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Abstract

Persistent greenhouse gas (GHG) emissions threaten global climate goals and have prompted consideration of climate

controls supplementary to emissions mitigation. We present an idealized model of optimally-controlled climate change,

which is complementary to simpler analytical models and more comprehensive Integrated Assessment Models. We

show that the four methods of controlling climate damage– mitigation, carbon dioxide removal, adaptation, and solar

radiation modification– are not interchangeable, as they enter at different stages of the causal chain that connects GHG

emissions to climate damages. Early and aggressive mitigation is always necessary to stabilize GHG concentrations at a

tolerable level. The most cost-effective way of keeping warming below 2°C is a combination of all four controls; omitting

solar radiation modification– a particularly contentious climate control– increases net control costs by 31%. At low

discount rates, near-term mitigation and carbon dioxide removal are used to permanently reduce the warming effect

of GHGs. At high discount rates, however, GHGs concentrations increase rapidly and future generations are required

to use solar radiation modification to offset a large greenhouse effect. We propose a policy response process wherein

climate policy decision-makers re-adjust their policy prescriptions over time based on evolving climate outcomes and

revised model assumptions. We demonstrate the utility of the process by applying it to three hypothetical scenarios

in which model biases in 1) baseline emissions, 2) geoengineering (CDR and SRM) costs, and 3) climate feedbacks are

revealed over time and control policies are re-adjusted accordingly.

Introduction

Climate change due to anthropogenic greenhouse gas (GHG) emissions poses an existential threat to society Steffen et al.

(2018). Ever since the direct link between GHGs and global warming was established in climate models over fifty years

ago (Manabe and Wetherald, 1967), scientists have advocated for substantial emissions mitigation to stabilize global GHG

concentrations and temperatures (Revelle et al., 1965). The discovery that humans were unintentionally modifying the

climate was unsurprisingly followed by speculation about intentional climate control Kellogg and Schneider (1974). With

every year of increasing GHG emissions and climate goals slipping out of reach Peters et al. (2020), calls for serious

consideration of climate controls beyond just mitigation–and their implications– grow louder Buck (2012); Council et al.

(1991); Crutzen (2006); Parson (2017); Victor et al. (2009).

Four climate controls have emerged as plausible candidates for use in the near future: emissions Mitigation, carbon

dioxide Removal (CDR), Geo-engineering by Solar Radiation Modification (SRM), and Adaptation. The four controls

are not directly interchangeable as they enter at different stages of the causal chain of climate damages (Figure 1; Deutch,
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2019; Moreno-Cruz et al., 2018):

Emissions M−→ GHGs R−→ Forcing G−→Warming A−→ Damages. (1)

Controls further down the chain generally carry greater risks, since they require carefully off-setting the various downstream

effects of GHG emissions, but also have advantages: CDR is the only control that decreases GHG concentrations; SRM is

quick to deploy and has low direct costs McClellan et al. (2012); and adaptation allows for flexibility in the other controls

as any residual climate damages can be reduced by adapting to the new climate, to some extent Dow et al. (2013).

Numerous social or geopolitical factors may substantially limit or block deployments of certain controls, with solar radiation

modification standing out as particularly contentious Caldeira and Ricke (2013); Parson and Keith (2013); Schäfer et al.

(2013). Problems related to inequity Flegal and Gupta (2018), distrust Haerlin and Parr (1999); Lacey et al. (2018), or

lack of governance Flegal et al. (2019); Ricke et al. (2013) are just a handful of examples. Here, we ignore many of these

complexities– except in as much as they are implicitly included in costs and socio-technological constraints– and focus

on the "best-case" scenario where a globally-trusted decision-maker prescribes global control policies and their policy

prescriptions are exactly realized.

Our hypothetical trusted decision-maker must follow some set of principles on which to base their control policies. Two

commonly-studied approaches are 1) the cost-benefit approach (e.g. Nordhaus, 1992), in which control costs are balanced

against the benefits of avoided damages, and 2) the cost-effectiveness approach (e.g. Luderer et al., 2013), in which control

costs are minimized subject to a prescribed climate constraint. The cost-effectiveness approach underlies the Paris Climate

Agreement United Nations Framework Convention on Climate Change (2015), which aims to keep global warming well

below 2 ◦C above pre-industrial levels and currently organizes global climate policy1.

The conventional tool for optimizing global climate control are Integrated Assessment Models (IAMs), which are the result

of coupling simple climate system models to simple energy-economy models (see Weyant, 2017, for a general overview

of IAMs and their utility to date). In this paper, we 1) present an idealized model of optimally-controlled climate

change which is complementary to both simpler analytical models and more comprehensive IAMs and 2) we propose a

sequential policy process for periodic and critical re-evaluation of inevitably biased forecasts, which we illustrate with

three hypothetical examples.

MARGO: An idealized model of optimally-controlled climate change

The MARGO model consists of a physical energy balance model of Earth’s climate coupled to an idealized socio-economic

model of climate damages and controls (Figure 1):

Mitigation of greenhouse gas emissions,

Adaptation to climate impacts,

Removal of carbon dioxide (CDR),

Geoengineering by solar radiation modification (SRM), and

Optimal deployment of available controls.

1Intended nationally determined contributions to this effort imply 2.6–3.1 ◦C of warming and will need to be strengthened at upcoming

re-negotiations (and realized) to have a reasonable chance of keeping warming below 2 ◦C Rogelj et al. (2016).
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The model is modular, fast, and customizable and can be run with several options of objective functions and constraints.

Each of the climate controls acts, in its own distinct way, to reduce the damages caused by a changing climate but carry

their own deployment costs (including direct costs, research and development costs, infrastructure costs, regulatory costs).

The model is designed to include key features of climate physics, economics, and policy as concisely as possible and in

ways consistent with both theory and more comprehensive General Circulation Models and IAMs. The shortcoming of

the model’s simplicity is that while its results provide qualitative insights, the quantitative results are unreliable.

Emissions

Concentrations Radiative Forcing Temperature

Climate damagesControl costs

Figure 1: Schematic of the causal chain from greenhouse gas emissions to climate damages, including the unique effects

of four climate controls: emissions Mitigation, carbon dioxide Removal, Geoengineering by Solar Radiation Management

(SRM), and Adaptation. Climate controls yield benefits in terms of avoided climate damages, which are balanced against

control deployment costs.

The model is developed in open source using the Julia programming language Bezanson et al. (2017) at github.com/

hdrake/OptimizeClimate (Drake et al., 2020). The model originated as an extension of a previous model Deutch (2019)

to time-dependent control variables, although many improvements have been made since then. Each model component is

expressed in closed form to facilitate analytical analysis and computation. Unlike most idealized climate-economic models,

the entire MARGO framework can be explicitly written down in one or two expressions (Appendix A2). A derivation

and interpretation of the two-box energy balance model– which has the same form as that of DICE Nordhaus and Sztorc

(2013)– is included in the Methods. The parameter values used throughout the paper are set to the defaults mentioned in

this section (and comprehensively listed in Appendix A2), except where explicitly stated otherwise. Validation experiments

are summarized in the Methods and described in detail in the Appendix.
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No-policy baseline scenario

Climate-controlled scenarios are considered relative to an exogenous no-policy baseline where carbon-dioxide equivalent

(CO2e) emissions q(t) increase linearly four-fold by 2100 relative to 2020 and decrease linearly to zero by 2150, resulting

in 7.3 W/m2 of radiative forcing by 2100 and 8.5 W/m2 by 2150, relative to preindustrial levels. As a result of this

forcing, the global-mean temperature reaches 2 ◦C by 2050 and soars to T ≈ 4.75 ◦C by 2100, relative to preindustrial.

We interpret this emission scenario as an idealized extension of the SSP3 baseline scenario, which is characterized by

fossil-fueled growth Riahi et al. (2017).

There are five steps in the causal chain (eq. 1) between CO2e emissions and climate damages.

1. CO2e is emitted at a rate q(t), with only a fraction r = 50% Solomon et al. (2009) remaining in the atmosphere

after a few years, net of uptake by the ocean and terrestrial biosphere (Figure 2a).

