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Abstract

In this thesis, we carry out three studies of the local and global impacts of supply
shocks in energy markets, and also analyze certain properties of these markets. First,
the relationship between US power plants and local air pollution is assessed from 2003
to 2016, by exploiting the information provided by the large deviations that occurred
during that period due to the shale revolution. Next, fossil fuel trade is analyzed
from a networks perspective, quantifying its properties. Finally, a general equilibrium
model of fossil fuel trade is constructed to simulate the impact of a supply shock to
a given country and in order to understand the impact of the shale revolution.1

1This paper was written as a thesis under the supervision of Christopher R. Knittel and John
N. Tsitsiklis
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Chapter 1

Understanding Energy Markets,
Power Plants and 𝑃𝑀2.5 Pollution:
Evidence from Shale

This chapter studies how hydraulic fracturing, through changing the relative prices
of coal and natural gas, has impacted Particulate Matter concentrations across the
US. Satellite estimates of pollution, fossil fuel prices, and power plant specific data
is aggregated for each month between 2003 and 2016. The data is aggregated in two
geographic formats: (1) for each county in the Contiguous United States (excluding
Alaska), (2) for an equal size grid layout. For the grid layout, power plant fuel prices
is predicted using supervised learning to create a more granular dataset. Results
suggest that an increase in coal prices is associated with reduced pollution, increases
in natural gas prices is associated with an increase in pollution and this impact varies
based on the capacity available in the geographic unit.

1.1 Introduction

As discussed in the Introduction, hydraulic fracturing has transformed US energy
prices. The dramatic changes in natural gas wellhead prices in the US can be seen
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in Figure 1-1. Looking at the price paid by US electricity generators: In June of
2008, the average price of natural gas was over $12 per million BTU. During this
same month, the average price of US generator purchased coal was just over $2 per
million BTU. By April of 2012, the price of natural gas had fallen to below $3 per
million BTU, while coal prices were largely unchanged. The change in relative prices
have led to large shifts away from coal-fired generation to natural gas generation.
Hydraulic fracturing (fracking) has transformed US energy prices1. In June of 2008,
coal generation accounted for over 56 percent of US utility generation, while natural
gas was 13.7 percent. In September 2019, coal was only 33.1 percent of generation,
while natural gas was 38.8 percent.

Figure 1-1: US Wellhead Natural Gas Prices between 2000 and 2018. Data can be
found on EIA’s website.

The reduction in pollution resulting from fracking likely had positive health ben-
efits as the negative health impacts of ambient air pollution are well known at this
point. In the US, the Environmental Protection Agency (EPA) has set National
Ambient Air Quality Standards (NAAQS) for six categories of pollutants through

1For a more detailed discussion please see Hausman and Kellogg (2015).
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the Clean Air Act. The category that this chapter will focus on is Particulate Matter
(PM), specifically the sub category of PM that has a diameter less than 2.5 microm-
eters: 𝑃𝑀2.5. EPA’s website documents that 𝑃𝑀2.5 can cause many health impacts,
such as: premature cardiovascular related death, aggravated asthma, increased res-
piratory symptoms, as well as other problems2.

Historically, there have been many cases where densely populated urban areas
have had to deal with high pollution levels. Over the last decade, this has been most
prevalent in India, China, and other countries that have been rapidly industrializing,
with 𝑃𝑀2.5 levels in some regions regularly exceeding 100 micrograms per meter
cube. Relative to levels of pollution that have been seen in the past, ambient air
pollution in the US has been low in the 21st century. This success can be partly
attributed to federal government policies such as the Clean Air Act and the Acid
Rain program as well as other state level policies.

PM concentrations are a result of primary (direct) and secondary (indirect) im-
pacts. If particulates are emitted from various sources such as combustion engine
vehicles, forest fires and some industrial processes, this is called primary PM. If par-
ticulates are formed through various chemical reactions such as sulfur dioxide (𝑆𝑂2),
nitrogen oxides (𝑁𝑂𝑋) and organic compounds (𝑂𝐶), then this is often referred to as
secondary particles. A major source of these secondary particles is from power plants
3. 𝑆𝑂2 and 𝑁𝑂𝑋 emissions for US power plants can be found using the Air Markets
Program Data (AMPD)4. Figures 1-2 and 1-3 visualize the data from AMPD for
𝑆𝑂2 and 𝑁𝑂𝑋 . Figure 1-2 shows the average (and 95% CI) emissions of a facility in
the AMPD dataset, while Figure 1-3 visualizes the total emissions from power plants
in the AMPD dataset (for a discussion on the decreasing emissions see). In both
Figures, it can be seen that even though there has been a decreasing impact of coal
power plants on ambient air quality, relative to natural gas power plants, we would
expect them to play a larger role in secondary 𝑃𝑀 concentration.

The NAAQS for 𝑃𝑀2.5 concentrations in the US regulates on two different time

2https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm
3EPA Regulatory Data, Chapter 3: Emissions and Air Quality Impacts
4More information can be found at: https://ampd.epa.gov/ampd/
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Figure 1-2: AMPD data on facility level pollution

Figure 1-3: AMPD data on total pollution
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scales: (1) 24-hour average 𝑃𝑀2.5 pollution levels in the US can’t exceed 35 micro-
grams per cubic meter and (2) annual average of 𝑃𝑀2.5 can’t exceed 12 micrograms
per cubic meters. These levels are monitored through the Air Quality System (AQS).
Across the US, there are thousands of these monitors, but since these monitors only
collect data at a given point and they are not distributed in an equidistant manner
within the US, they are usually seen as not being a useful dataset when trying to
understand the impacts of pollution on a national scale. To deal with this issue, re-
searchers employ different modelling techniques to extrapolate and estimate 𝑃𝑀2.5

in a spatio-temporal manner. The historical average 𝑃𝑀2.5 concentrations using the
AQS data can be seen in Figure 1-4. This data can be found on the EPA’s website
on Particulate Matter Trends 5.

Figure 1-4 shows that the average US 𝑃𝑀2.5 concentrations have mostly been
within the regulated standard. The major benefit policy makers are trying to achieve
through emission standards on 𝑃𝑀2.5 is one of public health. Even in the absence of
high levels of pollution, there is still evidence that long-term health effects of pollution
are negative. A large study conducted on a cohort of 312,944 individuals in Europe
found that even low levels of 𝑃𝑀2.5 concentrations (which fall within standards in
the US and Europe) have negative health impacts. This study by Raaschou-Nielsen
et al. (2013) found that there are still significant health risks associated with low
levels of long term exposure to 𝑃𝑀10 and 𝑃𝑀2.5.

Methods of evaluating the health impacts of pollution change from discipline to
discipline. Epidemiology relies on atmospheric chemistry models and health cohort
data to determine impacts. Economics approaches the problem using statistical tools
to infer causal relationships between pollution and health indicators (note that some
epidemiology papers employ statistical methods just like some economics papers
employ insight from atmospheric chemistry).

There has been a lot of work linking the health effects of particulate matter to
short and long-term health consequences in epidemiology. One review of such litera-
ture can be found in Du et al. (2016), which discusses a long list of studies and their
results. Some of the epidemiology literature tries to develop a functional represen-

5https://www.epa.gov/air-trends/particulate-matter-pm25-trends
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tation for what the risk associated with PM2.5 exposure is. Burnett et. al. (2014)
develop a functional form for the relative risk associated to long-term exposure to
PM2.5. They use a sigmoid function structure with parameters to learn their rela-
tive risk function. Their data relies on many different health studies, ones that even
include the health impact of smoking cigarettes. This method becomes especially
useful in prediction problems, where one’s primary goal is to predict a counterfac-
tual scenario, but on the other hand adds a certain structure to the relationship
between pollution and health impacts.

From an economics standpoint, one paper that analyzes the health impacts of
pollution is Chen et al. (2013). This paper looks at what they call the “Huai River
policy", which is a difference in policy between the government north of the river
and the government south of the river. The authors take advantage of this difference
to determine the health effects of the total suspended particulates (TSPs) impact
on health. There are also studies linking air pollution to infant health. Currie,
Greenstone and Meckel (2017) looks at over 1 million births in Pennsylvania and
their distance from fracking to evaluate the impacts it has on health.

It is apparent from research within epidemiology and economics that there are
many negative health impacts associated with exposure to pollution. This raises the
question: what are the causes of this pollution? As discussed before, there are many
different primary and secondary impacts that make up the 𝑃𝑀2.5 concentration of
a given place at a given time. This chapter will focus on the impacts of the energy
markets and power plants. In particular, it will try to understand how county level
power plant information (such as capacity, net generation and fuel consumption) and
associated fuel prices play a role in impacting 𝑃𝑀2.5 concentrations.

As discussed previously, power plants play a major role in 𝑃𝑀2.5 concentrations
in the US and understanding the relationship between power plant properties and
𝑃𝑀2.5 can help address policy measures towards regulating 𝑃𝑀2.5 due to its negative
health implications. Fossil fuel consumption by power plants in the US has drastically
changed since the mid-2000s. This change is mainly due to the supply shock created
by the shale revolution, which has led to a drastic change in the fuel mix of electricity
net generation. Mainly, natural gas plants have gone from providing 17.1% to 35.1%
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of electricity between 2001 to 2016. This has resulted in coal power plants becoming
less favorable. This exogenous shock to the energy market creates the foundation of
our study, which utilizes this shock to understand the relationship between natural
gas markets, coal markets, power plants and 𝑃𝑀2.5 pollution in the Contiguous
United States. One study that is similar in nature to this chapter is Johnsen et al.
(2018), which isolates the impact of shale on natural gas prices using an IV design
as well as finding a negative impact on pollution due to coal generation. They use
monitor level 𝑃𝑀2.5 values to estimate the impact of decreased coal generation. In
their analysis, they use 537 of the monitors spanning 363 counties from 2007 to 2012.

The rest of the chapter is organized in the following manner: Section 1.2 will
discuss the data sources and data aggregation process, Section 1.3 will discuss the
final panel data and the model setup that is used to analyze this dataset and Section
1.4 will discuss the results. Section 1.5 will conclude the chapter.

1.2 Data

The study relies on unifying three different categories of data. The first dataset is
spatio-temporal 𝑃𝑀2.5 concentration. The second category is different power plant
information for each county and month specifically concerning natural gas and coal
power plants. The last category is fuel price variables concerning coal and natural
gas. The time span that we will cover is from 2003 to 2016 (inclusive). The analysis
will setup two separate data frames. The first setup aggregates information on the
county, month, year identifier. The second setup aggregates information for a smaller,
equal sized (in latitude and longitude) grid, month and year.

For the county level analysis, variables in a given month, year and county include
net generation, consumption and capacity information related to the coal and natural
gas power plants in that given county. It also has a weighted 𝑃𝑀2.5 value which is
further explained in the next subsection. Finally, it contains coal and natural gas fuel
prices. For the grid level analysis, a similar setup is constructed, where power plants
are assigned to the grid which they are located in. For this setup, we predict power
plant level fuel prices in order to produce granular values. This results in a panel
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data where the unique identifier is month, year and grid (which can be separated
into row and column).

1.2.1 𝑃𝑀2.5

As discussed in the introduction, 𝑃𝑀2.5 is known to have negative health impacts.
The EPA has been regulating these pollutants since 1997. In 2006, the standard
was updated to its current format which is that the 24-hour average concentration
can’t exceed 35 𝜇𝑔/𝑚3 and the annual standard can’t exceed 15 𝜇𝑔/𝑚3. The EPA
monitors and regulates 𝑃𝑀2.5 concentrations using the AQS monitoring system. In
the case that one of the monitors records data that violates the given standard, the
state that the monitor is in is fined. The data is collected real-time and can be
accessed on the EPA’s website.

One of the main issues with these monitors is that they are sparsely located, which
limits the geography in which an analysis can be conducted. Less than 20% of all
counties in the US have an Air Quality System (AQS) monitor. This prohibits being
able to conduct analysis for the majority of US counties. Furthermore, since these
estimates are point estimates, extrapolating these variables to a county or state level
without using any atmospheric chemistry would lead to results that ignore spatial
variations in 𝑃𝑀2.5 concentrations. Finally, these point estimates also lack the ability
to capture the impact that pollution is having on the population in a given county,
since the population in a given community is not spread out evenly. In order to
create a measure of 𝑃𝑀2.5 pollution that a given community is exposed to, one
needs to incorporate the variability of pollutants spatially as well as the variability
of population concentration spatially.

In order to capture the spatial variability of pollution, atmospheric chemistry
usually employs modelling. One method of getting modelled 𝑃𝑀2.5 concentrations
is using chemical transport models. One common software tool used is GEOS-Chem.
Another modelling technique used that has become more popular recently is to ex-
ploit statistical methods on datasets to create estimates of pollution. These two
methods differ in their methodology in that the chemical transport models are struc-
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tural models that detail the intricate chemical reactions that take place in the at-
mosphere calibrating the results using data. Statistical modelling techniques use
atmospheric chemistry as a guide in deciding what parameters are important in cap-
turing the true functional form of particulates in a given location at a given time.

In this chapter, we use pre-computed 𝑃𝑀2.5 concentrations that are modelled
using statistical methods. In most of the models that are statistical, the main vari-
able used is satellite estimates of Aerosol Optical Depth (AOD). The reason is that
data for AOD is reported on a spatio-temporal matter globally from earth observing
satellites. This data is publicly available from institutions such as NASA. This data
is combined with other spatio-temporal weather data as the main parameters used to
predict 𝑃𝑀2.5. This model is trained and fitted using ground truth data on 𝑃𝑀2.5.
The dataset used in this chapter is satellite-based 𝑃𝑀2.5 prediction computed in
Van Donkelaar et al. (2019)6. Resolution of the grids is 0.01 by 0.01 latitude by
longitude respectively for every month between 2000 and 2016 in North America.
This dataset provides us with estimates of the spatial variability of 𝑃𝑀2.5. In order
to capture the spatial distribution that is associated with population, we weight the
data by spatio-temporal population values. In order to incorporate population, we
use a spatio-temporal population density values from NASA’s Socioeconomic Data
and Applications Center (SEDAC).

For the purposes of this chapter, the 𝑃𝑀2.5 data is aggregated in two different
methods. All final datasets use the data produced by Van Donkelaar et al. (2019).
For the county level analysis, the 𝑃𝑀2.5 values and the population data from SEDAC
is reformatted in order to get population weighted 𝑃𝑀2.5 values for each county, year
and month. This reformatting of the data from a gridded, spatio-temporal dataset
into a panel data format takes place in multiple stages. The process follows the
following procedure: (1) First, we reformat both datasets to be in the same format,
(2) Next, we create a new dataset that is the product of the population and 𝑃𝑀2.5

raster datasets at each grid point at each time interval, (3) Then, a county level shape
file is used to get the sum of the new dataset and the population dataset within the

6I am grateful to the authors for sharing the data. These estimates are openly available on the
labs website: http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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county boundaries and (4) Finally, these two values are divided to get the final value.
For each county 𝑖 and time interval 𝑡, this can be written in the following matter

𝑃𝑀2.5 𝑖,𝑡 =

∑︀
∀𝑘∈𝒵(𝑖,𝑡) 𝑃𝑀 𝑟𝑎𝑠𝑡𝑒𝑟

2.5,𝑘,𝑡 * 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘∑︀
∀𝑘∈𝒵(𝑖,𝑡) 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘

(1.1)

where 𝑃𝑀 𝑟𝑎𝑠𝑡𝑒𝑟
2.5,𝑘,𝑡 is the raster dataset at point 𝑘 in time period 𝑡, 𝒵(𝑖, 𝑡) represents

the set of points in the raster dataset that are in the county 𝑖 at time 𝑡. Note that
in our setting 𝒵(𝑖, 𝑡) = 𝒵(𝑖) since the population distribution file and county shape
file used for this calculation is from the 2000 census. Meaning that, these results do
not capture the change in population distribution that has occurred since 2000 (or
the change in county shape).

