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ABSTRACT 

We consider welfare-optimal investment in and operation of electric power systems with constant 

returns to scale in multiple available generation and storage technologies under perfect foresight. 

We extend a number of classic results on generation, derive conditions for investment and 

operations of storage technologies described by seven cost/performance parameters, and develop 

insights on power systems with multiple storage technologies.  Simulation of a deeply 

decarbonized “Texas-like” power system with two available storage technologies shows both the 

non-existence of simple “merit-order” rules for storage operation and the value of frequency 

domain analysis to describe efficient operation. Our analysis points to the critical role of the capital 

cost of energy storage capacity in influencing efficient storage operation. 
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1. Introduction 

Driven mainly by concerns about climate change, variable renewable energy (VRE) resources, 

mainly wind and solar, are becoming increasingly important sources of electricity in many 

regions.  Because the maximum output of VRE generators is variable and imperfectly 

predictable, however, increased penetration of VRE generation makes it more difficult for power 

system operators to match supply and demand at every instant.  The traditional solution to this 

problem would be to employ more gas turbines or gas combined-cycle plants, both of which can 

increase and decrease output rapidly.  But building more gas-fired generation is inconsistent with 

a desire to reduce carbon dioxide emissions.  

 As the costs of storage, particularly lithium-ion (Li-ion) battery storage, have declined 

rapidly, storage has emerged as a potentially attractive, carbon-free alternative solution to 

problems posed by increased VRE penetration (Patel 2018).  Policy-makers in the U.S. and the 

E.U. have accordingly encouraged the deployment of storage. The California Public Utilities 

Commission has been requiring load-serving entities to procure storage since the promulgation 

of statutory requirements in 2010 (Petlin et al 2018, California Public Utilities Commission n.d.). 

As of late 2020, battery storage targets have also been established in Massachusetts, Nevada, 

New Jersey, New York, and Oregon, and they are under consideration in other states (DSIRE 

database n.d.).  The U.S. Federal Regulatory Commission (2018) has recently issued Order 841, 

which is intended to open wholesale energy markets (and other wholesale markets) to merchant 

storage providers.1  Similarly, The European Union’s Clean Energy Package, most recently 

modified in 2019, calls for competitive supply of storage (Glowacki 2020). 

 In this essay, we explore what economic theory implies about the general properties of 

cost-efficient electric power systems in which storage performs energy arbitrage to help balance 

supply and demand.2 We start from an investment planning model based on the work of Boiteux 

                                                
1 In addition, at the federal level in the U.S., storage facilities that are charged only by solar generators are eligible 
for up to a 30% investment tax credit.   
2 Storage can also perform other functions in electric power systems. Depending on the technology employed, 
storage facilities can provide frequency regulation, deferral of wires investment, and reducing the cost of spinning 
reserves.  For discussions, see Giuletti et al (2018), Balducci et al (2018), and U.S. Government Accountability 
Office (2018). See Sidhu et al (2018) for a worked example of a storage project that could perform multiple 
functions. The focus here is exclusively on the use of storage for energy arbitrage to solve the problems posed by 
increasing VRE penetration. 
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(1960, 1964) and Turvey (1968).3  In models of this sort, constant returns to scale are generally 

assumed in generation, i.e., costs are assumed to be linear in the capacities and outputs (up to 

capacity) of each of several types of dispatchable generators.  There are no startup costs or 

ramping constraints, which that limit thermal generators’ ability to change output.  There are thus 

no non-convexities or links between time periods on the supply side.  Similarly, demand may 

vary from period to period, either deterministically or according to a known probability 

distribution, but the demand function in each period is independent of prices charged in other 

periods.  Thus the multiple time periods in these models are linked only by the generation 

capacities that are chosen at the outset. 

 It is important to note that these assumptions are not descriptive of systems in which coal 

or nuclear generation are important supply sources. Both technologies have significant 

economies of scale, giving rise to nonconvexities.  In addition, coal and nuclear plants take time 

and incur costs to start up and ramp down4, which breaks the independence among time periods.  

Power systems with these characteristics resist general algebraic analysis, and sophisticated 

numerical optimization tools have been developed to permit explicit multi-period analysis of 

particular cases.5 

 For modern gas generators and VRE facilities, however, neither lumpiness nor startup or 

ramp down costs are nearly as important. Boiteux-Turvey-style models are thus reasonable 

approximations for systems without significant coal or nuclear generation, particularly when 

modeling hourly dispatch of power systems.6 There are a number of ways that storage has been 

added to models of this sort.  In the earliest formal treatments of storage in this context of which 

we are aware, Gravelle (1976) and Nguyen (1976) consider two-period – peak and off-peak – 

models and simply assume that an unlimited amount of the quantity being sold can be transferred 

between adjacent periods at a constant per-unit cost. Several authors, including Steffen and 

                                                
3 For an early exposition of models of this sort, see Drèze (1964), and for an excellent recent textbook treatment, see 
Biggar and Hesamzadeh (2014, esp. ch. 9).  Following most of this tradition, we neglect the spatial dispersion of real 
power systems and assume everything happens at a single point. 
4 Although the existing fleet of nuclear power plants are capable of flexible operation within limits, they are more 
constrained than flexibility of competing grid resources like natural gas power generation and energy storage (U.S. 
Department of Energy, 2015). 
5 See, for instance, Jenkins and Sepulvada (2017) and Johnston et al. (2019). 
6 Modern combined cycle gas turbines (CCGT) and open cycle gas turbine (OCGT) power plants can ramp up or 
down 100% of their nameplate capacity within an hour. See for example specifications for GE’s 7HA gas turbines 
(https://www.ge.com/content/dam/gepower-
pgdp/global/en_US/documents/product/gas%20turbines/Fact%20Sheet/2017-prod-specs/7ha-power-plants.pdf ) 
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Weber (2013) and Korpås and Botterud (2020) have added storage to Boiteux-Turvey-style 

models by assuming that power can be purchased whenever the price of energy is low and resold 

whenever the price is high.  This amounts to assuming that the amount of energy that can be 

stored is effectively infinite, since low-price and high-price periods may be far apart in time.  

Helm and Mier (2018) consider a dynamic model with a constant demand curve and non-

stochastic renewable output that follows a regular cyclic trajectory.  Schmalensee (2020) 

considers a model with stochastic demand and alternating daytime and nighttime periods in 

which VRE generation is only available in the daytime periods.  His emphasis is on the 

efficiency of the competitive supply of storage. 

 Here we follow Crampes and Trochet (2019) and Brown and Reichenberg (2020) and 

consider an explicitly dynamic Boiteux-Turvey-style model with perfect foresight.  We follow 

most of the literature and assume constant returns to scale in storage as well as in generation.  

We are able to obtain a number of general results regarding investment in and operation of 

storage facilities under competition and to illustrate the complexity of systems in which multiple 

storage technologies are optimally deployed.  The perfect foresight assumption is of course 

strong and eliminates the precautionary demand for storage.  Relaxing that assumption, however, 

requires explicitly modeling the relevant stochastic processes, as demonstrated by Geske and 

Green (2019).  The importance of eliminating precautionary demand will depend on the details 

of those processes, and it is not clear that general results are available.   

 Our results go beyond the analysis presented by Crampes and Trochet (2019) and Brown 

and Reichenberg (2020) and prior literature in the following ways. First, we show that problem 

of maximizing overall social welfare in that model can be decomposed into the problems faced 

by profit-maximizing, perfectly competitive suppliers of each available technology, even when 

considering limited energy capacity of energy storage and ramping constraints for dispatchable 

generation. This provides a new, direct link between welfare- and profit-maximization for linear 

electric power systems while explicitly considering limited energy capacity of energy storage 

and ramping constraints for dispatchable generation.  Second, we show that merit-order dispatch 

for thermal generators is not generally optimal when ramping constraints are binding.  

 Third, we generalize results on optimal investment in and operation of storage by 

modeling a generalized characterization of storage technologies that uses seven distinct 

parameters, including independent charging and discharging power capital costs and efficiencies. 



5 
 

We show that all deployed storage technologies break even at equilibrium under constant returns 

to scale.  Fourth, we present an analytical framework that yields insight into efficient 

configurations and operations of systems employing multiple storage technologies and points to 

the importance of the relative costs of power capacity and energy storage capacity. Finally, we 

employ a numerical case study to illustrate the complexity of operating patterns of storage in 

systems with multiple storage technologies.  This exercise supports the insights developed 

analytically, shows that general analytical results of the “merit-order” variety are likely not 

available for storage, and demonstrates the value of frequency domain analysis via Fourier 

Transforms to characterize the cost-efficient operating regimes of each storage technology. 

 Section 2 presents the (linear) capacity planning model employed, which involves a very 

general description of storage technologies and ramping constraints on thermal generators, and 

shows the relations between the problem of maximizing overall social welfare and the problems 

faced by profit-maximizing, perfectly competitive suppliers of each available technology.   

