expected quantity with

respect to price. The mark-up is positive because this derivative is negative. If the firm has a high expected

quantity and demand is inelastic, then the optimal mark-up will be high.
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5.3 Identification

The non-parametric identification of costs follows from the first-order condition (5) for an optimal price

bid. The basic identification argument, due to Guerre, Perrigne and Vuong (2000) for first-price auctions

of a single object, has been extended to multi-unit auctions by Hortaçsu and McAdams (2010). The data

contain (bit ,qit) for every bid and the quantities awarded. The function Ht(p,q) giving quantity cleared as

a function of the bid offered is therefore observable. The unknown pseudo-cost c̃it = cit/(1− δs) can be

solved using the first-order condition (5) for optimal bidding.

This argument identifies the distribution of c̃it point-by-point for every bid. To decompose c̃it into direct

costs and counterparty risk, additional assumptions are required.

Assumption 1. For centrally intermediated auctions, counterparty risk δs = 0.

Assumption 1 is justified by our discussion of the institutional context in Section 2. Market participants

perceive the counterparty risk in centrally-run auctions to be essentially nil, as central intermediation isolates

bidders from the counterparty risk of the state distribution companies actually buying power (footnote 13).

Assumption 2. The distribution of idiosyncratic costs cit , conditional on auction-level observable charac-

teristics, is the same in state and central auctions.

The assumption is justified by the fact that solar plants procured in centrally-run auctions are nonetheless

built in the same places, with the same technology, by the same project developers as plants procured in state-

run auctions. Section 4 provides empirical support for this assumption, by showing that counterparty risk

wholly accounts for the mean differences in bids between central and state-run auctions.

Under assumptions 1 and 2, the distribution of costs cit is identified. Since in centrally-run auctions

δs = 0 the costs in those auctions are identified by c̃it = cit . By assumption 2, the distribution of c̃it in

auctions for each state is the same as the distribution of cost in central auctions, up to the scaling factor

1/(1− δs). I can therefore estimate δs consistently as the scaling factor such that the distributions of cit in

central and state auctions have the same mean.

6 Estimation of the model

This section discusses the methods used in estimation. I then present the estimates of solar production costs

from the model.
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6.1 Estimation methods

The main structural estimand of interest is the joint distribution of idiosyncratic costs and project capac-

ities. To recover this distribution, there are two points to address in the empirical application of the model.

First, I estimate the function that relates the expected quantity awarded to a firm’s bid. Second, I control for

heterogeneity in observable characteristics across auctions.

Expected quantity awarded function.—On the first point, I have assumed the function Ht(p,q),

which gives the expected quantity awarded for a given bid, is known, continuous and differentiable. The

data give every bid and the quantity awarded to that bid, so in principle this function can be estimated. In

practice, however (a) the expected quantity awarded depends on bidder expectations over the bids of other

bidders (b) bids are step functions and so each realization of residual demand is not continuous.

I therefore approximate Ht(p,q) using a resampling procedure (Hortaçsu and McAdams, 2010). Bids are

resampled from the auction being simulated and other sample auctions with weights based on auction-level

observables, namely the quantity sought at auction, the year-month of the auction and the number of bidders

in the auction. This resampling is necessary to accurately represent the rival quantities a bidder might have

faced in a given auction. For each simulation draw, I smooth the realization of residual demand so that its

derivative Hp exists (Hortaçsu and Puller, 2008; Kang and Puller, 2008). See Appendix C for details.

Accounting for auction observables.—The second point to address in estimation is to account for

observable differences across auctions. Auctions differ on dimensions like timing and scale that affect costs,

for example due to the massive decline in solar capital costs over the sample (Figure 4). I wish to control

for observable factors that change bid prices across auctions with a parametric method, to allow for higher-

dimensional controls than would be possible through the resampling procedure alone.

Let Zt be the observable characteristics for auction t. I assume that firm costs can be represented as

cit(Zt) = ci0Γ(Zt) = ci0 exp(γZt) (6)

where ci0 is the cost a firm would have drawn if the auction in question was a baseline auction and Zt are

factors that shift costs for auction t. The baseline auction has characteristics Z0 such that Γ(Z0) = 1.

In auctions for a single object, this multiplicatively separable cost structure passes through to multiplica-

tively separable equilibrium bids (Haile, Hong and Shum, 2003; Athey and Haile, 2007; Bajari, Houghton

and Tadelis, 2014). Intuitively, scaling all costs in an auction up or down by a common factor, like changing
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the currency in which costs are measured, scales the equilibrium bids by the same factor. I find an analogous

result for the multi-unit auction framework.

Proposition 1 (Homogenization in multi-unit auctions). Let βi(ci0|Z0,qit) be the equilibrium bid function

in an auction with baseline characteristics Z0. Suppose that costs cit are independent of auction covariates

and that costs have the multiplicatively separable structure (6). Then the equilibrium bid function in an

auction with covariates Zt can be written βi(cit |Zt ,qit) = Γ(Zt)βi(ci0|Z0,qit).

Appendix C has the proof. The result allows a log-linear specification of how counterparty risk affects

bid prices, analogous to the bid price regressions (3). In this way, the state risk premia in the model are

estimated using the same variation in state risk and intermediation underlying Tables 2 and 3.

6.2 Structural estimates of counterparty risk and costs

The estimation of solar production costs proceeds in three steps: homogenization, residual demand

simulation and inversion of the first-order condition (5) for optimal bidding. I estimate the model on a

sample of auctions without ceiling prices to recover the full distribution of costs absent selective entry.

Figure 6 shows the distribution of homogenized bids. (The regression specification for bid homogeniza-

tion is presented in Appendix C, Table C6.) The solid line is the distribution of prices as bid. The dotted line

is the distribution of homogenized bids. Homogenized bids represent the bids that would have been offered

in an auction with the baseline values of observable characteristics: (i) bidding in the year 2019 (ii) in a

central auction (iii) for a standard contract (iv) without a domestic content requirement (v) with the median

level of capacity sought. While the dispersion of raw bid prices is enormous, given the span of the data

and variety of projects, the homogenization regression has an R2 = 0.94, so the distribution of homogenized

bids is much tighter. The homogenized bid distribution has a mean of INR 3.06 per kWh and a standard

deviation of INR 0.30 per kWh. To get a sense of whether ceiling prices are likely to bind, I overlay, on

the homogenized bid distribution, the CDF of ceiling prices set by procurers in auctions with ceiling prices

(dashed line against right axis). Ceiling prices are extremely aggressive; more than half of ceiling prices are

set below the mode of the homogenized bid distribution.

The homogenization regression yields estimates of state-specific risk. State risk is recovered from the

coefficients on the interaction of state fixed effects with whether an auction is run by the state (and not

intermediated). Figure 3 compares the risk estimates from the model (as points) against state ratings (on the

horizontal axis) and non-payment data (shown by the bars). The estimated risk effects, in log points, are
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steeply increasing as state risk increases from left to right, following the bars. Neither the state ratings nor the

non-payment data are used in the estimation of the model. The model nonetheless recovers a counterparty

risk profile that has a similar form, level and slope as the data on late and disputed payments.

With homogenized bids in hand, I simulate the possible residual demand curves in each auction for each

bidder. The simulation of bid prices is unbiased with respect to actual bids and produces a plausible range

of simulated residual demand curves for each bidder and auction (Appendix C). With the residual demand

curves, I calculate the expected quantity awarded function and recover costs by inverting equation (5).

Figure 7 shows the relationship between observed bids and the resulting estimates of production cost.

Each point represents the pair (ĉit ,bit) for a single bid. The black dashed line is the forty-five degree line.

The vertical gap between the bid and the forty-five degree line is therefore the bid’s mark-up. The red

solid line is a locally-smoothed estimate of the mean bid price at each level of estimated cost. The auction

simulations are unbiased with respect to bid prices and represent most auctions well (Figure C5).23

There are two main observations from the figure. First, the competitiveness of many auctions generates

small to moderate markups on average. The mean mark-up is 11%. The mean estimated cost is INR 2.83

per kWh with a standard deviation of INR 0.42 per kWh. Second, despite that auctions are competitive,

estimated markups increase appreciably for low-cost bidders. Among winners, the mean estimated cost is

INR 2.60 per kWh and the mean mark-up rises to 16%. The reason is that low bids are likely to be cleared

unless an auction is far oversubscribed (capacity offered far exceeds capacity demanded). Bidders with

low costs therefore increase their mark-ups until their bid price falls in a price band more likely to face

elastic residual demand. By the same logic, markups converge to zero for bidders with relatively high costs.

The cost estimates from the model are squarely in the range of contemporary engineering benchmarks (see

Appendix B, Table B5).24

23Outlying bids, mainly in less competitive auctions, sometimes face highly inelastic residual demand, which generates large
estimated markups and therefore implausibly low costs. Kang and Puller (2008) similarly note that their valuation estimates
diverge for extreme bids, which are likely to always be cleared or never be cleared, and impose additional restrictions on the
primitive valuation functions to adjust the estimates at these extremes. I impose a bound on estimated costs to limit mark-ups to a
maximum of 30%, which produces the pattern at the lower left in the figure, running diagonally upwards from left to right.

24The Central Electricity Regulatory Commission produces estimates of solar PV production costs in India and the International
Renewable Energy Agency (IRENA) includes India in its international renewable energy cost comparisons. During the period
from 2015 to 2018, my model estimates imply a mean generation cost of INR 3.99 per kWh (not homogenized). As a basis of
comparison, the alternate sources report generation costs of INR 4.23 per kWh for 2015 (CERC, 2015), INR 3.71 per kWh for 2016
(CERC, 2016) and INR 3.79 per kWh for 2018 (IRENA, 2019b).
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7 Counterfactual simulations: Counterparty risk and solar procurement

This section uses the model to study the effects of counterparty risk and the ceiling tariff policy on solar

power procurement. The direct effects of risk on prices were explored in Section 4. The counterfactual

analysis is necessary to study how risk interacts with the policy environment. Figure 5 suggests that the

adoption of ceiling prices may have reduced solar investment. I am interested in whether ceiling prices are

responsible for this slowdown and, in particular, in whether ceilings reduce investment in risky states.

7.1 Counterfactual scenarios

The counterfactual scenarios considered vary in two dimensions: risk and the use of ceiling prices.

Counterfactual risk.— I consider a range of scenarios with an increasing level of counterfactual

risk: (1) Central risk (full intermediation). Auctions are all assumed to have the central level of risk,

that is zero, as under full intermediation. (2) Actual risk (observed intermediation). Auctions have the

level of risk estimated in the sample, given both the state where they were run and whether they were

intermediated. (3) State risk (no intermediation). Auctions have the level of risk estimated in the sample,

given the state in which they were conducted, counterfactually assuming no intermediation. (4) State risk

p75 (no intermediation). Auctions have the level of risk of a state at the 75th percentile of the estimated risk

distribution. Again, it is assumed that no auction is intermediated.

Counterfactual ceiling prices.—The counterfactuals also vary the existence and the level of ceiling

prices in solar auctions. Ceiling prices applied for 30 auctions for which we have complete bidding data,

mainly in 2019 and 2020 (Figure 5). I run counterfactuals that either (a) remove the ceiling prices from these

auctions that originally had ceilings or (b) impose or alter ceiling prices in all sample auctions, regardless of

whether they had ceiling prices as originally bid.

Counterfactuals that remove ceiling prices are simple to implement because my data contain auctions

both with and without ceiling prices. Using the many auctions without ceiling prices, I resample from the

distribution of equilibrium bids to simulate what would have happened in a given auction if it did not have a

ceiling price. This resampling is weighted to draw both the number of bidders and bids from similar auctions

on the dimensions of auction date and capacity sought (see Appendix C for a description of the resampling).