For the grid level analysis, the 𝑃𝑀 𝑟𝑎𝑠𝑡𝑒𝑟
2.5,𝑘,𝑡 dataset is used in its grid format. Based

on the granularity parameter that is determined, the dataset is then downsampled.
For the results in this chapter, the grid is downsampled by a factor of 10. So,
compared to the original raster dataset of 4550 by 9300, which is ∼ 43 𝑚𝑖𝑙𝑙𝑖𝑜𝑛

float values, the new file is 455 by 930 for each month and year. Additionally, a
neighborhood is defined for each grid point to incorporate surrounding power plants.
The downsampling is done for two reasons: (1) 0.01 by 0.01 latitude longitude grid
will very seldom have a power plant located in the grid, let alone a coal and a
natural gas power plant, which would require a large neighborhood to be defined, (2)
the original grid makes the final regressions and the whole data processing exercise
computationally expensive 7.

1.2.2 Power Plants

Datasets related to the consumption, net generation, price and capacity of coal and,
natural gas in the US is used for this project. These datasets are aggregated from
the Energy Information Agency (EIA) and the Environmental Protection Agency
(EPA). Data related to net generation and consumption is gathered from the EIA-

7Note that robustness checks will be conducted in the future to see the sensitivity of the results
to the specific grid size.
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906, EIA-920 and EIA-923 forms. Additionally, nameplate capacity is found using
the EIA-860 forms. Using the plant IDs, we can derive a dataset for each month,
year and power plant that has consumption and net generation data.

For the county level analysis, this data for consumption and net generation is
then mapped to a dataset that contains month, year and county. The allocation of
consumption and net generation data into counties is done according to the county
shape files. Capacity data is mapped in a similar manner. The only difference with
capacity data is that the EIA-860 is an annual report, which meaning that this
dataset is unique in terms of power plant and year. Initially, we produce county
level variables that sum all the capacity, consumption and net generation of coal and
natural gas within its borders for each time period. For capacity, the annual number
is assumed for each month. We also calculate additional variables based on distance
from the centroid8. The aggregation of the data is done similarly for the grid based
analysis, but instead of county shape, the binning is conducted into the rectangular
grids that each 𝑃𝑀2.5 value represents.

1.2.3 Fuel Price Data

For the county level analysis, we use natural gas and coal prices reported by the
EIA. More specifically, we use state level price data for both natural gas and coal
prices. From the EIA, we are able to find two datasets for coal prices. The first is
state level coal prices averaged over all sectors on an annual basis. The second is
nationwide cost of coal at electric generating plants on a monthly basis. For most
of the analysis, we use the annual coal prices for each state. The reason for this is:
(1) the spatial variability of coal prices is more important then the higher frequency
temporal variability and (2) the limiting time frequency with power plant capacities
is also annual which makes it a better fit overall. For natural gas, we are able to find
monthly state level price for natural gas delivered to the residential customer. These
three variables are then mapped to the county level for each month and year.

For the grid level analysis, we want to incorporate more granular price data than

8These results are not shown in this chapter, but the general trend in the results are similar
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state level data. The ideal data for this scenario would be price of natural gas and
coal at the power plant level. The EIA-923 and FERC-423 provide partial sets of
data that contain the price information for a relatively small subset of power plants.
Using this partial power plant level coal and natural gas price dataset, we can setup
a supervised learning problem, where we use features of a power plant at a given
time to predict the price of coal or natural gas at that power plant. The goal here
being that once we have power plant level monthly price data, all power plant and
fuel type data will be unique to a power plant in a given month and year.

One thing to note about the grid level analysis is that even though this analysis
is more granular, it doesn’t incorporate every grid, since the price data that is being
used is at a power plant level. For example, say we want to incorporate some grid 𝑗

that doesn’t have any power plants in it or in its 𝑛𝑡ℎ neighbor. In this scenario, if we
want to understand the impact of price on 𝑃𝑀2.5 in this grid point, it isn’t clear how
to allocate the price of coal or natural gas. Since the realized price of coal or natural
gas at the power plant that has contributed to the pollution level at that given grid
point is not obvious. A price of zero would indicate to the regression that a zero
price has some associated pollution level (which would likely be low since this grid
doesn’t have any power plants in a 𝑛 grid radius), when at a price of zero we would
expect all power plants to be burning coal or natural gas, which would definitely
increase pollution.

1.2.4 Features used to predict fuel price data

For the prediction problem, we need to develop a set of predictor variables that
we have for each power plant, month, and year. Additionally, we need to have
associated price data for some subset of this power plant, month, and year. The set
of variables used for coal price prediction and gas price prediction are very similar (we
consider a larger set of gas price predictors than coal price predictors, the reason being
predicting gas prices is a harder problem). One important aspect of the partial data
used to learn a prediction function is that it be a representative sample of the power
plant prices that we don’t have data on. Figure 1-5 visualizes the spatiotemporal
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distribution of this dataset. The data doesn’t seem to be concentrated in one given
location or time.

Initially, we use the partial data on power plant fuel prices that we have values
on to construct a state level monthly average price variable. Additionally, since this
is a time series data, we incorporate the average price in a state for the previous
three months and the two future months. Due to the spatial and temporal variation
of the data, averaging this data on a state level for each month does not incorporate
overfitting concerns. The goal of this variable is to incorporate some information
of the price at power plants near the one we are trying to predict. Two robustness
checks are run to make sure this is the case: (1) by leaving a subset of this dataset
out of this variable as a test set and calculating the mean squared error (MSE) after
training the model show similar MSE to that of the Cross Validation MSE when
including the variable in the analysis, (2) when leaving the current time period out,
the cross validation error does not change much. These robustness checks signal that
incorporating this variable isn’t causing bias in the model. This helps incorporate
past, current, and future trends. Note that adding previous and future time trends
lead to a loss of the first three months and the last two months. Next, we incorporate
the price data that was used in the county level analysis (annual state level coal prices
and monthly state level natural gas prices). The latitude an longitude of the plant,
the year, month, and state variables. For natural gas, due to the high volatility,
we include LNG imports and LNG import prices for each month year for the US
(data can be found on EIA’s website). Finally, power plant level net generation,
consumption, and capacity variables are incorporated.

1.2.5 Final datasets

We can briefly outline the county level and grid level datasets. Both datasets are
identified based on a geographic area, month, and year. For a given geographic
area, month, and year, the datasets contain associated 𝑃𝑀2.5 values, net generation,
consumption, capacity, and price values for coal and natural gas power plants. The
data spans from 2003 to 2016. For the county level dataset, the 𝑃𝑀2.5 value is
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Figure 1-4: EPA’s historical 𝑃𝑀2.5 air quality estimates based on 412 sites

Figure 1-5: Spatiotemporal distribution of the power plant level price data.
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weighted by population. For the grid analysis, each grid is equal sized in terms of
latitude and longitude. For the grid analysis, the price data is not incorporated for
any grid that doesn’t have a coal or natural gas plant located within the grid or its
defined neighborhood.

1.3 Methods

In this section, we will discuss the different analyses that will be run on the datasets.
County level analysis will detail the county, year, monthly regressions that are run,
predicting power plant prices will discuss the machine learning (ML) framework that
is used to predict power plant level fuel prices, and grid level analysis will detail the
grid level regressions that will be run.

1.3.1 County level analysis

The final county level dataset is in a panel data format where we have values for
each month, year, and county in the lower 48 states of the US. Our main econometric
framework leverages changes in natural gas and coal prices across time and space.
We progressively add controls for county and time effects.

To start off, we can start with a basic framework:

𝑃𝑀2.5,𝑖,𝑡 = 𝛽𝑋𝑖,𝑡 + 𝛼𝑖 + 𝜈𝑡 + 𝜔𝑖,𝑡 + 𝜖𝑖,𝑡 (1.2)

where 𝑃𝑀2.5,𝑖,𝑡 is the 𝑃𝑀2.5 values at location 𝑖 at time 𝑡, 𝑋𝑖,𝑡 is some subset of the
variables described in the previous section (natural gas and coal prices, consumption,
capacity, or net generation) and 𝛼𝑖, 𝜈𝑡, 𝜔𝑖,𝑡 are the fixed effects. We begin with a set
of county, year, and month-of-year fixed effects. We then add county-specific trends
to this specification and end with county-by-year fixed effects. We also use different
transformations of the variables based on how we would expect the interactions to
vary. In the next framework we can look at the case where we want to incorporate
potential transformations:
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Φ𝑃𝑀(𝑃𝑀2.5,𝑖,𝑡) = 𝛽Φ𝑋(𝑋𝑖,𝑡) + 𝛼𝑖 + 𝜈𝑡 + 𝜔𝑖,𝑡 + 𝜖𝑖,𝑡 (1.3)

where Φ· represents a dictionary of transformations that are deemed appropriate.
Finally, we might look at potential interactions between variables:

Φ𝑃𝑀(𝑃𝑀2.5,𝑖,𝑡) = 𝛽Φ𝑋(𝑋𝑖,𝑡) + 𝜃(Φ𝑋1(𝑋1,𝑖,𝑡) × Φ𝑋2(𝑋2,𝑖,𝑡)) + 𝛼𝑖 + 𝜈𝑡 + 𝜔𝑖,𝑡 (1.4)

where, 𝑋1,𝑖,𝑡 and 𝑋2,𝑖,𝑡 are two subsets of 𝑋𝑖,𝑡 and × represents the interaction be-
tween the two terms. The standard errors used for all analyses are robust standard
errors using county level clustering.

1.3.2 Predicting power plant fuel prices

As discussed in the previous section, the ideal dataset we would like is fossil fuel
prices at a power plant level, which is partially available, but the dataset has a lot
of missing values. In order to get past this issue, we train a supervised learning
algorithm to predict fuel prices at a power plant for a given month and year.

Before doing so in the results section, we can setup the basic framework: our goal
is to attain an approximation 𝑓(𝑥) for the function 𝑓(𝑥) that in expectation outputs
the price for a given power plant in a given month and year given a set of features
𝑥 which is associated with that power plant in the given month and year. In other
words:

𝑦 = 𝑓(𝑥) + 𝜖 (1.5)

where 𝜖 is some zero mean noise. This will give us the relationship, 𝑓(𝑥) = 𝐸[𝑦|𝑋 =

𝑥]. In order to achieve a good function approximation, we can use ML algorithms
that try to approximate this relationship given a set of data 𝐷 = {𝑦𝑖, 𝑥𝑖}𝑛𝑖=1, where
𝑦𝑖 is the outcome of interest and 𝑥𝑖 is a vector of features.

In the case of predicting power plant fuel prices for a given month, year: 𝑖 is an
index for the specific (𝑚𝑜𝑛𝑡ℎ, 𝑦𝑒𝑎𝑟, 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡, 𝑓𝑢𝑒𝑙) combination, 𝑦𝑖 ∈ 𝑅+ is the
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power plant fuel price for index 𝑖, and 𝑥𝑖 is the feature vector for the power plant
fuel price.

For a given model evaluation, mean-squared-error (MSE) is used as the evaluation
and 5-fold cross-validation is used to avoid overfitting and hyper parameter tuning.
Pre-processing of the training data includes feature engineering methods. Models
tested are all regressions (since 𝑦 is real valued): k-Nearest-Neighbors (kNN), Ran-
dom Forest, XG-Boost, Ridge, Lasso, Elastic Nets.

1.3.3 Grid Level Analysis

The overall method used to analyze the grid-level data is similar to that done for the
county-level data. The goal of incorporating the grid data is to be able to get higher
resolution results without the abstract shapes of counties. For the grid-level data,
we have a certain rectangular grid resolution (𝑀 × 𝑃 ), where each grid covers the
same latitude and longitude. This choice is based off of the shape that the predicted
𝑃𝑀2.5 data is in.

In addition to the given data in a grid, we can also aggregate information about
surrounding grids. Lets call these surrounding grids neighbors, and the 𝑛𝑡ℎ neigh-
borhood is the set of rectangles that are 𝑛 grids away. Figure 1-6 visualizes this
relationship for a grid 𝑖 and its 1𝑠𝑡 and 2𝑛𝑑 neighborhood. We can incorporate the
𝑛𝑡ℎ neighbor information, as we might expect that the 𝑃𝑀2.5 levels in one grid are a
result of power plants in the surrounding grids. Similar to the county level analysis,
the setup of the regression will be that given in Equations 1.2, 1.3, and 1.4. Instead
of county, there will be grid identifiers.

1.4 Results

This section discusses the results of using the data and model framework outlined
in the previous sections. The goal of this section is to understand the relationship
between natural gas, coal and ambient air pollution in the US between 2003 and
2016. The results exploit the major shift in natural gas and coal prices as well as the
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shift in power plant fuel type that was described in the introduction. First, we will
discuss the results of the county level dataset, next we will discuss the price prediction
problem, and lastly we will discuss the grid level results using the predicted prices.

1.4.1 County level analysis

Table 1.1 shows us different regressions run on the impact of prices on emissions in
a county. All three are fixed effect regressions with robust county clustered standard
errors. The first column follows the framework of Equation 1.2 and the second and
third column follows the framework of Equation 1.3. The transformation in the
second column is 𝑙𝑜𝑔(·) and 𝑎𝑟𝑐𝑠𝑖𝑛ℎ(·) in the third column (denoted ℎ𝑠𝑖𝑛(·)). The
𝑋 variable in this Table is natural gas and coal prices. The Fixed Effects (FEs)
for this table are county fixed effects as well as month-of-year fixed effects. We can
see significant and consistent results that would suggest that an increase in natural
gas prices in a given state increases the pollution in a county and an increase in
coal prices decreases the emissions. This is what we would expect intuitively since
increased natural gas price would lead us to use a substitute fuel, which in this case
pollutes more on average. An increase in coal prices would lead us to decrease the
amount of coal used, which means that the substitute fuel for coal pollutes less.
One way of stating the results in Column (1) is that an increase of $1 in coal prices
decreases county level 𝑃𝑀2.5 pollution by −0.51 𝜇𝑔/𝑚3 and an increase of $1 in
natural gas prices increases county level 𝑃𝑀2.5 pollution by 0.14 𝜇𝑔/𝑚3. This is
quite a large impact if we think of average 𝑃𝑀2.5 levels in the US that can be seen
in Figure 1-4.

Table 1.2 and Table 1.3 have the same setup as Table 1.1, but the 𝑋 variable used
is total county net generation and consumption of natural gas and coal (respectively).
The results are similar in intuition, but provide more heterogeneity in the data. Price
data only had state level variation, whereas net generation and consumption data has
county level variation. The results are a bit harder to interpret in a familiar manner
since MWh or MMBtu are not as clear as dollars. One interesting point from these
Tables can be seen in the NG coefficients in columns 2 and 3 in both Tables. The
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pollution impact of changes in NG is no longer significant, which is not immediately
clear when comparing it to the price setting. We can justify that it isn’t significant
since increasing net generation or consumption on a plant level increases pollution
independent of fuel type (natural gas or coal), while contradicting with the fact that
it also might potentially replace future coal net generation or consumption. This
potentially explains the difference seen to the price variables that are a big driver of
net generation and consumption as well as power plant transitions.