2. CO2e concentrations increase as long as the emissions q(t) are non-zero, and are given by c(t) = c0 +
∫ t
t0
rq(t) dt

(Figure 2b).

3. Increasing CO2e concentrations strengthen the greenhouse effect, reducing outgoing longwave radiation and causing

an increased radiative forcing of F (t) = a ln(c(t)/c0), which exerts a warming effect on the surface.

4. Near-surface air temperatures eventually increase by T (t) = F (t)/B to balance the reduced cooling to space, where

B/(κ + B) = 60% of the warming occurs within a few years and the remaining κ/(B + κ) = 40% occurs over the

course of several centuries due to ocean heat uptake Marshall and Zanna (2014). The feedback parameter B includes

the effects of all climate feedbacks, except those involving the carbon cycle and the long-term ice sheet response

(Figure 2c), and the ocean heat uptake rate κ parameterizes the combined effects of advection and diffusion of heat

into the deep ocean.

5. Anthropogenic warming causes a myriad of climate impacts, which result in damages that increase non-linearly with

temperature, D = βT 2.

Effects of climate controls

The four available climate controls enter as fractional controls at each link of the climate change causal chain (eq. 1).

Mitigation reduces emissions by a factor M(t) ∈ [0, 1] such that the controlled emissions that remain in the atmosphere

are rq(t) (1−M(t)), where M = 1 corresponds to complete decarbonization of the economy.

Removal of CO2e, R(t) ∈ [0, 1], in contrast to mitigation, is de-coupled from instantaneous emissions and is expressed as

the fraction of 2020 baseline emissions that are removed from the atmosphere in a given year, q0R(t). A maximal value

of R = 1 corresponds to removing 60 GtCO2e/year, which is more than twice a recent upper-bound estimate of the global

potential for negative emission technologies Fuss et al. (2018).

A useful diagnostic quantity is the effective emissions

rq(t)(1−M(t))− rq0R(t), (2)

which is the annual rate of CO2e accumulation in the atmosphere (Figure 2a), with contributions from both emissions

mitigation and CDR. The change in CO2e concentrations is simply the integral of the effective emissions over time (Figure
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2b),

cM,R(t) = c0 +

∫ t

t0

rq(t′)(1−M(t′)) dt′ − rq0
∫ t

t0

R(t′) dt′. (3)

Geoengineering by SRM, G(t) ∈ [0, 1], acts to offset a fraction of the CO2e forcing,

FM,R,G(t) = FM,R(t)−G(t)F∞, (4)

where FM,R = a ln(cM,R(t)/c0) is the controlled CO2e forcing and F∞ = 8.5 W/m2 is the maximum baseline CO2e forcing,

which is attained starting in 2150, when baseline emissions are assumed to reach zero. A value of G = 1 thus corresponds

to a complete cancellation between the equilibrium warming from baseline CO2e increases and the cooling from a full

deployment of SRM.
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Figure 2: Baseline (blue) and optimally-controlled (orange) a) effective CO2e emissions, b) CO2e concentrations, and c)

temperature anomaly relative to preindustrial from cost-effectiveness analysis. Panel c) shows the optimal temperature

change that would occur: in a baseline scenario (blue); with just emissions Mitigation and carbon dioxide Removal

(orange); with Mitigation, Removal, and solar-Geoengineering (red); and as an “adapted temperature" (eq. 7) with

Adaptation measures also taken into account. The dashed grey line marks the threshold adapted temperature of T ? = 2 ◦C

to be avoided. In (c), TM,R,G and TM,R,G,A decrease slightly in 2050 relative to TM,R as small but non-zero SRM

deployment becomes permissible. Equivalent curves for cost-benefit analysis are shown in Figure S1.

The controlled near-surface air temperature (Figure 2c) evolves according to the total controlled forcing,

TM,R,G(t)− T0 =
FM,R,G(t)

B + κ
+
κ

B

∫ t

t0

e
t′−t
τD

τD

FM,R,G(t′)

B + κ
dt′, (5)

where T0 = 1.1 ◦C is the present warming relative to preindustrial and τD = 240 years is the slow timescale of ocean heat

uptake. The first term on the right-hand side of [20] represents a fast transient response while the second term represents

a slow recalcitrant response due to the thermal inertia of the deep ocean (see Methods). Climate inertia decouples

the temperature response from instantaneous forcing and implies that an additional fraction of short-term warming (or

cooling) is locked in for the future, even if radiative forcing is stabilized (Lickley et al., 2019), as in the case of bringing

emissions to zero in our model2.
2In earth system models with a dynamic carbon cycle, the slow recalcitrant warming due to a reduction in ocean heat uptake happens to be

roughly offset by the ocean carbon sink Solomon et al. (2009), such that bringing emissions to zero roughly stabilizes temperatures (Matthews

and Caldeira, 2008). The model’s realism would be improved by implementing a simple non-linear model of the ocean carbon cycle Glotter

et al. (2014)
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Adaptation to climate impacts acts to reduce damages by a fraction A(t) ∈ [0, 40%]. Since some climate impacts are likely

impossible to adapt to (Dow et al., 2013), we assume that adaptation can at most reduce climate damages by one-third.

The controlled damages are thus given by

DM,R,G,A = β(TM,R,G)2(1−A(t)), (6)

where the damage parameter β is tuned such that a warming of 3 ◦C results in damages of the 2% of Gross World

Product (GWP), consistent with DICE in the limit of non-catastrophic warming Nordhaus and Sztorc (2013). Although

adaptation does not affect the planetary temperature directly, it is useful to consider an "adapted temperature" TM,R,G,A

which yields controlled damages equivalent to the fully-controlled damages β(TM,R,G,A)2 = β(TM,R,G)2(1 − A) and is

defined

TM,R,G,A ≡ TM,R,G

√
(1−A). (7)

Costs and benefits of controlling the climate

The costs of deploying climate controls are non-negligible and must be balanced with the benefits of controlling the climate

to avoid climate impact damages. The costs of climate controls are parameterized as:

C = CMM2 + CRR2 + CGG2 + CAA2, (8)

where the C∗ are the hypothetical annual costs of fully deploying that control (see Methods) and the cost functions are

assumed to be convex functions of fractional deployment with zero initial marginal cost, as is customary Belaia (2019);

Moreno-Cruz et al. (2018); Nordhaus (1992), and are here all taken to be quadratic for simplicity Deutch (2019); Moreno-

Cruz et al. (2018). The benefits of deploying climate controls are the avoided climate damages relative to the no-policy

baseline scenario,

B = D −DM,R,G,A = β(T 2 − (TM,R,G,A)2). (9)

Exogenous economic growth

In contrast to conventional IAMs, which follow classic economic theories of optimal economic growth and solve for the

maximal welfare based on the discounted utility of consumption, we here treat economic growth as exogenous (as in

Moreno-Cruz et al., 2018). The economy, represented by the GWP E(t) = E0(1 + γ)(t−t0), grows from its present value

of E0 = 100 trillion USD with a fixed growth rate γ = 2%, consistent with DICE, expert opinion, and an econometric

forecast model Christensen et al. (2018); Nordhaus and Sztorc (2013). We ignore feedbacks of climate abatement costs

and climate damages on economic growth, since they are small variations relative to the exponential rate of economic

growth in many IAM implementations Azar and Schneider (2002); Nordhaus and Sztorc (2013), but not all Glanemann

et al. (2020).

Optimal deployments of climate controls

A trusted climate policy decision-maker specifies the objective function to maximize subject to additional policy con-

straints. The MARGOmodel is readily optimized in terms of the time-dependent climate control variablesM(t), R(t), G(t), A(t).

The numerical implementation of the optimization, as well as additional socio-technological constraints on the permitted
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timing and rates of deployments, are described in the Methods. Here, we describe the optimally-controlled results of two

policy approaches, cost-benefit analysis and cost-effectiveness analysis, and explore their sensitivity to the discount rate

ρ and possible limits to the fractional penetration of mitigation µ, respectively.