 Section 3 considers optimal load-shedding, and operation of and investment in 

dispatchable and VRE generation.  We present brief derivations of a number of known results for 

the sake of completeness and derive new results on the impacts of ramping constraints.  

 Section 4 provides generalizations of recent results regarding optimal investment in, 

profitability of, and operation of individual storage technologies.     

 Section 5 develops intuition regarding patterns of investment in and operation of storage 

when it is optimal to employ multiple technologies, and Section 6 provides simulation results 

that support the intuition developed in Section 5 and demonstrates the value of frequency domain 

analysis of storage operations. 

 Section 7 provides some concluding observations. 

2. Optima and Equilibria 

We formally consider a linear T-period model with one dispatchable technology (which we will 

often refer to as gas), one VRE technology, and a single storage technology.  The restriction to a 

single technology of each type in this section is simply to reduce notational clutter.  In later 

sections we consider systems with multiple technologies of each type when appropriate.  
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Throughout we abstract from storage’s ability to supply frequency regulation and other ancillary 

services and to defer investment in transmission or distribution systems.  

 Because our focus is on the supply of electricity, we assume perfectly inelastic demand 

for simplicity.  That is, we assume that demand in period t is equal to the exogenous quantity Qt, 

for prices below ω, the value of lost load.  Then total welfare, to be maximized, is given by 

(1)   

where Lt is the non-negative lost load in period t.7 Throughout, sums are over t from 1 to T, 

unless otherwise specified.8   

 We assume constant returns to scale, so that we can work with the aggregate capacities 

and outputs of all facilities using the same technology.9 From left to right the Cs in equation (1) 

are the T-period per-MW capital costs of dispatchable capacity, G, of renewable capacity, R, of 

charge power capacity of storage, PA, and of discharge power capacity of storage, PD, 

respectively. CE is the T-period per-unit capital cost of energy storage capacity, E.   

 For a pumped hydro storage facility, for instance, PA would be the maximum rate at 

which water can be pumped into the uphill reservoir, measured by the instantaneous power 

consumption of the pumping system in MW, PD would be the maximum rate at which the facility 

can generate electricity, again in MW, and E would be the capacity of the reservoir in, say, cubic 

meters. (We discuss alternative definitions of E below.)  For convenience we assume that PA, PD, 

and E can be chosen independently, though for some storage technologies this may not be 

                                                
7 To allow for price-responsive demand, the first term in (1) would be replaced by U(Qt;t), with U a concave utility 
function that is shifted by changes in t, and Qt is a non-negative choice variable.  With this change, for positive 
values of Qt condition (9) below would be replaced by a requirement for marginal cost pricing, and nothing else in 
the analysis would change. Joskow and Tirole (2007) analyze markets with both price-responsive and unresponsive 
demand and also consider system collapses and inefficient rationing. 
8 With a single investment period, allowing for uncertainty that is resolved after investment would mainly 
complicate formulas and change the focus of break-even analysis from total net revenue to total expected net 
revenue.  Similarly, allowing for discounting would complicate formulas and change the focus of break-even 
analysis from total net revenue to total discounted net revenue.  The only difference in optimal operation would be 
in the evolution of the value of stored energy, which is discussed below Proposition 7. 
9 For gas generation in moderately large systems, constant returns is a good approximation.  Some storage 
technologies may exhibit increasing returns, however: the surface area of a tank rises less than proportionately with 
its volume, for instance. 

[ ] ,A A D D A D
t t G R P P E t t tW Q L C G C R C P C P C E v g o A o Dw é ù= S - - + + + + + S + S + Së û
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possible.  For pumped hydro for instance, the same turbine is often used to pump water into the 

reservoir and to generate electricity when the water is released.10   

 Also in equation (1), v is the (constant) marginal cost of dispatchable generation, gt is 

dispatchable generation in period t, oA is the variable operation and maintenance (O&M) cost per 

MWh used to charge storage, At is MWh used to charge storage in period t, oD is the variable 

O&M per MWh discharged, and Dt is MWh discharged from storage in period t.  In the context 

of pumped hydro storage, one can think of oA and oD reflecting the marginal wear and tear 

caused by pumping water into the uphill reservoir and using water from that reservoir to generate 

electricity, respectively. In the case of battery storage systems, these parameters are best thought 

of as providing an approximation to the degradation caused by charging and discharging.11 

  We consider maximization of W subject to a set of linear constraints.  The Karush-Kuhn-

Tucker (KKT) stationary conditions can thus be employed to characterize maxima.  The 

constraints that supply (including lost load) is equal to demand in each period can be written as 

(2)    

Here  is the fractional capacity factor of renewables,  is the non-negative amount of 

renewable output that is curtailed, all in period t.  The KKT multipliers are the marginal values 

of energy in period t in the planner’s problem and the spot price of electricity under competition.  

In all that follows, we show the multipliers corresponding to each set of constraints in 

parentheses after the constraints.  Multipliers corresponding to non-negativity constraints are 

themselves non-negative.  The constraints that renewable curtailment not exceed renewable 

output are 

(3)        

 While λt can have any sign in this model, one would expect it to be non-negative in most 

time periods.  In more general models (like the simulation model used to generate the results in 

                                                
10 If for technological reasons PA = PD = P for some technology, then if some facilities using that technology are 
charging and others are simultaneously discharging, total charging plus total discharging cannot exceed P.  Since, as 
discussed below, simultaneous charge and discharge for the same technology can occur only in very special cases, 
this constraint is not explicitly imposed here.  
11 The degradation of Lithium-ion batteries with both time and usage has been much studied; see Gailani et al (2020) 
for a recent contribution and references to that literature. 

[ ] 0 ( ), 1,..., .C
t t t t t t t tL g R R D A Q t Tq l+ + - + - - = =

tq
C
tR

tl

0 ( ), 1,..., .c
t t tR R t Tq J- ³ =
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Section 6) that enforce minimum stable outputs of thermal generators or costs of startup and 

shutdown of such generators, the marginal value of energy can be negative.  If thermal 

generation is needed in period t+1 but optimally shut down in period t, for instance, an increase 

in demand in period t that would enable avoidance of startup costs in period t+1 would lower 

system cost.12  The competitive energy price in period t would accordingly be negative. For the 

sake of generality, we do not constrain λt to be non-negative. 

 Let  be the amount of energy in storage at the end of period t, with value at the start of 

period one (end of period zero) equal to .  We impose the constraint that storage not 

accumulate or dissipate energy over the T periods: 

(4)      

Energy in storage is analytically somewhat similar to the amount of water in a hydroelectric 

reservoir, except that it is increased by taking energy from the power system rather than by 

exogenous inflows.  The equations of motion for end-of-period energy in storage are 

(5)    

Here χ ≤ 1 is a constant reflecting self-discharge in some storage systems (e.g., evaporation from 

pumped hydro reservoirs, battery self-discharge) and µt is the marginal value of energy in storage 

at the end of period t.  (Note that unlike λt, µt does not correspond to an observable market price.)  

Charging and discharging storage involves loss of useful energy.  For every MWh used to charge 

storage, rA of energy is actually stored.  Similarly, in order to discharge one MWh from storage, 

(1/rD) of stored energy must be used.13  

 If stored energy is measured by the quantity of water in a reservoir, it is clear that the 

values of rA and rD will depend on whether that quantity is measured in cubic meters or 

                                                
12 The idea that increasing demand can sometimes lower system cost is not just a theoretical possibility (Hawai’i 
Natural Energy Institute 2019).  A diesel generator is used to follow load on the Hawaiian island of Moloka’i, 
population 7,345.  In 2015 the local utility found that if it granted all pending applications for rooftop solar 
generation, the difference between demand and solar output would occasionally fall below the diesel’s minimum 
output level, causing the generator to trip off and the island to black out.  To avoid the high cost of blackouts when 
those applications had been granted, the utility installed a “load bank”, a dispatchable resistive load that could be 
used when necessary to transform electric energy into waste heat.  
13 This model of storage generalizes that of Crampes and Trochet (2019).  They assume that χ = 1, oA = oD = 0, and 
rD = 1.  As the discussion below indicates, this last restriction does not entail a loss of generality). Brown and 
Reichenberg (2020) assume oA = oD = 0. 

tS

0S

0 00 ( ).TS S µ- =

1 (1 ) 0 ( ), 1,..., .A D
t t t t tS r A r D S t Tc µ- + - - = =



9 
 

milliliters.  Round-trip efficiency, the incremental MWh discharge made possible by an 

incremental use of one MWh in charging, r ≡ rArD, is independent of how E is defined and how S 

is measured and is strictly less than one in real storage systems. 