Turning back to price data, we might be interested in how the parameters are
impacted for varying FE settings. The results of this can be seen in Figure 1.4. The
table shows three alternative settings of FEs, including, county, year, month-of-year,
and county trends. We choose a log-log formulation in this table. The results are
significant to the same level in all three setups which shows the robustness of the
regressions.

Table 1.5 is trying to capture the relationship between fuel prices, county level ca-
pacity values as well as interactions between prices and county level capacity values.
The framework for this table can be seen in Equation 1.4, where we have trans-
formations to variables as well as interactions. For this table, all 𝑋 values are log
transformed. We perform four sets of regressions, where regression (1) only regresses
on fuel prices, regression (2) incorporates capacity in a given county into the mix,
regression (3) adds interaction variables and regression (4) transforms the 𝑦 variable,
weighted 𝑃𝑀2.5, using 𝑙𝑜𝑔(·).

In regression (2) of Table 1.5, we can see that the coefficients of the price variables
are relatively constant. The capacity coefficients indicate that as we see an increase
in coal and natural gas capacity in a given county, we will also see an increase in
pollution. But, there will be more of an increase in pollution with a percentage
increase in coal capacity in a county than if there is a percentage increase in natural
gas capacity. We can also see that the coefficient of the natural gas capacity is not
significant. Meaning that the impacts of a percentage change in natural gas capacity
can have ambiguous results.

The next two columns incorporate interactive variables between capacity param-
eters and price. The main difference between them is that the 𝑦 variable is the
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weighted PM for regression (3) and the logarithm of weighted PM for regression (4).
These results also reveal interesting dynamics.

The interactions between coal capacity and coal prices suggest that the impact is
negative. Both columns show that this result is significant to the 99𝑡ℎ percentile. This
would indicate that an increase in coal prices when there is coal capacity around you
decreases the weighted 𝑃𝑀2.5. Or in other words, if you have coal capacity around
you, you are better off when coal prices are high. The coefficient of the interactions
between coal prices and gas capacity suggest that its impact on prices is positive.
The coefficient is significant to the 99𝑡ℎ percentile for column (3), yet isn’t significant
for column (4). These results suggest given that there is coal capacity around you,
an increase in gas prices increases pollution. Or in other words, if you have coal
capacity around you, you are worse off when gas prices are high.

The interactions between natural gas capacity and coal prices suggest that the
impact is positive. The coefficient isn’t significant in both columns, but has the
same sign. This would indicate that an increase in coal prices when there is gas
capacity around you increases the weighted 𝑃𝑀2.5. We can understand why this
is not significant, since we generally see less pollution when coal prices increase.
Since prices are usually at a state level or even regional, it is not unreasonable that
this variable’s impact is not clear. The interactions between natural gas capacity and
natural gas prices suggest that the impact is negative. The coefficient is significant to
the 99𝑡ℎ percentile in both columns. This would indicate that an increase in natural
gas prices when there is natural gas capacity around you decreases the weighted
𝑃𝑀2.5 (independent of the coal capacity). Or in other words, if you have natural gas
capacity around you, you are better off when natural gas prices are high.

Table 1.5’s results are novel because of the strong relationship it shows between
the energy market, power plants and pollution. The coefficients are intuitive in a
certain way as we are able to directly show significant impacts of prices and capacity
as well as their interactions on county level weighted pollution. When the interactions
aren’t clear, we see that the significance also decreases, which can be seen when
interacting coal capacity and natural gas prices as well as natural gas capacity and
coal prices. Table 1.6 shows similar regressions, but in a log-log transformation setup.
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The results are consistent in sign and significance (some difference in point estimates
is obviously expected).

These regressions that determine relationships between the energy market and
ambient air pollution allows us to produce counterfactual scenarios. How would
pollution be different if for a given year, natural gas prices were to increase from $8
to $16? For the year of 2013, this is done in Figure 1-7. The figure illustrates the
increase in pollution levels for the year of 2013 if the nationwide natural gas price
were to increase from $8 per thousand cubic feet to $16 per thousand cubic feet.

1.4.2 Predicting power plant fuel prices

The prediction problem detailed in the previous sections is to predict fuel prices at
the power plant level for coal and natural gas power plants. Given a power plant
(that uses coal or natural gas) in a given month and year, we want to predict the
price of fuel. The problem is constructed in a supervised learning fashion, with a
set of predictive variables and associated coal and natural gas prices. The quantity
being predicted 𝑦𝑖 is the coal or natural gas price at a given power plant, month, year.
Two separate learning processes are run on both coal and natural gas prices. The
variables for both processes are discussed in the data section. We can separate the
set of predictive variables into two: categorical variables and continuous variables.
Month, year, and state of the power plant are considered categorically, whereas net
generation, consumption, and other price variables are continuous.

Given the data and methods discussed in the previous section, the data is initially
transformed in the following way: (1) The categorical variables are encoded into
indicator columns (one-hot vectors in ML literature, FEs in economics literature),
(2) The continuous variables that have a skewed distribution are transformed using
power transformations (specifically the box-cox transformation). The price variable
that is being predicted is transformed using a logarithm.

After the predictive set of variables is constructed and transformed, the learning
process is started. A set of regressions are tested using kNN, XG-Boost, Random
Forest, Ridge, LASSO, and Elastic Net for both coal and natural gas prediction. Af-
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Figure 1-6: Visualization of a grid and its 1𝑠𝑡 and 2𝑛𝑑 neighborhood..

Figure 1-7: Change in Counterfactual 𝑃𝑀2.5 concentrations when the price of natural
gas is increased from $8 to $16 per Thousand Cubic Feet NG for the year of 2013
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ter comparing the cross validation score, Random Forest regression is chosen for coal
price prediction and XG-Boost is chosen for natural gas price prediction. For each
regression method, a set of hyperparameters is also tested to optimize performance.
Each result is evaluated using a 5-fold cross validation structure.

The average cross validation score for the logarithm of coal price prediction is
0.006, which is equivalent to an average 0.24 cross validation MSE of coal price. The
MSE on the whole dataset using the final configuration is 0.002 for the logarithm of
coal price prediction. The optimal model is Random Forest model with the following
hyperparameters:{𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 : 300,𝑚𝑎𝑥 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 : 50,𝑚𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑠𝑝𝑙𝑖𝑡 : 6}. The
resulting fit on the whole dataset can be seen in Figure 1-8.

The average cross validation score for the logarithm of natural gas price predic-
tion is 0.05, which is equivalent to an average 2.6 cross validation MSE of nat-
ural gas price. The MSE on the whole dataset using the final configuration is
0.03 for the logarithm of natural gas price prediction, showing that there isn’t
much overfitting. The optimal model is the XG-Boost model with the following
hyperparameters:{𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 : 600,𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ : 6}. The resulting fit on the whole
dataset can be seen in Figure 1-9.

As can be seen from the MSE values of the two predictors, the algorithm does
a better job predicting coal prices than natural gas prices. A lot of this can be at-
tributed to the difficulty in capturing the spikes in natural gas prices. The reason for
using the predicted values is that they are better than the data we have. Compared
to the current state level data we have, the predicted data is able to capture the het-
erogeneity much better. The MSE of using the state level monthly data for natural
gas is 24.6. The natural gas prediction and coal prediction increases our accuracy
when trying to obtain plant level data.

1.4.3 Grid level analysis

Finally, we are interested in getting similar tables to those produced in the county
level analysis section. In this section, we will produce tables similar to 1.6 and 1.4
and discuss the implications. Initially, we can produce these two tables for the year
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Figure 1-8: Predicted coal prices compared to original coal prices.

Figure 1-9: Predicted natural gas prices compared to original natural gas prices.
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range 2003 to 2016. The grid size for this particular analysis is 0.1 latitude by 0.1

longitude, with 4 levels of neighborhoods considered. Latitude and longitude vary
based on location, but as a ballpark estimate one can think of these values being
equivalent to ∼ 10 𝑘𝑚. Which gives a rough radius of (with the neighborhood) of
∼ 90 𝑘𝑚. Once this grid size and neighborhood is chosen, power plants and their
associated characteristics (net generation, consumption, predicted price, capacity)
are allocated to the bins for a specific month and year. Finally, this is transformed
into a panel data format for analysis.

Tables 1.7 and 1.8 produce the grid equivalent of the county level analysis figures.
Before discussing the results, there is some merit in discussing the differences in the
variables used in the analysis besides the geographic unit being a grid instead of
a county. The capacity variable in this regression is weighted with respect to its
level of neighborhood. The idea being here that the impact of capacity should decay
relative to its distance from the central grid point. Additionally, the price variable is
the average of the mean price of each neighborhood, if a neighborhood doesn’t have
a power plant, then it isn’t incorporated into the average9. Additionally, population
isn’t considered in the 𝑃𝑀2.5 values. Considering only grids that have both a coal
and natural gas power plant in their neighborhood over the time period between
2003 and 2018 results in over ∼ 3 million data points.

Looking at Tables 1.7 and 1.8, we can see that the price impacts are similar
to those found in the county level analysis and robust to different configurations
of FEs. Additionally, the the implications of capacity also show similar behavior
and are significant. Finally, the interactions show interesting results as well, where
the coal capacity and coal price as well as the gas capacity and gas price impacts
are similar to that found in the county level analysis, but the cross interactions are
showing negative and significant impacts. It is hard to conclude much on the mixed

9A quick example of this can be explained: say we are considering the mean price for grid 𝑖
with 2 neighborhoods. Assume that within grid 𝑖 there is one coal power plant 𝑐𝑜𝑎𝑙1 and another
coal power plant in the 2𝑛𝑑 neighborhood labelled 𝑐𝑜𝑎𝑙2. Assume that there is only one natural
gas power plant in the 1𝑠𝑡 neighborhood: 𝑛𝑔1. Then the mean coal price considered for grid point
𝑖 is 𝑐𝑜𝑎𝑙1,𝑝𝑟𝑖𝑐𝑒+𝑐𝑜𝑎𝑙2,𝑝𝑟𝑖𝑐𝑒

2 and natural gas price 𝑛𝑔1,𝑝𝑟𝑖𝑐𝑒 and the coal capacity considered will be
𝑐𝑜𝑎𝑙1,𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 𝑐𝑜𝑎𝑙2,𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/3 and natural gas capacity considered will be 𝑛𝑔1,𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/2
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interactions since they are not as easy to interpret. A final analysis is run on net
generation using all grid points (∼ 38 million points), where the log of the weighted
net generation of a grid (calculated similar to the weighted capacity) is considered
in Table 1.9, the results are similar to that found in the county level analysis.

1.5 Conclusion

In conclusion, in this chapter we are able to use the fluctuations caused by hydraulic
fracturing in US energy prices as well as US power plant fuel usage to quantify the
relationship between energy prices, power plant fuel usage, and ambient air pollution.
Initially, we do this on a county level, that shows the impact of state level price data
and county level capacity on county level pollution. Next, in order to run a more
granular analysis, we predict plant level fuel prices and us this information to analyze
impacts on a grid level. The results are similar to the county level results and show
the robustness of the price impact between the years 2003-2016.
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(1) (2) (3)
VARIABLES Weighted PM log(Weighted PM) hsin(Weighted PM)

Coal Price -0.514***
(0.0456)

NG Price 0.143***
(0.00530)

log(Coal Price) -0.0505***
(0.0116)

log(NG Price) 0.150***
(0.00944)

arcsinh(Coal Price) -0.0334***
(0.00900)

arcsinh(NG Price) 0.148***
(0.0101)

Constant 7.605*** 1.837*** 2.309***
(0.111) (0.0278) (0.0354)

Observations 522,144 522,144 522,144
R-squared 0.632 0.670 0.669

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.1: Understanding the impact of prices on pollution. We can see that the
results are robust to different transformations
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(1) (2) (3)
VARIABLES Weighted PM log(Weighted PM) hsin(Weighted PM)

Coal Net Gen 1.31e-06***
(1.41e-07)

NG Net Gen -3.34e-07**
(1.47e-07)

log(Coal Net Gen) 0.00309***
(0.000541)

log(NG Net Gen) -0.000114
(0.000492)

hsin(Coal Net Gen) 0.00267***
(0.000473)

hsin(NG Net Gen) -0.000222
(0.000398)

Constant 8.160*** 2.141*** 2.704***
(0.00779) (0.00138) (0.00119)

Observations 596,736 588,945 596,736
R-squared 0.603 0.652 0.649

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.2: Understanding the impact of net generation on pollution. We can see that
the results are robust to different transformations
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(1) (2) (3)
VARIABLES Weighted PM log(Weighted PM) hsin(Weighted PM)

Coal Cons 1.33e-07***
(1.45e-08)

NG Cons -4.88e-08***
(1.82e-08)

log(Coal Cons) 0.00250***
(0.000408)

log(NG Cons) -0.000249
(0.000371)

hsin(Coal Cons) 0.00880***
(0.00180)

hsin(NG Cons) -0.00146
(0.00139)

Constant 8.158*** 2.142*** 2.705***
(0.00855) (0.00135) (0.00138)

Observations 596,736 596,736 596,736
R-squared 0.603 0.651 0.649

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.3: Understanding the impact of consumption on pollution. We can see that
the results are robust to different transformations

(1) (2) (3)
VARIABLES log(Weighted PM) log(Weighted PM) log(Weighted PM)

log(Coal Price) -0.0453*** -0.0547*** -0.0903***
(0.0132) (0.0104) (0.00839)

log(NG Price) 0.287*** 0.0374*** 0.0264***
(0.00506) (0.00709) (0.00716)

Observations 522,144 522,144 522,144
R-squared 0.580 0.627 0.638
County YES YES YES
Year YES YES YES
Month-of-Year NO YES YES
County Trends NO NO YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.4: Understanding the impact of different FEs of the results of Table 1.1. We
can see that the results are robust to different FE combinations.
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(1) (2) (3) (4)
VARIABLES Weighted PM Weighted PM Weighted PM log(Weighted PM)

Log(Coal Price) -0.498*** -0.499*** -0.462*** -0.0513***
(0.0851) (0.0856) (0.0832) (0.0118)

Log(NG Price) 1.627*** 1.620*** 1.674*** 0.159***
(0.0819) (0.0819) (0.0857) (0.00962)

Log(Coal Capacity) 0.0878*** 0.186*** 0.0192***
(0.0135) (0.0524) (0.00542)

Log(NG Capacity) 0.00576 0.153*** 0.0164***
(0.0142) (0.0482) (0.00487)

Log(Coal Cap * Coal Price) -0.174*** -0.0117***
(0.0250) (0.00184)

Log(Coal Cap * NG Price) 0.0398* 7.01e-06
(0.0222) (0.00205)

Log(NG Cap * Coal Price) 0.0407* 0.00637***
(0.0225) (0.00183)

Log(NG Cap * NG Price) -0.0730*** -0.00875***
(0.0190) (0.00178)