The homogenized bid prices for each sampled bid are adjusted (i.e., dehomogenized) for the observable
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characteristics of the auction for which they are drawn, including state risk. I call this approach simulation

As bid, because it is a resampling procedure and does not require solving for counterfactual strategies.

Running the second kind of counterfactual, which imposes or alters a ceiling price in an auction that was

originally bid without one, is more complex. Imposing or altering a ceiling price will change the equilibrium

strategies of bidders in the auction game. Changing the ceiling price will alter participation in the auction,

since high-cost bidders may no longer offer bids. Lower-cost bidders that still do participate will alter their

bids in response to the change in competition and therefore residual demand. For example, if few bids can

meet a low ceiling price, then residual demand in the auction will be inelastic and the remaining bidders may

increase mark-ups. The next part describes how I solve for these equilibrium responses to ceiling prices.

7.2 Counterfactual strategies

The counterfactual approach to auctions with ceiling prices is to simplify the strategy space in order to

make it feasible to solve for an equilibrium in the multi-unit auction game.

A strategy in the multi-unit auction, holding bid quantity fixed, is a function from the bidder’s type

(cit ,qit) to a bid price. The estimation of costs imposed no parametric structure on either the form of

this bid function or the type distribution. Finding a fixed point in the space of bid functions is generally

infeasible. For this reason, leading empirical work on multi-unit auctions estimates and analyzes auction

primitives (costs or valuations), but undertakes a limited range of policy counterfactuals (Kang and Puller,

2008; Hortaçsu and McAdams, 2010; Cassola, Hortaçsu and Kastl, 2013).

To simplify the counterfactual problem I constrain the space of bidding strategies. A constrained strategy

equilibrium (CSE) is an approximation to Nash equilibrium in a constrained, parametric space of strategy

functions (Armantier, Florens and Richard, 2008). In the auction game there is a great deal of economic

structure to discipline the form of bid strategy functions. I specify the bid function in an auction t with

reserve price r as

b(cit ,qit |αi,r) =

 ∅ if cit > r

cit +αi(r− cit) otherwise.
(7)

for some parameter αi ∈ [0,1] governing markups. This form has several appealing features. It assumes that

bidders participate in an auction if and only if their cost is below the ceiling price. Bids are increasing in

costs (unless αi = 1). Bids are shaded towards the ceiling; the parameter αi gives the markup of bids over

costs as a fraction of the distance from cost to the ceiling price. At the boundary of participation, bidders
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with a cost equal to the ceiling price will bid the ceiling and earn no markup.

A constrained strategy equilibrium consists of mutual best responses in the parameter α for all bidders.

Consider the problem of a bidder setting a bid strategy function before knowing their type. From this ex

ante view, the payoff from choosing αi is given by

V (αi) = Eθi [((1−δs)b(cit ,qit |αi,r)− cit)Ht(b(cit ,qit |αi,r),qit | α−i)] . (8)

where the bid function takes as arguments the two components of the type. The expected quantity awarded

depends on αi directly, as it sets i’s bid, but also on the parameters α−i = {α j : j 6= i} of rivals’ bid functions.

The bidding firm maximizes this payoff over αi. The first-order condition for this maximization is

Eθi

(r− cit)

b(cit ,qit |αi,r)−
cit

(1−δs)
+

Ht(b(cit ,qit |αi,r),qit | α−i)
∂Ht(b(cit ,qit |αi,r),qit |α−i)

∂b(cit ,qit |αi,r)

 = 0. (9)

Equation (9), above, is the ex ante analog of the pointwise first-order condition (5) when the type is unknown.

The outer expectation is over a bidder’s own type. The choice of αi sets the expectation of the first-order

condition, weighted by how far the ceiling price exceeds costs, since a change in the parameter αi has a

larger effect on profits when this ceiling “headroom” is larger.

A constrained strategy equilibrium consists of a profile α∗ = (α∗i α∗−i) such that equation (9) is satisfied

for all bidders. In the ex ante symmetric case, the equilibrium can be described by a scalar bidding parameter

α∗ satisfying the single equation (9) with αi = α∗ and α j = α∗ for all j 6= i. The first-order condition for

an optimal α may not have an internal solution α∗ ∈ (0,1). For example, if an auction is not expected to

be very competitive, bidders may expect to be cleared even if they bid near the ceiling. In this case the

first-order condition will be negative even as α → 1, so that in equilibrium bidders will all set α∗ = 1 and

have their markups constrained by the ceiling price.

Different auctions have different equilibria depending on the level of the ceiling price, risk, expected

participation, and the quantities bidders may be expected to offer. I solve for a separate α∗t for each auction

and each risk and ceiling price scenario. Appendix C describes the algorithm used to solve equation 9.

7.3 Counterfactual results

Validation of counterfactual strategies.—This part validates the counterfactual strategies by com-

paring auction outcomes using these strategies to the data. The validation covers both auctions in the esti-

mation sample and an out-of-sample comparison to auctions originally bid with ceiling prices.

Figure 8 compares the distributions of bids to simulated counterfactual distributions of bids. The left
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column shows distributions in the full sample used for estimation of bidder costs, which is deliberately

restricted to exclude auctions with ceilings. The bid prices are homogenized. The right column shows

distributions in the ceiling sample of auctions in which ceiling prices applied in the data. In the ceiling price

sample, the horizontal axis has been normalized to show bid prices as a fraction of the ceiling price in each

auction, rather than in their original units (INR per kWh). The top row shows the distribution of bids in the

data. The middle row shows the simulated distribution of bids using the As bid strategy. The last row shows

counterfactual simulations of bids using the constrained strategy equilibrium (CSE).

There are three main findings on the accuracy of the simulations with respect to bid prices. First, in

the estimation sample, without ceiling prices, the weighted resampling of bids As bid matches the data very

well (Figure 8, panel C as compared to panel A). Second, in the sample of auctions with ceiling prices, a

naïve As bid simulation does not match the distribution of bids in the data. In the data, most bids in auctions

with ceiling prices are offered very close to the ceiling (panel B). The As bid resampling—assuming bidders

did not alter their strategies in auctions with ceiling prices—predicts that a longer tail of bids should be

offered at prices well below the ceiling price (panel D). Third, the constrained strategy equilibrium matches

the distribution of prices in the ceiling sample much better than the naïve simulations. The distribution of

bid prices under the constrained strategy equilibrium, in panel F, is stacked up against the ceiling price, to a

somewhat greater degree even than is observed in the data (panel B).

Figure 8 validates the model’s predictions for the distribution of bid prices. Appendix C, Table C7

further shows that the constrained strategy equilibrium produces a good fit to participation and quantities

bid in auctions with ceiling prices. These fit comparisons provide an out-of-sample test of the model, as the

auctions with ceiling prices were not used in the estimation of costs.

The difference in the bid price distributions between the As bid simulations (panel D) and the constrained

strategy equilibrium (panel F) is consistent with ceiling prices causing a change in equilibrium bidding

strategies. When a ceiling price is set, inframarginal bidders do not just draw from a truncated version of

the distribution of equilibrium bids in auctions without ceiling prices. Rather, bidders mark up their bids

to a greater extent in response to ceiling prices that reduce participation. For this reason, ceiling prices

may achieve smaller reductions in average solar prices than expected based upon the naïve assumption that

bidders would not alter their strategies.25

25A priori it is plausible that the pattern of bidding in Figure 8, panel B could represent collusion. Knittel and Stango (2003) find
tacit collusion near the ceiling price (interest rate cap) in the market for credit cards. The constrained strategy equilibrium price
distribution in panel F shows unilateral best responses for each bidder. Therefore collusion is not necessary to rationalize the large
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Counterfactual auction outcomes under varying risk.—This part projects auction outcomes under

varying levels of ceiling prices and counterparty risk. Figure 9 shows counterfactual auction outcomes.

Each point shows the market outcome in one simulation, plotting the capacity-weighted winning bid price

at auction against the fraction of quantity sought at auction that is successfully awarded. The sample covers

all auctions in the data, not only those that originally had ceiling prices. The labels on each point give the

level of the uniform ceiling price counterfactually imposed. For example, at a ceiling price of INR 3.5 per

kWh, the mean price at which solar power is bought is about INR 3.2 per kWh (panel A, solid, black line).

Each curve, traced out by changing the ceiling price policy, represents the aggregate supply curve for solar

power in India that would obtain at different levels of procurer counterparty risk.

Panel A illustrates the importance of using the constrained strategy equilibrium (CSE) to predict coun-

terfactual outcomes. The panel compares market outcomes under the CSE (solid, black line) and under a

naïve As bid strategy (dotted, red line). At each level of the ceiling price the equilibrium quantity is higher

under the CSE, because under the CSE participation is based on cost. Therefore some firms that would

bid above the ceiling price, in the absence of a ceiling, lower their bids beneath the ceiling to participate

in the auction. While participation is higher under the CSE, market prices are also higher. The reason is

that inframarginal bidders tend to increase their bids in response to the imposition of a ceiling (recall the

comparison of panels B and F in Figure 8).

In Figure 9, panel B, all counterfactuals use the preferred CSE. The three curves show market outcomes

for different levels of procurer risk: central risk (blue), state risk (black) and high state risk (the 75th per-

centile of state risk, in red). The main result of panel B is that the supply curves for higher-risk counterparties

shift inwards relative to what would be offered to the central government. Consider a ceiling tariff of INR 3

per kWh, which is around the modal ceiling price in the data. The imposition of ceiling tariffs at this level

in all auctions would result in procurement of 76% of the quantity sought, if those auctions were centrally

intermediated, 61%, if all auctions had their state level of risk, and 48%, if all auctions were run by a high-

risk state. Moving from the central level of risk to an average (high) level of risk therefore sacrifices 20%

(37%) of the quantity sought. At the same time, the average winning price for bids that do meet the ceiling

remains somewhat higher in the high-risk scenario. At lower ceiling prices (INR 2.5 per kWh), comparable

to the equilibrium outcomes in the largest central auctions without ceilings, participation in high-risk states

number of bids near the ceiling price in auctions with ceilings.
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declines steeply, so that hardly any quantity is procured (solid red line).

These large differences in supply arise due to risk alone, as the model counterfactuals hold constant

market structure, the distribution of costs and the procurement mechanism. Risk has a large effect on par-

ticipation because procurers set very aggressive ceiling prices (Figure 6) and, given the level of competition

in auctions, bidders with moderate or higher costs tend to offer small mark-ups (Figure 7).

Counterfactual auction outcomes without ceiling prices.—With the model, I can study procurement

under any given level of risk and ceiling price policy, including under the actual levels of risk and ceiling

prices in the data. Table 6 shows counterfactual auction outcomes in the sample of auctions that originally

had ceiling prices. Simulations without a ceiling price use the As bid strategy (panel A); simulations with a

ceiling price use the constrained strategy equilibrium (panel B). The columns of the table vary counterparty

risk, with the level of risk increasing across the columns from left to right. The rows of the table show

the mean values of each variable across auctions and simulations. Price-like variables are weighted by bid

quantity to measure the mean price or cost of a unit of power.

Panel A validates the model’s representation of risk. The simulated effect of risk on prices in the ceiling

sample is very similar to the effect of counterparty risk previously estimated in the regression analysis of

Section 4. In panel A, without ceiling prices, the mean price of all bids, relative to a central auction without

risk (column 1), is 5% higher at the actual level of risk (which includes intermediation in some auctions)

(column 2), 12% higher at the mean level of state risk (column 3) and 19% higher at the 75th percentile of

state risk (column 4).