 Because energy is lost in the process of charging and discharging storage, one would 

expect the value of stored energy to be non-negative.  But if the shadow price of energy is 

negative, as discussed above, so that an increase in supply would raise system costs, it is not 

implausible that the value of stored energy should also be negative.  In addition, as we discuss 

further below, it can sometimes be optimal to increase demand by simultaneously charging and 

discharging facilities that use the same technology and thus dissipating energy.14   

 Condition (5) is consistent with the “capacity of the reservoir” definition of E given 

above, so that if neither rA nor rD equals one, St is equal neither to the electric energy used to 

store it nor to the electric energy recoverable from it.  The maximum electric energy recoverable 

from a reservoir of capacity E is Ed ≡ rDE. which one might call “electrical energy discharge 

capacity” to distinguish it from the “size of the reservoir” definition that underlies (5).  Assuming 

linearity, the unit cost of energy storage capacity thus defined would be  and, 

continuing to use d superscripts to denote quantities corresponding to a “maximum energy 

recoverable” definition of energy storage capacity, condition (5) would become 

(5’)    

To be consistent with the definition of Ed,  must be the energy deliverable to the system 

corresponding to that state of charge, so  and equation (5’) is just equation (5) 

multiplied through by rD.   

 One could similarly re-write the model by instead defining energy storage capacity as the 

maximum amount of electric energy the system could absorb.  Under that definition, one would 

obtain the equation of motion corresponding to (5) by dividing through by rA.  Then At would 

have a coefficient of one, and Dt would have a coefficient of (1/r).  The cost of energy storage 

capacity, CE, depends on what definition of capacity is used, as does the per-unit shadow price of 

                                                
14 “Simultaneously” in this discrete-time framework means “within the same short period”. 

(1/ ) ,d D
E EC r C=

1 0 ( ), 1,...,d d d
t t t t tS rA D S t Tc µ- + - - = =

d
tS

,d D
t tS r S=
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energy in storage,  Both the power cost parameters  and and the flow parameters oA, 

oD, r, and χ are independent of the definition used to characterize energy storage capacity. 

 Most of the relevant technical literature uses the “size of the reservoir” definition of 

energy storage capacity, since separate consideration of charge and discharge efficiencies may be 

of interest in the analysis of the internal operation of storage facilities.  From the point of view of 

a power system, however, all that matters is their product, r, which relates an increment of  

energy used to charge storage to the incremental energy subsequently available for discharge.  

We can thus simplify notation without loss of generality by adopting the “maximum energy 

deliverable” definition of energy storage capacity and using (5’) without the d superscripts as the 

equation of motion of end-of-period energy in storage.  A storage technology in this model is 

thus described by seven parameters: three capital cost parameters ( and CE) and four flow 

parameters (oA, oD, r, and χ).  

 We assume that limitations on per-period changes in the outputs of dispatchable 

generators relative to their capacities, so-called ramping constraints, may sometimes be binding:  

(6a)    

(6b)     

Here βU and βD are exogenous, positive constants strictly less than one.  Note that there are no 

ramping constraints on first-period output.  The only formal analysis of a ramping constraint for 

which we are aware is Biggar and Hesamzadeh (2014, Section 4.9), and they constrain only the 

absolute increase in generation. 

 In addition to conditions (2) – (6), the following inequalities must also be satisfied, with 

RU and EU positive constants:  

(7a)     

(7b)    

The upper bound constraint on renewable capacity in (7a) can arise if, for instance, some 

bounded sites are particularly good for wind generation.  Similarly, the upper bound constraint 

.tµ
A
PC

D
PC

, ,A D
P PC C

1 0, ( ), 2,..., ,U U
t t tG g g t Tb r-+ - ³ =

1 0, ( ), 2,..., .D D
t t tG g g t Tb r-+ - ³ =

0 00 ( ), 0 ( ), 0 ( ).U
uR R R R R G G³ - ³ ³

0 0 00 ( ), 0 ( ), 0 ( ), 0 ( ).A A D D U
uP P P P E E E E E³ ³ ³ - ³
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on energy storage capacity could reflect, for instance, limits on the size of the uphill reservoir in 

a pumped hydro system. 

 In addition, the following inequalities must hold for all t: 

(7c)     

(7d)   

(7e)     

 Note that in (7e), the non-negativity constraint is also enforced for S0 with a 

corresponding multiplier, . The planner’s problem is to choose capacities (G, R, PA, PD, and 

E) and flow variables (Lt, gt,  Dt, At, and St for t=1,…,T) to maximize W subject to 

constraints (2) – (7).  The Lagrangian for this problem is the following: 

(8)   

Rearrangement of terms in this equation yields 

(9)   

where an arrow above a variable means the values of that variable from t=1 to t=T, and   

(10a)   

(10b)   

(10c)   
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(10d)   

 By inspection, each of expressions (10a)-(10d) is the Lagrangian for the problem of 

choosing associated stock and flow variables to maximize the profit of a particular technology 

(including loss of load) subject to the inequality constraints relevant to that technology, treating 

the λt as exogenous.  This is exactly the problem that would be solved by a perfectly competitive 

industry supplying that technology and treating energy prices as given.  We have thus established 

Proposition 1: Equilibria and Optima.  Under constant returns to scale, the necessary 

conditions for maximizing social welfare are identical to the necessary conditions for 

maximizing the profits of competitive industries supplying each of the available 

technologies 

In what follows we consider operation of and (except for loss of load) investment in each of the 

available technologies in turn.  We will refer to a point at which all the KKT conditions for 

constrained welfare maximization are satisfied as “an optimum,” understanding that such a point 

is also a constrained maximum of technology-specific profits under competition with the λt as 

energy prices.  Under competition and constant returns to scale, one might expect that the 

suppliers of each technology would just break even at an optimum.  We verify this expectation 

below.  

 The KKT necessary conditions for constrained maxima include both that the derivatives 

of the corresponding Lagrangian with respect to each decision variable be zero and the 

complementary slackness conditions corresponding to the inequality constraints in (3), (6) and 

(7). These require that the products of the non-negative multipliers and the corresponding 

constrained quantities be zero.  Thus, for instance, at the optimum R0R = 0, so that if R > 0, then 

R0 = 0, and if R0 > 0, then R = 0.15   

                                                
15 Purely to simplify the presentation, we will not deal explicitly with knife-edge cases in which both the multiplier 
and the constrained quantity are zero. 
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 3. Generation and Load 

This brief section provides a reasonably complete presentation of general results relating to 

investment in and operation of renewable and dispatchable generation, as well as the conditions 

for loss of load.  Differentiating (10a), at an optimum, we must have 

(11)    

From (7c), if lost load is positive, ηt = 0.  Then condition (11) implies that  the value of 

lost load, establishing   

Proposition 2: Lost Load.  At an optimum, if lost load is positive in any period, the 

energy price equals the value of lost load, ω. 

 Differentiating (10b), at an optimum, the following first-order conditions related to VRE 

technologies must be satisfied: 

(12a)    

(12b)    

Condition (12a) establishes that if curtailment is positive in some period, so  then 

 must equal zero.  If curtailment is partial, so that  then  and the energy 

price must also be zero.  If VRE output is completely curtailed, so (3) is binding and   the 

energy price must be negative.  

 If there is no curtailment in period t,  and revenue per unit of VRE capacity is just 

 If there is curtailment, and revenue is zero either because the energy price is 

zero or because VRE output is completely curtailed.  Thus the first two terms on the right of 

(12b) are VRE generator profit per unit of capacity.  Note first that at most one of Ru and R0 can 

be positive.  If both are zero, so is total per-unit profit, consistent with competitive investment 

behavior.  If the lower-bound constraint on investment binds, so that R0 > 0 and the socially 

optimal investment is zero, it follows that the derivative of profit with respect to capacity is 

negative at zero capacity, so that profit would be reduced below zero if capacity were increased 

above zero.  Finally, if the upper-bound constraint binds and Ru > 0, profit is positive in 

competitive equilibrium and at a social optimum.  As noted above, a binding upper-bound 
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constraint most plausibly reflect the limited size of a particularly good site for wind or solar 

generation, in which case the value of the multiplier on that constraint corresponds to the rental 

value of the corresponding site.  We have thus established. 

Proposition 3: VRE. At an optimum, (a) since the marginal cost of VRE supply is zero, 

VRE generation is curtailed only when the energy price is non-positive, (b) VRE 

generation is completely curtailed only when the energy price is negative, (c) any VRE 

technology for which investment is positive earns a positive profit if and only the upper-

bound constraint on capacity is binding, otherwise its profit is zero. 

 We now turn to dispatchable generation.  From (10c), in addition to complementary 

slackness conditions on G, the gt, and the percentage increases in gas generation, the following 

must hold at an optimum: 

(13a)   

(13b)   

 To understand condition (13a), note from (6) that beginning in period 1, incremental 

dispatchable generation in period t serves to relax the upward ramping constraint in period t+1 

and tighten the downward ramping constraint in that period, but generation in period T has 

neither effect.  

