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Abstract 

Future electricity systems with constraints on carbon emissions will rely more on wind 

and solar generation, with zero marginal cost, than today. We use capacity expansion 

modelling of Texas in 2050 to illustrate wholesale price distributions in future energy-

only, carbon-constrained grids without price caps under a range of technology/system 

assumptions. Tightening carbon emissions constraints dramatically increases the 

frequency of very low prices. The frequency of high prices also increases, and all 

resources earn the bulk of their energy market revenues in relatively few hours.  The 

presence of demand response, long-duration energy storage, dispatchable low-carbon 

generation, or a robust market for hydrogen for non-electricity use (and for energy 

storage) weakens but does not undo these results. To encourage economy-wide 

electrification, the marginal retail price of electricity should be low when the wholesale 

spot price is low.  We discuss ways of reducing consumers’ risk in this world while 

providing adequate investment incentives. 
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Overview 

Tightening constraints on power system carbon emissions will make optimal increased 

reliance on variable renewable energy (VRE, mainly wind and solar generation), which has near 

zero marginal operating costs. Wholesale prices will be very low when VRE generation is on the 

margin. We show that deeply decarbonized systems will have many more hours of very low 

wholesale prices and more hours of relatively high prices, than today. In decarbonized VRE-

dominant energy-only wholesale power markets without price caps, generators and storage 

facilities will earn the bulk of their annual energy market revenues in relatively few hours 

compared to the situation today. Financial instruments to hedge price volatility will 

consequently, be more costly. The presence of demand response, long-duration energy storage, 

dispatchable low-carbon generation, and flexible electricity-based hydrogen production weaken 

but do not reverse these results. 

It is likely that we will need to redesign capacity remuneration mechanisms to provide 

adequate incentives for optimal investment in VRE generation and, particularly, storage.   

Importantly, in order to encourage economy-wide electrification, the marginal retail price of 

electricity should be low whenever the wholesale price is low.  With automated control of 

demand via demand response contracts, the risks of price volatility faced by retail customers can 

be mitigated without sacrificing efficiency. 

Introduction 

Modeled pathways for energy system decarbonization by mid-century indicate an 

expanded role for electricity in final energy demand, coupled with the decarbonization of 

electricity supply through increasing generation from variable renewable energy (VRE) sources, 

particularly wind and solar[1–3]. For example, in the net-zero by 2050 scenario proposed by the 
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International Energy Agency (IEA), electricity as a share of global final energy consumption is 

projected to increase from 20% in 2020 to 50% by 2050, while wind and solar provide 70% of 

total electricity generation in 2050 [2].  The dominance of VRE-based power generation in energy 

system-wide studies is also aligned with more granular power sector assessments [4–11], that use 

cost-minimizing (or welfare-maximizing) capacity expansion models (CEMs) to identify key 

attributes of efficient, deeply decarbonized electricity systems. State-of-art CEMs[12–16] evaluate 

the cost-optimal investment and intra-annual operation of modeled power systems, and thus are in 

principle able to highlight the implications of temporal variability in electricity demand and in 

VRE resource availability under alternative assumptions on technologies’ cost, performance and 

availability, on electricity demand, and on policy.  CEMs are often formulated as linear programs 

with perfect foresight and constant returns to scale; under these and other standard assumptions, 

CEMs can approximate outcomes of equilibria in competitive markets. Hence, CEMs can be used 

to understand the impact of policy and technology drivers on the distribution of the marginal value 

of electrical energy (which we take as a good approximation of the wholesale spot electricity price 

in an energy-only market like ERCOT), which is retrieved from the models as the shadow price 

on the supply/demand constraint at each operating time step (see note S1.1 in supporting 

information (SI)). In this Perspective, we summarize what CEM studies of efficient, deeply 

decarbonized electricity systems tell us about the probability distributions of wholesale electricity 

prices under various assumptions, as well as its broader implications for cost recovery of 

investments in the power sector and for the design of retail electricity tariffs to support efficient 

economy-wide decarbonization via electrification.  

Wholesale price formation and system operation in competitive electricity markets are 

generally governed by the well-documented principle of least-cost economic dispatch [17]. Per 
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this approach, at any instant the resource with the highest marginal cost (i.e. the cost of producing 

an incremental unit of electricity) among all operating generators or when generating capacity is 

fully utilized, a higher price needed to balance supply and demand (scarcity pricing), determines 

the market clearing electricity price. Thermal power plants dominate the generation portfolio in 

most power systems today. They are dispatchable (i.e., their outputs can be varied within limits by 

the operator) and have positive marginal costs. VRE generators, however, use no fuel inputs and 

thus have near zero marginal operating costs. The marginal cost of supply from energy storage 

systems is generally set by opportunity costs rather physical operating costs and hence can vary 

substantially over time. Thus, a shift from primary reliance on dispatchable thermal generators to 

primary reliance on VRE generators with a greater role for storage seems a priori likely to change 

the probability distributions of wholesale electricity prices.   