Cost-benefit analysis

A natural and widely-used approach is cost-benefit analysis, in which the cost CM,R,G,A of deploying climate controls is

balanced against the benefits BM,R,G,A of the avoided climate damages. Formally, we aim to maximize the net present

benefits:

max

{∫ tf

t0

(BM,R,G,A − CM,R,G,A) (1 + ρ)−(t−t0) dt
}
, (10)

where ρ is a social discount rate that determines the annual depreciation of future costs and benefits of climate control

to society. There are different views about the appropriate non-zero discount rate to apply to multi-generational social

utility Arrow et al. (2013); Ramsey (1928); Solow (1974); Stern et al. (2007). Here, we choose a discount rate of ρ = 1%,

on the low end of values used in the literature, motivated by our preference towards inter-generational equity Schneider

(1989).

The results of maximizing net present benefits are shown in Figure 3. Early and aggressive emissions mitigation– and to a

lesser extent CDR (Fig 3a)– drive net discounted costs of up to 1.5 trillion USD/year before 2075 relative to the no-policy

baseline but deliver orders of magnitude more in net discounted benefits from 2075 to 2200 (Fig 3b). Effective CO2e

emissions reach net-zero by 2040 and concentrations stabilize at cM,R = 500 ppm, slightly above present day c0 = 460 ppm

(Figure S1a,b). In 2050, deployments of SRM become permissible and quickly scale up to a moderate level of G = 15%,

permanently bringing carbon-controlled temperatures from about TM,R ≈ 1.5 ◦C to TM,R,G ≈ 0.75 ◦C above preindustrial

(Figure S1c). Deployments of adaptation are modest, reflecting its relatively high costs and its position at the end of the

the causal chain of climate damage (eq. 1)

The preference for controls earlier in the causal chain, notably mitigation, is largely a result of the choice ρ = 1% for

the discount rate (Figure 3c). In particular, if the discount rate increases above the economic growth rate Tol (2003),

ρ > γ = 2%, the time decay leads to a different regime of control preferences: the short-term fix offered by SRM

overwhelmingly becomes the preferred control since the high future costs of its unintended climate damages are damped

by the aggressive discounting of future costs. Adaptation emerges as the only control that peaks for intermediate values

of the discount rate, since its benefits are experienced both in the short-term and long-term.

Cost-effectiveness of avoiding damage thresholds

The conventional cost-benefit approach to understanding climate change is limited by the poorly understood damage

function Koomey (2013), which is likely to continue being revised as more is learned about its behavior at high levels

of forcing (Alley et al., 2003; Burke et al., 2015). An alternative approach, which presently guides global climate policy

negotiations, is to prescribe a threshold of climate damages– or temperatures, as in the Paris Climate Agreement United

Nations Framework Convention on Climate Change (2015)– which is not to be surpassed.

In this implementation, we aim to find the lowest net present costs of control deployments

min

{∫ tf

t0

CM,R,G,A(1 + ρ)−(t−t0) dt
}

(11)
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Figure 3: Results of cost-benefit analysis and sensitivity to the discount rate ρ. (a) Optimal control deployments and (b)

corresponding discounted costs and benefits relative to the no climate-policy baseline scenario. The total positive area

shaded in grey in (b) is the maximal net present benefits (eq. 10). (c) Time-mean control deployments as a function of

the discount rate.

which keep controlled damages below the level corresponding to a chosen temperature threshold, β(TM,R,G)2(1−A(t)) <

β(T ?)2, which we rewrite

TM,R,G,A < T ?, (12)

where TM,R,G,A is the "adapted temperature" (eq. 7).

The results of optimizing the cost-effectiveness of controls that keep adapted temperatures below T ? = 2 ◦C are shown

in Figures 2 and 4. Fractional emissions mitigation increases to a maximum of M = 50 % decarbonization by 2035

and is maintained until emissions peak in 2100 (Figures 2a and 4a). Carbon dioxide is initially removed at rate of

Rq0 ≈ 15% q0 = 1.1 ppm/year starting in 2030, which ramps up to Rq0 ≈ 30% q0 = 2.2 ppm/year by 2140. Since the

optimally-controlled temperatures that result from the above cost-benefit analysis are already lower than T ? = 2 ◦C, the

optimal controls from cost-effectiveness are less ambitious than for the cost-benefit analysis (Figures 3a, 4a), in contrast

to some previous mitigation-only studies Hammitt (1999); Nordhaus (1992) but inline with recent analysis Glanemann

et al. (2020) that uses an updated climate damage function Burke et al. (2015). As a consequence of relatively relaxed

mitigation and CDR early on, a sizable deployment of SRM is used to shave off 1 ◦C degree of warming at its peak in

the mid-22nd Century in order to meet the temperature goal (Figure 4a and Figure 2c). Adaptation offsets A = 15 % of

damages and plays a moderate role in reducing damages to below the threshold. Even with discounting, annual costs of

control deployments increase until 2100 and remain roughly constant in the 22nd Century (Figure 4b).

To explore the sensitivity of these results to our assumed mitigation costs CMM2, which allow for up to 50% mitigation

by 2035 at the relatively low cost of 700 billion USD/year, we compare the results against a re-optimization with steeper

costs at high levels of mitigation. The mitigation cost function is modified to

CMM
2
(

1− e−( 1−M
1−µ )

)−1
, (13)

where we set the penetration limit of cheap mitigation to µ = 40% and the function’s structure is shown in Figure 4d.

Mitigation costs are unchanged for M � µ. Around M ≈ µ, low-hanging mitigation options are increasingly exhausted

and costs begin to increase much more rapidly than the default assumption M2. The high costs of deep decarbonization

drive a reduction in the peak mitigation from M = 50% to nearly M = 30% in 2060, with the decreased mitigation being
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Figure 4: Results of cost-effectiveness analysis and sensitivity to potential limits µ to mitigation. (a) Optimal control

deployments and (b) corresponding costs and damages. In panel (b), the blue line shows the discounted baseline un-

controlled damages; the dashed grey line shows the discounted damages associated with 2◦ of warming, which are to be

avoided at all costs; the orange line shows the discounted damages in the optimally-controlled solution; and the red line

shows the optimal discounted costs of controls such that the shaded area below is the minimal net present costs of controls

(eq. 11). (c) Control deployments, as in (a), but re-optimized with high costs of deep decarbonization (blue line in d,

eq. 13) relative to the default mitigation costs (black line in d). Mitigation in the default scenario (a) is reproduced as a

dashed line in (c) for ease of comparison.

compensated by increases in the other three controls (Figure 4c).

Benefits of a complete portfolio of climate controls

To quantify the benefits of considering a complete portfolio of climate controls, as opposed to considering control tech-

nologies in isolation, we compute optimal control trajectories with all 15 combinations of the controls α ∈ {M,A,R,G},

setting α ≡ 0 for omitted technologies. The most cost-effective strategy includes all four controls and has a net present

cost of 136 trillion USD (discount rate of ρ = 1%). Since mitigation is the dominant control in the {MARG} scenario

(Figure 4a), the six most cost-effective portfolios include mitigation, with the no-SRM {MAR} and mitigation-plus-CDR

{MR} scenarios costing only 31% and 38% more than the {MARG} scenario, respectively (Table 1). The costs in single-

control scenarios are much larger, with additional costs of 136% for the mitigation-only scenario {M} to 201% for the

SRM-only scenario {G}. In the adaptation-only {A} and CDR-only {R} scenarios, there is no solution that avoids an

adapted temperature of T ? = 2 ◦C, because we have imposed an adaptability limit A < 40% Dow et al. (2013) and limits

to plausible levels of CDR q0R < q0 = 60 GtCO2e/year (see Methods).
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Table 1: Additional net present cost of avoiding an adapted temperature of T ? = 2 ◦C, relative to the 136 trillion USD net

present cost of controls in the {MARG} reference scenario with all four controls available: mitigation (M), adaptation (A),

CDR (R) and SRM (G). Since we have imposed upper bounds A < 40% and q0R < q0 = 60 GtCO2e/year on adaptation

and CDR, there is no scenario in which they can, in isolation, keep damages below those associated with T ? = 2 ◦C of

warming.