Observations 522,144 522,144 522,144 522,144
R-squared 0.628 0.629 0.629 0.671
County Yes Yes Yes Yes
Year Yes Yes Yes Yes
Month-of-Year Yes Yes Yes Yes
Month-Year Yes Yes Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.5: Analyzing the impact of Coal and Natural Gas Prices and Capacity on
county level, weighted 𝑃𝑀2.5 concentrations. The capacity values are total county
values. All standard errors are robust, county level clustered standard errors. The
regression is a yearly fixed effect estimator.
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(1) (2) (3)
VARIABLES log(Weighted PM) log(Weighted PM) log(Weighted PM)

Log(Coal Price) -0.0505*** -0.0505*** -0.0513***
(0.0116) (0.0116) (0.0118)

Log(NG Price) 0.150*** 0.149*** 0.159***
(0.00944) (0.00944) (0.00962)

Log(Coal Capacity) 0.00519*** 0.0192***
(0.00104) (0.00542)

Log(NG Capacity) 0.000570 0.0164***
(0.00109) (0.00487)

Log(Coal Cap * Coal Price) -0.0117***
(0.00184)

Log(Coal Cap * NG Price) 7.01e-06
(0.00205)

Log(NG Cap * Coal Price) 0.00637***
(0.00183)

Log(NG Cap * NG Price) -0.00875***
(0.00178)

Observations 522,144 522,144 522,144
R-squared 0.670 0.670 0.671
County Yes Yes Yes
Year Yes Yes Yes
Month-of-Year Yes Yes Yes
Month-Year Yes Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.6: Analyzing the impact of Coal and Natural Gas Prices and Capacity on
county level, 𝑃𝑀2.5 concentrations. The capacity values are total county values. All
standard errors are robust, county level clustered standard errors. The regression is
a yearly fixed effect estimator.
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(1) (2) (3) (4)
VARIABLES log(PM) log(PM) log(PM) log(PM)

log(NG Price) -0.0372*** -0.0325*** -0.0395*** -0.0431***
(0.00155) (0.00146) (0.00150) (0.00124)

log(Coal Price) 0.0405*** 0.0796*** 0.0446*** 0.0712***
(0.00121) (0.00101) (0.00117) (0.00105)

Observations 3,178,529 3,178,529 3,178,529 3,178,529
R-squared 0.552 0.626 0.669 0.635
County YES YES YES YES
Year YES YES YES YES
Month-of-Year NO YES YES YES
Month-Year YES YES YES NO
County Trends NO NO NO YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.7: Understanding the impact of different FEs using the grid level data. We
can see that the results are robust to different FE combinations.
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(1) (2) (3)
VARIABLES log(PM) log(PM) log(PM)

log(NG Price) -0.291*** -0.0400*** -0.0219***
(0.0156) (0.00150) (0.00270)

log(Coal Price) 0.542*** 0.0440*** 0.0560***
(0.0130) (0.00117) (0.00219)

Log(Coal Capacity) 0.00951*** 0.0138***
(0.000445) (0.000833)

Log(NG Capacity) -0.000194 0.00410***
(0.000496) (0.000793)

Log(Coal Cap * Coal Price) -0.00174***
(0.000486)

Log(Coal Cap * NG Price) -0.00152***
(0.000355)

Log(NG Cap * Coal Price) -0.00243***
(0.000434)

Log(NG Cap * NG Price) -0.00131***
(0.000290)

Observations 3,178,926 3,178,529 3,178,529
R-squared 0.633 0.669 0.669
County Yes Yes Yes
Year Yes Yes Yes
Month-of-Year Yes Yes Yes
Month-Year Yes Yes Yes

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.8: Analyzing the impact of Coal and Natural Gas Prices and Capacity on
grid level, 𝑃𝑀2.5 concentrations. The capacity values are weighted by neighborhood.
All standard errors are robust, grid-level clustered standard errors.
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(1)
VARIABLES log(PM)

log(Coal Net Generation) 0.0141***
(0.000476)

log(Natural Gas Net Generation) -0.000503*
(0.000293)

Observations 37,587,012
R-squared 0.604

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.9: Analyzing the impact of Coal and Natural Gas net generation on grid
level, 𝑃𝑀2.5 concentrations.
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Chapter 2

Network Properties of fossil fuel
trade

Global energy trade -mostly conducted through fossil fuels such as coal, natural gas,
and oil- has a large effect on geopolitics. Understanding the dynamics of the energy
trade network, as well as some of its properties, can help inform energy experts and
policy makers. In this chapter, global fossil fuel trade data is used to create a net-
work. This network is then analyzed using different network and statistical methods
to understand its structure. Results show that contrary to previous claims in the
literature, the fossil fuel trade does not follow scale free distribution. Furthermore,
a weighted Hyperlink-Induced Topic Search (HITS) algorithm was found to best
predict global rankings of major exporters and importers. The InfoMAP statistical
tool was then used for community detection in the trade networks, and showed the
change (over time) in clusters apparent in natural gas networks. Finally, the energy
trade network was analyzed to find how the introduction of hydraulic fracking has
affected it, primarily the US.
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2.1 Introduction

Networks are ubiquitous in many fields and using tools developed in the Network
Science community can help us better understand a given problem’s structure. In
this section, we will look at trade networks, primarily fossil fuel trade. The network
we construct will be weighted and directed, where countries represent nodes and
edges represent trade flows. The quantity that is flowing is analyzed in four different
settings: coal, natural gas, oil, and the aggregation of all fuel types. Visualizations
of the model as well as basic parameters such as average degrees and total number
of nodes will be displayed for each year. Further analysis was conducted to see if
the networks follow a scale free distribution. Also, potential ranking methods were
tested and community detection methods were analyzed.

The United Nations (UN) Comtrade data was used for this project. It is con-
sidered to be the most comprehensive and widely used global trade data set. The
UN Comtrade data reports on trades between ISO 3 territories. There is a total of
248 territories defined by the ISO 3 standard. We will be calling these territories
countries for the sake of clarity. It is also important to note some of the limitations
associated to this data before the analysis.

The data is collected from countries based on willingness to participate and re-
port. This means that a country only discloses trades that it is willing to share. This
can create a problem overall because of the possibility of inaccurate data. Especially
in the highly geopolitical context of energy trade, there is almost surely some dis-
crepancies associated with the data. We are assuming that they are negligible for
the sake of this work.

The subset of the data considered in this project comprises of annual fossil fuel
trade between the years 2000 and 2016. This data is further processed to determine
trades specific to the three main fossil fuels traded: coal, natural gas, and oil. The
annual data can be used to create a weighted-directed-graph, where the weights can
be specified in two different metrics: US Dollars and Weight in kg. The analysis for
this data is conducted in Python. The network was built using NetworkX. Other
packages and frameworks were used for the analysis that can be found on the GitHub
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repository.
Previous work combining Network dynamics with Fossil Fuel trade is limited to a

few papers. All papers use the UN Comtrade data. There is a wider body of literature
associated to trade in general, which we will discuss in the next chapter. The few
papers that relate fossil fuel trade to networks have some questionable analyses that
we will discuss later in this paper. The three main papers on this topic are:

1. Zhong et al. (2015) analyze the fossil fuel trade network looking at network
properties. They initially calculate a new parameter for the weights on their
networks which they call "emergy". This is to better understand the amount
of energy that a certain country is importing and exporting. Concentrating
on all three energy types, they analyze different network properties as well as
trade relations.

2. Geng et al. (2014) analyze the natural gas trade network and how it has evolved
over time. The analysis is for the periods between 2000-2011. They use a min-
imum spanning tree model to analyze natural gas integration. They conclude
that improvements of market integration will promote globalized trade.

3. Lastly, Kaya and Eren (2016) discuss fossil fuel trade using a complex networks
approach. They analyze metrics such as connectivity, clustering, assortativity,
centrality, degree distribution, and ranking methods.

The rest of this chapter is as follows: Section 2.2 discusses the methods that will
be used in the analysis, Section 2.3 discusses the results from using these methods,
and Section 2.4 concludes the chapter by summarizing the results.

2.2 Network Methods

This section discusses the properties and analyses that will be used on the data. Ini-
tially, basic network properties are studied to better understand the simple structure
of the data at hand. Afterwords, more complex network analyses are conducted:
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choosing a ranking algorithm, assessing if the data follows scale free properties, and
choosing a community detection algorithm. We will briefly discuss these methods
before moving on to the results.

Initially we can define simple measures for the network such as in-degree and out-
degree measures for a given node. Before doing so, we can define some terminology.
For our setup, let the network for year 𝑡 be 𝐺𝑡 with 𝑉𝑡 representing the set of nodes
and 𝐴𝑡 representing the weighted adjacency matrix. For the sake of notation assume
that the edge weight going from nodes 𝑢 to 𝑣 in 𝐺𝑡 is 𝐴𝑡[𝑢, 𝑣], which is always
nonnegative, and that this value is 0 if there is no edge. The weight of an edge can
either be US Dollars or kilograms. For a given node 𝑣 ∈ 𝑉𝑡, the in-degree is:

𝑑𝑖𝑛(𝑣) =
∑︁
∀𝑗

𝐴𝑡[𝑗, 𝑣] (2.1)

and out-degree:

𝑑𝑜𝑢𝑡(𝑣) =
∑︁
∀𝑗

𝐴𝑡[𝑣, 𝑗] (2.2)

Next we can discuss scale-free distributions. A network is considered to have
scale-free degree distribution if the fraction of nodes that have degree 𝑘 scales ap-
proximately as 𝑘−𝛾, where 𝛾 is typically in the range 2 < 𝛾 < 3. Scale-free distribu-
tions have been thought to occur in many different settings and are usually sought
after for desirable properties. Testing if a given distribution is scale-free has become
more nuanced over time, with increasing rigor being required in making such claims
about a network. The approach used in this chapter is that found in Clauset, Shalizi,
and Newman (2009) and will be discussed in the results section.

We will next look at ranking algorithms, which initially became common for
internet search results. HITS was one of the first algorithms used to do this. The
algorithm was developed by Jon Kleinberg and identifies two types of nodes: hubs
versus other authorities. Initially designed for the internet, it does not accommodate
for weights in its original setup. The key equations are:
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𝑐 = 𝛼𝐴𝑇ℎ

ℎ = 𝛽𝐴𝑇 𝑐
(2.3)

where 𝑐 and ℎ are scoring vectors and 𝛼 and 𝛽 are constants. PageRank is another
famous ranking algorithm that was introduced in Google’s initial search engine. The
associated equation is:

𝑤 = 𝑃 𝑇𝑤 (2.4)

where 𝑤 is a scoring vector and 𝑃𝑖𝑗 = 𝐴𝑖𝑗/𝑑𝑜𝑢𝑡(𝑖).
The final method we use is the InfoMAP community detection algorithm. This

is used because it can accommodate weighted-directed networks. The map equation
that is used in InfoMAP will not be discussed in this section1.

2.3 Results

This section presents properties and analyses conducted on the data from a network
science perspective. We use the methods discussed in the previous section to look at
the fossil fuel trade network, and discuss the results for each method.

2.3.1 Network Properties

Initially, basic features of the networks are analyzed for the three fuel types as well
as to analyze how it has changed over time. This includes properties such as number
of nodes, average degree, and simple graph visualizations. Three different fuel types
are analyzed over the 17 years of data to generate average node and degree figures.

Figure 2-1 (a) shows how the total number of nodes has changed over time in
the natural gas, coal, and oil networks. The blue line close to 250 is the maximum
number of total nodes there can be (based on the number of countries/territories).
We can see that a large portion of all territories participate in some manner of trade.

1For more information: https://www.mapequation.org/apps/MapDemo.html
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Figure 2-1: This figure is a simple visualization of the number of territories connected
in each year (figure to the left), average in degrees for a given node in each year
(figure in the middle), and average out degrees for a given node in each year (figure
on the right). Note the Shaded areas in the two figures on the right are the 5 to 95
percentiles.

As expected, oil trade is the most wide spread, with natural gas and coal being
traded between fewer countries.

Figure 2-1 (b) and (c) show the average degree distribution of networks. This
is very informative about fossil fuel trade. We observe the high connectivity of oil
trade as well as coal. This high density has a lot to do with the competitiveness of
the products. Easily transportable (as well as cost effectively), geography does not
play such a constraint as it does with natural gas. Additionally, we can see that in
and out degrees have high variation, as can be seen in the 5% and 95% percentiles
shaded in the Figures. One final observation on Figure 1 is that even though coal
(in the later years) has fewer countries trading it, it seems to involve more trade
happening between those countries (compared to natural gas).

These figures help give a good intuition about fossil fuel networks:

1. Oil is the most commonly traded fuel among nations.

2. Gas trade has seen a steady increase in trade over time.
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3. Coal has a higher density overall, but isn’t traded as commonly.

2.3.2 Degree Distribution

The degree distribution of a network is of high interest from a network science per-
spective. Depending on the application, such properties can hold favorable or un-
favorable properties. Yet the analysis for determining if a network follows a power
law distribution is often not conducted properly. When carrying out a literature
review on network science properties of fossil fuel trade the results showed exactly
this. The three main papers all concluded that fossil fuel networks follow power law
distributions.

Zhong et al. (2015) conducted a linear regression on log-log axes to conclude
that the degree distribution followed a power law. Geng et al. (2014) conducted
the same analysis to conclude that natural gas trade networks followed power law
distributions. Kaya and Eren (2016) conducted a more rigorous analysis using KS
Statistics. They concluded that fossil fuel networks followed a power law distribution
because the hypothesis could not be rejected for p-values above 0.05.

For this section, the approach detailed by Clauset, Shalizi, and Newman (2009) is
used. They suggest a three-step process that starts with estimating the parameters
𝑥𝑚𝑖𝑛 and 𝛼, followed by a goodness-of-fit test between the data and the power law,
using KS Statistics. The last step, which is what is detailed in this section is to
compare the hypotheses to an alternative distribution using a likelihood ratio test.
The alternative distribution that is chosen is the exponential distribution (the power
law distribution is the numerator and the exponential distribution is the denominator
for the loglikelihood ratio test). The reason for choosing exponential is that to be
considered as a power law distribution, being comparatively better than exponential
is a bare minimum. This is because of the fact that exponential distribution is a
prototypical distribution that is very different from a power-law distribution.

This analysis was conducted using the package detailed in Alstott et al. (2014).
Figure 2-2 details the comparison results. The figure details the log likelihood ratio
and the associated probability ratio of the two distributions. Each row in Figure
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2-2 represents the analysis run on a different network (natural gas, oil, coal, and the
combined fossil fuel trade). Finally, the x-axis in each plot represents the year and
the y-axis represents the log likelihood ratio/probability ratio (p-value) calculated.

In the first column of Figure 2-2, the null hypothesis is that the dataset is an
observation of a power law distribution and the alternative hypothesis is that it is
part of an exponential distribution. The first column shows the loglikelihood ratio
results, where a value that is positive would suggest that the data is more likely to
be from a power law distribution and a value that is negative would suggest that the
data is more likely to be from an exponential distribution. In order to quantitatively
measure our certainty towards one distribution (we want to be more confident in
believing a distribution is exponential if we calculate a loglikelihood of -10 versus
-1 and more confident in believing it is power law if the loglikelihood is 10 versus
1) the associated p-value is calculated in the second column. Using the sign of the
loglikelihood ratio results, the p-value in column 2 indicates our certainty that the
results are more like one distribution than the other. Note that this means the p-
value for two years can have a different null hypothesis if the loglikelihood values
have different signs for those two years.