There are three main results from the counterfactual analysis. First, the ceiling prices imposed in the

data from 2018 to 2020 markedly reduced quantity procured. Consider Table 6, column 2, representing

auction outcomes at the actual level of risk. Comparing panel B, with ceiling prices, to panel A, without

ceiling prices, we see that the ceiling binds 31% of the time (panel B, row 8), which increases the share

of auctions undersubscribed by 15 pp (31%) and reduces mean quantity procured per auction by 16% (471

MW, in panel B, against 563 MW, in panel A).

Second, the foregone capacity for the same set of ceiling prices is steeply increasing in the degree of

counterparty risk faced by bidders. When demand is inelastic, without ceiling prices, risk increases prices

but has no effect on the quantity awarded (panel A, across columns). With ceiling prices, risk decreases

quantity because fewer bidders are willing to meet a given ceiling after accounting for the risk premium
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added to their bids. If the same ceiling prices imposed in the sample were kept, but all auctions were

centrally intermediated, then ceiling prices would reduce capacity awarded by only 11% (column 1, panel

B versus panel A). If all auctions had the average level of state risk, ceiling tariffs would reduce capacity

awarded by 23% (column 3). Finally, if all auctions had a high (75th percentile) level of risk, ceiling

tariffs would reduce capacity awarded by 31% (column 4). High risk therefore doubles the quantity of solar

power held up, relative to the 16% loss of quantity in the baseline case. In this scenario, when risky states

nonetheless impose ceiling tariffs, the ceiling binds 58% of the time and fully 76% of auctions award less

than the quantity they sought (panel B, column 4).

Third, despite these large effects on quantity, imposing ceiling prices has a negligible effect on the actual

prices paid for solar energy. Under the actual level of risk in the sample, ceiling prices, which cut quantity

awarded by 16%, reduced winning bid prices by a mere 1% (column 2, panel B versus panel A). At higher

levels of risk, ceiling prices would reduce prices paid by from 6% (column 3, mean state risk) up to 14%

(column 4, high level of state risk). The muted effects of ceiling prices on actual prices paid are due to the

ceiling price acting in two opposing ways: a ceiling may force bidders to lower markups to participate in an

auction, but also increase markups, conditional on participation, for those bidders who would have met the

ceiling in any case (Figure 8).

Discussion.— Procuring states of higher risk face a sharp policy trade-off between holding down

prices and reducing investment. The counterfactual analysis quantifies this effect and shows that not only do

states reduce investment by setting ceiling prices, but they do so for very little gain in terms of lower prices.

It may seem that there is an obvious policy change to solve this problem: do not set ceiling prices.

Government intervention in energy markets through price controls can have large allocative costs.26 India

moved towards removing ceilings when the central government lifting ceilings in their own auctions at the

end of my sample period. However, the recommendation might miss the point: ceiling prices are imposed

because states trade-off different power sources and therefore have elastic demand for green energy. If this

is the case, then removing ceiling prices will not change states’ underlying demand but may lead instead to

high-risk states running fewer auctions. I find some evidence that solar procurement in state-run auctions

has indeed been shifting, slowly, towards lower-risk states over time (Appendix B, Figure B4).

26For example, Davis and Kilian (2011) study the imposition of ceiling prices in the US residential market for natural gas, and
estimate the adoption of price ceilings generated a deadweight loss of $3.6 billion per year over a period of 35 years.
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8 Conclusion

This paper studies the effects of counterparty risk and procurement policy on the market for new solar power

plants in India. The institutions of the Indian solar market allow a clean view of counterparty risk, since solar

plants set up with the same technology, by the same firms, in the same places, are procured in auctions with

varying levels of risk and intermediation. I find that the threat of hold-up increases the price of green energy

by 10% in an average state. The intermediation of the central government eliminates this risk premium.

Developing countries are sensitive to the price of energy for their citizens. When demand is elastic, the

counterparty risk premium—induced by a procurer’s own lack of commitment—feeds back to reduce the

quantity of energy procured. In India during my study period, procurers try to counteract the risk premium

by setting ceiling prices to limit bids at auction. I use a model to quantify the effect of this policy and trace

out the solar supply curves that all India would face under alternate levels of its own counterparty risk. I find

that ceiling prices reduced new solar power capacity by 16%, but hardly lowered procurement costs, because

bidders respond to the lower participation in auctions with ceilings by raising their bids. Counterparty risk

sharpens the trade-off between trying to hold down energy prices and reducing investment.

The results provide a novel justification for intervention to enforce contracts in green energy markets.

In the Indian context, I find that intermediation by the central government fully mitigates counterparty risk.

Intermediation is an imperfect solution to hold-up, since a commitment by a third party to back a power

contract may worsen moral hazard and cause strategic default. The Indian central government is a powerful

intermediary, because it has both the credibility to pay and the power to force, or at least urge, states to

honor their contracts. In many countries such an ideal intermediary may not exist. One could imagine

international lenders, or regional power pools, taking an intermediary role. The World Bank has started a

guarantee program, “Scaling Solar,” to back the power purchase contracts from renewable energy auctions

in high-risk countries (Braud, 2018). This program has the right idea, but it is far too small: to date it has

supported auctions in Zambia and Senegal totaling 136 MW of solar capacity procured, 0.2% of the capacity

allocated at auction in India over my sample period.

It is hard to comprehend how much green energy investment is needed to slow global climate change

while meeting growth in energy demand. A large share of this investment will come in developing countries,

which are both less able to enforce contracts and more sensitive to energy prices. The problem of holding

up green energy may therefore hinder much-needed investment in renewable energy around the world.
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9 Figures

Figure 1: Growth in electricity generation by energy source
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This figure shows electricity generation by energy source over time. The series are constructed from electricity mix data in the “Our
World in Data" series on energy. Panel A shows the growth of electricity production in the 37 OECD countries and Panel B in the
144 other countries in the data. Generation with the energy sources in the bottom (black) segment emits greenhouse gases.
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Figure 2: Power plants allocated by state and centrally intermediated auctions

A. Andhra Pradesh, central auction B. Andhra Pradesh, state auction

C. Andhra Pradesh, central auction (zoomed in) D. Andhra Pradesh, state auction (zoomed in)

This figure shows satellite images of two typical solar power projects allocated through centrally intermediated and state auctions,
built in the state of Andhra Pradesh. Panel A and Panel C show photos of the NP Kunta Ultra Mega Solar Power Project (900
MW), a project that was allocated via a centrally intermediated auction, and is located in the Anantpur district of Andhra Pradesh.
Panels B and D show photos of the Ananthapuramu - II Mega Solar Park (400 MW), a project that was allocated without central
intermediation, and is also located in the Anantpur district of Andhra Pradesh.
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Figure 3: Counterparty risk by state distribution company rating
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This figure shows how payment risk varies depending on the rating of state distribution companies. The horizontal axis shows the
letter grade assigned by the Ministry of Power, Government of India to a state distribution company. The bars show, for the group
of state distribution companies within each letter grade bin, the mean share of payments from those companies to power generators
that are late or disputed. The payment data come from a database called Praapti that the Ministry of Power launched in 2017
explicitly to track how much distribution companies were failing to pay to power generating companies. See Appendix A for a full
data description. The scattered points show the estimates of risk from the structural model of Section 5. To be precise, each point is
the estimated state × state-run auction effects from the bid homogenization regression of log bids on auction characteristics, with
a corresponding 95% confidence interval. The estimates therefore represent the estimated log difference in bid prices between a
state run auction in a state of a given risk and a central auction. When there are multiple states of the same risk, I have added some
horizontal spacing so that each state effect is visible. These model estimates are derived from bid prices without reference to the
non-payment data, shown by the bars, that are used to validate the rating letter grades.
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Figure 4: Solar auction clearing prices by intermediation
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This figure shows a global series on solar capital costs as well as solar prices for large scale projects in India over time. The
dashed line represents the capital costs of solar panels per kWh of energy produced (IRENA, 2019b). The capital costs per unit of
capacity (USD per Watt) have been converted to capital costs per unit energy using a discount rate of 10% over a 25-year life and an
assumed capacity factor of 18%. The solid line represents the capacity-weighted annual average price of solar electricity at auction,
constructed by the author. The scattered data points represent the capacity-weighted average prices of each auction contributing
to the annual average, plotted against the date of each auction. The × (red) markers show auctions run by states and the ◦ (black)
markers show auctions run by central government agencies.
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Figure 5: Quantity sought and quantity awarded over time
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The figure shows the capacity sought at auction and the capacity awarded at auction by year. The total height of the bar is the
capacity sought at auction, i.e. total demand. The black segment of the bar is the capacity awarded at auction. The capacity sought
and awarded are measured in gigawatts against the left-hand axis. The capacity awarded may be less than the capacity sought due
to low bidder participation or to the imposition of ceiling prices that eliminate some bids from consideration. The solid red line,
against the right-hand axis, shows the fraction of capacity sought in auctions with ceiling prices each year. Ceiling prices were not
used prior to 2018.
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Figure 6: Distribution of homogenized bids
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The figure shows the distribution of bids and compares them to ceiling prices. The solid line is the raw distribution of prices as
bid. The dotted line is the distribution of homogenized bids. Homogenized bids are the idiosyncratic or residual components of
bids after controlling for observable characteristics of auctions via a linear regression of log bid prices on auction characteristics
including timing, scale and state fixed effects. Both of these distributions are measured against the density scale on the left axis.
The dashed line is the cumulative distribution function (CDF) for the distribution of homogenized ceiling prices at auction. I apply
the same homogenization regression estimates used to homogenize bids to homogenize ceiling prices. The CDF of the resulting
ceiling price distribution is measured against the right axis.
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Figure 7: Estimated costs and bidder mark-ups
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The figure shows the relationship between observed bids and estimated productions costs. Each point represents the pair (bai, ĉai)
for a single bid. The black dashed line is the forty-five degree line. The vertical gap between the bid and the forty-five degree line
is therefore the bid’s mark-up. The red solid line is a locally smoothed estimated of the mean bid price at each level of estimated
cost. I impose a bound on estimated costs to limit mark-ups to a maximum of 30%, which produces the pattern of estimates at the
lower left, running diagonally upwards from left to right.
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Figure 8: Validation of counterfactual simulations

A. Estimation sample, data
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B. Ceiling price sample, data
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C. Estimation sample, counterfactual simulation As bid
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D. Ceiling sample, counterfactual simulation As bid
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E. Intentionally blank
F. Ceiling sample, counterfactual simulation via Con-
strained strategy equilibrium
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This figure validates the bid prices in counterfactual simulations of auctions against actual auction outcomes. Each panel shows a
distribution of bid prices at auction. The left column of panels shows distributions in the sample of auctions used for estimation.
The right column of panels shows distributions in the sample of auctions with ceiling prices, for which bid prices are normalized as
a fraction of the ceiling price. The rows of panels differ in the strategies that generate bid prices. The top row shows the distribution
of bid prices in the data. When ceiling prices apply (panel B), bidders only participate if their bids are beneath the ceiling price.
The middle right panel (D), after resampling, bidders participate if their costs are beneath the ceiling price, and, conditional on
participation, Shade up their bids halfway to the ceiling. These adjusted strategies are described in Section 7. The bottom row
shows the distributions of bid prices in the data for each sample.
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Figure 9: Counterfactual procurement by risk under uniform ceiling prices