MARG MRG MAR MAG MR MG ARG RG

0% 5% 31% 34% 38% 46% 63% 96%

MA AG M G AR R A

105% 109% 136% 201% 216% N/A N/A

A policy process for responding to uncertain future outcomes

Integrated Assessment Modelling (IAM) approaches assume perfect foreknowledge of model dynamics, parameters (or

parameter distributions), and inputs. Future outcomes will differ from projections because the models are imperfect

approximations of the socio-economic and physical climate systems they represent. For example, socio-economic models

may assume erroneous future costs of climate controls Weyant (2008) and physical climate models may omit tipping

elements (Steffen et al., 2018), both of which would lead to biases in model projections with respect to actual outcomes.

Furthermore, the assumption of perfect foreknowledge degrades the active roles of policy decision-makers in determining

baselines and control cost functions, and of climate researchers in refining estimates of physical model parameters.

A hypothetical trusted climate policy decision-maker must be in a position to respond to the inevitable differences that

arise between model projections and actual outcomes and to revise their system understanding based on the newest

developments in research. We show how our model equips climate policy decision-makers with the ability to periodically

re-evaluate policy prescriptions by revising the underlying model structure and parameter values to correct for revealed

biases.

The responsive control strategy process we propose is as follows:

1. Initial future trajectories of optimal control deployments are computed from the vantage point of t = t0;

2. Model projections and control deployments are integrated forward one policy-making period to t1 = t0 + ∆t;

3. Model structure and parameter values are revised, owing to new information obtained from observed outcomes and

research developments;

4. Future trajectories of control deployments are re-optimized, now from the vantage point of t1 = t0 + ∆t and with

revised model parameters;

5. Return to step 2, replacing t1 = t0 + ∆t with tn = tn−1 + ∆t for period n, and repeat the process for the desired

number of periods.

To illustrate the utility of the policy response process, we apply it to three hypothetical future scenarios, in which the

most cost-effective controls for keeping adapted temperatures below T ? = 2 ◦C are sequentially re-optimized in response

to changes in model inputs and parameters. As a point of reference, we note that the passage of time itself leads to minor
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Figure 5: Illustration of the proposed policy process in which the optimally cost-effective control policies are periodically

re-adjusted, relative to the original policies prescribed in 2020 (Figure 4a). In a reference case (a,b), time advances

sequentially to 2050 (a) and 2080 (b) and policies are re-adjusted to reflect the new timelines. The blue shading shows the

passage of time. The changes in control deployments shown in (c-h) are due to sequential re-optimization at 2050 (left) and

2080 (right), relative to the reference case (a,b), but now with revised model parameters: (c,d) where historical effective

emissions rq(t) are sequentially decreased and then increased (see insets); (e,f) where the costs of CDR and SRM are

sequentially increased and decreased, respectively; and (g,h) where the best guess of the Equilibrium Climate Sensitivity

(ECS) is revised upwards in 2050 and again in 2080. The inset in (f) shows the cooling due to SRM ∆TG = TM,R,G−TM,R

in the default scenario (dashed) and after the re-evaluation in 2080 shown in panel (d) (solid).

adjustments in the optimal combination of control deployments. As each successive generation is exposed to increasingly

damaging temperatures, their most cost-effective solution is to increase adaptation measures, which past generations

did not yet need, and save costs by slightly decreasing all other controls in the near future (Figure 5a,b). The control

adjustments in the three scenarios below (Figure 5c-h) are shown relative to those in the reference case (Figure 5a,b).

Scenario 1: revealed bias in projected near-term baseline emissions

Suppose in t0 = 2020 that the policy decision-maker prescribes aggressive climate control policies based on their cost-

effectiveness at keeping warming below T ? = 2 ◦C (step 1; Figure 4a) and that these optimal climate controls are perfectly

implemented over the following ∆t = 30 years (step 2).

The policy decision-maker directs a re-evaluation of the optimal control strategy at t1 = 2050. The actual baseline emission

trajectory between t0 = 2020 and t1 = 2050 is found to be r∆q = 1 ppm/year lower than projected on average (Figure 5c,
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inset), resulting in lower CO2e concentrations than anticipated and a projected maximum warming of max(TM,R,G,A) =

1.9 ◦C, well below the T ? = 2 ◦C goal. The model inputs are thus revised to account for these lower-than-expected

historical baseline emissions (step 3) and the optimal future control trajectories are re-computed (step 4). Reduced

historical emissions imply a larger remaining carbon budget (Millar et al., 2016) and allow the policy decision-maker to

slightly relax control deployments while still remaining below T ? = 2 ◦C of warming (Figure 5c), resulting in 12 trillion

USD of avoided net present control costs. At this point, the policy decision maker must decide whether to continue existing

policies that lead to 1.9 ◦C of warming or to reduce future controls deployments (and costs) at the risk of increased climate

impacts due to an additional 0.1 ◦C of warming.

Suppose that, after following the re-optimized control trajectories for another ∆t = 30 years (step 5), the historical effective

baseline emissions must now be revised upwards by 2 ppm/year on average (Figure 5d, inset). With existing policies, the

increased historical emissions would result in a 0.13 ◦C overshoot of the T ? = 2 ◦C degree goal. The most cost-effective

adjustment to existing control policies that is consistent with the temperature goal is to increase mitigation, CDR, and

SRM efforts by an additional ∆M = 3%, ∆R = 2%, and ∆G = 2% (Figure 5d), at a net-present cost of 10 trillion USD.

Scenario 2: revealed bias in projected geoengineering (CDR and SRM) costs

Suppose that at a re-evaluation in 2050, CDR is found to be 50 % more expensive than projected. The climate policy-

maker directs deployment of the most cost-effective control trajectories which keep warming below T ? = 2 ◦C, which are

re-optimized with the revised cost of CDR. The result is to decrease CDR by ∆R = −5 % and instead increase adaptation

by ∆A = 5% (Figure 5e). The shift away from expensive CDR towards adaptation results in 11.5 trillion USD of avoided

net present costs of control deployments, with little difference in climate damage outcomes.

Suppose that after an additional 30 years, during which SRM is ramped up to a modest but non-zero level G = 5 % (Figure

4a), it becomes clear that the costs of unintended side-effect damages of SRM are less than half as large as expected. In

this scenario, the optimal future trajectory is to expand SRM deployments in the 22nd Century to G ≈ 20 % (resulting

in ∆TG = TM,R,G − TM,R ≈ −1.0 ◦C of cooling, up from −0.6 ◦C; Figure 5f, inset) and reduce future mitigation levels by

∆M = −10 % (Figure 5f), resulting in another 12.6 trillion USD of avoided net present control costs.

Scenario 3: revealed bias in estimates of climate sensitivity

Suppose that by 2050, a dramatically improved suite of general circulation climate models robustly exhibits Equilibrium

Climate Sensitivities of ECS = 3.5 ◦C, up from 3 ◦C in recent years (Geoffroy et al., 2012), and further improvements

result in ECS = 4 ◦C by 2080. Each of these revisions effectively shrinks the remaining cumulative carbon budget and

thus requires sequentially increased deployments of mitigation, CDR, and SRM in order to keep warming below T ? = 2 ◦C

(Figures 5g, h).