CEMs can be used to understand the impacts on the distribution of wholesale electricity 

prices of increasing VRE penetration and increasing energy storage under the condition of full cost 

recovery for all assets (resulting from the deterministic LP formulation; see note S1.2 on why we 

preferred CEMs over production cost models) [10]. Despite the many CEM studies focused on 

deep decarbonization of electricity systems [4,7,11,18], few studies  actually document the implied 

wholesale electricity price distributions. Several CEM studies that do discuss electricity prices 

[10,19–22], including our own, find that wholesale electricity price distributions under low-carbon 

high-VRE scenarios are likely to have many more hours of very low prices (corresponding to 

periods of high VRE availability relative to load) than are observed today in wholesale electricity 

markets (see note S1.3) and more hours of very high prices, approaching the value of lost load 

(corresponding to periods of high net load i.e. load minus VRE generation). The extent of both 

these effects is dependent on many factors, notably, a) the stringency and type of policy 
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encouraging low-carbon generation, b) the assumed resource adequacy requirements, if any, c) the 

temporal resolution of grid operations modeled, which is shown to be important to capture VRE 

resource and load variations [23,24], c) the cost assumptions and availability of technologies like 

VRE, storage, low-carbon dispatchable generation and d) the cost and availability of demand 

response and demand flexibility.  The impact of some of these factors on the distribution of 

simulated future wholesale electricity prices will be explored quantitatively below.  

Recently, a few papers have suggested that instances of low wholesale prices could be 

infrequent and prices may never approach the value of lost load, if  a large fraction of future energy 

demand could be met either by electricity or  by switching to carbon-free chemical energy carriers 

(referred here on as “synthetic fuels”). Potential consumers capable of this sort of demand 

flexibility cited in the literature include district heating systems, plug-in hybrid electric vehicles 

and dual-fuel boilers in industrial settings[5,25,26]. In deeply decarbonized energy systems, 

however, the availability and cost of carbon-free synthetic fuels that can substitute for electricity 

at scale is highly uncertain. Moreover, if electricity is consumed in producing these synthetic fuels, 

which is likely for hydrogen-derived synthetic fuels [27], then the cost and availability of synthetic 

fuel may vary over time, which is inconsistent with the constant cost and availability assumption 

made by some studies [8,26]. As we show later, incorporating the investment and operation of the 

supply chain of synthetic fuels, including production, storage and utilization, within a CEM 

reduces instances of low and high electricity prices (by improving VRE and storage utilization) 

but does not eliminate them. 
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Factors impacting electricity price distributions under deep decarbonization 

To quantify the impact of the above-mentioned factors on wholesale electricity price 

distributions, we used the GenX model to simulate deeply decarbonized electricity systems under 

a number of scenarios, described in Table 1. An open-source CEM [16], GenX, includes 

representation of various supply and demand-side resources, including energy storage with 

independent discharging and charging power capacities and energy storage capacity, demand 

flexibility, demand response, and use of hydrogen for non-electric end-uses. Flexible demand 

resources can temporally shift their energy consumption to some extent, with examples including 

electric vehicle charging and advancing or delaying heating or cooling of buildings. Demand 

response resources, on the other hand, can forgo consumption entirely when the electricity price is 

high. 

The case study evaluated using the GenX model here is based on projected load and VRE 

resource availability in Texas in 2050.  Texas is represented as a single transmission zone with 

greenfield conditions reflecting the retirement of the existing fleet by 2050. The model is 

configured with hourly resolution of grid operations spanning 7 years (61,314 hours) and an 

approximation of a competitive energy-only wholesale market resembling the market the Electric 

Reliability Council of Texas (ERCOT) now operates in most of the state.  We assume prices can 

approach the value of lost load (set at $50,000/MWh in our simulations to ensure high reliability 

outcomes).  As in ERCOT, no other resource adequacy requirements, either at the annual or hourly 

timescales, are enforced, so generators and storage facilities are fully remunerated through energy 

market revenues. The model uses assumed annual electricity demand data for 2050 from the high-

electrification scenario developed by the National Renewable Energy Laboratory (NREL) for its 

2018 Electrification Futures (EFS) study [28]. The demand data was assumed to be same for all 
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seven years of modeled grid operations and includes a peak load of 151 GW and annual 

consumption of 715 TWh, PV and Wind resource availability were represented using a discretized 

supply curve approach, described elsewhere[4], that is developed based on available wind and 

solar resource databases from NREL. Technology cost assumptions are sourced mostly from the 

2020 edition of the NREL annual technology database [29]. Further documentation of data inputs 

and model representation is discussed in Table S 1 - Table S 5 in the SI and in Table 1 below. 

Table 1. Scenario groupings evaluated via the GenX model for various CO2 emissions constraints in this work. 

Scenario 

grouping 
Description 

Base Case 

Reference assumptions and conditions; Li-ion as the only energy storage 

technology, along with following generation resources: wind, solar PV, 

natural gas (NG) combined cycle gas turbine (CCGT) with and without 

carbon capture and sequestration (CCS) and open cycle gas turbine (OCGT). 

Assumed natural gas fuel price: $4.16/MMBtu – see section S1. 