A. Counterfactual outcomes with different bidding strategies
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B. Constrained strategy equilibrium with varying risk levels
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This figure shows auction outcomes across all auctions under counterfactual levels of ceiling prices and counterparty risk. The
horizontal axis shows the fraction of quantity sought at auction that is successfully awarded. The vertical axis shows the capacity-
weighted winning bid price at auction. The labels on each point show the uniform ceiling price counterfactually imposed on all
auctions in the data. Each curve can therefore be thought of as an aggregate supply curve for solar power traced out by changing
the ceiling price policy. In panel A, the two different curves correspond to different bidding strategies used to simulate outcomes:
either resampling naïvely from the bid distribution without ceiling prices (dotted, red line), or solving for the constrained strategy
equilibrium in each auction (solid, black line). In panel B, all counterfactuals use the constrained strategy equilibrium. The three
curves represent the equilibrium quantity awarded for each policy for different levels of counterparty risk. The rightmost curve
shows central auction risk; the middle curve shows the state level of risk, and the left curve shows a high level of risk (the 75th
percentile of state risk). The modal ceiling price in the data is around INR 3 per kWh (see Figure 6).
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10 Tables

Table 1: Summary statistics on solar auctions and solar power projects

Mean Std. dev 25th Median 75th Obs.
(1) (2) (3) (4) (5) (6)

Panel A: Auction level variables
All auctions
Central auction (=1) 0.48 0.50 0 0 1 309
Bid price (INR/kWh) 4.23 2.62 2.77 3.46 5.08 155
Capacity sought (MW) 501.0 944.3 50 200 500 307
Number of bidders 8.59 11.6 2 5 10 179
Over-subscribed (=1) 0.91 0.29 1 1 1 309
HHI of capacity offered 0.32 0.32 0.094 0.19 0.50 179

Central auctions
Bid price (INR/kWh) 3.76 1.31 2.65 3.48 4.43 76
Capacity sought (MW) 655.9 1277.8 50 250 750 149
Number of bidders 6.43 6.49 2 4 9 94
Over-subscribed (=1) 0.92 0.27 1 1 1 149
HHI of capacity offered 0.34 0.31 0.12 0.24 0.50 94

State auctions
Bid price (INR/kWh) 4.67 3.38 2.89 3.35 6.19 79
Capacity sought (MW) 354.9 393.0 54 200 500 158
Number of bidders 11.0 15.1 2 6 13 85
Over-subscribed (=1) 0.89 0.31 1 1 1 160
HHI of capacity offered 0.30 0.33 0.069 0.15 0.42 85

Panel B: Bid level variables

Bid price (INR/kWH) 5.23 2.15 3.18 5.46 6.59 1388
Bid selected (=1) 0.48 0.50 0 0 1 1458
Capacity bid (MW) 302.0 6778.1 10 50 200 1363
Capacity allocated (MW) 52.9 128.5 0 0 50 1497

Panel C: Project level variables

Auction (=1) 0.39 0.49 0 0 1 2229
Central auction (=1) 0.10 0.30 0 0 0 2229
Tariff (INR/kWh) 6.90 3.68 4.43 6.45 8.40 1221
Project capacity (MW) 25.1 61.8 1.50 5 20 2229
The table provides summary statistics on variables from the Bridge to India data on renewable power auctions and
projects in India. Panel A reports summary statistics of key variables that describe the auctions run by government
authorities in order to allocate renewable energy projects to producers. Panel B reports bid-level data on the auctions
that are described in Panel A, where bidding steps for each bidder are aggregated into at most two bids, describing
parts of the capacity bid that were selected and discarded by the auction. Finally, Panel C summarizes the data on
renewable projects, which consists of both active plants and plants that are in the development pipeline. Most of
these projects have not been allocated by an auction.
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Table 2: Counterparty risk premium in solar bid prices at auction

Dependent variable: Log of bid price (INR/kWh)
(1) (2) (3) (4)

Central auction (=1) −0.060∗∗∗ −0.058∗∗ 0.035 0.010
(0.022) (0.023) (0.036) (0.034)

Solar irradiance (kWh/m2) −0.29∗∗∗ −0.28∗∗∗ −0.19∗∗∗ −0.16∗∗∗

(0.050) (0.050) (0.049) (0.045)
Counterparty risk 0.014 −0.048∗∗ −0.040

(0.021) (0.023) (0.024)
State auction × 0.15∗∗∗ 0.11∗∗∗

Counterparty risk (0.042) (0.038)
Year effects Yes Yes Yes Yes
Capacity deciles Yes Yes Yes Yes
Firm effects Yes

Mean dep. var. 1.62 1.62 1.62 1.62
R2 0.92 0.92 0.93 0.96
p-value H0: no state risk 0.0011 0.0082
Auctions 124 124 124 124
Bids 1166 1166 1166 1166
This table reports coefficients from regressions of the log bid price in auctions on an indicator for
central intermediation and measures of counterparty risk. The dependent variable in all specifications
is the price per unit energy (INR per kWh) bid. The indicator for central auction denotes an auction
that is intermediated by the central government. State auction is the complement of central auction:
an auction that is run by a state and not intermediated. Solar irradiance is the 75th percentile of the
Global Horizontal Irradiation (GHI) incident in the state or states where the auction is run and is
measured in units of kWh per meter squared per day (kWh/m2−day). The counterparty risk variable
is a normalized version of the Ministry of Power rating for discoms described in Figure 3. Equation
(1) shows the normalization; a value of zero represents no risk and a value of one the average level
of state risk. All specifications include year effects and fixed effects for deciles of the quantity sought
at auction. The column 4 specification additionally includes fixed effects for each bidding firm. The
p-value in the table footer is for a test of whether the sum of the coefficients on Counterparty risk and
State auction× Counterparty risk equals zero (in columns 3 and 4). All standard errors are clustered at
the auction level and statistical significance at certain thresholds is indicated by ∗ p< 0.10, ∗∗ p< 0.05,
∗∗∗ p < 0.01.
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Table 3: Counterparty risk premium in solar contract prices across all modes of procurement

Dependent variable: Log of tariff (INR/kWh)
(1) (2) (3) (4) (5) (6)

Central auction (=1) −0.15∗∗∗ −0.15∗∗∗ 0.058 0.049 −0.041 −0.0078
(0.038) (0.037) (0.069) (0.074) (0.081) (0.089)

State bilateral (=1) 0.093∗ 0.13∗∗∗ 0.14∗∗∗ 0.081∗ −0.034 −0.054
(0.048) (0.038) (0.038) (0.043) (0.081) (0.082)

Solar irradiance −0.28∗∗∗ −0.23∗∗∗ −0.20∗∗ −0.23∗∗∗ −0.20∗∗∗ −0.23∗∗∗

(0.081) (0.075) (0.075) (0.083) (0.068) (0.082)
Counterparty risk 0.12∗∗∗ −0.055 −0.059 −0.054 −0.060

(0.042) (0.047) (0.043) (0.046) (0.043)
State run × 0.23∗∗∗ 0.20∗∗∗

Counterparty risk (0.060) (0.062)
State auction × 0.13∗ 0.14∗

Counterparty risk (0.073) (0.077)
State bilateral × 0.33∗∗∗ 0.30∗∗∗

Counterparty risk (0.062) (0.052)
Year effects Yes Yes Yes Yes Yes Yes
Capacity deciles Yes Yes Yes Yes Yes Yes
Firm effects Yes Yes

Mean dep. var 1.91 1.91 1.91 1.91 1.91 1.91
R2 0.87 0.88 0.89 0.96 0.90 0.96
p-val H0: no state risk 0.0045 0.0086 0.087 0.066
p-val H0: mode risk equal 0.014 0.035
Projects 1028 1028 1028 1028 1028 1028
This table reports coefficients from regressions of the log bid price in solar power purchase contracts on an indicator for central
intermediation and measures of counterparty risk. The dependent variable in all specifications is the log price per unit energy
(INR per kWh). The data include all contract prices for solar power procured through central auctions, state auctions and state
bilateral contracts. The indicator for central auction denotes an auction that is intermediated by the central government. State
auction indicates an auction that is run by a state and not intermediated. State bilateral indicates a contract procured by a state
through bilateral negotiations and not at auction. State run indicates a contract procured without central intermediation; that
is, through either a state auction or state bilateral contract. Solar irradiance is the 75th percentile of the Global Horizontal
Irradiation (GHI) incident in the state or states where the auction is run and is measured in units of kWh per meter squared
per day (kWh/m2− day). The counterparty risk variable is a normalized version of the Ministry of Power rating for discoms
described in Figure 3. Equation (1) shows the normalization; a value of zero represents no risk and a value of one the average
level of state risk. All specifications include year effects and fixed effects for deciles of the quantity sought at auction. The
column 4 and 6 specifications additionally include fixed effects for each bidding firm. The first p-value in the table footer is for a
test of whether the sum of the coefficients on Counterparty risk and State run × Counterparty risk equals zero (in columns 3 and
4), or of whether the sum of the coefficients on Counterparty risk and State auction× Counterparty risk equals zero (in columns 5
and 6). The second p-value in the table footer is for a test of the equality of the coefficients on State auction × Counterparty risk
and State bilateral × Counterparty risk (in columns 5 and 6). All standard errors are clustered at the auction level and statistical
significance at certain thresholds is indicated by ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 4: Counterparty risk premium in solar contract prices across all modes of procurement,
with state and district fixed effects in place of state-level controls

Dependent variable: Log of tariff (INR/kWh)
(1) (2) (3) (4) (5) (6) (7)

Central auction (=1) −0.12∗∗∗ 0.100∗ 0.10 0.17∗ 0.068 0.083 0.14
(0.033) (0.051) (0.074) (0.084) (0.054) (0.080) (0.098)

State bilateral (=1) 0.16∗∗∗ 0.19∗∗∗ 0.18∗∗∗ 0.13∗∗ 0.13∗∗ 0.14∗ 0.055
(0.040) (0.040) (0.043) (0.053) (0.058) (0.078) (0.099)

State run × 0.24∗∗∗ 0.23∗∗∗ 0.24∗∗∗

Counterparty risk (0.046) (0.067) (0.084)
State auction × 0.20∗∗∗ 0.21∗∗∗ 0.22∗∗

Counterparty risk (0.053) (0.078) (0.10)
State bilateral × 0.27∗∗∗ 0.25∗∗∗ 0.30∗∗∗

Counterparty risk (0.044) (0.069) (0.073)
Year effects Yes Yes Yes Yes Yes Yes Yes
Capacity deciles Yes Yes Yes Yes Yes Yes Yes
State effects Yes Yes Yes Yes Yes Yes Yes
District effects Yes Yes Yes Yes
Firm effects Yes Yes

Mean dep. var 1.91 1.91 1.91 1.91 1.91 1.91 1.91
R2 0.91 0.92 0.95 0.98 0.92 0.95 0.98
p-val H0: mode risk equal 0.11 0.53 0.39
Projects 1028 1028 1028 1028 1028 1028 1028
This table reports coefficients from regressions of the log bid price in solar power purchase contracts on an indicator for central
intermediation and measures of counterparty risk. The data and variables are the same as in the paper Table 3. This table
replaces the state-level controls in Table 3 with state and district fixed effects for the project location. The dependent variable in
all specifications is the log price per unit energy (INR per kWh). The data include all contract prices for solar power procured
through central auctions, state auctions and state bilateral contracts. The indicator for central auction denotes an auction that is
intermediated by the central government. State auction indicates an auction that is run by a state and not intermediated. State
bilateral indicates a contract procured by a state through bilateral negotiations and not at auction. State run indicates a contract
procured without central intermediation; that is, through either a state auction or state bilateral contract. The counterparty risk
variable is a normalized version of the Ministry of Power rating for discoms described in Figure 3; Equation (1) shows the
normalization; a value of zero represents no risk and a value of one the average level of state risk. All specifications include
year effects, fixed effects for deciles of the quantity sought at auction, state fixed effects and district fixed effects. The column
3 and 5 specifications additionally include fixed effects for each bidding firm. The p-value in the table footer is for a test of the
equality of the coefficients on State auction × Counterparty risk and State bilateral × Counterparty risk (in columns 4 and 5).
All standard errors are clustered at the auction level and statistical significance at certain thresholds is indicated by ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: A test for whether counterparty risk is due to hold-up