Looking at the results in Figure 2-2, it can be seen that for oil and combined
fossil fuel trade networks, an exponential distribution is a better hypothesis than a
power law distribution. The first column in rows 2 and 4 show consistently negative
numbers that indicate that an exponential distribution is a better fit and these p-
values show that we can be fairly confident in the results. Next, we can look at the
results of the coal networks that are shown in row 3. The loglikelihood can be seen to
be mostly negative, but the magnitude of these values are not as high as in the oil and
combined settings. This is then reflected in the p-values that show more uncertainty
in the loglikelihood results. Finally, we can look at the natural gas results, which
seem to not indicate one distribution or another, with the p-values never giving much
confidence. The results show significant ambiguity in the natural gas networks, while
giving strong evidence to reject the hypothesis that oil and the combined fossil fuel
networks follow scale free distribution. Even in the natural gas networks, there is no
evidence suggesting that the network follows power law properties.
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Figure 2-2: Plots of loglikelihood ratio between power law and exponential distribu-
tions.
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2.3.3 Ranking Methods

Ranking methods in networks is an interesting and widely researched topic. It could
also be valuable for trade networks, yielding a hierarchical ranking of countries based
on their importance. The measure could help determine a benchmark to understand
the role a certain country plays in world fossil fuel trades as well as how their ranking
has changed over time. When picking algorithms, it was important that it would
be a good fit for our network. This is, the ranking algorithm needed to account for
the weights and the directedness of the network. From the different types of ranking
algorithms, this project tested three: pageRank, springRank, and HITS.

PageRank is famously used by Google’s initial search algorithm. A weighted
version was used to create our ranking algorithm. SpringRank is a newer algorithm
detailed in Bacco et al. (2017). This algorithm is designed for directed, weighted
networks and assumes that interactions are more likely to occur between nodes with
similar ranks.

The HITS algorithm has been modified to incorporate weights. The modifications
made in order to make the algorithms incorporate weights are given in Deguchi et al.
(2014). For the weighted HITS, we replace the A matrix (adjacency matrix) given
in equation (3) with the weighted adjacency matrix (W).

After running pageRank (with and without edge weights), HITS (with and with-
out edge weights), and the springRank algorithm, the results showed that the weighted
HITS algorithm is best suited for fossil fuel trade networks. When comparing pageR-
ank and HITS, Deguchi et al. (2014) found similar results for other trade networks.

A trivial analysis of the rankings made it apparent that weighted HITS was the
most accurate in ranking countries in global energy trade. The rankings from the
weighted HITS are given in the appendix. SpringRank’s assumption that interactions
are more likely to occur between nodes with similar ranks does not match well with
fossil fuel trade, indicating that high ranking countries like Saudi Arabia and Russia
are likely to be trading with each other. SpringRank’s algorithm ranked the territory
of Bouvet Island as the highest ranked node. The results did not follow any logical
ordering and were left out of the consideration. PageRank does a bit better, but
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Figure 2-3: Top 4 Hub and Authorities in the Oil and Coal networks.

has discrepancies such as ranking of countries such as Singapore and Netherlands
very high. This is interesting because these two countries are considered to be high
intensity/frequency ports. But it does not give us any distinction between port
countries, high exporting countries, and importing countries. The HITS ranking
seems able to separate producers (hubs) and consumers (authorities) in its ranking.
Figure 2-3 shows the top 4 hubs and authorities for oil and coal. The oil table on the
left shows the ranking for before the shale revolution occurred. This result is very
intuitive. The coal table results are less intuitive because the coal trade is less well
known. The table reveals an interesting structure of coal networks without having
domain expertise.

2.3.4 Community Detection

The initial motivation for running community detection algorithms on fossil fuel trade
networks was that it could be a method of determining regional/global partnerships
between countries. Separating them into clusters would be a good method of under-
standing geopolitical partnerships linked through fossil fuel trades. Yet, the results
showed that there were very few communities to be detected and also that there
are very few algorithms available for detecting communities in directed, weighted
networks. Still, some interesting results persisted.

Reading the review by Lanchichinetti and Forunato (2010), it was decided that
the only viable option for directed networks is InfoMAP. InfoMAP’s algorithm opti-

47



Figure 2-4: InfoMAP Community detection for 2011 (on top) and 2001 (on bottom)

mizes what it calls the map equation, which is detailed in Rosvall et al. (2009).
The results showed that over the past 16 years there has been minimal or no

community structure in oil or coal trade networks. This can mostly be attributed to
the ease of transporting (oil) and abundance of extracting (coal) the two commodities,
leading to highly dense graphs.

This makes it hard for the formation of any communities. This was a good
affirmation that the algorithm was working properly. For natural gas trading, the
results were more interesting. The community structure of natural gas trading seems
to greatly reflect how the industry has evolved. It is becoming less dependent on
geographies and more global (with increasing LNG terminals). The difference in
community detection between 2001 and 2011 can be seen in Figure 2-4.

2.3.5 Shale Gas & Network Properties

Before going into the impacts of hydraulic fracturing, lets briefly discuss why it is
important. Hydraulic fracturing, also known as shale, is a method of excavating gas
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and oil, as discussed in the first chapter. It gained immense popularity over the past
decade. This has led to massive amounts of natural gas production in the US.

This explosion of fracking is also interesting in another way: it has been a US-
centric phenomenon, mainly due to three reasons:

1. There have been environmental concerns due to the process of hydraulic frac-
turing. This has led to negative public policy in some regions.

2. Property rights in many shale rich states permit horizontal drilling which de-
creases the market price of leasing land to drill.

3. It is a water intensive process. If the opportunity cost of using water is too
high, it isn’t viable.

Fracking has affected the composition of the electricity grid as well. Natural gas
makes up 30% of the total electricity production compared to 20% just 10 years ago.
Such structural changes are unprecedented in the energy sector in such a short time
period. This effect has propagated to international fossil fuel trade as well, making
the US a major producer of oil and natural gas.

Using the network properties as well as the ranking methods discussed previously,
we will discuss some of the effects of shale.

Exports & Imports

Figure 2-5 visualizes US exports and imports over time. We can make two speculative
interpretations of this figure:

1. We can see that coal exports are starting to increase around 2008. We see a
peak around 2011 and then decreases afterwards. We also see a not so dramatic,
but still gradual decrease of coal imports over time. One interpretation of the
exports can be the following: with shale starting to play a prominent role in
2008, US coal producers found the US market prices to be below their marginal
cost. This led to an increase in US exports, up until 2011 when the exports
started to decline, quite dramatically after the year 2012. After 2012, total
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Figure 2-5: Historical Natural Gas and Coal Export/Imports in the US

production decreased substantially in the US, potentially causing coal to hit a
critical point of not meeting marginal cost for exporting.

2. Natural Gas: This graph is very much in line with what we would expect.
Around 2008, US imports of gas decrease. We see less of a dramatic change in
exports because of the geographic constraints associated with natural gas. We
should expect to see increases in export over time as well as dramatic changes
if transportation technology is drastically changed.

Trade Partners

When it comes to trading partners that the US has had for coal and natural gas, we
can look at Figure . This figure is mostly as expected. Certain discrepancies that
can be discussed are:

1. In 2004, we see a jump in US coal export partners. This is due part to the
Asian market opening up to the US. The details of this are given in the 2004
Coal report by the EIA.

2. There is a significant jump in trade partners of coal between 2000-2001. We
have not found a good explanation for this phenomenon.
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Figure 2-6: Historical Natural Gas and Coal US Trading Partners (by number)

Rankings

Lastly, the algorithm associated to the US were analyzed. Using the rankings from
the weighted HITS, Figure 2-7 was created. It shows how the US rank has changed
over time and visualizes these changes that have been ensuing since the late 2000s.
Figure 2-7 (a) shows the authority ranking of the US. This represents the importance
of a node in a network as an authority. It can be seen that the rankings of gas and
coal are decreasing over time. This would imply less of a central role in the network
for these two commodities. This makes sense as the US has been moving towards
consuming its own gas and consuming less coal. Figure 2-7 (b) shows the consistent
increase in hub ranking the US has had over time. What is interesting to see is its
ranking not change for coal. If the ranking algorithm is accurate, this would imply
that increased US exports were not enough to move it up the rankings significantly.
One hypothesis for this could be: the US replaced coal exported by countries with
lower rankings and that countries ranking above the US did the same. This would
imply the market potentially losing density and increasing in centrality around a
couple nodes.

2.4 Conclusion

In this chapter, fossil fuel trade is analyzed using network science tools. Simple data
aggregation was used to visualize basic network properties such as network size and
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Figure 2-7: Historical US Hub and Authority Rankings

degree properties. The hypothesis that fossil fuel networks follow scale free distri-
butions was shown to fail stronger tests. Several algorithms were tested to create
different features of the networks, including ranking algorithms and community de-
tection algorithms. Finally, the network properties and features were used to analyze
the impacts of hydraulic fracturing.
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Chapter 3

Modelling the Shale Shock: A
general equilibrium framework

3.1 Introduction

The previous chapter analyzed the network properties of fossil fuel trade. These
analyses were able to demonstrate interesting properties but do not give us insight
into causal relationships between changes in fossil fuel trade. These results are useful
in determining more formal ways of answering questions such as: (1) Which coun-
tries are becoming more influential in global fossil fuel trade? (2) How is clustering
of countries changing over time? and (3) What distribution does the trade net-
works follow/ don’t follow? But, they are not able to answer questions related to
understanding the impacts of a given event. We now discuss why this is the case.

One might formulate a hypothesis on the impacts of a given shock to certain
economic activities such as supply, demand, or trade barriers. If we want to test
such a hypothesis, we would need to understand the causal structure of the system.
To do so, we must control for the many endogenous components of the system that
are interlinked: local demand and production, different factors of production, global
trade, the different labor, technology, and natural resources of countries, and many
other variables. Additionally, and connected to the previous issue is the high dimen-
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sional aspect of trade networks. The time-series information we have (which is in
the order of decades) is relatively small relative to the dimensionality of the data
for a given year. This makes statistical testing difficult. Compounding this effect is
the fact that time-series analysis requires additional understanding of the temporal
dimension, which is hard to extract partly due to the two issues of endogeneity and
high dimensionality.

All of the reasons mentioned above make inference on trade networks a difficult
statistical problem. For this reason, we will stray away from statistical methods
in determining the trade impacts of fossil fuel trade. We will move to the litera-
ture that covers general equilibrium frameworks, more specifically the international
trade literature in economics. In these types of models, an “expert” creates a set
of constitutive equations and conservation laws that dictate the model world. The
“expert" justifies his/her decisions of these equations and why they would represent
a relatively accurate depiction of the simulation that one wants to conduct. Once
the “expert" creates and justifies the general equilibrium framework, certain scenar-
ios can be analyzed and interpreted. If the setting of the model is assumed to be
representative, then the results can be interpreted as causal.

General equilibrium models tend to work quite well when modelling the physical
world, where the equations are known to a high level of certainty. But due to the
fact that equations related to the social and economic world are not known with the
same certainty, they tend to be scrutinized (with reason) to a higher degree. The
assumption of an all-knowing expert that can perfectly model global trade dynamics
is of course an extremely strong one, but because of the challenges detailed earlier,
which limit us from using statistical methods, it is one that will be made. This of
course means that the results cannot always be taken at face value. To heed some
of these cautions, we will select a type of model that takes into account the complex
behavior of global trade while still having interpretable results.

Traditionally, the international trade literature has focused on Computable Gen-
eral Equilibrium Models (Costinot and Rodríguez-Clare (2014)). These models,
mainly aimed to capture the complexity of global markets tend to have two main
drawbacks: (1) Their complexity hinders interpretability and (2) many assumptions
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are needed for parameters in the equations.

Starting with Eaton and Kortum (2002), there has been a strand of literature
that develops simpler model frameworks based on micro-economic foundations and
use “gravity equations” as the main structure implemented on bilateral trade. This
research is a quantification of Ricardian theory developed by David Ricardo in 1817.
This theory describes how two countries are often better off by specializing in the
production of a certain good and trading it rather then producing and consuming
goods in isolation. The Ricardian theory of comparative advantage is quite old, but
has only recently become a common tool for quantitative research in international
trade (Eaton and Kortum (2012)). These types of models are often referred to as
Structural Gravity Models.

As discussed in Costinot and Rodríguez-Clare (2014), gravity equations, which
refer to the structure that is assumed of bilateral trade, is also a relatively old idea
dating back to Tinbergen (1962), but this technique was not accepted for a long
time since it wasn’t founded on economic principles. These gravity equations get
their name from physics, since the equation describing to gravity was a point of in-
spiration in determining bilateral trade structure. The vague idea behind it is that
trade relationships between any two countries for a certain good are proportional
to economic properties of the country and inversely proportional to the distance be-
tween any two countries. Costinot and Rodríguez-Clare (2014) review variations and
assumptions of contemporary models that are based on gravity equations. Costinot
and Vogel (2015) furthermore review related Ricardo-Roy models that have microe-
conomic foundations based on multiple factors of production of a certain good. More
recently, Farrokhi (2016) uses the frameworks developed by this literature to under-
stand global oil trade and discusses the gains from trade resulting from oil.

As the literature grew, different adaptations of the model framework developed.
Most frameworks used counterfactual setups to understand gains from trade by vary-
ing trade costs. The method used to set up counterfactual equations is termed “exact
hat algebra", and uses data from a baseline year to create a counterfactual equilib-
rium setup relative to the baseline year. This method helps simplify the equations,
by cancelling out many terms that are hard to find data on. This method was first
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developed in Dekle et al. (2008). In trade literature, “iceberg trade costs" are usu-
ally used as the main source of variation in these counterfactual setups, but these
same techniques can be used to analyse the impact from other shocks, such as supply
shocks.

When trying to answer questions related to the shale shock in the US, it is
important that the model be able to incorporate the unique role that commodities
play in the global economy. Fally and Sayre (2018) tries to do exactly this, by
creating a two-stage production model with downstream and upstream goods, where
the upstream goods represent commodities. The paper uses a counterfactual setup
with a shock to “iceberg trade barriers” to evaluate the gains from trade. We will use
this model as our main framework and develop similar counterfactual equations, but
instead of shocking trade barriers, we will shock commodity supplies in the US and
analyze the results. In the next two sections we will set up the model equilibrium
and the counterfactual equilibrium, followed by discussing the data the numerical
methods used and the results.

3.2 Model

The model discussed in this section is developed in Fally and Sayre (2018). The
author’s develop a model that at its core incorporates commodities and labor as the
two main sources of income and uses final goods as an additional factor of produc-
tion and international trade with a gravity type structure. The relationship between
commodities and final goods creates input-output linkages. This model can incorpo-
rate multiple sectors of commodities, final goods, and regions. These will be denoted
with subscripts of 𝑛 or 𝑖 for regions, 𝑔 for commodities, and 𝑘 for final goods, similar
to the original paper.

The model sets up demand, cost of production, price indices, bilateral trade
equations, and sources of income and looks for an equilibrium. Although this model
is based on structural gravity model literature, the authors have tailored the model
to incorporate characteristics unique to commodity trade. We refer the reader to
their paper for more discussion on the assumptions in setting up the model.
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Demand for final good The model has the following quantity of demand in
region 𝑛 for a final good 𝑘:

𝐷𝑛,𝑘 = (𝑃𝑛,𝑘/𝑃𝑛)1−𝜎𝑎𝑛𝑘𝐸𝑛 (3.1)

where 𝑃𝑛,𝑘 represents price index of final good 𝑘 in region 𝑛, 𝑃𝑛 represents the price
index of region 𝑛, 𝜎 is the elasticity of substitution, 𝑎𝑛,𝑘 is the utility shifter for a
given region n and final good k, and 𝐸𝑛 is the total income in region 𝑛 (GDP).