Base + RFB 
Inclusion of low-cost energy storage with estimated cost and performance 

characteristics for redox flow battery (RFB) systems – see Table S 2 

Base + RFB+  

Thermal 

storage 

Inclusion of low-cost long-term energy storage with estimated cost and 

performance estimates for thermal energy storage systems  - see Table S 2 

Base + DF 

Allowing a pre-specified fraction of flexible demand from EV charging and 

buildings to be temporally flexible at no incremental cost, per the 

assumptions from NREL electrification futures study [28], and summarized 

in Table S 4.  

Base+ DR 

Stylized representation of demand response, per the structure described 

elsewhere [7]. Up to 25% of hourly load can be shed with varying marginal 

costs for each incremental 5% of load, with the most expensive segment 

priced at 70% of value of lost load (VoLL, $50,000/MWh) and the least 

expensive segment priced at 5% of value of lost load (See Table S 5). Further 

load shedding is possible at the price equal to  VoLL. 

Base + RNG 

Scenario meant to approximate the availability of renewable natural gas 

(RNG) or hydrogen for dispatchable power generation used in other studies 

[8]. Modeled as carbon-neutral fuel with a cost of $20/MMBtu via an OCGT 

with heat rate the same as that of conventional NG based OCGT and capital 

cost that 120% of the NG OCGT capital cost.  

Base + RFB + 

np-H2 @ $2 

or 10/kg 

Representation of exogenous H2 demand outside the power sector (19.7 

GWH2) that can be met via a combination of electrolysis, hydrogen storage/ 

discharging as well as from non-power based H2 sources with zero process 

CO2 emissions with a production cost of $2 or $10/kg – see Figure S 1 and 

section S5 for detailed assumptions. Also includes RFB storage in addition to 

Li-ion storage in the power sector. 
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Impact of technology availability and sector-coupling on power system outcomes  

Figure 1 highlights key system outcomes under two CO2 emissions intensity constraints 

(5gCO2/kWh and 1gCO2/kWh) for the eight scenarios defined in Table 1.  Texas emissions in 

2018 were 449 gCO2/kWh, so achieving a grid emissions intensity of 5 gCO2/kWh or 1 

gCO2/kWh would amount to a 98.9% or 99.8% reduction, respectively. A few main observations 

should be noted from Figure 1. First, for the same CO2 emissions constraint, availability of 

additional flexible resources relative to the base case, either on the supply side via dispatchable 

renewable generation (RNG) or long-duration energy storage (LDES), or on the demand-side via 

demand flexibility (DF) or demand response (DR), reduces VRE curtailment and thus improves 

VRE capacity utilization.  This contributes to reducing the system average cost of electricity 

(SCOE).  Second, increasing stringency of CO2 emissions limits from 5gCO2/kWh to 

1gCO2/kWh results in greater VRE curtailment as well as an increase in SCOE across all the 

scenarios, ranging from 12% (Base + DF) to 3% (Base +RFB+ np-H2 @ $2/kg).  

Third, the availability of electricity storage technologies with low energy capital cost, 

represented here by redox flow battery (RFB) technology, thermal storage and hydrogen, 

increases the value of VRE generation and reduces the role for dispatchable gas generation. The 

hydrogen scenarios modeled here highlight the potential opportunity to share hydrogen-related 

assets, namely the electrolyzer used to produce hydrogen and storage, to serve both the power 

sector and external hydrogen demand simultaneously. This is effectively a special case of 

demand flexibility, since the use of electricity to produce hydrogen via electrolysis can be 

flexibly scheduled because hydrogen can be stored at relatively low energy capital cost, even 

though external hydrogen demand is modeled to be constant across all hours of the year. For the 
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same CO2 emissions intensity limit, this demand flexibility leads to a greater share of VRE 

generation (see Figure S 3) but less curtailment and increased energy storage capacity compared 

to the equivalent case without hydrogen (base + RFB scenario).  The impact is greatest when 

non-power sources of H2 supply to meet H2 demand outside the power sector are quite expensive 

($10/kg).  
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Figure 1.Key system outcomes for various CO2 emissions intensity constraints and technology scenarios. 1st column: installed power capacity by technology type, reported as a 

fraction of peak load; 2nd column: Deliverable energy storage capacity installed by technology type, reported as a fraction of mean annual demand. Deliverable energy capacity 

for each storage technology is defined as the installed energy capacity times the discharge efficiency; 3rd column: system average cost of electricity (SCOE), defined as ratio of 

total system cost by total demand met throughout the year; 4th column: variable renewable energy curtailment, defined as the fraction of available VRE generation that is not 

dispatched. Note that RNG is not deployed even if made available in the 5gCO2/kWh and so the results for Base +RNG are identical to Base Case results. 
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Impact on Wholesale Electricity Prices (Marginal value of energy)  

Figure 2 provides information on the impact of alternative assumptions on the frequency 

distribution of the wholesale electricity price.  The bands shown in  Figure 2 include the following 

marginal values: (1) $0 to $5/MWh, characterized mostly by periods of high VRE generation; (2) 

$5–$50/MWh when natural gas is the marginal generator;  (3) $50–$200/MWh when natural gas 

capacity needs to be started up and associated start-up costs must be recovered; and (4) 

>$200/MWh, which corresponds to scarcity events, including times when storage supplies energy 

and load-shedding events, if any, are observed. Note that under a CO2 emissions constraint, the 

shadow price of carbon emissions is reflected in the wholesale price when natural gas generators 

are on the margin [10]. Under stringent CO2 emissions constraints, natural gas marginal costs, 

therefore, could be much higher than $50/MWh and might be responsible for high prices, i.e. 