 Suppose that for some dispatchable generation technology, ramping constraints are either 

absent or never binding and that positive capacity is optimal.  Then condition (13a) becomes 

(13a’)     

Whenever this technology has positive output,  and if generation is at capacity,  

and we have established 

Proposition 4: Operation of Dispatchable Generation Without Ramping 

Constraints. At an optimum, for any dispatchable generation technology for which 

optimal capacity is positive, if ramping constraints are absent or never binding, then in 
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any period (a) generation is positive only if the market price of energy is greater than or 

equal to marginal cost, (b) if the inequality is strict, generation is at capacity, and (c) if 

two dispatchable technologies have positive capacities and different marginal costs, if 

the one with the higher marginal cost has positive generation, so does the one with 

lower marginal cost. 

Parts (a) and (c) describe classic merit-order dispatch, in which plants with lower marginal costs 

are dispatched before those with higher marginal costs.   

 Now consider ramping constraints by examining condition (13a).  If only period t’s 

upward ramping constraint binds ( ), clearly gt is positive, so that 

 and price is strictly greater than marginal cost.  If only period t’s downward ramping 

constraint is binding ( ), clearly gt is less than capacity, so that 

 and price is strictly less than marginal cost.  On the other hand, if only the next period’s 

upward ramping constraint binds ( ), it must be that gt is less than 

capacity and  In this case, the marginal benefit from current generation exceeds the 

energy price, and generation may be positive even if marginal cost exceeds that price.  Finally, if 

only the next period’s downward ramping constraint binds ( ), it 

must be that gt is positive and   so price must strictly exceed marginal cost. 

Proposition 6: Operation of Dispatchable Generation with Ramping Constraints.16  

At an optimum, for any gas generation technology for which capacity is positive, then 

in any period (a) if only the current period’s upward (downward) ramping constraint is 

binding, the energy price is strictly greater than (less than) marginal cost, (b) if only the 

next period’s upward ramping constraint is binding, positive generation may be optimal 

even when the energy price is less than marginal cost, (c) if only the next period’s 

downward ramping constraint is binding, price is strictly greater than marginal cost and 

                                                
16 Biggar and Hesamzadeh (2014, Section 4.9) provide a formal discussion of operation with ramping constraints in 
this basic setup. They consider a constraint on the absolute increase in generation, independent of the level of 
capacity, and they derive versions of (a) and (b) of Proposition 5. 
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(d) if ramping constraints are sometimes binding, merit-order dispatch may not always 

be optimal. 

Part (d) follows because (b) implies that in some period a high-v technology may generate at a 

price below its marginal cost if only its next-period upward ramping constraint is binding.   

 Even though merit-order dispatch is not always optimal in the presence of ramping 

constraints, one would expect the predictions of Proposition 4 to hold most of the time.  As we 

discuss in Section 5, one would expect a similar (though less general) set of predictions 

regarding the optimal dispatch of different storage technologies to hold most of the time, and we 

present simulation evidence using Texas data to support that expectation.  

 Appendix A contains a proof that any dispatchable generation with positive capacity at an 

optimum breaks even, even with ramping constraints: 

Proposition 6: Investment in Dispatchable Generation.17 At an optimum, any 

dispatchable generation technology for which investment is positive earns zero profit. 

4. Storage: General Results  

Proceeding as above, in addition to the complementary slackness conditions corresponding to the 

storage-related inequality constraints in (7), the necessary conditions for operating and investing 

in any storage technology to maximize welfare or for a competitive equilibrium in storage supply 

are 

(14a)     

(14b)     

(14c)   

                                                
17 We have not seen a zero-profit proof for dispatchable generation with ramping constraints elsewhere.  Without 
those constraints, the zero profit result seems to have first been asserted, but not proven, in Crew and Kleindorfer 
(1986, Section 3.3).  For recent zero-profit proofs for dispatchable generation without ramping constraints in a linear 
model of the sort considered here, see Biggar and Hesamzadeh (2014, chs. 9-10) for a timeless model and Brown 
and Reichenberg (2020, Section 6.1) for a dynamic model with perfect foresight.  
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(14d)     

(14e)    

(14f)    

To understand (14c), note from (5’) that St relaxes the storage constraint in period t+1, while ST 

has no such effect.  In considering (14a) – (14c), it is important to remember that, unlike the λt, 

which correspond to observable energy prices, the µt are technology-specific (and, as noted 

above, dependent on the unit of measure of E and S) and unobservable. 

 Inspection of (14a) and (14b) and complementary slackness conditions (7d) imply that if 

storage is discharging (charging)  then  and if the charging (discharging) rate is 

below capacity, then else  .  This serves to establish 

Proposition 7: Operation of Storage.18 At an optimum, in every period (a) if 

 storage is discharging, (b) it is discharging at capacity if the inequality is 

strict, (c) if  storage is charging, (d) it is charging at capacity if the 

inequality is strict, and (e) otherwise, it is idle. 

These are simple arbitrage conditions.  Using the “maximum energy deliverable” definition of 

capacity, (a) reflects the fact that energy in storage can be delivered to the grid at a marginal cost 

of  If the value of  energy is at least equal to that cost, discharge may be optimal.  

Similarly, the marginal cost per MWh used to charge storage is  and it takes (1/r) 

MWh from the grid to increase energy in storage by one MWh. 

 We noted above (footnote 8) that it may sometimes be optimal to charge some facilities 

using a particular storage technology while simultaneously discharging other facilities using the 

same technology.  In this case  and both and  are non-negative.  Conditions 

(14a) and (14b) then imply 

                                                
18 This is a generalization of Proposition 1 in Crampes and Trochet (2019) to allow for more general storage 
technologies.  They begin with the problem of maximizing the profit of a price-taking storage supplier and do not 
embed it in the problem of welfare maximization as we do here.  In addition, they do not allow for variable O&M. 
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(15a)    

(15b)    

Combining and re-arranging (15a) and (15b) yields a necessary condition for simultaneous 

charge and discharge to be optimal: 

(15c)    

If  is positive, this condition cannot be satisfied.  Condition (15a) then implies that  is also 

positive, and system cost cannot be reduced by increasing demand. 

 If  condition (15c) can be satisfied with  If  conditions (15a) 

and (15b) require  If condition (15c) is satisfied with which is the only way it can 

be satisfied if variable O&M cost is positive, condition (15b) requires Summarizing this 

discussion, we have 

Proposition 8: Simultaneous Charge and Discharge.  If for any type of storage 

in any period (a) if  simultaneous charge and discharge is not optimal, (b) 

if simultaneous charge and discharge may be optimal if 

or if both quantities are negative, and (c) if  simultaneous charge 

and discharge may be optimal only if  and  

If two or more types of storage are optimally employed, the numerical analysis discussed in 

Section 6 has revealed that it is occasionally optimal to charge units of one type while 

discharging units of another type even if the conditions of Proposition 8 are not satisfied for 

either type.  

 Inspection of condition (14c) immediately establishes 

Proposition 9: Value of Stored Energy.  At an optimum for any storage technology, 

for t = 1,…,T-1, (a) when storage is neither full nor empty,  (b) if 

storage is full µ increases more rapidly, and (c) if storage is empty µ decreases if  χ = 1 

but may increase if χ < 1. 
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Crampes and Trochet (2019) note that when χ = 1, the behavior of the µt when storage is neither 

empty nor full is consistent with Hotelling’s (1931) rule: under competition and perfect foresight, 

the value of a durable asset must rise at the rate of interest, which is zero here.  When χ < 1, so 

the physical quantity of S declines when storage is neither empty nor full, the per-unit shadow 

value µ increases so keep the aggregate value of S constant.19 

 Appendix A provides the proof of  

Proposition 9: Investment in Storage.20  Any storage technology for which optimal 

capacity is positive earns a positive profit only if the upper bound constraint on energy 

storage capacity is binding.  Otherwise, profit is zero.  

5. Multiple Storage Technologies: General Analysis 

In Section 3, we considered situations in which it was optimal to have both baseload (e.g. 

combined-cycle gas plant) and peaker (e.g. simple cycle gas plant) gas generation capacity.  

In the absence of ramping constraints, it was easy to establish in this multi-period 

framework the classic result that peaking gas plants, which have higher variable cost, are 

used only when demand is particularly high and baseload capacity is fully utilized.  We also 

showed, however that the intertemporal linkages that follow from ramping constraints add a 

level of operational complexity and destroy the universal validity of that classic result. 