Production Cost of final goods Production of final good 𝑘 in region 𝑖 is
dependent, by the structure of this model, on wages as well as a set of commodities
𝐺(𝑘). Producing final good 𝑘 in region 𝑖 will cost:

𝐶𝑖,𝑘 = 𝐴𝑖,𝑘

⎡⎣𝛽𝑖,𝑘,𝐿𝑤
1−𝜂𝑘
𝑖 +

∑︁
𝑔∈𝐺(𝑘)

𝛽𝑖,𝑘,𝑔(𝑃𝑖,𝑔)
1−𝜂𝑘

⎤⎦ 1
1−𝜂𝑘

(3.2)

where 𝐴𝑖,𝑘 is the region final good specific productivity term, 𝑤𝑖 is the representative
wage in region 𝑖, 𝜂𝑘 is the elasticity of demand, 𝑃𝑖,𝑔 is the price index for commodity
𝑔 in region 𝑖.

Price Index for final goods The price index for final goods in a given region
is the accumulation of the cost and trade barriers from producing the product in all
other regions:

𝑃𝑛,𝑘 =

[︃∑︁
𝑖

(𝐶𝑖,𝑘𝜏𝑛,𝑖,𝑘)−𝜃𝑘

]︃ 1
−𝜃𝑘

(3.3)

where 𝜏𝑛,𝑖,𝑘 is the iceberg trade barrier of importing final good 𝑘 from region 𝑖 to
region 𝑛. We let 𝜏 = 1 when 𝑖 = 𝑛.

Demand for commodities The production of final goods is the main source of
demand for commodity 𝑔 in region 𝑖 and industry 𝑘, which we will define to be:

𝐷𝑖,𝑔,𝑘 = 𝛽𝑖,𝑘,𝑔(𝑃𝑖,𝑔/𝐶𝑖,𝑘)1−𝜂𝑘𝑌𝑖𝑘 (3.4)

where 𝛽𝑖,𝑘,𝑔 is the factor requirements for commodity 𝑔 (reflects differences in tech-
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nology).

Production Cost of commodities Producing commodities has again constant
elasticity of substitution for the factor prices. Production for a commodity is depen-
dent on labor and natural resources. We can define the cost of producing commodity
𝑔 in region 𝑖 to be similar to that of producing final goods:

𝐶𝑖,𝑔 = 𝐴𝑖,𝑔

[︁
𝛽𝑖,𝑔𝑟

1−𝜌𝑔
𝑖,𝑔 + (1 − 𝛽𝑖,𝑔)𝑤

1−𝜌𝑔
𝑖

]︁ 1
1−𝜌𝑔 (3.5)

where 𝛽𝑖,𝑔 is a commodity, region specific technology constant and 𝜌𝑔 is the elasticity
of substitution between labor and a commodity. This parameter reflects elasticity of
supply.

Price Index for commodity goods The price index for commodity goods in
a given region is the same that it is for final goods:

𝑃𝑛,𝑔 =

[︃∑︁
𝑖

(𝐶𝑖,𝑔𝜏𝑛,𝑖,𝑔)
−𝜃𝑔

]︃ 1
−𝜃𝑔

(3.6)

Price index of a region The price index of a region is defined as the accumu-
lation of the price index of final goods:

𝑃𝑛 =

[︃∑︁
𝑘

𝑎𝑛,𝑘(𝑃𝑛,𝑘)1−𝜎

]︃ 1
1−𝜎

(3.7)

Trade in final goods and commodities The model follows the same conven-
tion of trade for final goods and commodities. The trade for good 𝑘 from region 𝑖 to
region 𝑛 is given by:

𝑋𝑛,𝑖,𝑘 = 𝜆𝑛,𝑖,𝑘𝐷𝑛,𝑘 =
(𝐶𝑖,𝑘𝜏𝑛,𝑖,𝑘)−𝜃𝑘∑︀
𝑗(𝐶𝑗,𝑘𝜏𝑛,𝑗,𝑘)−𝜃𝑘

𝐷𝑛,𝑘 (3.8)

and similarly trade for commodity 𝑔 from region 𝑖 to region 𝑛 is given by:

𝑋𝑛,𝑖,𝑔 = 𝜆𝑛,𝑖,𝑔𝐷𝑛,𝑔 =
(𝐶𝑖,𝑔𝜏𝑛,𝑖,𝑔)

−𝜃𝑔∑︀
𝑗(𝐶𝑗,𝑔𝜏𝑛,𝑗,𝑔)−𝜃𝑔

𝐷𝑛,𝑔 (3.9)
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where 𝜃𝑔 and 𝜃𝑘 are the trade elasticities, 𝜆𝑛,𝑖,𝑔 and 𝜆𝑛,𝑖,𝑘 are the share of exports
which are useful to define for future analysis.

Sources of Income In equilibrium, income for a representative agent from labor
is determined by:

𝐿𝑖𝑤𝑖 =
∑︁

𝑔∈𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠

(1 − 𝛽𝑖,𝑔)(𝑤𝑖/𝐶𝑖,𝑔)
1−𝜌𝑔𝑌𝑖,𝑔 +

∑︁
𝑘∈Final goods

(𝛽𝑖,𝑘,𝐿)(𝑤𝑖/𝐶𝑖,𝑘)1−𝜂𝑘𝑌𝑖,𝑘

(3.10)

As well as total income from commodities:

𝑅𝑖,𝑔𝑟𝑖,𝑔 = 𝛽𝑖,𝑔(𝑟𝑖,𝑔/𝐶𝑖,𝑔)
1−𝜌𝑔𝑌𝑖,𝑔 (3.11)

Which leads to total income (GDP):

𝐸𝑛 = 𝐿𝑛𝑤𝑛 +
∑︁

𝑔∈𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠

𝑅𝑛,𝑔𝑟𝑛,𝑔 (3.12)

Equilibrium conditions are defined by equations (1) - (12). Note that we
can additionally define region production of final goods and commodities to be:
𝑌𝑖,𝑘 =

∑︀
𝑛 𝑋𝑛,𝑖,𝑘 and 𝑌𝑖,𝑔 =

∑︀
𝑛 𝑋𝑛,𝑖,𝑔. In this setup, the set of given parameters

are {𝜎, 𝑎𝑛𝑘, 𝛽𝑖,𝑘,𝐿, 𝜂𝑘, 𝛽𝑖,𝑘,𝑔, 𝐴𝑖,𝑘, 𝜏𝑛,𝑖,𝑘, 𝜏𝑛,𝑖,𝑔, 𝜃𝑘, 𝜌𝑔, 𝛽𝑖,𝑔, 𝐴𝑖,𝑔, 𝜃𝑔, 𝜎, 𝑅𝑖,𝑔, 𝐿𝑛} and the set
of free variables are {𝐷𝑛,𝑘, 𝐷𝑛,𝑔, 𝐶𝑖,𝑘, 𝐶𝑖,𝑔, 𝑃𝑛,𝑘, 𝑃𝑛,𝑔, 𝑃𝑛, 𝑋𝑛,𝑖,𝑘, 𝑋𝑛,𝑖,𝑔, 𝑤𝑖, 𝑟𝑖,𝑔, 𝐸𝑛}.

3.3 Counterfactual Setup

In order to study a counterfactual scenario, we are using the technique first intro-
duced in Dekle et al. (2008) which has been termed the “exact hat algebra" method.
The observation is that solving the simulation exercise relative to observations you
already have can cancel out some of the constants in the equations. To do so, we
create a new set of equations that solve for ̂︀𝑍 = 𝑍 ′/𝑍, where Z is the value we
observe and 𝑍 ′ is the value of variable Z that we are looking to simulate.
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The counterfactual equilibrium is given in the following set of equations:

̂︁𝑃𝑛 = [
∑︁
𝑘

𝛼𝑛𝑘(̂︂𝑃𝑛𝑘)1−𝜎]
1

1−𝜎 (3.13)

̂︂𝑃𝑛𝑘 = [
∑︁
𝑖

𝜆𝑛𝑖𝑘(̂︁𝐶𝑖𝑘)−𝜃𝑘 ]
− 1

𝜃𝑘 (3.14)

̂︂𝑃𝑛𝑔 = [
∑︁
𝑖

𝜆𝑛𝑖𝑔(̂︁𝐶𝑖𝑔)
−𝜃𝑔 ]−1/𝜃𝑔

(3.15)

̂︂𝐷𝑛𝑔 =
∑︁
𝑘

𝑑𝑛𝑘𝑔(̂︂𝑃𝑛𝑔/̂︂𝐶𝑛𝑘)1−𝜂𝑘 ̂︁𝑌𝑛𝑘 (3.16)

̂︂𝐷𝑛𝑘 = (̂︂𝑃𝑛𝑘/̂︁𝑃𝑛)1−𝜎̂︁𝐸𝑛 (3.17)

̂︁𝑌𝑖𝑘 =
∑︁
𝑛

(𝑋𝑛𝑖𝑘/𝑌𝑖𝑘)(̂︁𝐶𝑖𝑘)−𝜃𝑘(̂︂𝑃𝑛𝑘

𝜃𝑘
)̂︂𝐷𝑛𝑘 (3.18)

̂︁𝑌𝑖𝑔 =
∑︁
𝑛

(𝑋𝑛𝑖𝑔/𝑌𝑖𝑔)(̂︁𝐶𝑖𝑔)
−𝜃𝑔(̂︂𝑃𝑛𝑔

𝜃𝑔
)̂︂𝐷𝑛𝑔 (3.19)

̂︂𝐶𝑛𝑘 = [𝜑𝑖𝑘,𝐿 ̂︀𝑤1−𝜂𝑘
𝑖 +

∑︁
𝑔

𝜑𝑖𝑘,𝑔(̂︁𝑃𝑖𝑔)
1−𝜂𝑘 ]

1
1−𝜂𝑘 (3.20)

̂︂𝐶𝑛𝑔 = [𝜑𝑖𝑔,𝑅̂︁𝑟𝑖𝑔1−𝜌𝑔 + 𝜑𝑖𝑔,𝐿 ̂︀𝑤𝑖
1−𝜌𝑔 ]

1
1−𝜌𝑔 (3.21)

̂︁𝐸𝑛 = 𝑒𝑖𝐿 ̂︀𝑤𝑖 +
∑︁
𝑔

𝑒𝑖𝑔,𝑅̂︁𝑟𝑛𝑔 ̂︂𝑅𝑛𝑔 (3.22)

̂︁𝑟𝑛𝑔 = (̂︁𝑟𝑖𝑔/̂︁𝐶𝑖𝑔)
1−𝜌𝑔 ̂︁𝑌𝑖𝑔/̂︂𝑅𝑛𝑔 (3.23)
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̂︁𝑤𝑛 =
∑︁
𝑔

(𝜑𝑖𝑔,𝐿𝑌𝑖𝑔/(𝑤𝑖𝐿𝑖))( ̂︀𝑤𝑖/̂︁𝐶𝑖𝑔)
1−𝜌𝑔 ̂︁𝑌𝑖𝑔 +

∑︁
𝑘

(𝜑𝑖𝑘,𝐿𝑌𝑖𝑘/(𝑤𝑖𝐿𝑖))( ̂︀𝑤𝑖/̂︁𝐶𝑖𝑘)1−𝜂𝑘 ̂︁𝑌𝑖𝑘

(3.24)
The derivations for these counterfactual setups can be found in the Appendix.

In bold, we can see the exogenous variable that will deliver the supply shock in our
counterfactual system: ̂︂𝑅𝑛,𝑔, the region good specific resource allocation. For our
counterfactual scenario we plan to increase the resource allocation of natural gas and
oil in the US.

Additionally, 𝑌𝑖,𝑘 and 𝑌𝑖,𝑔 is introduced as region, good specific production. We
do so by replacing the 𝑋𝑛𝑖𝑘 and 𝑋𝑛𝑖𝑔 variables with production in order to decrease
the number of equations we have to solve for. We can also do this since there is data
on region good specific production. Additionally, as in Fally and Sayre (2018), we
simplify the equations to variables that we have data on. 𝑒𝑛,𝐿, 𝑒𝑛,𝑔, 𝑑𝑖,𝑘,𝑔, 𝜑𝑖,𝑘,𝐿, 𝜑𝑖,𝑘,𝑔

are all further discussed in the data section.
The equations from (13)-(24) define our equilibrium state, but notice that these

equations can be compressed into two core variables: ̂︀𝑤𝑖 and ̂︂𝑟𝑛,𝑔, the wages of labor
and the cost of a given commodity in a region. This makes sense since these variables
are what drives the equations. We can derive a reduced form with just these two equa-
tions. For more detail on why this is the case, the reader may refer to the Appendix.
In this setup, the set of given parameters are {𝑋𝑛𝑖𝑔, 𝑋𝑛𝑖𝑘, 𝑌𝑛𝑔, 𝑌𝑛𝑘, 𝐷𝑛𝑔, 𝐷𝑛𝑘, 𝐸𝑛, 𝑒, 𝜑, 𝑑𝑖𝑘𝑔}
and the set of free variables are { ̂︀𝑤𝑖,̂︂𝑟𝑛,𝑔}1.

In addition to the setup above, if the equations from (13)-(24) are satisfied for
the case where ̂︀𝑍 = 𝑍 ′/𝑍 = 1, then we need to add a constraint. This is because
when ̂︀𝑍 = 1, (13)-(24) will have infinitely many solutions, occurring each time the
elements of ̂︀𝑤𝑖 and ̂︂𝑟𝑛,𝑔 are equal. The reason for this is that when we are solving the
equations relative to a given year, we also have to constrain the wages or resource
prices relative to a given region. Choosing some region 𝑛𝑏𝑎𝑠𝑒, we need the constraint
that ̂︀𝑤𝑖 = ̂︁𝑤𝑖

𝑤𝑛𝑏𝑎𝑠𝑒
. This allows the solution to be relative to a given region. Note that

this makes the base region’s wage equal to 1, which means that depending on the
1The Data section goes into more detail about how the given parameters are obtained.
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region we choose, GDP (𝐸𝑛) will be different. This can be interpreted as deciding
on which region’s currency will be used as the base currency.

Given this counterfactual setup, we are interested in modelling the supply shock
of the shale revolution. In order to do so we need data for a base year as well as a
numerical setup that will solve for the counterfactual results. The next two sections
will discuss the data and numerical methods for the counterfactual setup.

3.3.1 Data

The main source of data that is used for the model calibration is the Global Trade
Analysis Project (GTAP) version 8. Description of this dataset can be found in
Badri et al. (2012). This version has data on global trade and is freely available.
For this project, we use the data from 2007, which we choose since it is considered to
be right before the large change in US production of shale gas and oil. The GTAP
dataset contains information on 129 regions and 57 sectors. In the dataset, most
regions represent major countries2.