$200/MWh or greater. Also, because the marginal cost of supply from storage is based on 

opportunity cost rather than being physically defined by marginal operating costs, it varies from 

period to period—consequently, storage charging and discharging can and does occur in multiple 

price bands (see Figure S 4). 

Figure 2 compares the simulated price distributions with the actual price distributions in 

ERCOT in 2018 and 2019.  We see that there are many more hours of very low prices, many fewer 

hours of prices where natural gas generation is on the margin, and more hours of high scarcity 

prices. Figure 2 shows that as the CO2 constraint tightens, across all scenarios the number of hours 

with marginal prices below $5/MWh increases, and the number of hours in the price band of $5–

$50/MWh decreases. These trends reflect an increase in the share of VRE generation and a decline 

in natural gas generation. It is worth reiterating that these model findings are based on what is 

effectively a representation of a pure, energy-only electricity market structure, in which all 
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wholesale (and, implicitly, all retail) transactions occur at the spot market price of electricity. 

Incorporating other resource adequacy mechanisms, such as  capacity markets with a required 

capacity reserve margin, is likely to reduce the magnitude and frequency of scarcity prices but is 

unlikely to impact the frequency of low prices [20]. 

 
Figure 2. Impact of storage technology, external H2 demand  as well as the price of non-power H2 supply on the distribution of 

electricity prices for various CO2 emissions constraints For comparison, wholesale energy price distributions from ERCOT in 

2018 and 2019 are also shown[30]. Technology scenarios evaluated here are described in Table 1. Base case corresponds to Li-

ion as the sole energy storage technology and no external H2 demand. BC = Base Case. RFB = Redox Flow Battery. 

 

A more granular view of the implied wholesale price distributions can be gained from the 

price duration curves in Figure 3, in which the scenario-specific curves indicate the percentages of 

hours for which prices are above the corresponding y-axis values. This view makes it easier to see 

the impacts of technology interventions on the demand side (demand response (DR) and demand 

flexibility (DF)) as well as of availability of dispatchable, low-carbon fuel (renewable natural gas 

(RNG)) than the format of Figure 2.  Figure 3, again shows that the frequency of low prices 

increases as the CO2 emissions limit is tightened (left vs. right column). For example, in the base 
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case, non-zero prices are observed for approximately 15% of hours in the 1 gCO2/kWh as 

compared to nearly 40% in the 5gCO2/kWh emissions scenario. In the 1gCO2/kWh, we also see 

that the adoption of dispatchable low-carbon generation (RNG) reduces instances of near-zero 

prices that correspond to periods of VRE curtailment (nearly 75% as compared to 85% in the base 

case) and increases instances of prices covering the marginal cost of various dispatchable 

generation resources, including RNG ($50-$330/MWh; see note S1.4). The impact of demand 

response and demand flexibility is seen in the very high price portion of the curve (see insets in 

bottom row of Figure 3) where the magnitude and number of instances of high, scarcity prices are 

reduced compared to the base case. The availability of LDES (RFB, Thermal) compared to the 

base case, leads to reductions in instances of near-zero prices (due to reduced lower VRE capacity 

and thus lower VRE curtailment) as well as an increase in the frequency of non-zero prices 

(e.g.<$100/MWh), when storage charging is effectively setting the wholesale price based on its 

shadow value of energy. However, the availability of LDES alone does not alter the broader trend 

of increasing hours with near-zero marginal value of energy and increasing peak prices under 

tightening CO2 constraints.  



14 

 

 

Figure 3.  Duration curves for 45% of the highest marginal electricity price distributions for various technology scenarios and 

CO2 emissions constraints. Main plot focuses on the 45% of the hours with prices below $1000/MWh. Inset zooms on the small 

number of hours (<0.5% of hours) when prices are approaching the value of lost load  ($50,000/MWh). The X-axis of the main 

plot is only shown for 45% of the total hours to make it easier to see the impacts of various technology availability assumptions 

and CO2 emissions constraints on the frequency of high prices. In all cases, prices are near zero for the hours that are not shown.  

 

The effect of producing H2 for non-power end-uses on the price distribution is dependent 

on the cost of non-power H2 supply. When non-power H2 supply is cheap, say $2/kg, then the 

opportunity cost of H2 production sets the marginal electricity price for several hours of the year 

(see red line in top left panel of Figure 3). Specifically, $2/kg is equivalent to $59/MWh of H2 

based on a lower heating value of H2 of 120.1 MJ/kg. When accounting for the electrolyzer 

efficiency of 77% (see Table S 2), this translates into a marginal electricity price of $78/MWh. 

On the other hand, when non-power H2 supply is expensive, say $10/kg in Figure 3, then the 
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model places more emphasis on electricity-based hydrogen production, leading to increased VRE 

deployment and increased frequency of low wholesale electricity prices. 