This responsive policy process only works if adjustments are made sufficiently frequently. If the policy decision-maker had

waited from 2020 until 2100 before re-adjusting their course for a higher climate sensitivity of ECS = 4 ◦C, there would

already be enough warming baked into the system that TM,R,G,A = 2.2 ◦C > T ? of warming would be inevitable– even if

the optimal policy from 2020 (Figure 4a,b) had been perfectly implemented.
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Discussion

Few studies have considered the combined use of mitigation, carbon dioxide removal (CDR), solar radiation modification

(SRM), and adaptation for controlling climate damages. We have developed a multi-control, time-dependent model

of optimally cost-beneficial or cost-effective climate policies, which extends and improves upon previous work Deutch

(2019). Another recent study Moreno-Cruz et al. (2018) uses a similar conceptual model with time-dependent controls

to analytically investigate the differences between different climate controls; however, this model’s climate physics are

reduced to a simple empirical relationship that is not as clearly applicable to the case of significant SRM, where the

direct link between cumulative emissions and temperature falls apart. Despite these differences, our study reproduces

two key conceptual results of both earlier studies: 1) the four different climate controls are not interchangeable, as they

enter at different stages of the causal chain between emissions and damages, and 2) the most cost-effective solution to

limiting climate damages is to use all four controls at our disposal. The first result emerges from the role of each control

in modifying the basic stock-flow properties of the carbon and heat budgets in the climate system. The second result

is a direct consequence of marginal control costs which 1) begin at zero and 2) are concave, and is not guaranteed to

hold if either assumption fails. For example, if learning effects are strong enough to cause fractional deployments costs

to become convex, then a single-control strategy could be more appealing. Alternatively, if substantial R&D investments

are necessary before a control is deployed, the large up-front marginal cost may be disqualifying.

We have proposed a policy response process which highlights the iterative nature of climate policy decision-making. We

show that this process can be used to periodically correct for revealed biases in our understanding of the climate-economic

system, in order to avoid unanticipated climate damages or "excessive" spending on climate controls. We view our

proposed policy response process as an improvement over previously proposed "sequential" and "adaptive" strategies, in

which policies are periodically re-evaluated by following instructions from a subjectively-defined decision flow chart (e.g.

Lempert et al., 1996). In our process, policy re-evaluations are always optimally cost-beneficial or cost-effective, although

the parameters that govern this optimization can be periodically re-adjusted. We argue that our policy process based on

re-optimization is more defensible than previous approaches but retains the benefits of the process being "adaptive".

For clarity of exposition, we have presented a fully deterministic version of the MARGO model. In actuality, key inputs

such as the climate feedback parameter B (and the related climate sensitivity ECS) and the damage function D(T ) are

extremely uncertain. Propagation of these uncertainties through a convex damage function typically increases expected

climate damages and strengthens the case for early and aggressive climate control Wagner and Zeckhauser (2016). Fu-

ture work includes 1) extending MARGO to a stochastic programming approach that accounts for uncertainty in the

various input parameters (see Methods) and 2) implementing a Bayesian policy response process where prior parameter

distributions can be updated based on observed outcomes Shayegh and Thomas (2015) or improved parameter estimates

from research developments. Stochastic programming of IAMs is significantly complicated by their endogenous economic

models Crost and Traeger (2013); the model presented here is significantly more endogenous and may prove to be a useful

framework for straight-forward multi-stage stochastic programming Webster et al. (2012).

The greatest caveat of the present study may be the assumption of a single trusted decision-maker. This device evidently

avoids the complexities of a realistic decision making process that involve multiple stake holders with conflicting interests.

The costs and benefits defined here are globally-aggregated; asymmetric costs and benefits between different regions lead

to diverging incentives, which are further complicated as the number of unique climate controls increases. Asymmetric
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multi-control incentives can be counter-intuitive: for example, one study suggests that high asymmetry in SRM damages

drives even higher levels of mitigation because of the risk of SRM "free-drivers" Moreno-Cruz (2015).

Even in the case where climate control policies are prescribed by a single hypothetical decision-maker, there are sure to

be inefficiencies in their implementation which we argue are more likely to result in under-deployment of controls than

over-deployment. Considerable caution must be taken whenever relying on substantial CDR or SRM since neither of these

controls exist as socio-technological systems capable of influencing climate, resulting in a "moral hazard" that shifts the

burden to unconsenting future generations Flegal et al. (2019); Fuss et al. (2014).

The MARGO model is an idealized model which highlights the qualitatively different roles of mitigation, CDR, adaptation,

and SRM in climate control. Both economic and physical components of the model have been abstracted as much as

possible to highlight a small number (N ≈ 9) of key parameters that govern the leading order behavior of the system (as

compared to widely-used IAMs: Hope, 2006; Nordhaus, 1992; Tol, 1997): the climate feedback parameter B (related to the

equilibrium climate sensitivtiy ECS = F2×CO2), the ocean heat uptake rate κ, the exogenous economic growth rate γ, the

discount rate ρ, the climate damage parameter β, and the controls costs CM , CR, CA, CG (Appendix A2 and Table 2). We

show how the model can be used to investigate the sensitivity of "optimal" climate control policies to poorly constrained

parameters, such as future control costs, and value-dependent parameters, such as the discount rate. We believe that our

model resides in a sweet spot of being more realistic than semi-analytic models and easier to understand than conventional

IAMs. We demonstrate that our model can be easily modified to reproduce the qualitative results of other studies (e.g.

Belaia, 2019; Soldatenko and Yusupov, 2018, Appendix A3) and hope that it will be a useful community tool for extending

simpler models, interpreting more comprehensive models, and bridging the gaps between climate economists, scientists,

policy decision-makers, and the public Buck (2010); Pindyck (2017); Schneider (1997).

Methods

All data and figures used in the study can be found at github.com/hdrake/OptimizeClimate and are readily reproduced

or modified by the Jupyter notebooks therein.

Control costs

The scaling costs for the four controls used in the present study are subjectively tuned; we here describe our rationale

for choosing the parameter values. We remind the reader that the purpose of the MARGO model is to reveal insights

about trade offs between the multiple controls and the dependence of model results on structural and parameteric choices.

The interested reader can choose their own parameter values and see how the results change by visiting our web-browser

application at github.com/hdrake/OptimizeClimate (placeholder until we have a better webapp).

The costs of mitigation are set according to the Working Group III contribution to Intergovernmental Panel on Climate

Change’s Fifth Assessment Report Clarke et al. (2014). In aggressive mitigation scenarios where CO2e emissions decrease

78% to 118% by 2100, they estimate abatement costs of about 2% of GWP (see their Figure 6.21, panel f). Thus, we

set the scaling cost of mitigation controls to CM = C̃ME(t), where the cost of mitigating all emissions is C̃M = 2% of the

GWP E(t).

The costs of CDR are set according to bottom-up cost estimates from (Fuss et al., 2018, their Table 2). We compute the
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mean cost of negative-emissions technologies, where we weight the median cost of each negative-emissions technology (in

USD/tCO2) by its upper-bound potential for carbon-dioxide removal (in GtCO2/year). This leads to a total potential

of roughly q0/2 ≈ 26 GtCO2/year at an average cost of CR = 110 USD/tCO2. The scaling cost is thus set based on an

estimate for R = 50%, i.e. CR
(
1
2

)2
= CR q0/2 or CR = 2CR q0 = 13 trillion USD/year.

The costs of SRM largely reflect the costs of unintended climate damages that result due to their imperfect compensation

for GHG forcing Irvine et al. (2017). Relative to both the costs of unintended damages and the costs of other climate

controls, the direct costs of SRM measures are thought to be small (McClellan et al., 2012), as in the most commonly

studied proposal of releasing gaseous sulfate aerosol precursors into the stratosphere to reflect sunlight back to space. The

reference cost of SRM is thus given by CG(t) = C̃GE(t), where C̃G is the damage due to deploying −F∞ ≡ −F (t→∞) =

−8.5 Wm−2 worth of SRM, as a fraction of the exogenous GWP E(t). In the face of considerable uncertainties about

the climate impacts of large-scale SRM (Irvine et al., 2017), we make the conservative assumption that the unintended

damages of SRM are as large as the uncontrolled damages due to an equivalent amount of CO2e forcing (as in Belaia,

2019; Goes et al., 2011), i.e. C̃G ≡ β̃(F∞/B)2 ≈ 4.6 %, where F∞/B is the equilibrium temperature response to a fixed

radiative forcing of F∞ = 8.5 Wm−2.