 Because storage technologies with constant returns to scale are characterized in the 

most general case in this model by the values of seven parameters ( , 

and χ), it is not as simple to compare storage technologies as to compare constant-returns 

generation technologies that are completely described by their levels of per-unit fixed and 

variable cost.  Moreover, one might expect the intertemporal linkages inherent in storage 

operation to invalidate any general rules as to which storage technologies would be used 

under what conditions.  A natural, if informal, division is between short-term storage, in 

which intervals of charging and of discharging are close in time and long-term storage, in 

                                                
19 Suppose B equals one plus the positive rate of interest. Since µt is the period-t value of stored energy, it needs to 
be discounted by B-t to obtain the value as of period zero.  Equation (12c) then implies that when S is away from its 
bounds, µt+1=B(1/χ)µt.  The current-period value of stored energy rises at the rate of interest when χ=1 (the 
discounted value as of period zero is constant) and more rapidly when χ<1. 
20 The only prior zero-profit proof for storage of which we are aware is in Section 9.2 of Brown and Reichenberg 
(2020).  As noted above, they assume oA = oD = 0. 
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which energy remains in storage for longer periods before it is discharged.  An example of 

short-term storage would be charging batteries in mid-day using excess solar generation and 

then discharging them when the sun goes down.  In contrast, some have argued that it could 

be valuable to have long-term storage that would enable energy provided by solar generators 

in the summer to be used to make up for lower solar output in the winter. 

 In the rest of this section we first present a simple cost analysis that suggests which 

sorts of storage technologies would be more suitable for short-term storage and which would 

be more suitable for long-term storage.  We then use the KKT conditions developed above 

to provide further support for this suggestion, which is further substantiated via numerical 

experiments in Section 6. 

 It is useful to begin by considering a symmetric charge-discharge cycle for a storage 

facility with no variable O&M cost and no self-discharge.  Suppose the facility is charged 

for a time tA at average power p and then discharged at the same average power for a time tD 

until the original state of charge is reached.  Continuing to use the “maximum electric 

energy recoverable” definition of capacity, the total amount of energy stored in this cycle, e, 

is just ptD.  Letting Z = 1/r, a measure of round-trip inefficiency, the total amount of energy 

taken from the grid during the charging phase is eZ = ptA.  The total length of this cycle, tt, is 

thus given by 

(16)      

Longer cycles involve higher ratios of energy stored to average power employed in charging 

and discharging.  This suggests that technologies with low ratios of energy storage capacity 

cost to charge and discharge power capacity cost are best suited to providing long-duration 

storage, all else (including Z) equal. 

 To refine this suggestion, it is necessary to consider a specific charge/discharge 

cycle. As we discuss further below, if it is optimal to employ a particular storage 

technology, it will be optimal for that technology to be fully charged during some periods.  

Similarly, if it were not fully discharged during some (other) periods, costs could have been 

(1 ) .t A D eZ e e Zt t t
p p p

+
= + = + =



21 
 

saved by reducing energy storage capacity.21  Thus the longest charge-discharge cycle any 

particular storage facility could experience would be from full discharge to full charge and 

back again.  It is instructive to examine how the average cost of delivered power associated 

with such a maximal cycle depends on the cycle length and various cost parameters.     

 Putting aside the cost of energy to charge a particular storage installation and the 

revenue from discharging and selling energy from storage, the total capital and operating 

cost of such a maximal cycle is given by 

(17)      

where tt is the total time the cycle takes in hours, and the c’s are per-hour costs of the 

various capacities.  For concreteness, we assume that the facility is initially fully discharged, 

then charges at power PA until it is fully charged, then completes the cycle by discharging at 

power PD until it is fully discharged. To simplify formulas, let k = PD/PA, where k is a 

positive constant.  For some technologies k is fixed (e.g., k = 1 for electrochemical storage), 

while for others it is an outcome of an optimization that we suppress here.  In addition, it is 

convenient to define x ≡ 1 – χ, the rate of self-discharge.   

 Let tA(x) be the time taken to charge storage fully as a function of the self-discharge 

rate, let tD (x) similarly be the time taken to discharge storage completely, so that the total 

time for a charge/discharge cycle, tt(x), is just the sum of tA and tD.  The total amounts of 

energy delivered to and taken from the grid in one cycle are just tDPD and tAPA, respectively. 

Dividing equation (17) by total energy delivered to the grid, tDPD, yields the average cost 

per MWh: 

(18a)   where 

(18b)         

 When x = 0, so there is no self-discharge, tA = E/rPA = ZkE/PD, tD = E/PD, and 

equation (18a) becomes 

                                                
21 As a practical matter, storage facilities may be degraded by either being fully charged or fully discharged, so that 
the normal range of operation is somewhat smaller than the technical level of capacity would indicate. 
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(19)     

This equation implies that for values of x sufficiently close to zero, if a storage unit is 

continuously charged at maximum charging power capacity until it is fully charged and then 

discharged at maximum discharge power until it is empty, the average cost per discharged 

MWh over that cycle has three components.  The first reflects the average capital cost of 

power charge and discharge capacity.  Low round-trip efficiency (high Z) in effect raises 

power capacity cost, because each unit of power capacity is less effective at producing 

deliverable energy.  The third component measures effective round-trip O&M cost.  Low 

round-trip efficiency (high Z) increases round-trip O&M cost because more energy must be 

taken from the grid for each MWh later returned to it.  The second component is the only 

one that depends on the total duration of the charge/discharge cycles, tt.  The derivative of 

overall cost with respect to duration here is exactly equal to the per-period energy storage 

capacity cost .  

 If self-discharge is positive, it takes longer to charge the storage fully because energy 

is lost during the charging process through self-discharge, and it takes less time to 

completely empty the storage for the same reason.  It follows that more energy is taken from 

the grid during charging, and less energy is delivered to the grid during the discharge phase 

of the cycle.  Appendix A evaluates the charge and discharge times for positive values of x 

and obtains an approximate value of AC for small but non-zero values of x, equation (A.9). 

AC is increasing in x for x near zero, as one would expect, but the main implications of 

equation (19) are preserved. 

 Consider two storage technologies, 1 and 2, with technology 1 having higher ratio of 

energy storage capacity costs to average power capacity costs compared to technology 2. For the 

same flow cost parameters (Z, oA, oD), then the average cost per discharged MWh of technology 2 

can only be equal to average cost per discharged MWh of technology 1 so long as the duration of 

charge/discharge cycles of technology 2 is greater than the duration of cycles for technology 1.  

This is a (very) rough analog to the usage implications of dispatchable generators with different 

levels of fixed and variable costs. 

 In the case of gas generation, it is a familiar result that if it is optimal to have positive 

capacities of two different technologies, the one with the higher variable cost must have 
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lower fixed costs or it would have been dominated and not part of an efficient mix. In the 

case of storage, one expects that if it is optimal to have positive capacities of two storage 

technologies, the one with the lower cost of storage capacity must have higher 

charging/discharging costs.  Equation (19) suggests that the technology with the lower 

energy storage capacity cost will tend to be used for longer duration storage, generally 

involving in effect higher values of tt, than the one with the higher energy storage cost.22This 

suggestion has implications for the focus of R&D efforts concerned with long-term storage.  

 Additional support for this suggestion can be derived from the KKT necessary 

conditions, equations (14), and the relevant complementary slackness conditions.  If a 

particular energy storage technology is deployed then by complementary slackness 

conditions applied to storage related constraints in (7), and, if the upper bound on 

energy storage capacity constraint is not binding,  Condition (14f) then reduces to 

(20)      

Additionally, by complementary slackness conditions in (7) related to storage energy 

capacity,  for all periods when energy in storage is below the installed storage 

capacity. Thus the summation on the right hand side of equation (20) can be reduced to 

periods when energy storage is at capacity.  Letting the set of such periods be F, we have   

(21)       

The right hand side of (21) can be written terms of the stored value of energy using 

condition (14c), with the understanding that . For simplicity, we assume that 

storage is not full at the end of the last period.23  This leads to  

                                                
22 Crampes and Trochet (2019, section 3.2) provide a less formal discussion that reaches the same general 
conclusion.   
23 If storage is full at the end of the last period, then  based on applying 

condition 14c and the fact that (because of (4) and given that storage is full at period T). This is equivalent 

to with the condition that period T+1 is identical to period 1. 
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(22)     

 If two storage technologies, 1 and 2, are deployed with non-zero energy storage capacities 

such that , equation (22) implies 

(23)      

Here the superscripts 1 and 2 correspond to technologies 1 and 2, respectively.  In Appendix 

A we demonstrate that for r = 1, all of the terms in parentheses in (23) are bounded above by

.  For r < 1, the bounds depend on the charge/discharge patterns for energy storage 

in periods t and t+1.   

 The most natural way for condition (23) to be satisfied is for storage technology 1 with 

higher capital costs of energy storage to spend more periods fully charged than storage 

technology 2.  This is consistent with storage technology 1 following something like the fast-

cycling pattern seen for Li-ion storage in the numerical results from the optimization model 

discussed in Section 6.  