As in Fally and Sayre (2018), we divide the 57 sectors into upstream and down-
stream industries. Unlike their paper, which tries to disaggregate the commodities
(such as minerals), we aggregate these sectors into 6 commodity categories: coal, oil,
natural gas, metals, food, and minerals. There are three reasons for aggregating: (1)
numerical feasibility, (2) it contains the three commodities we are most interested in,
and (3) ease of interpretability. Similarly, for downstream industries, we group the
variables into 6 general sectors: manufacturing, clothes manufacturing, metal man-
ufacturing, utilities, business, and public administration/defence/health/education.
A summary of this aggregation can be seen in Table A.1.

Bringing the data to a flexible and usable format requires some preprocessing.
The dataset on the website is found in an encrypted .ℎ𝑎𝑟 format. Once a free account
is created, a license is provided by GTAP that allows you to open the dataset with
their own software. They provide some methods for extracting this data into GAMS,

2for a more detailed list of these regions and sectors, we direct the reader to the GTAP’s website:
https://www.gtap.agecon.purdue.edu/default.asp
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a optimization software that MIT does not have a license for, so this dataset has to
initially be converted to CSV format using a ℎ𝑎𝑟2𝑐𝑠𝑣.𝑒𝑥𝑒 script provided. Once this
is done, the .𝑐𝑠𝑣 files can be analyzed in any general programming language. For this
project, Python 3.6 was used. The GTAP dataset is a set of datasets that describe
global trade as well as input output tables between industries. Variable and dataset
definitions can be found on their website3. Using the variables in this dataset, we
create variables for 𝑍 = {𝑋𝑛𝑖𝑔, 𝑋𝑛𝑖𝑘, 𝑌𝑛𝑔, 𝑌𝑛𝑘, 𝐷𝑛𝑔, 𝐷𝑛𝑘, 𝐸𝑛} as well as parameters
𝑒, 𝜑, 𝑑𝑖𝑘𝑔. The discussion on how these variables were defined from the dataset can
be found in the Appendix.

3.3.2 Numerical Methods & Calibration

The counterfactual setting that we intend to study can be set up in different ways.
Either as solving a system of equations or as an optimization given a set of con-
straints. To see this, let us first define what we are solving for: (̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔). We can
define a vector 𝑥 of dimension 𝑛 + 𝑛 * 𝑔 that concatenates 𝑤𝑖 and 𝑟𝑖𝑔. Next we can
define 𝐹 (·) to be the function whose root we are trying to solve for:

0 = 𝐹 (𝑥) =

[︃̂︁𝑟𝑛𝑔 − 𝑓̂︂𝑟𝑛𝑔(̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔)̂︁𝑤𝑛 − 𝑓̂︁𝑤𝑛(̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔)
]︃

(3.25)

where 𝑓̂︁𝑤𝑛(̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔) and 𝑓̂︂𝑟𝑛𝑔(̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔) are the right hand sides of equations (23) and
(24); respectively.

[︃
𝑓̂︁𝑤𝑛(̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔)
𝑓̂︂𝑟𝑛𝑔(̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔)

]︃
=

[︃
((̂︁𝑟𝑛𝑔/̂︂𝐶𝑛𝑔)

1−𝜌𝑔 ̂︁𝑌𝑛𝑔/̂︂𝑅𝑛𝑔∑︀
𝑔(𝜑𝑛𝑔,𝐿𝑌𝑖𝑔/(𝑤𝑛𝐿𝑛))(̂︁𝑤𝑛/̂︂𝐶𝑛𝑔)

1−𝜌𝑔 ̂︁𝑌𝑛𝑔 +
∑︀

𝑘(𝜑𝑛𝑘,𝐿𝑌𝑛𝑘/(𝑤𝑖𝐿𝑛))(̂︁𝑤𝑛/̂︂𝐶𝑛𝑘)1−𝜂𝑘 ̂︁𝑌𝑛𝑘

]︃
(3.26)

Note that, as we discussed in the counterfactual setup, the variables {̂︂𝐶𝑛𝑔, ̂︁𝑌𝑛𝑔,̂︂𝐶𝑛𝑘, ̂︁𝑌𝑛𝑘}
are functions of (̂︁𝑤𝑛, ̂︁𝑟𝑛𝑔), which means that we do not need to solve for them as well.
When considering to solve this problem, in addition to 𝐹 (𝑥), we need to consider the

3https://www.gtap.agecon.purdue.edu/models/setsVariables.asp
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constraint of a base region that is necessary (discussed in the counterfactual setup
section): ̂︀𝑤𝑖 = ̂︁𝑤𝑖

𝑤𝑛𝑏𝑎𝑠𝑒
. There are two equivalent setups that we can use to solve this

problem: (1) A system of equations and (2) Constrained minimization. The first
setup would be:

Solve x ∈ R+ s.t.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹 (𝑥)̂︀𝑥1 − ̂︁𝑥1

𝑥𝑛𝑏𝑎𝑠𝑒̂︀𝑥2 − ̂︁𝑥2

𝑥𝑛𝑏𝑎𝑠𝑒

.

.

.̂︁𝑥𝑛 − ̂︁𝑥𝑛

𝑥𝑛𝑏𝑎𝑠𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (3.27)

where 𝑥1, ..., 𝑥𝑛 is the ̂︀𝑤𝑖 vector. The second setup would be the optimization
setup:

𝑥* =𝑎𝑟𝑔 min
𝑥∈R+

𝐹 (𝑥)

s.t. ̂︀𝑤𝑖 =
̂︀𝑤𝑖

𝑤𝑛𝑏𝑎𝑠𝑒

∀𝑖 ∈ 1, 2, ..., 𝑛
(3.28)

The equivalence of both settings to solving the problem is achieved under the
condition that there exists a unique solution for 𝑥 ∈ R+. There is some warrant
in believing that a unique solution exits. In Allen et al. (2020), the authors prove
existence and uniqueness for a class of gravity type general equilibrium models. The
6 conditions laid out in the paper are met by the model in this chapter, but the
framework that Allen et al. (2020) lays out is for a single aggregate good, compared
to the setting in this chapter, which has multiple goods and two factors of production.
Although this proof doesn’t encompass the whole framework in this paper, it gives
some reason to believe that a unique result exists. Python’s SciPy package as well
as the IpOpt framework are used to solve this numerically.
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3.4 Results

As discussed in the data section, data for most variables is taken from the GTAP 8
dataset. The only parameters that are not in this dataset are the elasticity measures
𝜃, 𝜌, 𝜂, and 𝜎. There is a large literature on values to use for these elasticity measures
as they can have a large impact on the output. Initially, we will start with standard
values that are used in the literature, as well as the Fally and Sayre (2018) paper.
Later, we will try to use better informed values, especially in relation to fossil fuels
and see how the results change.

As in Simonovska and Waugh (2014) and Fally and Sayre (2018), we set the
trade elasticities (𝜃) to be 5, supply and demand elasticity of 0.6, and 𝜎 value of 1 to
satisfy the constant elasticity of substitution assumption. We set the supply shock
of a doubling of crude oil resources and a 50% increase in natural gas production,
similar to the change seen between 2007 and 2017. If we look at what has been seen
in the markets, the Henry Hub Natural Gas Spot Price have gone from and average
of $6.97 in 2007 to $2.99 in 2017, while natural gas production has gone from 20
Million Cubic Feet to 30 Million Cubic Feet in the US (50% increase)45. Similarly,
crude oil prices in the West Texas Intermediate have gone from $72 in 2007 to $51,
while US crude oil production has gone from 5 million barrels a day to 9.5 million
barrels a day (≈ 2𝑥 increase). The price data is highly volatile and hard to interpret
as both natural gas and oil prices are highly sensitive to many geopolitical issues
that the model isn’t able to capture. These geopolitical issues can be collusion to fix
prices (OPEC) or impacts of domestic market power of natural gas suppliers (shown
in Davis and Muehlegger (2010)). We should not expect our model to mimic these
prices closely, as it is trying to evaluate the impact of a shale shock alone.

Using a tolerance of 10−4 and the setup given in Equation (28), the model con-
verges to give values for the ̂︀𝑤𝑖 and ̂︁𝑟𝑛𝑔. As an initial figure, we can look at the
change in price values for commodities:̂︁𝑟𝑛𝑔. These can be seen in the heat-map in
Figure 3-1.

4Production data https://www.eia.gov/dnav/ng/hist/n9050us2a.htm
5Price data https://www.eia.gov/dnav/ng/hist/rngwhhdA.htm
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Figure 3-1 shows the ̂︁𝑟𝑛𝑔 = 𝑟′𝑛𝑔/𝑟𝑛𝑔, the relative change in commodity prices in
each region. In the figure, there are two general trends: (1) there has been an overall
decrease in oil prices, with the largest decrease in the US, and (2) there has been an
average decrease in natural gas prices, but the decrease is more irregular (the largest
decrease occurring in the US). This should be expected since trade barriers to crude
oil are minimal, due to the ease of transporting a barrel of oil. The largest decrease
in price is in the US, with 𝑟𝑈𝑆𝐴,𝑜𝑖𝑙 = 0.64. The decrease in natural gas prices also
follows a trend we would expect, which is that US prices decrease the most significant,
followed by bordering countries: Mexico and Canada. This suggests an interesting
property of the model, which is that it is capturing the property that sharing a
border makes natural gas trade easier (the data does not explicitly contain distance
between countries). The ̂𝑟𝑈𝑆𝐴,𝑁𝐺 = 0.71.

Next, we would like to see the sensitivity of these results to the elasticity as-
sumptions as well as looking at different elasticity values that might better represent
the commodity properties. Assuming that the commodities of interest (coal, oil,
and natural gas) have constant elasticities of trade is a bit unrealistic. Estimating
trade elasticity has a long history and is still a large area of research. Instead of
trying to estimate these values, we can use estimates published in other papers. Pri-
marily, the Broda and Weinstein (2006) estimates fit well, since they provide trade
elasticity parameters for the three commodities of interest. The authors find the
elasticity of trade to be 22.1 for crude oil, 2.01 for coal and 2.12 for natural gas.
Using these parameters, we can evaluate the model again. The results show a rela-
tively different picture. Where natural gas prices are 0.65 times their base year value
( ̂𝑟𝑈𝑆𝐴,𝑁𝐺 = 0.65) and oil prices are 0.77 times their base year value (𝑟𝑈𝑆𝐴,𝑜𝑖𝑙 = 0.77).
These results are not dramatically different from the initial “naive" results, but still
show a a relative shift for both price changes. This shows the importance of the
elasticity parameter when it comes to the point estimate of the change in natural re-
source prices. Figure 3-2 shows the ̂︁𝑟𝑛𝑔 = 𝑟′𝑛𝑔/𝑟𝑛𝑔, the relative change in commodity
prices in each region using the Broda and Weinstein (2006) values. Even though the
point estimates defer, the distributional price impact is quite similar.
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3.5 Conclusion

In this chapter, we set up a general equilibrium framework for trade that incorporates
upstream industries (commodities) as well as downstream industries to simulate the
impacts of a supply shock to US natural gas and oil supply. Using a counterfactual
setup coined “exact hat algebra", the supply shock was simulated relative to the base
year of 2007. Numerically the model converged (using a tolerance of 10−4) and the
resulting values were analyzed. The results predict that the supply shock to natural
gas and oil caused a 25% to 35% decrease in price for both commodities, as well as
a cascading effect on trade, which led to a significant drop in oil prices across most
countries and a localized (geographically) impact on natural gas prices.
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Figure 3-1: Heatmap of ̂︁𝑟𝑛𝑔 values for the initial solution to the General Equilibrium
Model.
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Figure 3-2: Heatmap of ̂︁𝑟𝑛𝑔 values for the solution to the General Equilibrium Model
using the Broda and Weinstein (2006) values.
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Chapter 4

Conclusion

Using an array of different methods, Chapters 2-4 try to answer questions related
to local and global impacts of the shale revolution. There are many areas that this
paper does not look at which require future work (some of which has been done by
other researchers). One area that this paper does not look at is assessing the benefits
and drawbacks of fracking in relation to Climate Change. Recent studies show the
methane leakage to be larger than previously thought, quickly bringing the 𝐶𝑂2

impact of using natural gas close to that of coal. One potential area of future work
could be a qualitative review of the benefits and drawbacks of fracking. Turning
back to the results of Chapters 2-4, we can separate the results into local (Chapter
2) and global (Chapters 3 and 4) impacts.

The methods used in Chapter 2 try to asses the impact that the changing energy
composition of US power plants has had on local ambient air pollution. Satellite
based, modelled 𝑃𝑀2.5 data is combined with local power plant properties and price
information to show interesting results. The results show that between 2003 and
2018, an increase in coal prices decreased 𝑃𝑀2.5 concentrations and an increase in
natural gas prices increased 𝑃𝑀2.5 concentration. Furthermore, we are able to show
interactions between these prices and power plant capacity information for a given
county to understand the varying impacts of prices on counties given the power
plant capacity that is located within the county. The results are consistent and
significant to robustness checks using additional FEs as well as different transfor-
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mations. Counterfactual formulation was used on the results of the regressions to
predict the different 𝑃𝑀2.5 concentrations that might have occurred given higher
natural gas prices. Finally, price data is predicted on a power plant level to run
a similar analysis on a more granular grid level analysis. The results show similar
relationships, adding to the robustness of the results.

The global impacts of shale are analyzed in Chapters 3 and 4. Initially, network
properties of fossil fuel networks are analyzed, highlighting the changes that have
occurred in international trade of fossil fuel between 2000 and 2016. In Chapter 4, a
general equilibrium trade model is used to isolate the impacts that shale has had on
US and global prices as well as the cascading effect that has resulted from the shock.
The results predict that the supply shock to natural gas and oil caused a 25% to
35% decrease in price for both commodities, as well as a cascading effect on trade,
which led to a significant drop in oil prices across most countries and a localized
(geographically) impact on natural gas prices.
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Appendix A

Tables

Table A.1: Table describing the mapping from the 57-sector GTAP dataset to the
11-sector setup used in this model

# 11-sector 57-sector
1 food Paddy rice
2 food Wheat
3 food Cereal grains nec
4 food Vegetables, fruit, nuts
5 food Oil seeds
6 food Sugar cane, sugar beet
7 farm Plant-based fibers
8 farm Crops nec
9 farm Cattle,sheep,goats,horses
10 farm Animal products nec
11 food Raw milk
12 farm Wool, silk-worm cocoons
13 farm Forestry
14 food Fishing
15 coal Coal
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16 oil Oil
17 gas Gas
18 minerals Minerals nec
19 food Meat: cattle,sheep,goats,horse
20 food Meat products nec
21 food Vegetable oils and fats
22 food Dairy products
23 food Processed rice
24 food Sugar
25 food Food products nec
26 manufacturing Beverages and tobacco products
27 clothe manufacturing Textiles
28 clothe manufacturing Wearing apparel
29 clothe manufacturing Leather products
30 manufacturing Wood products
31 manufacturing Paper products, publishing
32 manufacturing Petroleum, coal products
33 manufacturing Chemical,rubber,plastic prods
34 manufacturing Mineral products nec
35 metal manufacturing Ferrous metals
36 metal manufacturing Metals nec
37 metal manufacturing Metal products
38 manufacturing Motor vehicles and parts
39 manufacturing Transport equipment nec
40 manufacturing Electronic equipment
41 manufacturing Machinery and equipment nec
42 manufacturing Manufactures nec
43 utilities Electricity
44 utilities Gas manufacture, distribution
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45 utilities Water
46 manufacturing Construction
47 business Trade
48 transportation Transport nec
49 transportation Sea transport
50 transportation Air transport
51 business Communication
52 business Financial services nec
53 business Insurance
54 business Business services nec
55 business Recreation and other services
56 PubAdmin/Defence/Health/Educat PubAdmin/Defence/Health/Educat
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Appendix B

Counterfactual derivation

In this section of the appendix, we will derive the counterfactual setup proposed in
Chapter 4. Chapter 4 uses the technique first introduced in Dekle et al. (2008), that
derives a set of equations of the form: ̂︀𝑍 = 𝑍 ′/𝑍. This derivation is skipped in the
chapter and will be derived here. The algebra for each equation has a repeating flow:
(1) take an equation from the Model section of Chapter 4, (2) set up the counter-
factual 𝑍 ′ = ̂︀𝑍𝑍, and (3) replace the variables that are not fixed on the right hand
side with their counterfactuals.1.