Dependent variable: Log bid price (INR per kWh)
(1) (2) (3) (4)

Central auction (=1) 0.022 0.023 0.023 −0.010
(0.035) (0.035) (0.035) (0.038)

Solar irradiance (kWh/m2) −0.19∗∗∗ −0.19∗∗∗ −0.19∗∗∗ −0.16∗∗∗

(0.050) (0.050) (0.050) (0.046)
Counterparty risk −0.036∗ −0.031 −0.032 −0.022

(0.022) (0.022) (0.022) (0.025)
State auction × 0.14∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.099∗∗

Counterparty risk (0.041) (0.040) (0.041) (0.038)
Thermal in state (=1) × −0.097∗∗∗ −0.066∗ −0.062

Counterparty risk (0.030) (0.035) (0.040)
Thermal in state (=1) × −0.047∗ −0.064∗∗

State auction × Risk (0.026) (0.028)
Year effects Yes Yes Yes Yes
Capacity deciles Yes Yes Yes Yes
Thermal controls Yes Yes Yes Yes
Firm controls Yes Yes Yes
Firm fixed effects Yes

Mean dep. var 1.62 1.62 1.62 1.62
R2 0.93 0.93 0.93 0.96
p-val H0: no state risk 0.0045 0.0027 0.0026 0.016
p-val H0: no state risk

if thermal capacity 0.21 0.57
Auctions 124 124 124 124
Bids 1166 1166 1166 1166
This table reports regressions of log bid prices in the auction data on variables for intermediation and
risk with additional controls for the characteristics of bidding firms. Most of the variables are described
in the notes to Table 2. In addition, the specifications contain firm-level variables for whether a firm
bidding in a solar auction also has thermal generation capacity. Thermal in state is a dummy for
whether a firm has any thermal generating capacity in the state or states holding the auction. Thermal
controls consist of the thermal in state dummy and the continuous thermal capacity (GW) held by the
bidding firm in that state or states. Columns 1 to 3 additionally include control variables for firm age
and whether the firm has any business outside the power sector (coefficients not reported). Column
4 replaces these controls with firm fixed effects. The first p-value is for a test that the sum of the
Counterparty risk and State auction × Counterparty risk coefficients is equal to zero. The second
p-value is for a test that counterparty risk has a null effect on bid price for a firm with 1 GW of
generating capacity within the state holding the auction. Standard errors are clustered by auction. The
statistical significance of coefficients at certain thresholds is indicated by ∗ p < 0.10, ∗∗ p < 0.05, and
∗∗∗ p < 0.01.
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Table 6: Counterfactual auction outcomes, sample with ceiling price

Central risk Actual risk State risk State risk p75
(1) (2) (3) (4)

Panel A: No ceiling prices

Participation
Potential bids 4.62 4.62 4.62 4.62
Bids submitted 4.62 4.62 4.62 4.62
Bids cleared 3.35 3.35 3.35 3.35

Quantity
Quantity sought (MW) 795.33 795.33 795.33 795.33
Quantity offered (MW) 823.01 823.01 823.01 823.01
Quantity awarded (MW) 563.24 563.24 563.24 563.24
Undersubscribed (=1) 0.49 0.49 0.49 0.49
Ceiling binds (=1) 0.00 0.00 0.00 0.00

Prices and costs
Mean bid, all (INR/kWh) 3.02 3.18 3.40 3.60
Mean bid, winning (INR/kWh) 2.96 3.11 3.33 3.53
Marginal bid (INR/kWh) 3.09 3.26 3.48 3.70
Mean cost (INR/kWh) 2.41 2.54 2.71 2.88
Markup (INR/kWh) 0.55 0.58 0.62 0.66
Markup (%) 0.25 0.25 0.25 0.25

Panel B: Actual ceiling prices

Participation
Potential bids 4.62 4.62 4.62 4.62
Bids submitted 3.60 3.45 3.07 2.50
Bids cleared 2.93 2.77 2.52 2.19

Quantity
Quantity sought (MW) 795.33 795.33 795.33 795.33
Quantity offered (MW) 642.64 613.89 554.02 457.83
Quantity awarded (MW) 498.69 470.65 434.85 390.19
Undersubscribed (=1) 0.62 0.64 0.69 0.76
Ceiling binds (=1) 0.28 0.31 0.42 0.58

Prices and costs
Mean bid, all (INR/kWh) 2.98 3.08 3.14 3.03
Mean bid, winning (INR/kWh) 2.97 3.07 3.13 3.02
Marginal bid (INR/kWh) 2.98 3.08 3.14 3.02
Mean cost (INR/kWh) 2.30 2.33 2.44 2.56
Markup (INR/kWh) 0.67 0.74 0.69 0.46
Markup (%) 0.31 0.34 0.31 0.19

The table reports counterfactual auction outcomes in the sample of auctions that were originally bid with ceiling
prices. The counterfactuals vary in two dimensions. Across the panels, panel A shows outcomes without ceiling
prices and panel B shows outcomes with ceiling prices. Across the columns, the simulations vary in the level of
counterparty risk, with risk increasing from left to right: the risk of a central auction (column 1), the actual level of
risk accounting for state risk and intermediation (column 2), state risk if there had been no intermediation (column
3) and state risk set for all states at the estimated 75th percentile of the state risk distribution (column 4). The
counterfactual simulations for auctions without ceiling prices use the As bid strategy and for auctions with ceiling
prices the Shade up strategy. These strategies are described in Section 7 and validated against the data in Table C7.
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Appendix A [NOT FOR PUBLICATION]

A Appendix: Data

A.1 Auctions

Data on auctions are from Bridge to India, a consulting firm that collects data on renewable energy in

India. The data are originally sourced from public documents put out by utilities and regulators. There are

a total of 2095 bids across 309 auctions in the raw data, of which 124 auctions have data on all bids, 31

auctions have data on some (but not all) bids, and 154 auctions have no bid level data. Most of the auctions

that do not have bid level data available were cancelled without any quantity awarded.

I clean the auction data to (i) establish a homogenous sample of auctions with all the data needed for

analysis (ii) convert bid prices, where necessary, into per unit energy terms. The subsections below describe

these steps.

Sample construction in auction data.—I impose several sample restrictions to create a data set of

homogenous auctions and their bids. Table A1 describes the sample restrictions. For all analysis, I impose

the following restrictions: auctions must be for ground-mounted solar photovoltaic power plants (as opposed

to, for example, floating solar plants), the capacity sought at auction must be at least 5 MW (to exclude

idiosyncratic projects linked to industrial plants), and auctions must not be in Odisha.27 These restrictions

yield 232 auctions with 1264 bids offering 124 GW of capacity. All bids with prices and covariates in this

sample are used in the regression analysis.

Further sample restrictions, shown further down in the table, are imposed for particular portions of the

structural analysis. I form the estimation sample for the estimation of bidder costs by requiring that auctions

have bid prices available for all bids and do not have ceiling tariffs. These restrictions are important to

estimate the complete, uncensored distribution of bids and therefore costs. If bid prices were partially

available, or a ceiling price had been imposed, the estimated distribution of bids would not represent the true

and complete latent distribution of bid prices.

The counterfactual sample does not require that bid prices be available, since bids in counterfactuals are

simulated from the distribution of bidder types and bids estimated using the estimation sample.

Finally, the ceiling sample consists only of auctions in which ceiling prices were originally imposed.

27Odisha is an odd state because it has privatized its distribution companies, which makes it difficult to measure counterparty
risk. We also drop auctions in the Andaman and Nicobar Islands; however, this restriction is redundant since all such projects are
too small to make the sample.
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This sample is used for the validation of counterfactual strategies and the counterfactual simulations of

auction outcomes. The auctions in the ceiling sample are deliberately excluded from the estimation sample

so as not to bias the estimation of costs.

Table A1: The effect of sample restrictions on sample size

Auctions Bids Capacity (GW)
(1) (2) (3)

None 309 1541 154
Keep ground-mounted projects only 241 1288 125
Keep auctions with capacity sought ≥ 5 MW 240 1288 125
Drop Odisha 232 1264 124

Estimation sample
Keep auctions with all tariffs available 102 929 54
Drop auctions with ceiling tariffs 80 865 30

Counterfactual sample
Drop manufacturing-linked auctions 229 1262 104

Ceiling sample
Drop auctions without ceilings 44 109 48

This table reports the cumulative effect of sample restrictios on sample size. The columns report different
aspects of sample size: column (1) reports the number of auctions in the sample, column (2) represents
the number of bids, and column (3) shows the total capacity sought by auctions in the sample. The
first four rows report the restrictions applied to create the baseline descriptive sample, which consists of
1264 bids across 232 auctions. The rows below show the additional restrictions needed to construct the
estimation, counterfactual, and ceiling samples.

Converting subsidies and select bid prices to per unit energy terms.—Bid-prices in the auction

data usually consist of a tariff quoted as a price per unit of energy supplied (INR per kWh). However, in

17 auctions in our sample, the government offers so-called viability gap funding (VGF), which is a capital

subsidy per unit of capital (typically in INR per MW terms). Viability gap funding is a subsidy meant to

make up the gap between the prices of green and brown energy projects in order to encourage green energy

investment. In these auctions, firms submit bids over both the base tariff and the VGF, with the former

denominated in energy terms and the latter in terms of capacity.

To harmonize all prices in energy terms, we adjust for these subsidies by calculating their per unit energy

equivalents. I solve for the “levelized” price P that satisfies

C =
T

∑
t=1

PE
(1+ r)t .

where C is the subsidy in capacity terms, T is the time horizon over which the present-value is calculated,
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and r is the interest rate used to discount future payment streams. E = cE × 24 hours× 365 days is the

amount of energy (measured in kilowatt-hours) that one kilo-watt of capacity would generate in a year. The

term cE represents the capacity factor, the ratio of expected energy output to the maximum possible amount

of energy that could be generated by a given plant (if the sun were shining all the time). I set T = 25 to

match the horizon of power purchase contracts. I set r = 0.10. The prime corporate borrowing rate in India

was around 12% during my sample periods, but large, collateralized solar plants often have lower borrowing

costs. I set cE = 0.18 which is a reasonable mean capacity factor for solar PV plants in India.

Ceiling prices.— 50 out of the 309 auctions in our raw data sample had ceiling prices. In these

auctions, bids can only be submitted if they are beneath the ceiling price (commonly called a a “reserve”

price elsewhere). The mean ceiling price is roughly INR 3.08 per kWh with a standard deviation of INR

0.43 per kWh. Figure A1 shows the distribution of ceiling tariffs in our sample.

Figure A1: Distribution of ceiling prices in the auction data
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This figure shows the distribution of ceiling prices in the subset of auctions that stipulate ceiling prices. The x-axis shows the ceiling
price imposed in the auction and the y-axis counts the number of auctions with a particular ceiling price.

A.2 Projects

The data on projects are also procured from Bridge to India and complement the data on auctions.

The observations are comprised of information on solar power plants that have either been commissioned,

meaning they have begun generating energy, or have been contracted and are currently in the development

pipeline. The full sample consists of 2229 projects which are located across 27 states and union territories
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in India. The active projects in our sample were commissioned between the years 2009 and 2020.