Impact of revenues for various resources 

Under the CEM modeling used here, which involves least-cost linear optimization with 

perfect foresight and constant returns to scale, all resources just break even, meaning that annual 

revenues over the modeled period equal annualized investment and operational costs [10,19]. 

However, different technologies vary in the fractions of their revenues earned from operation in 

each price band (Figure 4). With more stringent CO2 constraints, VRE technologies operate more 

at lower prices but generally rely on a relatively few hours of high prices to earn the revenue 

required to break even. For example, Figure 2 shows that prices exceed $200/MWh for just over 

5% of hours each year, on average, in the Base Case with a 5 gCO2/kWh constraint, while Figure 

4 reveals that PV earns about 30% of its revenues in those few hours, and Wind and Li-ion earn 

about 38% and 60%, respectively.  In this scenario with a tight emissions constraint, CCGT and 

OCGT are essentially only run when the price exceeds $200/MWh, while CCGT_CCS earns 

about 42% of its revenue in those same hours.  In short, all resources would be dependent for at 

least an important fraction of the revenues they need to break even, and in some cases essentially 

all of those revenues, on sales in a handful of hours under an energy-only wholesale power 

market design. This conclusion is robust to various technology scenarios considered here (see for 

example Figure S 5 - Figure S 7). Moreover, optimization ensures full cost recovery in the model 

because the model assumes perfect foresight of load and VRE availability. In reality, it could be 

difficult to finance investments in generation and storage assets that have to rely for most of their 

revenues on a handful of operating hours in any given year. 
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Figure 4. Technology operation and revenue by price band for various resources under the Base Case. The upper panel shows 

the distribution of delivered energy by price band for different technologies and emission constraints. The lower panel shows the 

revenue distribution by price band. 

Summary and Policy Implications 

As noted above, in many respects our model might be considered a stylized version of the 

energy-only electricity market operated by ERCOT in Texas. With constraints on carbon 

emissions, however, our model systems differ from today’s ERCOT in important ways that 

highlight challenges that will face regulators and market designers in all future decarbonized 

systems.  When carbon emissions constraints are tightened, increased reliance on VRE 

generation becomes optimal, and the proportion of the time when VRE generation is on the 

margin increases significantly. Since VRE generation has zero or near zero marginal cost, 

tightening carbon emissions constraints thus increases the incidence of very low prices.  High 

prices are also more common than at present and are necessary cover the system’s higher overall 

cost.  This dramatic change in the probability distribution of wholesale prices means that in an 
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energy-only market without price caps, generation and storage investments depend for cost 

recovery on energy market revenues from significantly fewer hours a year than at present.  

Finally, end consumers in our model systems pay spot wholesale prices for electricity; these 

prices are much, much more variable than those any real customers now face.  It is hard to 

imagine policy makers allowing these outcomes of our modeled systems to emerge in real 

systems as decarbonization proceeds.  How they respond to those challenges will determine the 

costs of economy-wide decarbonization and perhaps even its feasibility. 

Most organized power markets already have caps on wholesale prices that are below 

reasonable estimates of the value of lost load, and such caps will almost certainly be present in 

decarbonizing systems with higher underlying price variability.  Such caps reduce energy-market 

revenues and create the so-called “missing money problem” of sub-optimal incentives for 

investment in generation [31].  By reducing price variability, such caps will reduce energy 

arbitrage opportunities for storage facilities and, thus, also reduce incentives to invest in storage 

below efficient levels.  Market designers have responded to the “missing money problem” by 

introducing a variety of supplemental capacity remuneration mechanisms [32], and these will be 

even more important in decarbonizing systems. These mechanisms were originally designed for 

systems dominated by dispatchable thermal generators, however, which have relatively 

predictable maximum outputs and marginal costs.  These capacity remuneration mechanisms 

need fundamental modification to handle VRE generation, the outputs of which depend on the 

weather, which also affects demand.  Storage facilities, which at any time can only supply the 

energy they have previously stored, pose more fundamental challenges to the design of capacity 

mechanisms.   
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Unlike the retail customers in our modeled systems, only a few customers (almost 

exclusively large commercial and industrial concerns) pay wholesale spot prices today.  As those 

prices become more variable, it is hard to imagine regulators requiring more customers to pay 

them.  (The February, 2021 energy crisis in Texas, when a few retail customers who had signed 

up to pay wholesale spot prices received astronomical bills, has provided a strong push in the 

opposite direction [33].)  To encourage economy-wide decarbonization, however, it is essential 

that all consumers face low prices when wholesale spot prices – and thus the marginal social cost 

of electricity – are low.  This requires that the costs of supplemental capacity remuneration 

mechanisms not be recovered by volumetric (per-kwh) charges as at present.  These costs should 

be covered by customer-specific charges that are fixed in the short run but respond to long-run 

demand patterns and that vary among customers in a politically acceptable way.  