The costs of adaptation are estimated based on a recent joint report from the United Nations, the Bill and Melinda

Gates Foundation, and the World Bank. They estimate that adaptation measures costing 1.8 trillion USD from 2020 to

2030 generate more than five times as much in total net benefits. Here, we make the crude assumption that this level

of spending (180 billion USD / year) reduces climate damages by A = 20%, i.e. CA
(
1
5

)2
= 180 billion USD / year, or

CA = 4.5 trillion USD / year. We additionally cap adaptation at A < 1/2, recognizing that adaptation to all climate

impacts is impossible: there will always be residual damages that can not be adapted to Dow et al. (2013).

Optimization method

We use the Interior Point Optimizer Wächter and Biegler (2006) (https://github.com/coin-or/Ipopt), an open source

software package for large-scale nonlinear optimization, to minimize objective functions representing benefits and costs

to society subject to assumed policy constraints. In practice, the control variables α ∈ A = {M,R,G,A} are discretized

into N = (tf − t0)/δt timesteps (default δt = 5 years, N = 36) resulting in a 4N -dimensional optimization problem. In

the default (deterministic and convex) configuration, the model takes only O(10 ms) to solve after just-in-time compiling

and effectively provides user feedback in real time. This makes the model amenable to our forthcoming interactive web

application, which is inspired by the impactful En-ROADS model web application Siegel et al. (2018).

The model was designed from the beginning with the goal of eventual use in stochastic simulations where 1) the de-

terminstic scalar objective function can be generalized to an expected value of a probabilistic ensemble of simulations

that sample an uncertain parameter space, and 2) determinstic constraints can be generalized to probablistic constraints

(e.g. having a two-thirds chance of keeping temperatures below a goal T ?), although these features are still under active

development.
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Social, technological, and economic inertia

For each control α ∈ A = {M,R,G,A}, we assert a maximum deployment rate∣∣∣∣dαdt
∣∣∣∣ ≤ α̇, (14)

as a crude parameterization of social, technological, and economic inertia Ha-Duong et al. (1997), which acts to forbid

implausibly aggressive deployment Buck (2016) and phase-out scenarios (see Appendix A2 for more discussion). We set

Ṁ ≡ Ṙ ≡ 1/40 years−1 in line with the most ambitious climate goals Intergovernmental Panel on Climate Change (2018)

and Ġ = 1/20 years−1 to reflect the technological simplicity of attaining a large SRM forcing relative to mitigation and

CDR. We interpret adaptation deployment costs as buying insurance against future damages at a fixed annual rate CAA2,

with Ȧ = 0, which can be increased or decreased upon re-evaluation at a later date.

We also set a control readiness condition which optionally limits how soon each control is "ready" to be deployed. In

particular, in the default configuration we set tR = 2030 and tG = 2050 because CDR has not yet been deployed at a

climatically significant scale Minx et al. (2018) and SRM does not yet exist as a socio-technological system (Flegal et al.,

2019).

Two-box energy balance model

The evolution of the global-mean near-surface temperature anomaly (relative to the initial time t0 = 2020) is determined

by the two-box linear energy balance model (Held et al., 2010):

CU
dT

dt
= −BT − κ(T − TD) + F (t), (15)

CD
dTD
dt

= κ(T − TD), (16)

where eq. 15 represents the upper ocean with average temperature anomaly T , and eq. 16 represents the deep ocean

with an average temperature TD. The near-surface atmosphere exchanges heat rapidly with the upper ocean and thus the

global-mean near-surface air temperature is also given by T . The physical model parameters are: the upper ocean heat

capacity CU = 7.3 W yr m−2 K−1 (including a negligible contribution CA � CU from the atmosphere); the deep ocean

heat capacity CD = 106 W yr m−2 K−1; the climate feedback parameter B = 1.13 W m−2 K−1; and the ocean mixing rate

κ = 0.73 W m−2 K−1. The parameter values are taken from the multi-model mean of values diagnosed from 16 CMIP5

models Geoffroy et al. (2012). The radiative forcing and temperature anomalies at t0 = 2020 relative to preindustrial are

F (t0) − F (tpre) = 2.5 W m−2 and T0 ≡ T (t0) − T (tpre) = 1.1 K, where we set F0 ≡ F (t0) = 0 W m−2 and T (tpre) = 0 K

for convenience.

Since, by construction, the anthropogenic forcing F (t) varies on timescales longer than the fast relaxation timescale

τU = CU/(B + κ) = 4 years, we can ignore the time-dependence in the upper ocean and approximate

T ≈ F + κTD
B + κ

, (17)

where the evolution of the deep ocean

CD
dTD
dt
≈ − Bκ

B + κ
TD +

κ

B + κ
F (18)

occurs on a slower timescale τD ≡
CD
B

B + κ

κ
= 240 years (Held et al., 2010). This approximation is convenient because

it permits a simple closed form solution, but should be avoided if the model is applied to scenarios with rapidly changing
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forcing, such as studies of the transient response to an instantaneous doubling of CO2 or the SRM "termination effect"

(see Appendix A1 for validation of the approximation). Plugging the exact solution to eq. 18 into eq. 17 gives the

closed-form solution

T (t)− T0 =
F (t)

B + κ
+
κ

B

1

(B + κ)

∫ t

t0

e−(t−t
′)/τD

τD
F (t′) dt′. (19)

The evolution of the controlled temperature anomaly (eq. 20; Figure 2c) has the same form but is instead driven by the

controlled net radiative forcing FM,R,G.

We identify the first term on the right hand side of eq. 19 and eq. 20 as the transient climate response (Gregory and

Forster, 2008), which dominates for t − t0 � τD, while the second term is a slower “recalcitrant" response due to a

weakening of ocean heat uptake as the deep ocean comes to equilibrium with the upper ocean (Held et al., 2010). While

the contribution of the recalcitrant component to historical warming is thought to be small, it contributes significantly to

21st century and future warming (Gregory and Forster, 2008; Held et al., 2010).

The behavior of the model on short and long timescales is illustrated by applying it to the canonical climate change

experiment in which CO2 concentrations increase at 1% per year until doubling. The temperature anomaly first rapidly

increases until it reaches the Transient Climate Sensitivity TCS =
F2×

B + κ
= 1.9 ◦C around the time of doubling t = t2×,

with t2× − t0 � τD and F2× = α ln(2), and then gradually asymptotes to the Equilibrium Climate Sensitivity ECS =
F2×

B
= 3.1 ◦C > TCS on a much longer timescale t− t0 � τD.

Model validation

In Section 1 of the SI, we show that subjecting the MARGO energy balance model to a stylized RCP8.5-like forcing

accurately reproduces the multi-model mean response from an ensemble of 35 comprehensive general circulation climate

models from the CMIP5 ensemble (Figure S2). In Appendix A3, we show that by tweaking just a few of these default

parameter values (Tables 2 and 3), the model replicates the qualitative results of studies ranging from analytical control

theory analysis of SRM deployments Soldatenko and Yusupov (2018) to numerical optimizations of mitigation, CDR,

and SRM deployments in a recent application of DICE Belaia (2019), a commonly used Integrated Assessment Model

Nordhaus (1992).
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A Validation of MARGO’s approximate two-box Energy Balance Model

A.1 Comparison with CMIP5 simulations under RCP8.5

The two-box Energy Balance Model (EBM) used in the MARGO model is described in the main text Methods. Here,

we validate the MARGO-EBM by comparing it to an ensemble of 35 CMIP5 models under the RCP8.5 forcing scenario.

We further validate the MARGO-EBM’s approximation to the two-layer box model (in the equilibrated-thermocline

limit CU � CD). We validate the approximation in three different high-forcing regimes: 1) the RCP8.5 scenario with

large but gradual changes in forcing over the 21st Century; 2) the long-term (800 year) approach to equilibrium in an

extended RCP8.5 scenario (ECP8.5); and 3) the short-term response to deployment and termination of large-amplitude

solar radiation modification (SRM).