 The analysis in this section can only be suggestive.  Real storage technologies 

generally have different round-trip efficiencies and self-discharge rates, and O&M costs 

may not be negligible.  For arbitrary time-paths of renewable generation and load, the 

optimal pattern of charging and discharging will never be as regular as the maximal cycles 

analyzed above.  Similarly, in the analysis immediately above, there is no guarantee that the 

two technologies will be fully charged under comparable conditions.  To shed more light on 

how different storage technologies are optimally employed together in practice, we turn to a 

numerical optimization exercise. 

6. Multiple Storage Technologies: Simulation 

To illustrate optimal investment in and operation of a power system with multiple 

storage technologies, we simulated a simplified representation of a future “Texas-like”  grid 

under greenfield conditions and different combinations of low-carbon emissions constraints 
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and storage technology availability scenarios.24  This model was developed as part of the 

MIT Energy Initiative’s Future of Storage study.  As in earlier sections, the ability of 

storage to provide ancillary services and to enable deferral of investment in transmission and 

distribution systems was not modeled. We employed a capacity expansion model, GenX,25 

to determine the optimal generation and energy storage investments needed to meet 

exogenous demand over time, while satisfying various grid operation constraints, resource 

availability limits, and other policy/environmental constraints at an hourly temporal 

resolution. GenX implements the optimization problem described in section 2, while 

adhering to various additional technology-specific constraints, such as linearized 

representation of unit commitment (with startup costs) and minimum up/down time 

constraints of thermal generators, VRE resource availability limits and other imposed 

policy/environmental constraints. Notably, the model considers a high temporal resolution, 

in this case seven years of grid operations with hourly time steps, which allows for assessing 

the role for both short-duration and long-duration storage technologies. Main model features 

are listed in Table 1, while data sources, assumptions on capital costs and technological 

parameters used for generation and storage technologies are reported in Tables B.1-B.3 in 

Appendix B.  The assumptions employed here for illustrative purposes may differ from 

those finally adopted in the Future of Storage study.   

 We consider Lithium-ion batteries and power-to-hydrogen-to-power (“Li-ion” and “H2” 

for short) as the available storage technologies, with the estimated energy storage capacity cost 

much lower for H2 than for Li-ion (Table B.3).  We focus our numerical analysis on scenarios 

with stringent carbon emission intensity constraints in which storage is important: 10 grams and 

1gram of CO2 per kWh26. Model-optimal investment results for the two emissions constraint 

scenarios are summarized in Table 2. 

 Not surprisingly, increasing the stringency of carbon emissions constraints leads to 

increased roles for VRE generation and for storage technologies and a reduced role for thermal 

                                                
24 We used data for the Electric Reliability Council of Texas (ERCOT), which operates the wholesale market that 
meets roughly 90% of demand in Texas. 
25 Jenkins and Sepulvada (2017). See Mallapragada et al. (2020) for detailed discussion of most current storage 
operational constraints in GenX. 
26 Without a carbon emissions constraint, the least-cost model solution yields an emissions intensity of 82.9 
gCO2/kWh and a system average electricity cost of $39.5/MWh. 
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generation. Notably, going from the looser to the tighter emissions constraint leads to a 5-fold 

increase in the optimal energy storage capacity of H2. Overall system average electricity cost 

increases by 12% as the CO2 emissions constraint is tightened from 10 gCO2/kWh to 1 

gCO2/kWh. Table 2 highlights that overall lost load is generally small compared to total 

demand, owing to the relatively high value of lost load (i.e., the maximum wholesale price) 

assumed in the scenarios ($50,000/MWh, see Table 1). 

Figure 1 illustrates how the stored energy for the two technologies changes over time 

for the two CO2 emissions constraint cases during three illustrative months of operation.27 

Storage operation is not described by regular charge-discharge cycles. On the contrary, the 

pattern of operation changes over time and between emission constraints, and most charge-

discharge cycles are not complete. In the 1g CO2/kWh case, H2 mainly (but not exclusively) 

displays long-term storage behavior, while in the 10g CO2/kWh cases H2 cycles more 

frequently.  In both cases, the frequency of storage discharge varies from month to month. Li-

ion, on the other hand is primarily used for shorter cycles across both CO2 emissions constraint 

cases, but it cycles more frequently in some periods than in others.  

As noted above, the model setup does allow for the possibility of simultaneous 

charging and discharging of each storage technology as a way to avoid the startup and 

shutdown costs associated with thermal generators (which would otherwise lead to negative 

prices). That said, the assumptions about variable operating costs for storage and startup costs 

for thermal generation in the runs reported here result in no instances of simultaneous charge 

and discharge of each storage technology.   

The numerical results also indicate that it may be optimal to simultaneously charge 

one storage technology and discharge the other, with such instances occurring 1.2% and 0.4% 

of the time for the 10 gCO2/kWh and 1gCO2/kWh cases, respectively.28  In most of these 

instances, Li-ion is discharging and H2 is charging.  This behavior involves a loss of energy, 

but it must be that stored energy is sufficiently more valuable on the margin in H2 than in Li-

ion to make up for the loss, perhaps because stored energy will be required for a longer period 

in the future than Li-ion’s limited energy capacity can handle. 

                                                
27 Dowling et al (2020) present similar graphical depictions of the evolution of stored energy. 
28 This behavior has also been observed by Dowling et al (2020). 
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In both emission intensity cases, Table 1 highlights that Li-ion spends more hours per 

year in a fully charged state compared to H2, which is consistent with the discussion of 

equation (19) above: the technology with the higher energy capital cost spends more periods 

in a fully charged state. Overall, these numerical observations of the optimal use of these 

technologies are broadly consistent with the intuition developed in Section 5, which suggested 

that the lower energy capital cost storage technology generally is deployed for longer-duration 

charge-discharge cycles. 

Since the metric of equivalent discharges/year does not fully capture and reveal the 

complex nature of the operation of these systems, we use frequency domain analysis of the 

state of charge to produce a quantitative picture of the dominant modes of storage 

operation.29  First, we applied the Fast Fourier Transform (FFT) to each state-of-charge time 

series. Next, we selected frequency bands of interest that contribute to different cycling 

periods and computed each band’s contribution to the signal root mean square (RMS) value. 

As noted before, the cycling of storage technologies is complex and therefore it is not only 

described by single frequency components. Consequently, the frequency bands analysis 

allows us to aggregate multiple frequency components in a simple metric that provides an 

instructive summary of the relative importance of different modes of storage operation. We 

present results using the following indicative frequency bands: 

- 0 to 12 cycles/year:   Long-term or seasonal cycling 

- 12 to 52 cycles/year:   Intra-month cycling 

- 52 to 365 cycles/year:  Intra-week cycles 

- Above 365 cycles/year:  Intra-day cycles. 

 Table 3 displays the results of this analysis, using the full seven years of simulated data.  

It indicates that whereas in the 10g CO2/kWh case H2 storage mainly oscillates at monthly 

frequencies, in the 1g CO2/kWh case seasonal oscillations become more relevant, and the 

contribution from the weekly and monthly cycling bands decreases. With a very tight emissions 

constraint, natural gas cannot be used to provide energy for appreciable seasonal storage, and H2 

                                                
29 Fourier analysis has been addressed in an extensive literature. Brigham (1988, chapters 1 and 2) describes the FFT 
in a succinct way and shows the ubiquitous use of the method in different fields. In the context of storage integration 
in power systems, Victoria et al. (2019) have previously used Fourier-spectra analysis to illustrate the different 
operational behavior of storage under various carbon emissions constraint scenarios. 
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is the cheaper long-term storage technology as compared to Li-ion.  Similarly, Li-ion displays a 

change in operation towards lower frequency cycling (less daily and weekly cycling) as the 

carbon constraint is tightened. 

 Finally, it is instructive to examine how the presence or absence of one storage 

technology influences the operating pattern of the other storage technology. Table 4 

summarizes the model investment results for the scenario in which Li-ion is the only 

available energy storage technology, with all else equal. Comparing Tables 2 and 4 indicates 

that when H2 is not available, VRE capacity is increased along with gas generation capacity,  

as well as Li-ion power and energy storage capacity, most noticeably in the tightest 

emissions constraint scenario (1 gCO2/kWh).  Total storage capacity is decreased 

substantially, however, since the relatively cheap storage provided by H2 is not available.  

 The unavailability of H2 results in a negligibly higher average electricity cost under 

the looser emissions constraint and a 5.2% higher average cost under the tighter constraint. 

Table 5 shows that when Li-ion is operating as the only storage technology, its total 

contribution in weekly, seasonal and monthly frequency bands are larger (87% vs. 81%) for 

the tightest emissions constraint 1g CO2/kWh cases respectively30. This change in operating 

behavior is consistent with the fact that (per Tables 2 and 4) Li-ion spends fewer periods 

fully charged when H2 is not available to supply longer-term storage.  This comparison 

indicates that when a new storage technology (H2 here) becomes economic, the efficient 

operating pattern of the pre-existing technology (Li-ion here) is likely to change. 