At the other end of the price distribution, efficiency requires that the demand for 

electricity be reduced when its wholesale price is high, most plausibly by shifting demand to 

other periods.  Efficiency does not require that households and small businesses actually pay 

high wholesale prices, however.  We think the most viable solution is for local distribution 

companies or other intermediaries to contract with small customers to supply electricity at 

relatively predictable prices in exchange for automated, price-responsive control of vehicle 

charging, HVAC systems, appliances, and other flexible loads. 
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Supporting Information 

S1. Background notes on systems modeling 

1. The modeled marginal value of energy or wholesale electricity price in each time 

period represents the increase in (minimized) objective function value required to serve the next 

unit of demand. Because the model includes the option of adding new capacity, generation, 

storage or transmission, the computed marginal value of energy represents the long-run marginal 

value of electricity rather than the short-run value in which capacity decisions are fixed. Of 

course, when VRE generation is being curtailed, adding capacity would not relax a (non-binding) 

constraint.  Finally, the wholesale price computed here does not reflect the impact of short- and 

long-term capacity requirements that are often included in organized markets to ensure resource 

adequacy.  

2. Electricity price outputs are commonly reported by studies simulating grid operations 

using industry-standard production cost models (PCMs) that closely mimic realistic economic 

dispatch of the grid over a short-time horizon (typically 24 hours). PCMs are not useful for 

analyzing electricity prices for deep decarbonization scenarios for two key reasons.  First, PCMs 

don’t consider investment costs and so cannot optimize asset portfolios.  Second, the prices 

generated by PCMs do not ensure full cost recovery for all resources, which means the impact of 

various policies that affect capital cost cannot be compared via these models. 

3. Most U.S. wholesale markets have separate energy and capacity prices.  The wholesale 

prices that we simulate here are most comparable to those observed in so-called “energy-only” 

wholesale markets like ERCOT where a capacity remuneration mechanism (ORDC) includes all 

energy and capacity payments in the wholesale energy price [34]. 
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4. RNG generation is parameterized with a heat rate of 9.5 MMBtu/MWh, which 

translates into a variable cost of $190/MWh for the assumed fuel price of $20/MMBtu. We also 

model the cost of starting up an RNG generator with the possibility of fractional startups, given 

the linear model formulation. The net impact is that the marginal costs of RNG generator can 

vary between $190/MWh and near $330/MWh. 

S2. Generator and storage cost and performance assumptions 

Fossil-powered generation and VRE capital and operational costs are shown in Table S 1. 

The gas, VRE, and Li-ion costs are taken from the 2020 NREL Annual Technology Baseline 

2045 “Mid” cost projections[29]. Capital costs for generation and storage were annualized based 

on an after-tax weighted average cost of capital of 4.5% and a lifetime of 30 years, unless 

otherwise noted. We also apply a small, non-zero VOM for wind, hydropower, and storage to 

distinguish their dispatch as part of the economic dispatch modeled within GenX – they do not 

meaningfully affect resulting system costs.  

For storage, system costs are separated as energy-only components (e.g., battery packs 

for Li-ion, tanks for LDES), or power-only components (e.g., inverter, interconnection and 

permitting fees, land acquisition costs). In the case of hydrogen and thermal storage, power-only 

components can further be parsed into charging or discharging power costs (see Table S 2), 

which are applied to the respective sizing variables in the model. This separation of function-

based costs enables the model to independently vary the energy, discharging power, and 

charging power capacities of the energy storage systems for optimal sizing. For storage 

technologies other than Li-ion, cost projections used in the analysis are based on bottom-up 

analysis by MIT team members engaged in the forthcoming Future of Storage study[35]. 
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Operational assumptions for natural gas powered generators are summarized in Table S 3. 

Natural gas fuel price assumptions are taken from the EIA AEO 2020 Reference (EIA 2021) 

2050 case and correspond to $4.16/MMBtu. For CCGT with CCS, the fuel cost is updated to 

account for assumed CO2 transport and storage cost of $20/tonne of capture CO2 (90% flue gas 

CO2 capture). 

Table S 1. Generator capital cost assumptions for GenX model runs discussed in the main text. 

Technology Capital Cost 
($/kW) 

FOM ($/kW-
year) 

VOM 
($/MWh) 

Onshore Wind 1,085 34.6 0.01 

Utility-Scale Solar 725 8.5 0.00 

CCGT 936 12.9 2.16 

OCGT 854 11.4 4.50 

CCGT_CCS 2,080 27.0 5.72 

 

 

Table S 2.Energy storage cost and operational assumptions. Value for Li-ion storage from NREL annual technology baseline 

2020. Values for other technologies based on bottom-up analysis from MIT team members of the upcoming MIT Energy Initiative 

Future of Storage Study. RFB = Redox Flow Battery. Round-trip efficiency (RTE) expressed as a fraction is the product of 

Efficiency Up and Efficiency Down similarly expressed. Hourly self-discharge rates for storage technologies are also considered 

in the modeling, but are very small at: 0.002% for Li-ion and metal-air systems, and 0.02% for thermal systems. 