First, we construct an idealized forcing scenario that is meant to appromximate RCP8.5 Riahi et al. (2007) and its extension

beyond 2100, ECP8.5 Meinshausen et al. (2011). In our scenario, baseline CO2e emissions: 1) increase exponentially with

a growth rate of 1/37 years−1 to reach a maximum of 410 GtCO2e/year in 2100, approximately 7 times present-day

emissions; 2) plateau between 2100 and 2120; and 3) decrease linearly to zero between 2120 and 2200 (Figure 7a). As

a result, CO2e concentrations increase exponentially from the preindustrial value c0 = 280 ppm in 1850 to 1400 ppm in

2100. In the extended scenario ECP8.5, CO2e concentrations continue to grow until stabilizing at 3000 ppm in 22003

(Figure 7b). These increases in CO2e drive a radiative forcing which increases to F = 8.5 W/m2 by 2100 and stabilizes

at F = 12 W/m2 by 2200 (Figure 7c). The forcing timeseries constructed here approximates the RCP8.5 and ECP8.5

scenarios reasonably well– compare our Figure 7c with Figure 4 of Meinshausen et al (2011; Meinshausen et al., 2011).

When subjecting the MARGO-EBM to the RCP8.5-like scenario introduced above, we almost exactly recover the multi-

model-mean warming from the CMIP5 ensemble under RCP8.5 (Figure 7d, solid black and blue lines). The excellent

agreement is not surprising, given that we have tuned our MARGO-EBM with parameter values calibrated to the CMIP5

models Geoffroy et al. (2012). The climate physics-based calibration used here Geoffroy et al. (2012) is more realistic than

the calibrations of commonly-used IAMs Calel and Stainforth (2016) and more robust to out-of-sample climate forcings.

A.2 Evaluation of the equilibrated-thermocline approximation

The MARGO-EBM uses the equilibrated-thermocline approximation,

TM,R,G(t)− T0 =
FM,R,G(t)

B + κ
+
κ

B

∫ t

t0

e
t′−t
τD

τD

FM,R,G(t′)

B + κ
dt′, (20)

which is a valid solution of the two-layer equations (15-16) in the limit CU � CD. In Figure 7e we show that this

approximation (dashed black line) introduces only very small errors relative to the full solution under the ECP8.5 forcing

scenario (solid black line). The full solution is computed numerically by solving the two-layer EBM equations 15 and 16

using forward finite differences. If we dramatically reduce either the deep ocean heat uptake rate κ or the deep ocean

heat capacity CD, as is customary in IAMs Calel and Stainforth (2016), then the model 1) equilibrates much too quickly

with the instantaneous forcing and 2) underestimates recalcitrant changes that occurs long after the radiative forcing is

stabilized (Figure 7e, dotted black line).
3In the original definition of the ECP8.5 scenario Meinshausen et al. (2011), much of these CO2e increases are the result of increases in

other gases such as Methane, Nitrous Oxide, and Hydrofluorocarbons.
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Since we are interested in the response of the MARGO-EBM to climate controls which may cause the controlled radiative

forcing FM,R,G to deviate substantially from a high-emissions baseline scenario, we here validate the MARGO-EBM’s

response to a short-term impulse of radiative forcing. In Figure 8, we modify the above ECP8.5 scenario by adding a

Gaussian negative radiative forcing anomaly due to short-term SRM. The negative forcing impulse is centered around

2075, has a magnitude of FG = −GF (t→∞) = −3.4 Wm−2 (for G = 40%), and a timescale of σ = 20 years (Figure 8a).

This negative forcing results in a pronounced short-term net cooling between 2050-2070, followed by an extremely rapid

warming from 2070 to 2080 as the SRM program terminates (Figure 8b,c). A weak residual cooling of 0.1 ◦C propagates

into the deep ocean and lingers for centuries (Figure 8c). Despite the neglect of upper-ocean thermal inertia in the

equilibrated-thermocline approximation, the MARGO-EBM agrees well with the full solution of the two-box equations,

the approximation lagging behind the full solution by roughly τU = 5 years (Figure 8c).

B Comprehensive model equations and parameter values

In the cost-effectiveness framing, the full formulation of the problem

min { discounted costs } subject to TM,R,G,A < T ?

is given, in closed form, by:

min
{[
E0(1 + γ)(t−t0)

(
C̃MM2 + C̃GG2

)
+ CRR2 + CAA2

]
(1 + ρ)−(t−t0)

}
(21)

Subject to

√
1−A

T0 +

a ln

(
c0+

∫ t
t0
rq(1−M)dt′−q0

∫
Rdt′

c0

)
− F∞G

B + κ
+
κ

B

∫ t

t0

e
t′−t
τD

τD


a ln

(
c0+

∫ t′
t0
rq(1−M)dt′′−q0

∫ t′
t0
Rdt′′

c0

)
− F∞G

B + κ

 dt′

 < T ?,

(22)

where τD =
CD
B

B + κ

κ
is a timescale specified by the physical parameter CD. The cost-benefit equation can similarly be

derived based on the equations in the main text.

The problem is fully characterized by the 19 "free" parameters in equations 21 and 22, the default values of which are

reported in Table 2 (18 in the case of cost-effectiveness, which avoids the use of a poorly-constrained damage coefficient

β). The 19 parameters are: 3 grid parameters t0, tf , δt; the 3 initial conditions T0, c0, E0; the 1 carbon cycle parameter r;

the 4 physical parameters a, B, κ, and CD; the 3 economic parameters β, ρ, γ; and the 5 control cost parameters CA, CR,

C̃M , C̃G, F∞. The baseline emissions timeseries q(t) is treated as exogenous and must be prescribed as an input. In the

cost-effectiveness framework, the poorly-constrained damage parameter β is replaced by a prescribed temperature goal

T ?. The grid, initial condition, and physical parameters are well constrained, while the economic and cost parameters are

heuristic interpretations of the wider climate and economic literature.

The control variables α ∈ A = {M,R,G,A} satisfy several additional constraints, which could be thought of as an

additional 20 parameters, at most, although many end up being unimportant or redundant across several parameters

(1 and 2 are necessary physical constraints on the controls whereas 3, 4, and 5 simply make the model’s behavior more

realistic):
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1. The controls must be positive, α ≥ 0;

2. They have an upper bound: α < αmax. Mmax = 1 is by set by the definition of mitigation. Gmax = 1 is chosen

because it results in a negative radiative forcing that exactly offsets the maximum GHG forcing of 8.5 W/m2. We

set Amax = 40% in acknowledgement of practical Dow et al. (2013) and theoretical Sherwood and Huber (2010)

limits to adaptability (this is meant as more of a symbolic gesture rather than an estimate of how much climate

damage might be adaptable). Finally, R = 50% is set based on a recent bottom-up estimate of the potential for

carbon dioxide removal of existing (but not necessarily scalable) negative emissions technologies.

3. They have an initial condition α(t0) = α0, which are all set to zero except for M0 = 10%, since none of the other

controls have yet been deployed at scale.

4. We set maximum deployment and termination rates
∣∣dα
dt

∣∣ < α̇, which represent economic, technological, and social

inertia. We set Ṁ = Ṙ = 1/40 years−1 as an upper limit on plausible timescales of global energy transition. On

the other hand, we set Ġ = 1/20 years−1 to reflect the fact that solar geo-engineering deployment capacity could in

principle be ramped-up very quickly, possibly even in the absence of global governance or regulation. We interpret

adaptation costs as buying insurance against future damages up-front, with both benefits and costs spread evenly in

the future. Thus, we set Ȧ = 0. The caveat is that we allow control policy re-evaluations, at which point the value

of adaptation can in that timestep be increased or decreased to a new level (see Figure 5 of main text), without a

limit on the rate of increase.

5. We implement "readiness" constraints, α(t) = 0 for all t < tα, to reflect the fact that some controls, such as

geoengineering (both carbon and solar), do not yet exist as climate-relevant socio-technological systems Flegal et al.

(2019). In particular, we set tR = 2030 and tG = 2050.

C Qualitative replications of other climate control model analysis

To illustrative the potential utility of MARGO as a community tool, we show how run-time parameter values in MARGO

can be tweaked to match the model configurations and results of other studies of climate control policies. One the one

hand, MARGO can be tuned to the inputs and outputs of a comprehensive multi-control IAM configuration to reproduce

its qualitative results (Section A; Belaia, 2019); on the other hand, MARGO can be simplified by setting many of the

parameters to zero to emulate an analytical model of climate control by solar radiation modification (SRM) only (Section

B; Soldatenko and Yusupov, 2018). The goal of this section is to show how with minimal modifications to the default

MARGO model, we are able to replicate key figures from two very different studies. For discussion of the figures we

attempt to replicate, we refer readers to the original studies Belaia (2019); Soldatenko and Yusupov (2018).