Counterfactual Demand for final good Since the right hand side is all multi-
plicative, the result is simple:

̂︂𝐷𝑛,𝑘𝐷𝑛,𝑘 = (̂︂𝑃𝑛,𝑘𝑃𝑛,𝑘/(̂︁𝑃𝑛𝑃𝑛))1−𝜎𝑎𝑛𝑘̂︁𝐸𝑛𝐸𝑛

̂︂𝐷𝑛,𝑘 =
(̂︂𝑃𝑛,𝑘𝑃𝑛,𝑘/(̂︁𝑃𝑛𝑃𝑛))1−𝜎𝑎𝑛𝑘̂︁𝐸𝑛𝐸𝑛

(𝑃𝑛,𝑘/(𝑃𝑛))1−𝜎𝑎𝑛𝑘𝐸𝑛̂︂𝐷𝑛,𝑘 = (̂︂𝑃𝑛,𝑘/̂︁𝑃𝑛)1−𝜎̂︁𝐸𝑛

(B.1)

1Note that similar algebra can also be found in Fally and Sayre (2019)’s appendix. Difference
is that they use 𝜏 and I use 𝑅̂.
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Counterfactual Production Cost of final goods:

̂︂𝐶𝑖,𝑘𝐶𝑖,𝑘 = 𝐴𝑖,𝑘

⎡⎣𝛽𝑖,𝑘,𝐿( ̂︀𝑤𝑖𝑤𝑖)
1−𝜂𝑘 +

∑︁
𝑔∈𝐺(𝑘)

𝛽𝑖,𝑘,𝑔(̂︂𝑃𝑖,𝑔𝑃𝑖,𝑔)
1−𝜂𝑘

⎤⎦ 1
1−𝜂𝑘

̂︂𝐶𝑖,𝑘 =

⎡⎣𝐴1−𝜂𝑘
𝑖,𝑘 𝛽𝑖,𝑘,𝐿( ̂︀𝑤𝑖𝑤𝑖)

1−𝜂𝑘/𝐶1−𝜂𝑘
𝑖,𝑘 +

∑︁
𝑔∈𝐺(𝑘)

𝛽𝑖,𝑘,𝑔(̂︂𝑃𝑖,𝑔𝑃𝑖,𝑔)
1−𝜂𝑘/𝐶1−𝜂𝑘

𝑖,𝑘

⎤⎦ 1
1−𝜂𝑘

̂︂𝐶𝑖,𝑘 =

⎡⎣𝜑𝑖,𝑘,𝐿 ̂︀𝑤𝑖
1−𝜂𝑘( ̂︀𝑤𝑖𝑤𝑖)

1−𝜂𝑘/𝐶1−𝜂𝑘
𝑖,𝑘 +

∑︁
𝑔∈𝐺(𝑘)

̂︂𝑃𝑖,𝑔

1−𝜂𝑘
𝜑𝑖,𝑘,𝑔

⎤⎦ 1
1−𝜂𝑘

(B.2)

where 𝜑𝑖,𝑘,𝐿 and 𝜑𝑖,𝑘,𝑔 are the labor and commodity cost shares. These values can be
calculated using the GTAP dataset.

Counterfactual Price Index for final goods:

̂︂𝑃𝑛,𝑘𝑃𝑛,𝑘 =

[︃∑︁
𝑖

(̂︂𝐶𝑖,𝑘𝐶𝑖,𝑘𝜏𝑛,𝑖,𝑘)−𝜃𝑘

]︃ 1
−𝜃𝑘

̂︂𝑃𝑛,𝑘 =

[︃∑︁
𝑖

(̂︂𝐶𝑖,𝑘𝐶𝑖,𝑘𝜏𝑛,𝑖,𝑘)−𝜃𝑘/𝑃−𝜃𝑘
𝑛,𝑘

]︃ 1
−𝜃𝑘

̂︂𝑃𝑛,𝑘 =

[︃∑︁
𝑖

(̂︂𝐶𝑖,𝑘)−𝜃𝑘(𝐶𝑖,𝑘𝜏𝑛,𝑖,𝑘/𝑃𝑛,𝑘)−𝜃𝑘

]︃ 1
−𝜃𝑘

̂︂𝑃𝑛,𝑘 =

[︃∑︁
𝑖

(̂︂𝐶𝑖,𝑘)−𝜃𝑘𝜆𝑛,𝑖,𝑘

]︃ 1
−𝜃𝑘

(B.3)

where 𝜆𝑛,𝑖,𝑘 is the share of final good 𝑘 being traded from region 𝑖 to region 𝑛. This
tensor can be calculated using the GTAP dataset.

Counterfactual Demand for commodities:
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̂︂𝐷𝑖,𝑔
̂︂𝐷𝑖,𝑔 =

∑︁
∀ 𝑘

𝛽𝑖,𝑘,𝑔(̂︂𝑃𝑖,𝑔𝑃𝑖,𝑔/(̂︂𝐶𝑖,𝑘𝐶𝑖,𝑘))
1−𝜂𝑘𝑌𝑖,𝑘

̂︁𝑌𝑖,𝑘/𝐷𝑖,𝑔,𝑘

̂︂𝐷𝑖,𝑔 =
∑︁
∀ 𝑘

𝛽𝑖,𝑘,𝑔(𝑃𝑖,𝑔/𝐶𝑖,𝑘)1−𝜂𝑘𝑌𝑖,𝑘/𝐷𝑖,𝑔(̂︂𝑃𝑖,𝑔/̂︂𝐶𝑖,𝑘)1−𝜂𝑘 ̂︁𝑌𝑖,𝑘

̂︂𝐷𝑖,𝑔 =
∑︁
∀ 𝑘

𝑑𝑖,𝑘,𝑔(̂︂𝑃𝑖,𝑔/̂︂𝐶𝑖,𝑘)1−𝜂𝑘 ̂︁𝑌𝑖,𝑘

(B.4)

where 𝑑𝑖,𝑘,𝑔 is the ratio of input into final good 𝑘 of commodity 𝑔 in country 𝑖 for the
baseline year, which we can aggregate data on by using GTAP’s input output tables.
Note that the model being used assumes that commodities are inputs to final goods
and there are no final goods inputted into commodities, which results in a cutting
off of part of the input-output tables and re-normalizing.

Counterfactual Production Cost of commodities can be derived:

̂︂𝐶𝑖,𝑔𝐶𝑖,𝑔 = 𝐴𝑖,𝑔

[︀
𝛽𝑖,𝑔(̂︁𝑟𝑖,𝑔𝑟𝑖,𝑔)1−𝜌𝑔 + (1 − 𝛽𝑖,𝑔)( ̂︀𝑤𝑖𝑤𝑖)

1−𝜌𝑔
]︀ 1

1−𝜌𝑔

̂︂𝐶𝑖,𝑔 =
[︁
𝐴

1−𝜌𝑔
𝑖,𝑔 𝛽𝑖,𝑔(̂︁𝑟𝑖,𝑔𝑟𝑖,𝑔)1−𝜌𝑔/𝐶

1−𝜌𝑔
𝑖,𝑔 + 𝐴

1−𝜌𝑔
𝑖,𝑔 (1 − 𝛽𝑖,𝑔)( ̂︀𝑤𝑖𝑤𝑖)

1−𝜌𝑔/𝐶
1−𝜌𝑔
𝑖,𝑔

]︁ 1
1−𝜌𝑔

̂︂𝐶𝑖,𝑔 =
[︀
𝜑𝑖,𝑔,𝑟(̂︁𝑟𝑖,𝑔)1−𝜌𝑔 + 𝜑𝑖,𝑔,𝑙( ̂︀𝑤𝑖)

1−𝜌𝑔
]︀ 1

1−𝜌𝑔

(B.5)

where 𝜑𝑖,𝑔,𝑟 and 𝜑𝑖,𝑔,𝑙 represent the ratio of resource cost and labor cost to total cost
of producing commodity 𝑔 in country 𝑖. These can also be derived using the GTAP
data.

Counterfactual Price Index for commodity goods: Similar to the price index
of final goods:

̂︂𝑃𝑛,𝑔𝑃𝑛,𝑔 =

[︃∑︁
𝑖

(̂︂𝐶𝑖,𝑔𝐶𝑖,𝑔𝜏𝑛,𝑖,𝑔)
−𝜃𝑔

]︃ 1
−𝜃𝑔

̂︂𝑃𝑛,𝑔 =

[︃∑︁
𝑖

𝜆𝑛,𝑖,𝑔(̂︂𝐶𝑖,𝑔)
−𝜃𝑔

]︃ 1
−𝜃𝑔

(B.6)
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Price index of a region

̂︁𝑃𝑛𝑃𝑛 =

[︃∑︁
𝑘

𝑎𝑛,𝑘(̂︂𝑃𝑛,𝑘𝑃𝑛,𝑘)1−𝜎

]︃ 1
1−𝜎

̂︁𝑃𝑛 =

[︃∑︁
𝑘

𝛼𝑛,𝑘(̂︂𝑃𝑛,𝑘)1−𝜎

]︃ 1
1−𝜎

(B.7)

where 𝛼𝑛,𝑘 is the share of expenditure on good 𝑘 in region 𝑛, which is calculated
using GTAP data.

Trade in final goods and commodities: see that 𝑃−𝜃𝑔
𝑛,𝑔 =

∑︀
𝑖(𝐶𝑖,𝑔𝜏𝑛,𝑖,𝑔)

−𝜃𝑔 , then:

𝑋𝑛,𝑖,𝑘𝑋𝑛,𝑖,𝑘 = (̂︂𝐶𝑖,𝑘𝐶𝑖,𝑘𝜏𝑛,𝑖,𝑘)−𝜃𝑘(̂︂𝑃𝑛,𝑘𝑃𝑛,𝑘)𝜃𝑘 ̂︂𝐷𝑛,𝑘𝐷𝑛,𝑘

𝑋𝑛,𝑖,𝑘 = (̂︂𝐶𝑖,𝑘)−𝜃𝑘(̂︂𝑃𝑛,𝑘)𝜃𝑘 ̂︂𝐷𝑛,𝑘

(B.8)

Now since 𝑋𝑛,𝑖,𝑘 represents a large set of equations, we will instead summarize this
counterfactual equation in production 𝑌𝑖,𝑘 =

∑︀
∀ 𝑛𝑋𝑛,𝑖,𝑘, which has the counterfac-

tual:

̂︁𝑌𝑖,𝑘𝑌𝑖,𝑘 =
∑︁
∀ 𝑛

𝑋𝑛,𝑖,𝑘𝑋𝑛,𝑖,𝑘

̂︁𝑌𝑖,𝑘 =
∑︁
∀ 𝑛

(𝑋𝑛,𝑖,𝑘/𝑌𝑖,𝑘)(̂︂𝐶𝑖,𝑘)−𝜃𝑘(̂︂𝑃𝑛,𝑘)𝜃𝑘 ̂︂𝐷𝑛,𝑘

(B.9)

Similarly for commodities:

̂︁𝑌𝑖,𝑔 =
∑︁
∀ 𝑛

(𝑋𝑛,𝑖,𝑔/𝑌𝑖,𝑔)(̂︂𝐶𝑖,𝑔)
−𝜃𝑔(̂︂𝑃𝑛,𝑔)

𝜃𝑔 ̂︂𝐷𝑛,𝑔 (B.10)

where 𝜃𝑔 and 𝜃𝑘 are the trade elasticities, 𝜆𝑛,𝑖,𝑔 and 𝜆𝑛,𝑖,𝑘 are the share of exports
which are useful to define for future analysis. This data can be found from a variety
of sources, but for consistency, GTAP is used.

Counterfactual Sources of Income
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𝐿𝑖 ̂︀𝑤𝑖𝑤𝑖 =
∑︁

𝑔∈𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠

(1 − 𝛽𝑖,𝑔)( ̂︀𝑤𝑖𝑤𝑖/(̂︂𝐶𝑖,𝑔𝐶𝑖,𝑔))
1−𝜌𝑔 ̂︁𝑌𝑖,𝑔𝑌𝑖,𝑔

+
∑︁

𝑘∈Final goods

(𝛽𝑖,𝑘,𝐿)( ̂︀𝑤𝑖𝑤𝑖/(̂︂𝐶𝑖,𝑘𝐶𝑖,𝑘))1−𝜂𝑘 ̂︁𝑌𝑖,𝑘𝑌𝑖,𝑘

̂︁𝑤𝑛 =
∑︁
𝑔

(𝜑𝑖𝑔,𝐿𝑌𝑖𝑔/(𝑤𝑖𝐿𝑖))( ̂︀𝑤𝑖/̂︁𝐶𝑖𝑔)
1−𝜌𝑔 ̂︁𝑌𝑖𝑔 +

∑︁
𝑘

(𝜑𝑖𝑘,𝐿𝑌𝑖𝑘/(𝑤𝑖𝐿𝑖))( ̂︀𝑤𝑖/̂︁𝐶𝑖𝑘)1−𝜂𝑘 ̂︁𝑌𝑖𝑘

(B.11)
As well as total income from commodities:

̂︂𝑅𝑖,𝑔̂︁𝑟𝑖,𝑔𝑅𝑖,𝑔𝑟𝑖,𝑔 = 𝛽𝑖,𝑔(̂︁𝑟𝑖,𝑔𝑟𝑖,𝑔/(̂︂𝐶𝑖,𝑔𝐶𝑖,𝑔))
1−𝜌𝑔 ̂︁𝑌𝑖,𝑔𝑌𝑖,𝑔̂︂𝑅𝑖,𝑔̂︁𝑟𝑖,𝑔 = (̂︁𝑟𝑖,𝑔/(̂︂𝐶𝑖,𝑔))

1−𝜌𝑔 ̂︁𝑌𝑖,𝑔

(B.12)

Finally the counterfactual total income:

̂︁𝐸𝑛𝐸𝑛 = 𝐿𝑛̂︁𝑤𝑛𝑤𝑛 +
∑︁

𝑔∈𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠

̂︂𝑅𝑛,𝑔𝑅𝑛,𝑔̂︂𝑟𝑛,𝑔𝑟𝑛,𝑔
̂︁𝐸𝑛 = 𝑒𝑖,𝐿̂︁𝑤𝑛 +

∑︁
𝑔∈𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑖𝑒𝑠

̂︂𝑅𝑛,𝑔̂︂𝑟𝑛,𝑔𝑒𝑖,𝑔,𝑅 (B.13)

where 𝑖,𝐿 and 𝑒𝑖,𝑔,𝑅 represent the ratio of labor and resources to total income. These
can also be derived using the GTAP data.
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