Tech 
Discharging 
Capital Cost 

($/kW) 

Charging 
Capital 

Cost 
($/kW) 

Storage 
Capital 

Cost 
($/kWh) 

FOM 
($/kW-
year) 

FOM 
($/kWh-

year) 

VOM 
($/kWh) 

Efficiency 
Up (%) 

Efficiency 
Down (%) 

RTE (%) 

Li-ion 110 - 125.8 0.8 2.2 0.0 92% 92% 85% 

RFB 396 - 48.0 4.1 0.0 0.0 92% 88% 80% 

Hydrogen 1,190 479.3 7.0 11.0 0.1 0.0 77% 65% 50% 

Thermal 736 3.3 5.4 3.9 0.0 0.0 100% 50% 50% 

 

Table S 3.Thermal generator operational characteristics for the GenX model runs presented in the main text. Data compiled after 

surveying a variety of literature sources including NREL Annual Technology Baseline[29] EIA Annual Energy Outlook 2018[36], 

other sources[7,37–39] [13,54,57,59] CCGT = Combined Cycle Gas Turbine. OCGT = Open Cycle Gas Turbine. CCS = CO2 

capture and storage. 

Tech 
Capacity Size 

(MW) 
Start 

Cost ($) 
Start Cost 

($/MW/start) 

 
Start Fuel 
(MMBTU/ 

start) 

Start Fuel 
(MMBTU/ 
MW/start) 

Heat Rate 
(MMBTU/ 

MWh) 

OCGT 237 33,147 140 
 

45 0.19 9.51 

CCGT 573 34,982 61 
 

115 0.20 6.40 
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CCGT + CCS 377 36,419 97 
 

75 0.20 7.12 

        

Tech 
Min Stable 
Output (%) 

Ramp 
Up (%) 

Ramp Down (%) 
 

Up Time 
(Hours) 

Down Time 
(Hours) 

 

OCGT 25 100 100 
 

0 0  

CCGT 30 100 100 
 

4 4  

CCGT + CCS 50 100 100 
 

4 4  

 

S3. VRE Resource characterization  

VRE resources are characterized based on the methodology described in [4]. Hourly PV 

capacity factors are simulated using 2007-2013 weather data from the NREL National Solar 

Radiation Database [40] through the PVLIB model framework[41], at a 4km x 4km spatial 

resolution. Hourly wind capacity factors are simulated using the same temporal and spatial 

resolution using the NREL Wind Integration National Dataset Toolkit [42] and power curve data 

for the commercial wind turbine Gamesa:G126/2500[43] at 100-meter height. To reduce the 

spatial resolution of the VRE capacity factor data, we aggregate sites within a zone on the basis 

of average levelized cost of electricity (including the cost of interconnecting to the nearest 

substation). Thus, for each resource and zone, we get a supply curve, with each bin representing 

increasing resource quality with an associated maximum availability (based on land area), 

interconnection cost and hourly capacity factor profile. For the Texas case study, we use 4 bins 

to characterize PV and wind resources in the region. Note that the interconnection cost of each 

bin is added on to the base capital cost of the technology, noted in Table S 1, to develop a bin-

specific installed capital cost. 

S4. Demand flexibility scenario definition 

The potential value of flexibility in electricity consumption for various end-uses increases 

with greater deployment of smart meters and related technologies and expanded electrification in 

sectors such as transportation. For these experiments, we consider a very optimistic version of 
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demand flexibility: the ability to shift electricity consumption from specific demand subsectors, 

highlighted in Table S 4, over constrained (feasible) time windows at zero cost and with zero 

energy efficiency losses or inconvenience costs.  Our assumptions about demand flexibility are 

based on the NREL EFS enhanced flexibility scenario, which provides potential hours of delay 

and advance for specific demand subsectors, along with the share of the load that can be 

shifted[28]. Since the load from each subsector changes over time, potential demand flexibility 

also varies from hour to hour. For this reason, Table S 4 notes the maximum load that could be 

shifted for each subsector at any point in time for the Texas region in 2050 under the high-

electrification load scenario. It is important to notice that these subsector peaks do not occur at 

the same time; the actual maximum potential demand flexibility at any particular hour is 47 GW, 

which corresponds to 31% of total demand in that hour [28]. 

Table S 4. Demand flexibility assumptions for Texas under 2050 load conditions. HVAC = heating, ventilation and air 

Conditioning. Data sourced from NREL Electrification Futures Study 

Demand Subsector Hours 
Delay 

Hours 
Advance 

Share of End-Use That Is 
Flexible 

Maximum Hourly Demand 
Flexibility [GW] 

Commercial HVAC 1 1 25% 8.6 
Residential HVAC 1 1 35% 7 

Commercial Water 
Heating 

2 2 25% 0.2 

Residential Water 
Heating 

2 2 25% 1 

Light duty vehicles 5 0 90% 33 
Medium duty trucks 5 0 90% 3 
Heavy-duty trucks 3 0 90% 5 

 

S5. Demand response scenario definition 

The demand response scenario modeled here assumes that certain electricity consumers 

will be willing to forgo consumption above certain electricity prices. These type of demand 

response programs exist in some regions and are typically used for peak demand management 

[44]. To capture the underlying goal of these programs for supply-demand balancing, the stylized 

demand response scenario modeled here assumes that 25% of hourly load in each can be shed at 
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prices below the value of lost load ($50,000/MWh). Table S 5 summarizes the parametrization of 

this demand response resource in GenX where demand segments 2-6 have an associated quantity 

(5% of hourly demand) and marginal cost,that is measured as a fraction of the value of lost load.  