7. Concluding Observations 

In the classic Boiteux (1960, 1964)-Turvey (1968) framework for describing investment and 

operations of electric power systems, there are no links between supply or demand conditions in 

different periods.  In order to permit an analysis of energy storage in which energy storage 

capacity has positive costs, we modified that framework to allow for sequences of periods linked 

by the operation of storage facilities (and, possibly, ramping constraints on thermal generators), 

with no restrictions on period-to-period changes in demand or in the output of VRE generators. 

                                                
30 We don’t see this trend in the case of the 10g CO2/kWh emissions constraint scenario, in part due to the 
availability of CCGT-CCS. At 1 gCO2/kWh emissions scenario, the emissions intensity of CCGT-CCS limits its 
adoption and therefore there is greater reliance on VRE generation and storage to meet system demand. 
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 Making the standard assumption that energy prices are allowed to rise to the value of lost 

load in shortage conditions,31 the classic results for generation hold in this setting.  At a welfare 

optimum or competitive equilibrium, all thermal and renewable generation technologies 

employed just break even, and the classic merit-order results for thermal generation hold. 

(Though the latter results are modified when ramping constraints bind.) 

 Our analysis reveals the greater complexity of efficient investment in and operation of 

storage facilities.  In general, even under constant returns to scale as assumed here, storage 

technologies are described by the values of seven cost and performance parameters.  Like 

reservoir hydroelectric facilities, optimal energy storage discharge depends on expectations 

about future demand and supply conditions, encapsulated in the shadow value of stored energy.  

Unlike reservoir hydro facilities, charging energy storage facilities (including pumped hydro 

facilities) is a decision, not something determined by nature, and the choice of storage capacity is 

generally less constrained than the choice of reservoir capacity.   

 We have nonetheless proven that all storage technologies employed just break even at a 

social optimum.  Since social optima and competitive equilibria coincide in this model, this 

break-even result provides some support for general reliance on markets to drive investments in 

energy storage.  We have also shown how optimal storage operation depends on the shadow 

value of stored energy, though that unobservable shadow value depends on conditions in future 

periods.  It is not possible to establish fully general results regarding investment in and operation 

of multiple storage technologies, however; there is no simple merit-order analog even under 

perfect foresight. 

 We have shown that if it is optimal to employ multiple storage technologies, the ones 

with the lowest capital cost of energy storage capacity are generally best suited to providing 

long-term storage.32 But we have also shown by example that storage technologies optimally 

play multiple roles in grid operations, providing charge-discharge cycles of various durations.  

Our simulation exercises show that when multiple storage technologies are employed, frequency 

domain analysis is useful for characterizing the relative importance of the different cycle 

                                                
31 It should be noted that this assumption, while standard, is not always descriptive of the behavior of system 
operators in the U.S. 
32If it is also optimal to employ a storage technology with a higher energy storage capacity cost, that technology 
must be superior on some other dimension.  In our simulation exercise, Table B3 reveals that Li-Ion has lower 
charge and discharge power capacity costs, as well as higher round-trip efficiency, than H2. 
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durations that each provides and that these relative weights depend on the mix of generation and 

storage technologies employed. 

 We see three important directions for future work.  First, as noted above, we have 

assumed that the market price of energy can rise to the value of lost load under shortage 

conditions, and in our simulation exercises non-served energy events do sometimes occur.  In the 

model analyzed here the quantity ω, which we have called the value of lost load, simply serves 

as an exogenous cap on the price of energy.  If, as in many organized markets, the cap on energy 

prices is set below the true value of lost load, the competitive market will exhibit a “missing 

money” problem (Joskow 2008): the equilibrium level of reliability provided will be too low 

because it will reflect the price cap and not the true value of lost load.  This means that non-

served energy events will be more important than would be socially optimal. 

 In systems dominated by dispatchable generation, non-served energy events generally 

occur at demand peaks, and the prescription for solving the missing money problem has been to 

provide incentives for investment in generation capacity to bring the capacity level to 

approximately that implied by the true value of lost load.  Capacity mechanisms intended to 

implement that prescription have been controversial and have been frequently re-designed, 

however.  It is less clear how to solve the missing money problem in principle when VRE 

generation is important, so that troughs in supply may be more important than peaks in demand, 

and the availability of VRE generation is weather-dependent.  Storage poses even more difficult 

problems.  The ability of storage to relieve system stress depends on its state of charge, which 

depends on prior operator decisions.  It seems plausible that the second-best response to energy 

price caps set below the true value of lost load involves subsidies to investment in storage, but 

this has not been proven.  Moreover, even if such subsidies are second-best optimal, they surely 

vary with the characteristics of storage technologies in ways that are not yet understood. 

 Second, our use of frequency domain analysis here to describe the optimal operation of 

storage systems seems to us likely to have merely scratched the surface of what that approach 

can contribute.  While no simple merit order result for storage operations exists, even under 

perfect foresight, examining how the power spectra of alternative storage technologies respond 

to changes in cost parameters and system conditions may yield broadly useful insights. 

 Finally, there is clearly a need for computational models that can be used to optimize the 

operation of real storage systems under realistic stochastic processes of demand and VRE 
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generation, with realistically imperfect foresight.  Those models seem likely broadly to resemble 

the complex stochastic models that have been constructed for reservoir hydro systems,33 but, as 

noted above, the storage optimization problem involves deciding on both charging and 

discharging and is thus more complex than the reservoir hydro problem.  The recent paper by 

Geske and Green (2019) may be an important first step in this direction.  

 
Appendix A. 

This appendix contains the proofs of Propositions 6 and 9, provides an approximate 

generalization of equation (16) in Section 5 for small, positive self-discharge rates, and 

provides bounds on changes in the value of stored energy when storage is fully charged. 

Proof of Proposition 6. 

The profit of any particular gas (i.e., dispatchable) generation technology is given by 

(A.1)     

Condition (13a) was used to substitute for , and the complementary slackness conditions 

and  were employed.  Multiplying condition (13b) by G and substituting 

for  in (A.1) and using the complementary slackness conditions corresponding to 

(6) yields 

(A.2)  

                                                
33 See DeLadurantaye et al (2009) and the sizeable literature there cited. 
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 Thus, as for renewables, any gas generation technology for which the optimal capacity is 

positive, so G0 = 0, exactly breaks even.  If the lower-bound constraint is binding, it follows that 

the derivative of profit with respect to capacity at zero capacity is negative, so that increasing 

capacity above zero would reduce profit below zero.   

Proof of Proposition 9. 

 The profit of any particular storage technology is given by 

(A.3)   

Substituting for λt from equation (14a) and using the complementary slackness conditions 

involving the Dt from (7) yields 

(A.4a)    

Similarly, using equation (14b) and the complementary slackness conditions involving the At 

from (7) yields 

(A.4b)    

Conditions (14d) – (14f) imply 

(A.4c)     

(A.4d)     

(A.4e)     

 Substituting equations (A.4) into equation (A.3) and using the equation of motion (5’) 

yields 

(A.5)    

Condition (14c) and the complementary slackness conditions involving the St from (7) yield 

(A.6a)  
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(A.6b)   

Substituting  from (A.6a) into (A.6b) yields 

(A.6c)   

The first and last term of (A.6c) cancel out because of (4), the first part of condition (14c) and 

the complementary slackness condition related to (7e).  Substituting the above value of 

 into equation (A.5) then yields 

(A.7)     

 The first term on the right of (A.7) is positive if and only if E is positive and the upper 

bound constraint on energy storage capacity is binding.  Considering the bracketed terms, a 

binding non-negativity constraint implies that the derivative of profits with respect to the 

constrained variable is negative at zero, so that raising that variable above zero would lower 

profit.  All three capacity variables must be strictly positive for the optimal capacity of the 

corresponding technology to be positive.  If they are, the expression in brackets is zero, and we 

have established the Proposition. 

Positive Self-Discharge. 

 For convenience, we analyze the evolution of the state of charge in continuous time.  

During the charging phase of the cycle, with charging occurring at maximum charging 

power capacity, PA 
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Setting , solving, and using the first-order Taylor series expansion for the 

logarithm yields a convenient expression for the length of a charging phase as a function of 

the self-discharge rate, x: 

(A.8a)       

Because of self-discharge, tA is increasing in x.  An exactly parallel development with S(0) = 

E yields the length of a discharging phase: 

(A.8b)        

 From the Taylor series, it follows that  

(A.9)    and     

Combining these and the expressions for tA(0) and tD(0) from the text yields 

(A.10)        

For values of x near zero, we have 

(A.11)    
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fully charged in period t). This leaves us with four possible state transitions for storage in 

period t and t+1: 

(a) Charging in period t and discharging in period t+1,  

(b) Charging period in t and idle in period t+1, 

(c) Idle in period t and discharging in period t+1, 

(d) Idle in period t and idle in period t+1. 