C.1 Belaia (2019): A multi-control extension of DICE with Mitigation, Carbon Dioxide

Removal, and Solar Geo-engineering

Belaia (2019) extend DICE, a commonly-used globally-aggregated general equilibrium IAM, to include carbon dioxide

removal (CDR) and solar radiative modification– which they refer to as solar geoengineering (SG)– to supplement DICE’s

emissions mitigation in controlling climate damages Belaia (2019).
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Parameter Default Configuration

t0 2020

tf 2200

δt 5 yr

c0 460 ppm

T0 1.1 K

a 4.97 Wm−2

r 50%

B 1.13 W m−2 K−1

κ 0.72 W m−2 K−1

CD 106 W yr m−2 K−1

β 0.22× 1012 $ yr−1 K−2

ρ 1%

E0 100× 1012 $ yr−1

γ 2%

CA 4.5× 1012 $ yr−1

CR 13× 1012 $ yr−1

C̃M 2 % (of GWP)

C̃G 4.6 % (of GWP)

F∞ 8.5 Wm−2

Table 2: Values of the 19 free parameters that characterize the MARGO model.

To implement CDR and SRM, Belaia (2019) make two fundamental changes to DICE. Their modelling of SRM forcing is

identical to ours. In terms of costs, they similarly make the conservative assumption that SRM costs are dominanted by

unintended side effects and scale with the damage of an equivalent amount of GHG forcing, but they include this damage

cost as an additive term to the climate damages rather than the control costs. Their approach is thus similar to ours

in the case of cost-benefit analysis, but in the cost-effectiveness case they effectively ignore indirect SRM damages while

reaping the benefits of its low direct costs. The version of DICE they use already permits moderate negative emissions, as

an extension of the emissions mitigation curve to 120%, i.e. 100% mitigation of baseline emissions mitigation plus removal

of an addition 20% of baseline emissions). To extend this further, Belaia (2019) allow for substantial CDR by extending

the mitigation curve indefinitely, although the cost curves are convex such that CDR becomes increasingly expensive.

They also appear to have modified the functional form of emissions mitigation to keep CDR costs relatively low. The

rationale for modelling CDR as an extension of mitigation is unclear, since 1) emissions mitigation and carbon dioxide

removal are distinct physical, industrial, and economic processes and 2) marginal CDR costs today are already lower than

the backstop mitigation costs assumed in their scenarios.

To approximate the DICE configuration used by Belaia (2019), we make the changes to MARGO’s default parameter values

reported in Table 3. Notably, we extended the time from 2200 to 2500, increased the reference costs for mitigation by about

75%, and increased the reference costs for SRM by about 175%. We found it necessary to modify the physical climate
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Parameter Belaia (2019) Soldatenko and Yusupov (2018)

t0

tf 2500 2100

δt 1 year 1 year

c0

T0

a

r 75%

B 0.8× 1.13 W m−2 K−1

κ 0.75× 0.72 W m−2 K−1

CD 0.75× 106 W yr m−2 K−1

β

ρ 1.5%

E0

γ

CA
CR
C̃M 3.6 % (of GWP)

C̃G 12.5 % (of GWP)

F∞ 7.5 Wm−2

Table 3: Values of the 19 free parameters that characterize the MARGO model, modified to replicate results from other

models. Blank cells denote parameters that are not changed from the default values in Table 2.

parameters in order to match their CO2e concentrations, radiative forcing, and temperatures based on their baseline

emissions scenario q(t), which we approximated with piece-wise quadratic functions (Figure 9a, blue line). Additionally,

we omit adaptation and carbon dioxide removal, Amax ≡ Rmax ≡ 0; we effectively remove the upper limit on mitigation

Mmax = 10; we increase socio-technological intertia for all controls to α̇ = 1/90 years−1; we set initial mitigation to

M0 = 3%; and we remove all "readiness" constaints, tα = 2020. Additionally, in order to match the mitigation cost curves

in their Figure 1 9, we found it necessary to decrease the mitigation cost exponent from 2 to 1.8, as compared to 2.8 in

DICE-2013 Nordhaus and Sztorc (2013) or 2.6 in DICE-2016 Nordhaus (2017).

Figure 9 shows the results of cost-benefit analysis for: a baseline scenario, a mitigation only scenario, a mitigation and

CDR scenario, and a scenario with mitigation, CDR, and SRM. Figure 9 has been formatted exactly as Figure 4 of Belaia

(2019; Belaia, 2019), which presents the results from equivalent simulations in their extension of DICE, for convenient

side-by-side comparison.
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Figure 6: Baseline (blue) and optimally-controlled (orange) a) effective CO2e emissions, b) CO2e concentrations, and c)

temperature anomaly relative to preindustrial from cost-benefit analysis. Panel c) shows the optimal temperature change

that would occur: in a baseline scenario (blue); with just emissions Mitigation and carbon dioxide Removal (orange);

with Mitigation, Removal, and solar-Geoengineering (red); and as an “adapted temperature" with Adaptation measures

also taken into account. The dashed grey line marks 2 ◦C for context. In (c), TM,R,G and TM,R,G,A decrease dramatically

in 2050 relative to TM,R as moderate levels of SRM become permissible.

C.2 Soldatenko and Yusupov (2018): Analytical control theory applied to solar radiation

modification

Soldatenko and Yusupov (2018; Soldatenko and Yusupov, 2018) develop an analytical model for the optimally cost-

effective time-dependent deployment of solar radiation modification (SRM) which keeps temperatures in all years below

T ? = T0 + 1 ◦C and keeps temperatures at their end date of 2100 below T0. Although their representation of SRM forcing

is more involved then ours and depends on the mass of sulfate aerosol injected, the resulting optimization problem is

remarkably similar to an SRM-only configuration of the default MARGO model.

To approximate Soldatenko and Yusupov (2018)’s analytical model Soldatenko and Yusupov (2018), we make the changes

to MARGO’s default parameter values reported in Table 3. Additionally, we omit adaptation, carbon dioxide removal, and

mitigation, Amax ≡ Rmax ≡ Mmax ≡ 0; we remove all "readiness" constaints, tα = 2020, we set T ? = 2.1 ◦C (1 ◦C above

T0) and add an additional constraint TM,R,G < T0 on the final timestep at tf = 2100 (the latter is the only modification

that required modifying compiled model source code).

Figure 10 shows the result of cost-effectiveness optimization for an SRM-only scenario, which is formatted to be directly

comparable to Figure 3 of Soldatenko and Yusupov (2018).
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Figure 7: Validation of the 21st Century and equilibrium responses of the MARGO Energy Balance Model (EBM). a)

Baseline CO2e emissions, b) concentrations, and c) radiative forcing in an RCP8.5-like scenario (dashed orange line) and

its extension beyond 2100 (ECP8.5; solid black line). d) The temperature response of CMIP5 models to the RCP8.5

forcing scenario (thin blue lines for individual models; thick blue line for multi-model mean) and of the MARGO-EBM

to the RCP8.5-like scenario. The dashed black line shows the full solution to the two-layer equations 15 and 16 with the

same parameter values (Geoffroy 2013; Geoffroy et al., 2012) as the approximate solution 20 used in the MARGO-EBM.

e) The temperature response to the ECP8.5 scenario for: the MARGO-EBM (solid), the full two-box model (dashed black

line) and the full two-box model with κ = 0 (dotted line). The vertical red lines delineate 2200, the year in which the

ECP8.5 emissions reach net zero and concentrations are stabilized.
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Figure 9: A qualitative replication of Figure 4 of Belaia (2019; Belaia, 2019); see their figure caption and accompanying

discussion of the results.
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S0/4

and the solid black line shows the temperature anomaly ∆T ∗.
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