Demand segment 1 is the most expensive and is priced at the value of lost load. 

Table S 5 Demand response resource characterization. VoLL = Value of Lost Load, set to $50,000/MWh. 

Demand 
segment 

Cost of demand curtailment as a fraction 
of VoLL 

Maximum demand curtailment per segment as a fraction of 
hourly load 

1 1 75% 

2 0.7 5% 

3 0.5 5% 

4 0.2 5% 

5 0.1 5% 

6 0.05 5% 

 

S6. H2 scenario definition 

The configuration of Figure S 1 is included in the GenX model, where along with 

specifying the cost of performance assumptions of the elements as used previously (e.g., 

electrolyzer, storage tank and gas turbines for H2 storage as per values in Table S 2), we add a 

constraint that requires the specified H2 demand from industry to be met by either the 

electrolyzer or by discharging H2 storage. This single constraint then enables the utilization of a 

traditional power-to-H2-to-power storage system to be also optimized, in terms of component 

sizes and utilization, to meet H2 demand in the industrial sector.  

 

Figure S 1.Representation of the power to H2 to power system within GenX and hydrogen’s use for meeting industrial hydrogen 

demand. 
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Since we are primarily interested in understanding the impact on the power system from 

this external H2 demand, we make the following approximations to simplify the representation of 

the H2 supply chain. (1) We simplify the representation of non-power sources of H2 supply, by 

making them available at a constant cost, either $2/kg or $10/kg, without any supply limits. As 

reference, the cost of producing hydrogen from natural gas with carbon capture and storage is 

estimated to be around $2/kg in the U.S. context[45]. (2) We are not considering any spatial 

distribution in H2 production and industrial demand and are thus ignoring H2 transportation. And, 

(3) we are not including source-dependent delivery costs for H2 supply that could be associated 

with adjusting the state of delivered H2 from different sources to meet industrial customer 

requirements. Other studies have included these factors in the H2 supply chain while also 

contemplating their impacts on the power system evolution [27,46]. 

Hydrogen demand is modeled as exogenous and uniform throughout the year. Hydrogen 

demand was estimated using NREL’s 2018 Industrial Data Book as a reference[47,48]. This 

publication contains a dataset detailing the annual energy consumed by large energy-using 

facilities1 in 2016. Here, we focus on hydrogen demand from substituting for the use of natural 

gas for heating purposes.  Total natural gas consumption by Large Energy Users in Texas 

accounted for 0.93 QBTU in 2016, which represents about 44% of the 2.1 QBTU of natural gas 

consumed by the industry in Texas, as reported by the EIA (Figure S 2). From that 0.93 QBTU, 

we considered for the analysis Process Heaters, Furnaces, Boilers and Other Combustion Sources 

as potential units that use natural gas for heating purposes. Moreover, we excluded units whose 

unit name suggests natural gas is being used as feedstock. This results in 0.59QBTU of natural 

gas used for heating. By assuming flat demand, the total of 0.59QBTU/year of natural gas heat is 

 
1 Defined as those facilities that are required to report greenhouse gas emissions under EPA’s Greenhouse Gas 

Reporting Program. 
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equivalent to 19.7GWt of H2. For comparison purposes a constant 19.7 GWt load is equivalent to 

an average power demand of 25.6 GWe assuming 77% charging (electrolyzer) efficiency. 25.6 

GWe is equal to approximately 17% of projected 2050 peak electricity demand modeled here. 

 

Figure S 2. Natural gas consumption by Large Energy Users in Texas. Demand categories within the dotted box are considered 

when estimating potential future hydrogen demand for process heating. 
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S7. Additional Results 

 

Figure S 3. Key system outcomes for various CO2 emissions intensity constraints and technology scenarios characterized by 

energy storage availability, existence of non-power H2 demand and availability of non-power H2 supply at various prices. 1st 

column: annual generation mix by resource and storage discharging; 2nd column: annual average power to H2 (or electrolyzer) 

capacity utilization; 3rd column: installed power to hydrogen production capacity. 
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Figure S 4. Distribution of Li-ion storage annual charging (top), discharging energy (middle) and revenue earned (bottom) 

across the wholesale electricity price bands introduced earlier. Results shown for various CO2 emissions constraints and 

correspond to “Base” technology scenario described in Table 1. Note that Li-ion charges predominantly, but not exclusively, 

when prices are in the lowest band. 
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Figure S 5. Technology operation and revenue by price band for various resources under the Base +RFB scenario defined in 

Table 1. The upper panel shows the distribution of delivered energy by price band for different technologies and emission 

constraints. The lower panel shows the revenue distribution by price band. 

 

Figure S 6. Technology operation and revenue by price band for various resources under the Base +RFB +Thermal scenario 

defined in Table 1. The upper panel shows the distribution of delivered energy by price band for different technologies and 

emission constraints. The lower panel shows the revenue distribution by price band. 
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Figure S 7. Technology operation and revenue by price band for various resources under the Base +RFB +np-H2 @$10/kg 

scenario defined in Table 1. The upper panel shows the distribution of delivered energy by price band for different technologies 

and emission constraints. The lower panel shows the revenue distribution by price band. 
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