A.3 Counterparty risk

The measure of counterparty risk is collected by the Ministry of Power (Ministry of Power, 2013). The

raw data on ratings consist of letter grades assigned to each distribution company. The letter grades are

assigned by the MoP after utilites are rated by a credit rating agency such as ICRA or CARE. The letter

grade scale was chosen deliberately to differ from the typical scale for corporate credit ratings, in order to

account for the unique, integrated nature of the ratings. The ratings are meant to capture both “operational

and financial performance” and “the risks associated with lending exposures to various distribution utili-

ties.” In addition, the Ministry of Power wanted to use a novel scale to compare each company “with other

distribution utilities only,” rather than the corporate sector at large.

The rating is based on an index with three broad components: financial performance, regulatory practices

(that are viewed as sustaining financial performance) and operations. The data for the components are drawn

from financial accounts and regulatory reports. The most important component is the present financial

health of the company at 60% of the total index weight. Financial health includes sub-components like

whether power tariffs cover costs, the amount of debt the company carries and the status of receivable

and payable accounts. While the rating is holistic, the intention of the index is to serve as a guide to risk.

Ministry of Power (2013) states the goal of the rating as: “The integrated rating methodology would facilitate

realistic assessment by Banks/FIs [financial institutions] of the risks associated with lending exposures to

various state distribution utilities and enable funding with appropriate loan covenants for bringing overall

improvement in operational, financial and managerial performance.”

I aggregate the MoP data to the state level by converting the letter grades to grade point averages (GPA)

as described in the text, and then calculating the mean GPA for each state-year observation. I then use the

normalized grade point average for states in the fiscal year 2012-13, at the start of the sample, as the measure

of counterparty risk. The resulting letter grades range from A+ to C, as shown in Figure 3.

Figure 3 validates the measure of risk using data from the “Payment Ratification And Analysis in Pro-

curement for bringing Transparency in Invoicing of generators” (PRAAPTI) scheme, a Ministry of Power

program to highlight non-payment by state utilities.28 This data contain records of invoices from power pro-

28The clumsy acronym is a Sanskit term that means the ability to obtain or acquire. Prapti, as a siddhi or power of advanced
yoga practioners, has a connotation of ubiquity or the ability to enter everywhere. In our context, it may refer to the ability of the
central government to use this data to peer into the finances of the state discoms.
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ducing firms seeking payment from state utilities. The main limitation of the PRAAPTI data is that reporting

of a late or disputed invoice is voluntary. Therefore, there may be selection into reporting in different states,

which plausibly could depend on counterparty risk, and the coverage of the data is also incomplete.

Each invoice in the PRAAPTI database consists of an invoice identifier, the date on which the invoice

appeared in the dataset, the debtor utility, the generator who filed the complaint, an indicator for whether

the pending amount in the invoice was overdue, the total rupee amount pending to be paid to the generator,

the total amount that is late and the total rupee amount in dispute between the generator and the utility

company. Invoices do not uniquely identify each observation in the dataset since multiple complaints based

on the same invoice show up in the database. To account for this, I collapse the data for each invoice into a

single observation by retaining the first observation where an invoice was marked overdue. I then aggregate

the invoice-level payment variables to the state-level and calculate the share of payments that are late or

disputed in each state.

A.4 Solar irradiance

Solar irradiance is the power per unit area received from the sun as electromagnetic radiation. I use data

on the yearly average of solar potential at the coordinate-grid level from the Global Solar Atlas to compute

state- and district-wide averages within India. Solar potential is measured by global horizontal irradiance

(GHI), the power received from shortwave radiation on a plane horizontal to the surface of Earth. GHI is

the main measure of irradiance used to forecast output from solar photovoltaic plants, because it is a total

measure, including both direct sun and indirect sun that may be scattered off of the atmosphere and arrive at

varying odd angles.

Figure A2 shows solar irradiance across India at the district level. The boundaries of administrative

districts are shown. Districts that contain at least one solar project appearing in the dataset have bold outlines

in the map, showing the geographic extent of solar projects in the country. There are 223 districts with a

solar plant covering nearly the full extent of the country, with the exception of the northeastern states and far

northern districts. While India generally has high solar potential, there is nonetheless considerable variation

in the solar potential of districts in which solar plants are built. Less productive districts, e.g. in Punjab, may

have GHI of 4.0 kWh/m2 per day, while the most productive districts approach 5.5 kWh/m2 per day.
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Figure A2: Solar irradiance in India
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This figure shows Global Horizontal Irradiance (GHI), the industry-standard measure of solar photovaltaic generation potential,
across India. The boundaries of administrative districts are shown. Districts that contain at least one solar project appearing in the
dataset have bold outlines in the map, showing the geographic extent of solar projects in the country.
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B Appendix: Supplementary results

B.1 Context: Bailouts of Indian distribution companies

This part describes the pattern of bailouts for state-government-owned electricity distribution compa-

nies, to establish that these companies are unreliable counterparties. These discoms are run by the state

governments to distribute power. They often run financial losses, due to the provision of subsidized power

to agricultural and domestic users of electricity, as well as to technical and commercial losses. Discoms ac-

cumulate liabilities by not paying both public and private generating companies for power delivered. Over

time, discoms’ financial position deteriorates, until they are no longer able to buy power or get credit. At

that point, the state governments and central government bail them out.

Table B2 gives a recounting of the four massive bailouts since the year 2000. Each bailout has a value

of between 0.5% and 2% of GDP. Bailouts involve some combination of debt forgiveness and restructuring,

including the assumption or refinancing of distribution company debt by the state governments. Because

distribution companies are subject to a soft budget constraint, they have an incentive to add liabilities by not

paying private producers of power. The cycle of bailouts therefore helps sustain counterparty risk.
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Table B2: Bailouts of State-owned Distribution Companies since 2000

Year Creditors Current
Value

Constant
Value

%
GDP

Financial Details Other Measures

2020a Generators &
Gov’t Finance
Institutions
(GFIs)

900B INR 12.01B
USD

0.44% Liquidity injection divided
into two tranches: the first
contingent on a repayment
plan to creditors and the sec-
ond contingent on not hav-
ing any bills overdue and
having a plan to bring down
technical losses.

Intended as a stopgap
measure until the Elec-
tricity Act Reform is in-
troduced.

2015
(UDAY)bcd

Banks 2090B
INR

36.39B
USD

1.52% States shall take over 75 per-
cent of discom debt as on
30 September 2015 over two
years. 50 percent of discom
debt shall be taken over in
2015-16 and 25 percent in
2016-17. States taking over
and funding at least 50 per-
cent of the future losses.

Operational attempts to
reduce deficit, such as
reducing losses and in-
creasing efficiency.

2012e Banks 1900B
INR

45.26B
USD

1.91% States required to take on 50
percent of outstanding short-
term liabilities up to March
31, 2012. They will be
converted into bonds and is-
sued to lenders, with lia-
bility falling to the states.
The other 50 percent will be
restructured such that there
will be a 3-year moratorium
on repayments.

Performance incentives
issued by Central Gov-
ernment for meeting cer-
tain operational and fi-
nancial targets.

2001
&
2002e

Centrally-
owned
generators
/ CPSUs

400B INR 18.23B
USD

1.84% 50 percent of the inter-
est on delayed payments
was waived and the remain-
ing amount (full principal
plus remaining interest) con-
verted into bonds by the
state government.

APDRP and Electricity
Act of 2003 intended
to deliver increased
profitability for discoms
and structural reforms
to the power sector,
respectively.

Constant Value Calculations are in 2020 USD, converted from Indian 2020 inflation-adjusted values using July 2020 conversion
rates. CPSUs represent Central Public Sector Undertakings, primarily in the generating sector. GFIs represent Government Finance
Institutions such as the PFC and the REC. GDP calculations are from tradingeconomics. Sources: a Mercom India (2020) b

Economic Times India (2017) c Hindu Business Line (2016) d Financial Express (2015) e World Bank: Khurana, Mani; Banerjee,
Sudeshna Ghosh. (2015)
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B.2 Auction characteristics by intermediation status

This subsection discusses the characteristics of state-run and centrally-intermediated auctions. It can be

read as an extension of Section 3.2 and Table 1 in particular. Figure B3 shows the distributions of auction

characteristics by intermediation status. The top row shows the distribution of characteristics in central

auctions, and the bottom row the distribution in state auctions. The three columns show the distributions of

solar irradiance, quantity sought, and counterparty risk, respectively.

Figure B3: Auction characteristics by intermediation
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D. State auction irradiance
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E. State auction quantity sought
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The figure compares the distributions of auction characteristics for centrally-intermediated auctions (top row) as compared to state
auctions (bottom row). The first column shows the distributions of solar irradiance. This column uses the data on commissioned
projects where the location of all projects is observed. Irradiance is Global Horizontal Irradiance measured in kWh per m2. The
second column shows the distributions of capacity sought in each auction in MW. The distribution is truncated at 2000 MW; two
central auctions exceed this level in the data. The third column shows the distribution of MoP ratings for the underlying procurer
in 2012. This column restricts the sample to auctions in only one state in order to assign a single counterparty risk rating.

The figure shows broad overlap between the characteristics of central and state auctions. The support

of the distributions of all the auction characteristics is similar: there are both state and central auctions with

high and low irradiance, high and low quantity and high and low risk. There are two substantive differences

between the distributions of characteristics shown. First, central auctions are less likely to be held in places

with very low solar irradiance. This makes sense: the central government can intermediate auctions in many

different locations and favors locations with higher solar potential. Second, there is a smaller fraction of
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central as compared to state auctions in very low risk (A or A+) states. This pattern suggests that states with

low risk might prefer to run their own auctions, or that risky states may prefer to intermediate their auctions.

Figure B4 tests this hypothesis by showing the mean risk rating of procurers running state auctions

(solid, red line) and central auctions (dashed, black line) over time. Procurers in state and central auctions

have similar risk levels in the middle part of the sample. There is some evidence that the rating of procurers

running state auctions has increased over time (i.e., less risky procurers have run state auctions) from 2016

onwards, after the central government began intermediating more auctions itself.

Figure B4: Change in counterparty risk over time for procurers
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The figure shows the weighted average rating of states running procurement auctions by year. The rating is the GPA-equivalent of
the letter grade given by Ministry of Power (2013) for 2012. A normalized version of this rating is used to measure counterparty
risk in the empirical analysis. In each year, the series shows the weighted average rating of procurers running solar auctions either
as states themselves or through intermediated auctions of the central government. The weights are the capacity of solar power
sought to be procured at each auction. Because the ratings are static, the changes in the series show changes in the risk composition
of which states are running auctions. The dotted horizontal line shows the average state rating (“B+”).

B.3 Alternate solar price regression specifications

This subsection shows alternate specifications and robustness checks for the regressions in Tables 2 and

3.
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Bid price regressions with the dependent variable in levels.—Table B3 shows regressions of bid

prices at auction on counterparty risk and various controls. The specifications are the same as in Table 2 in

the main text, except that the dependent variable is the level of the bid price (in INR per kWh) instead of its

logarithm.