For simplicity, assume the storage technology considered has zero variable O&M costs, so 

.  The development that follows uses Proposition 7, so that with zero variable 

O&M costs, storage is optimally charging in period t if , discharging if , and 

idle otherwise. 

 In transition (a), charging in period t implies  and discharging in period 

t+1 implies . Combining these conditions yields 

(A.12a)    

 In transition (b), charging in period t again implies , while storage idle in 

period t+1 implies  Combining these conditions as 

above yields 

(A.10b)    

 Proceeding similarly, upper bounds on ( ) can be obtained for transition (c), 

condition (A.10c), and transition (d), condition (A.10d): 

(A.12c)    

(A.12d)    

Thus, in all cases, the difference in stored value of energy between period t and t+1 for a given 

storage technology is bounded above by the change in energy prices between those periods, scaled 

by storage discharge, charge efficiencies and self-discharge factor.  Note that as r→1, the right-

hand sides of conditions (A.12) all converge to .  
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Appendix B. 

This appendix contains additional details on the data inputs used for the capacity expansion model 

implementation for the Texas case study discussed in Section 6. 

 
TABLE B.1 Model Data Sources 

Data Source 
VRE Resource Wind: NREL WIND Toolkit (Wind Integration National Dataset Toolkit n.d.), PV: 

National Solar Radiation Databaset (NSRDB n.d.) 
Load Vector NREL Electrification Futures Study (2050, High Electrification, moderate technology 

advancement) (NREL, 2018) 
Peak demand 2050: 151 GW 

Discount rate 4.3% 
 

TABLE B.2 Cost and Performance Assumptions for Generation Technologies 

Parameter Unit CCGT CCGT - 
CCS OCGT PV  

(utility-scale) 
Onshore 

Wind 
Overnight cost  $ / kW 817 1,797 816 725 1,085 
FOM cost34  $ / kW-y 10.6 33.6 12.2 11.1 34.6 
VOM cost35  $ / MWh 3 7 7 0 0.1 
Heat Rate  MMBTU/MWh 6.2 7.5 9.1 - - 
Minimum up time hours 4 4 4 - - 
Minimum down time hours 1 3 1 - - 
Minimum stable 
output level 

% of peak  
capacity 0.33 0.4 0.25 - - 

 

Except for H2 storage, the cost and performance assumptions for various generation technologies 
and Li-ion storage are taken from the 2019 edition of the NREL annual technology baseline 
(NREL, 2019). Cost and performance assumptions for H2 are based on a synthesis of literature 
on the topic and represent typical values for an electrolyzer (charging) coupled with pressurized 
tank-based hydrogen storage and combined cycle gas turbine for power generation (discharging). 
 
TABLE B.3 Cost and Performance Assumptions for Storage Technologies.  

Parameter Unit Hydrogen Li-Ion 
CAPEX (Power - Discharge) $ / kW 1,159 244 
CAPEX (Power - Charge) $ / kW 479 - 
CAPEX (Storage) $ / kWh 7 125 
FOM (Discharge) $ /kW-y 11 6.1 
FOM (Charge) $ / kW-y 20.3 - 
FOM (Storage) $ / kWh-y 0.07 3.1 
VOM (discharge) $ / MWh 2.19 1 

                                                
34 FOM: Fixed Operation and Maintenance, annual costs per MW of capacity. 
35 VOM: Variable Operation and Maintenance, cost per MWh of generation, charge, or discharge. 
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VOM (charge) $ / MWh 1 1 
Efficiency (Discharge) % 62% 92% 
Efficiency (Charge) % 77% 92% 
Efficiency (Roundtrip) % 48% 85% 
Self-discharge rate  % 0% 0% 
Capital recovery period Years 20 20 
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FIGURE 1. OPTIMAL VARIATIONS IN DISPATCHABLE STORED ENERGY OVER MONTHS 
1-4 OF THE SIMULATION 
 

(a) Li-Ion – 10g CO2/kWh (b) Hydrogen – 10g CO2/kWh 

  
 

(c) Li-Ion – 1g CO2/kWh (d) Hydrogen – 1g CO2/kWh 
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TABLE 1 Model Main Features 

Feature Description 
Available dispatchable 
generation 

Combined cycle gas turbine (CCGT); Combined cycle gas turbine 
with Carbon Capture and Storage (CCGT-CCS); open cycle gas 
turbine (OCGT) 

Variable renewables  Onshore Wind and utility-scale PV, with 7 resource bins per 
technology used to characterize different types of wind and PV sites. 
Each resource bin has a unique hourly capacity factor profile. 
Interconnection cost is added to the baseline VRE capital cost, and 
maximum capacity in MW. 

Available storage technologies Li-ion (PA = PD) ; power to hydrogen to power (“H2”) (PA ≠PD) 
Demand Peak demand = 151 GW, Annual demand = 715 TWh; value of lost 

load = $50,000/MWh 
Spatial resolution Single zone, no transmission constraints 
Temporal resolution  2007-2013 weather years (61,314 hours) 
Carbon emission constraints Two constraints: 10 and 1 gCO2 / kWh  
Thermal plant operating 
constraints 

Linearized unit commitment with ramping constraints and minimum 
up and down time constraints 

 

 
TABLE 2 Model results 

Result Technology Emissions Constraint 
10 gCO2/kWh 1 gCO2/kWh 

Installed Power Capacity (MW)36 CCGT 33.9 9.8 
CCGT-CCS 18.4 23.6 
OCGT 3.1 0.0 
PV 103.9 128.3 
Wind 121.9 136.8 
H2 

(discharge) 5.5 20.6 

H2 (charge) 3.6 12.4 
Li-ion 38.8 42.8 
Total 329.0 374.3 

Installed Energy Storage Capacity (GWh) H2 199.5 1279.9 
Li-ion 130.9 168.8 
Total 330.4 1448.8 

Average Discharged Energy (TWh/year)37 H2 7.5 25.2 
Li-ion 28.9 22.3 

Equivalent discharges / year38 H2 37.5 19.7 

                                                
36 In the case of hydrogen, installed power capacity has two components, one each for charging and discharging 
power. 
37 Average annual energy discharged is calculated as total energy discharged over the seven-year period divided by 
seven. 
38 Equivalent discharges per year for each storage technology is calculated as the ratio of average annual energy 
discharged divided by maximum electrical energy recoverable measure of storage capacity. 
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Li-ion 220.5 132.3 
Number of periods when storage is fully 
charged (hours/year) 

H2 232.0 68.0 
Li-ion 2942.0 3911.0 

Average system electricity cost ($/MWh) - 45.4 50.7 
Average load shedding per year (GWh/year) - 0.1 0.1 

 
 
 
 
TABLE 3 Relative RMS contribution of different frequency bands to state of charge variation 

Mode of operation 10 gCO2/kWh  1 gCO2/kWh 
Li-ion H2 Li-ion H2 

Daily 31.4% 0.5%  18.2% 0.2% 
Weekly 37.8% 13.0%   32.1% 3.5% 
Monthly 13.6% 52.9%  15.5% 28.4% 
Seasonal 17.2% 33.6%   34.2% 67.9% 

 
 
 
 
TABLE 4 Model results – System with Li-ion as the only storage technology 

Result Technology Emissions Constraint 
10 gCO2/kWh 1 gCO2/kWh 

Installed Power Capacity (MW) CCGT 33.6 12.3 
CCGT-CCS 22.0 32.0 
OCGT 5.5 0.0 
PV 102.9 130.3 
Wind 122.0 163.1 
Li-ion 38.6 52.6 
Total 324.5 390.4 

Installed Energy Storage Capacity (GWh)39 Li-ion 129.1 249.5 
Average Discharged Energy (TWh/year) Li-ion 29.8 25.3 
Equivalent discharges / year Li-ion 231.0 101.5 
Number of periods fully charged (hours/year) Li-ion 3110.0 5397.0 
Average system electricity cost ($/MWh) - 45.5 53.3 
Average Load Shedding per year (GWh/year) - 0.1 0.0 

 
 
 
 
 
 
                                                
39 Energy storage capacity is based on the maximum electrical energy recoverable definition discussed above. 



44 
 

TABLE 5 Frequency RMS analysis for Li-Ion – Comparison between scenarios 

Mode of operation of 
Li-ion 
 

Li-ion + H2 scenario  Li-ion only scenario 
10 gCO2/kWh 1 gCO2/kWh 10 gCO2/kWh 1 gCO2/kWh 

Daily 31.4% 18.2%  33.3% 13.1% 
Weekly 37.8% 32.1%   39.8% 44.0% 
Monthly 13.6% 15.5%  13.4% 26.0% 
Seasonal 17.2% 34.2%   13.5% 16.9% 
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