Table B3: Counterparty risk premium in solar bid prices at auction

Dependent variable: Bid price (INR/kWh)
(1) (2) (3) (4)

Central auction (=1) −0.27∗∗ −0.26∗∗ 0.18 0.045
(0.11) (0.12) (0.22) (0.18)

Solar irradiance (kWh/m2) −1.57∗∗∗ −1.51∗∗∗ −1.09∗∗∗ −0.82∗∗∗

(0.32) (0.31) (0.34) (0.30)
Counterparty risk 0.097 −0.20 −0.16

(0.13) (0.12) (0.12)
State auction ×

Counterparty risk 0.70∗∗ 0.48∗

(0.29) (0.24)
Year effects Yes Yes Yes Yes
Capacity deciles Yes Yes Yes Yes
Firm effects Yes

Mean dep. var. 5.40 5.40 5.40 5.40
R2 0.89 0.89 0.90 0.95
p-value H0: no state risk 0.014 0.049
Auctions 124 124 124 124
Bids 1166 1166 1166 1166
This table reports coefficients from regressions of the bid price in auctions on an indicator for central
intermediation and measures of counterparty risk. The dependent variable in all specifications is the
price per unit energy (INR per kWh) bid. The indicator for central auction denotes an auction that is
intermediated by the central government. State auction is the complement of central auction: an auction
that is run by a state and not intermediated. Solar irradiance is the 75th percentile of the Global Horizontal
Irradiation (GHI) incident in the state or states where the auction is run and is measured in units of watts
(W) per meter squared (m2). The counterparty risk variable is a normalized version of the Ministry of
Power rating for discoms described in Figure 3. Equation (1) shows the normalization; a value of zero
represents no risk and a value of one the average level of state risk. All specifications include year effects
and fixed effects for deciles of the quantity sought at auction. The column 4 specification additionally
includes fixed effects for each bidding firm. The p-value in the table footer is for a test of whether
the sum of the coefficients on Counterparty risk and State auction × Counterparty risk equals zero (in
columns 3 and 4). All standard errors are clustered at the auction level and statistical significance at
certain thresholds is indicated by ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

B.4 Effect of intermediation and risk on participation in auctions

Table B4 presents regressions at the auction level of different measures of participation on whether an

auction is intermediated and measures of counterparty risk. There are three different measures of partici-
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pation: the number of bids in the auction (columns 1 to 3), whether an auction is over-subscribed (more

capacity was offered than the procurer sought to buy) (columns 4 to 6), and the Hirschman-Herfindahl Index

(HHI) of offered capacity (columns 7 to 9).

The over-arching conclusion is that risk has no significant effect on participation or competitiveness in

auctions. Without any controls, centrally-intermediated auctions have significantly fewer bids (column 1),

yet are more likely to be over-subscribed (column 4). However, these differences are an artifact of state

auctions starting earlier in the sample, at a time when many more, smaller bids were typically offered (see

Figure 4). Controlling for year fixed effects alone eliminates these apparent differences in the number of

bids (column 2) and oversubscription (column 5) between central and state auctions. Similarly, there are

no significant differences in participation when also adding fixed effects for auction scale (deciles of the

capacity sought at auction) (columns 3 and 6). The HHI is a measure of the concentration of offered bids in

an auction, scaled between 0 and 1. There is no significant difference in the concentration of offered bids in

central versus state auctions (columns 7 through 9).

In addition to not finding any effect of intermediation per se on participation, I also find that there

is no effect of counterparty risk itself on participation in state auctions (coefficients on “State auction ×

counterparty risk.”) For example, increasing counterparty risk in a state auction from zero to the average

state risk is estimated to decrease the number of bids offered by -0.31 (standard error 2.97), on a mean

number of bids offered of 8.63 (column 3). Therefore it does not appear that changes in auction participation

are a main mechanism through which risk affects prices bid.
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Table B4: The effect of central intermediation on auction participation

Dependent variable:

Number of bids Oversubscribed (=1) HHI

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Central auction (=1) −5.13∗∗−2.05 −4.52 0.20∗∗∗ 0.028 0.0039 0.089 −0.16 −0.078
(2.04) (9.35) (9.59) (0.054) (0.26) (0.25) (0.058) (0.27) (0.27)

Counterparty risk 1.65 1.68 −0.0095 0.039 −0.16∗ −0.13
(2.96) (3.02) (0.081) (0.080) (0.085) (0.084)

State auction ×
Counterparty risk 1.02 −0.31 −0.053 −0.025 −0.089 −0.050

(2.89) (2.97) (0.079) (0.079) (0.083) (0.082)
Year effects Yes Yes Yes Yes Yes Yes
Capacity deciles Yes Yes Yes

Mean dep. var 8.63 8.63 8.63 0.88 0.88 0.88 0.32 0.32 0.32
R2 0.046 0.31 0.39 0.095 0.31 0.42 0.018 0.27 0.40
Auctions 135 135 135 135 135 135 135 135 135
This table reports coefficients from regressions of measures of participation in solar power auctions on an indicator for central
intermediation and measures of counterparty risk. The data are at the auction level. The dependent variables are: the number of
bids in an auction (columns 1 to 3); an indicator for whether an auction is over-subscribed, meaning more capacity was offered
than the procurer sought (columns 4 to 6); the Hirschman-Herfindahl Index (HHI) for offered capacity in an auction (columns 7
to 9). The indicator for central auction denotes an auction that is intermediated by the central government. State auction indicates
an auction that is run by a state and not intermediated. The counterparty risk variable is a normalized version of the Ministry of
Power rating for discoms described in Figure 3. Equation (1) shows the normalization; a value of zero represents no risk and a
value of one the average level of state risk. Specifications include year effects and fixed effects for deciles of the quantity sought
at auction as indicated in the footer. Statistical significance at certain thresholds is indicated by ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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B.5 Comparison of estimated solar costs to engineering estimates

Table B5 compares estimates for the cost of suppling solar power, from the bidding model results re-

ported in Section 6.2, to independent engineering estimates of solar production costs from the same period.

Column 1 shows the mean estimated cost in the model for auctions from 2015 through 2018 (without ho-

mogenization, as is appropriate for an external cost comparison). Columns 2 through 4 show independent

estimates of solar production costs from regulatory and analyst reports covering the same period (CERC,

2015, 2016; IRENA, 2019b). The headline cost for each estimate is reported as “Total costs (INR/kWh)”

and a decomposition into sub-costs is reported for the engineering estimates. When costs were originally

reported per unit of capacity, they have been converted to costs per unit energy to compare to the per unit

energy bid prices at auction.

Table B5: Solar cost estimates

Model CERC 2015-16 CERC 2016-17 IRENA
(1) (2) (3) (4)

Year All 2015 2016 2018
Total costs (INR m / MW) 60.7 53.0 54.3
Total costs (INR/kWh) 3.99 4.23 3.71 3.79

Panel costs 2.32 2.29 1.48
Installation costs 1.4 1.04 1.42
Land costs 0.17 0.17
Other costs 0.39 0.19 0.89

Bid price (INR/kWh) 4.50
This table reports estimates of total solar project costs from secondary sources. Column (1) shows our mean model
estimates of costs and bid prices, with the average taken across years 2015-2018. Column (2) reports costs from a 2015
report compiled by the Central Electricity Regulatory Commission (CERC). Column (3) reports estimates from the
version of the report compiled in 2015. Column (4) reports cost estimates from the International Renewable Energy
Agency (IRENA), compiled in 2018. Costs are originally denominated in capacity terms (as shown in row 2), which
we translate into energy termsusing a present value calculation.
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C Appendix: Model

C.1 Proof of homogenization of bid prices in a multi-unit auction

This part contains the proof of proposition 1. The proof shows that rescaling bid prices and costs by a

common factor maintains the first-order necessary conditions for equilibrium bidding. The homogenization

proof applies for auctions without a ceiling price, which comprise the estimation sample for the estimation

of bidder costs.

Lemma 1. If β j(c jt |Zt ,q jt) = Γ(Zt)β j(c jt |Z0,q jt), then the expected quantity awarded in an auction with

covariates Zt can be written as Ht(pΓ(Zt),qit |Zt) = Ht(p,qit |Z0).

Proof. (Lemma 1). The function Ht(βi(ci0|Z0,qit),qit |Zt) gives the expected quantity awarded in an auction

conditional on covariates Zt .

Ht(p,qit |Zt) = Eσ−i [Qt(p,qit |Zt ,σ−i)]

This conditional expected quantity awarded is defined, in turn, in terms of conditional quantity awarded and

conditional residual demand. Conditional quantity awarded is

Qt(p,q|Zt ,σ−i) =


0 if RDt(p|Zt ,σ−i)≤ 0

RDt(p|Zt ,σ−i) if 0 < RDt(p|Zt ,σ−i)≤ q

q if q < RDt(p|Zt ,σ−i).

(10)

Conditional residual demand is

RDt(p|Zt ,σ−i) = QDt −∑
j 6=i

q j1
{

p≥ β j(c jt |Zt ,q jt)
}
.

Under the bidding factor conjecture β j(c jt |Zt ,q jt) = Γ(Zt)β j(c jt |Z0,q jt), the residual demand curve is

RDt(pΓ(Zt)|Zt ,σ−i) = QDt −∑
j 6=i

q j1
{

pΓ(Zt)≥ Γ(Zt)β j(c jt |Z0,q jt)
}

= QDt −∑
j 6=i

q j1
{

p≥ β j(c jt |Z0,q jt)
}

= RDt(p|Z0,σ−i),

equivalent to residual demand in a baseline auction as a function of a rescaled bid price. The result fol-

lows from constructing conditional expected quantity awarded and conditional quantity awarded from this

conditional residual demand.
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Proof. (Homogenization). In an auction with baseline characteristics, an optimal bid satisfies

βi(ci0|Z0,qit) = ci0−
Ht(βi(ci0|Z0,qit),qit |Z0)

∂Ht(βi(ci0|Z0,qit),qit |Z0)/∂ p
.

By Lemma 1, we can write the optimal bid in an auction with characteristics Zt as

βi(cit |Zt ,qit) = cit −
Ht(βi(cit |Zt ,qit),qit |Zt)

∂Ht(βi(cit |Zt ,qit),qit |Zt)/∂ [pΓ(Zt)]

= Γ(Zt)ci0−
Ht(βi(ci0|Z0,qit),qit |Z0)

∂Ht(βi(ci0|Z0,qit),qit |Z0)/∂ p
Γ(Zt)

= Γ(Zt)βi(ci0|Z0,qit).

where the second line applies (6) and takes the derivative, in the mark-up term, with respect to the rescaled

bid price. Since this argument applies for any bidder i, provided that other bidders j follow the bidding factor

conjecture, rescaling all equilibrium bid functions together constitutes an equilibrium strategy profile.

C.2 Regression specification for bid homogenization

We can therefore “homogenize” bids by adjusting for auction observables as follows. First, we regress

bids on auction characteristics

lnbait = lnb0 +αt +αs +αsCentralat +β1Zat + b̃ait (11)

where lnbait is the log of the bid actually offered, lnb0 is the intercept, αt are fixed effects for the year of

the auction, αs are fixed effects for the state of the auction, δs are fixed effects for the state of the auction

interacted with an indicator for central intermediation, Zat are observable characteristics of the auction,

and b̃ait is the idiosyncratic component of the bid. We specify Zat to include the quantity sought and the

quantity sought squared. The number of bidders in the auction is accounted for by weighting the draws of

the resampling procedure. We do not directly control for solar capital cost because capital costs vary only

over time and will be absorbed flexibly by the year fixed effects.

The second step is to form homogenized bids as predictions

lnbh
ait = lnb0 +β1Z0

at + b̃ait (12)

where Z0
at are the characteristics of a baseline auction. I omit from the regression the “state” fixed effect

when the auction is centrally intermediated and the time fixed effect for the year 2019. The constant there-

fore represents the mean log bid that would have been offered in a central auction in that year. I use this

homogenized sample of bids to estimate bidder costs.
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Table C6: Regression estimates for bid homogenization

Dependent variable: Log of bid price (INR/kWh)
Coefficient Std Error

(1) (2)

Capacity sought (MW) −0.0091 (0.067)
Capacity sought squared −0.0814 (0.059)
Year = 2012 0.903∗∗∗ (0.053)
Year = 2013 0.849∗∗∗ (0.042)
Year = 2014 0.769∗∗∗ (0.041)
Year = 2015 0.605∗∗∗ (0.041)
Year = 2016 0.540∗∗∗ (0.042)
Year = 2017 0.0454 (0.042)
Year = 2018 −0.0297 (0.042)
Domestic content required (=1) 0.0504∗∗∗ (0.016)
EPC contract (=1) −0.297∗∗∗ (0.066)
Constant 1.132∗∗∗ (0.046)
State effects Yes
State × central effects Yes
R2 0.94
Observations (bids) 864
This table reports coefficients from a regression of the log bid price in auctions on auction
characteristics. The regression estimates are used for the homogenization of bids in the
auction model. The explanatory variables include: a quadratic function of capacity sought
at auction, year fixed effects, a dummy for whether the auction required domestically-
produced panels to be used in solar plants, a dummy for whether the auction awarded an
Engineering, Procurement and Construction (EPC) contract, state fixed effects, and state
fixed effects interacted with central intermediation. All standard errors are clustered at the
auction level and statistical significance at certain thresholds is indicated by ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

C.3 Simulation of residual demand curves facing each bidder

This part describes how the expected quantity awarded function is constructed, in two steps. The first

step is to resample bids to represent the distribution of residual demand curves that a bidder in a particular

auction may have faced. The second step is to smooth the bids drawn in each simulation so that the residual

demand curve is continuous and differentiable.

Resampling of bids.— We approximate the expected quantity awarded function Ht(p,q) for each

bidder by resampling from the bids offered in the bidder’s original auction and other similar auctions. Re-

sampling is a way to represent the uncertainty faced by a bidder over the bids of other firms at the time of

bidding. Let Na be the number of bids offered in auction a. The resampling approach follows these steps:

1. Fix a bidder i and their bid σit = {bit ,qit} in an auction t.
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2. Draw a random sample of Nt − 1 bids σ−i. Each bid is drawn with probability weights, described

below, to favor bids from similar auctions.

3. Construct the residual demand curve facing i when the bids σ−i are submitted.

4. Calculate the realized quantity awarded to i and the slope of residual demand at the realized quantity.

Bids are resampled in step (2) with weights that depend on the difference between the observable char-

acteristics of an original auction and those of the other auctions in the sample. The weight, without normal-

ization, for bids sampled for auction t from auction t ′ in the sample of N auctions is

W (Zt ,Zt ′) =
1
Nt

K
(

Zt−Zt′
hZ

)
∑

N
t ′=1 K

(
Zt−Zt′

hZ

) .
In this way, bids are more likely to be drawn when they were submitted in auctions close to the original

auction. I specify the kernel function K(·) as the product of independent normal probability density functions

for each dimension of Zt .

The prices of resampled bids are homogenized with highly predictive regression specifications. The

main purpose of this non-parameteric reweighting is to additionally represent the bid quantities and the joint

distribution of quantities and homogenized prices well. The vector Zt includes the logarithm of capacity

sought, the year-month an auction was held, and the number of bidders at auction. The bandwidth parameter

hZ values for these three characteristics are set to 1, 12 months and 5 bidders. With a Gaussian kernel, all bids

from all auctions are sampled with positive probability, though practically, with these bandwidths, most bids

are drawn from the most similar three to five auctions (including the original auction). This weighting allows

the resampling to capture differences between large and small auctions and changes in the size composition

of bids over time.

Smoothing of residual demand realizations.—The expected quantity function is built from simula-

tion draws indexed by s. On each simulation draw, we form residual demand as

R̃Dt(p|σ s
−i) = QDt −∑

j 6=i
qs

jΦ

( p−bs
j

hp

)
(13)

∂ R̃Dt(p|σ s
−i)

∂ p
= −∑

j 6=i
qs

j
1
hp

φ

( p−bs
j

hp

)
(14)

where Φ and φ are the normal CDF and PDF functions, respectively, and INR hp per kWh is a bandwidth

parameter for smoothing residual demand. This function is continuous, decreasing and differentiable in p. I
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set hp = 0.10 INR per kWh throughout the analysis, about 1/30 of the level of a typical homogenized bid.

Similarly, we define the own quantity supplied as

Q̃S(p|σi) = qiΦ

(
p−bi

hp

)
. (15)

With this form, Q̃S is continuous and differentiable but approximates the step function (4) as hp becomes

small.

The market-clearing condition for a simulation draw s is

Q̃S(p|σi) = R̃Dt(p|σ s
−i), (16)

with equilibrium price ps∗. The bidder i is awarded Q̃S(ps∗|σi) on that draw. We then approximate the

function H with the simulated expectation

Ĥt(p,q) =
1
S

S

∑
s=1

Q̃S(ps∗|σi).

We similarly approximate the derivative of quantity awarded with respect to price, ∂H/∂ p. An increase in

the bid price bi decreases quantity awarded. The bid σi in (15) contains bi as its first element. For a given

simulation, implicitly differentiating (16) yields

dQSs∗

dbi
= −∂ Q̃S(p|σi)

∂bi

∂ R̃Dt(p|σ s
−i)

∂ p

∂ Q̃S(p|σi)
∂ p − ∂ R̃Dt(p|σ s

−i)

∂ p

.

The derivatives on the right-hand side are known from the functions above and can be evaluated at the

equilibrium price ps∗. This yields the slope of expected quantity awarded with respect to the bid price

offered as

∂ Ĥt(p,q)
∂ p

∣∣∣∣∣
p=bi

=
1
S

S

∑
s=1

dQSs∗

dbi
.

With these approximations to quantity awarded and its derivative, I form the mark-up term in equation 5.

Examples of residual demand simulation.—Figure C5 shows the simulation of residual demand for

two bidders in two different auctions. Within each panel, the red, weakly increasing step function is the

bidder’s own supply curve. The black, decreasing step function is the actual realization of residual demand

in the auction for a certain bidder. The dashed blue curve is a kernel-smoothed version of that residual

demand realization using a Gaussian kernel with bandwidth INR 0.10 per kWh. The thin solid lines are

alternative realizations of residual demand that are drawn in simulations.

The simulations provide intuition for why bidders may be estimated to have higher or lower mark-ups.
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The auction in Panel A is fairly competitive. The bidder offers own supply equal to the full quantity of 150

MW sought in the auction. While that full quantity is very unlikely to be cleared, there are many draws of

opponent bids for which part of the quantity offered will be cleared, and therefore the simulated residual

demand slope will be fairly large (in absolute value). In Panel B, the auction is extremely competitive, with

much more quantity offered in aggregate than is sought by the procurer. The bid highlighted is offered at a

high price relative to the simulated residual demand curves shown. The expected slope of residual demand is

therefore small, but the quantity awarded to this bidder in expectation will also be small. The low expected

quantity and residual demand slope have opposing effects on the mark-up in this case. In practice bidders

with moderate to high costs are typically estimated to have relatively small markups because they are so

unlikely to be cleared (i.e., awarded much quantity).

C.4 Solving for constrained strategy equilibria

With the above definition of a constrained strategy equilibrium we can build an algorithm for finding the

optimal α∗. Fix an auction a with a level of risk δs. We can draw from the distribution of types θi = (ci,qi).

1. Simulate. Draw s = 1, . . . ,S auctions where each auction consists of Ns
t draws of θ .

• Let the draws for bidder i = 1 represent the type of bidder i.

• Draws for j = 2, . . . ,Ns
t represent the types of rival bidders.

2. Constrained strategy function. Posit a bidding function b(θi|α,r) as in (7) that yields a bid price

conditional on type and parameter α .

3. Solve for constrained equilibrium. Form the components of (9) and solve the equation for α∗.

• Expected quantity awarded. Using the simulation draws, approximate the expected quantity

awarded function

H(p,q|α j) = Eθ−i [Qt(p,q|b(θ−i|α−i,r))] . (17)

– For each set of type draws, calculate bids using the constrained strategy function.

– Use these constrained bids to approximate residual demand.

• First-order condition. Form the first-order condition (9) using the simulation draws.

1
S

S

∑
s=1

(r− cs
it)

b(cs
it ,q

s
it |α,r)− cs

it
(1−δs)

+
Ht(b(cs

it ,q
s
it |α,r),qs

i |α)
∂Ht(b(cs

it ,q
s
it |α,r),qs

i |α)
∂b(cs

it ,q
s
it |α,r)

 = 0.
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The components of this condition are calculated as

– (r− cs
it) using the type drawn for θ s

i and bid function.

– cs
it

(1−δs)
using the type drawn for θ s

i and risk.

– Ht(b(cs
it ,q

s
it |α,r),qs

i |α) and its derivative. Using they type drawn for θ s
i , bid function, and

simulation of quantity awarded over rivals’ types.
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Figure C5: Simulation of residual demand
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The figures show the simulation of residual demand for two bidders in two different auctions. Within each panel, the red, weakly
increasing step function is the bidder’s own supply curve. The black, decreasing step function is the actual realization of residual
demand in the auction for a certain bidder. The dashed blue curve is a kernel-smoothed version of that residual demand realization
using a Gaussian kernel with bandwidth INR 0.10 per kWh. The thin solid lines are alternative realizations of residual demand that
are drawn in simulations. When calculating the derivative of residual demand at the clearing price on each iteration, I smooth both
the residual demand and the own-supply curve.
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C.5 Validation of counterfactual strategies

Table C7 compares the fit of the simulations to the data for a range of auction outcomes. The main

findings of Table C7 are that As bid simulation matches auction outcomes well in the estimation sample,

but that the constrained strategy equilibrium has a much stronger fit in the ceiling price sample. In the

ceiling sample, the constrained strategy equilibrium is accurate for: (i) the level of participation in ceiling

price auctions (2.93 bids per auction versus 2.67 in the data), (ii) the quantity awarded (499 MW versus 451

MW), and (iii) the mean bid price (INR 2.98 per kWh in both the data and the model) (comparing column

5 to column 3). I conclude that the constrained strategy equilibrium approximates bidding and participation

well in the sample of auctions with ceiling prices.

Table C7: Comparison of actual and simulated auction outcomes

Sample Estimation Ceiling

Bid price strategy Data As bid Data As bid CSE
(1) (2) (3) (4) (5)

Participation
Potential bids 11.47 4.62 4.62
Bids submitted 11.94 11.47 3.53 2.33 3.60
Bids cleared 5.96 4.43 2.67 1.99 2.93

Quantity
Quantity sought (MW) 387.43 387.43 795.33 795.33 795.33
Quantity offered (MW) 1010.61 954.45 735.87 427.84 642.64
Quantity awarded (MW) 366.27 358.62 450.72 350.56 498.69
Undersubscribed (=1) 0.26 0.17 0.53 0.79 0.62
Ceiling binds (=1) 0.00 0.61 0.28

Prices and costs
Mean bid, all (INR/kWh) 3.06 3.06 2.98 2.85 2.98
Mean bid, winning (INR/kWh) 2.96 2.92 2.92 2.83 2.97
Marginal bid (INR/kWh) 3.04 3.03 2.97 2.90 2.98
Mean cost (INR/kWh) 2.53 2.50 2.25 2.30
Markup (INR/kWh) 0.43 0.42 0.59 0.67
Markup (%) 0.19 0.19 0.27 0.31

The table compares auction outcomes in the data to auction outcomes from simulations. The outcomes are compared
across two samples of auctions: the first consists of the estimation sample, and the second the ceiling sample. The
simulations utilize different strategies for participation and bidding in auctions with ceilings and each column reports
outcomes under a different strategy. Columns (1) and (3) report actual outcomes from the data. In columns (2) and
(4), the auctions are counterfactually cleared without any bid-shading, with participation in auctions with ceilings
governerned by whether a bidder’s cost is above the reserve. In columns (5), I report outcomes in ceiling auctions
where I solve for the constrained strategy equilibrium (CSE).
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