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Abstract 

We formulate generation capacity portfolio planning in the power grid as a least-cost optimization problem and 
derive analytical expressions for the optimality conditions for dispatchable generation, variable renewable 
energy (VRE), and energy storage systems (EES) using a generalized net load duration curve approach. This is 
done for different operational strategies for EES with and without VRE in the system. For all studied 
combinations of technologies and operational strategies, we show that all units, including VRE and EES, recover 
their costs and maximize their profits in the system optimum, for an ideal short-term electricity market based 
on marginal cost and scarcity pricing. We verify the analytical findings through a numerical example, which 
shows that the general net load duration curve approach gives identical results to a standard capacity expansion 
model with sequential operation of the generation and ESS units, under the assumption of limited power 
capacity but infinite energy capacity of EES. The results highlight that the net load duration curve models 
presented in this paper can be a useful supplement to more detailed simulation studies of markets with high 
penetration of VRE and EES, to better understand the underlying factors that determines the optimal capacity 
mix and profitability of each technology in energy-only electricity markets. 

Keywords: electricity markets, optimality conditions, market equilibrium, variable renewable energy, energy 
storage system, duration curve model 



M. Korpås, A. Botterud. Optimality Conditions and Cost Recovery in Electricity Markets with Variable 
Renewable Energy and Energy Storage, MIT CEEPR Working Paper 2020-005, March 2020. 
 

2 
 

Nomenclature 

Indices 
b Baseload plant 
d Demand 
e Electric Energy Storage (EES) 
e+	 Discharging of EES 
e-	 Charging of EES 
F Firm 
G (Thermal) generator 
nd Net demand 
P Peaker plant 
S	 Load shedding 
V	 Variable renewable energy (VRE) 
vpot	 VRE potential (uncurtailed) 

Symbols 
𝛼0	 Annuity factor of plant i [p.u.] 
𝜂0	 Efficiency of plant i [p.u.] 
𝜆3	 Lagrange multiplier for power balance [$/MWh] 
𝜇0506	 Lagrange multiplier for minimum generation of plant i 
𝜇0578 Lagrange multiplier for maximum generation of plant i 
𝜋0	 Profit function for plant i [$/yr] 
ℒ	 Lagrangian 
𝑑 Storage duration [h] 
p	 Price of electricity in the market [$/MWh] 
𝑝=>?	 Price for CO2 emissions [€/tonCO2] 
q	 Power generation or consumption [MW] 
𝑞, 𝑞	 Maximum/minimum generation or consumption [MW] 
R	 Discount rate [%] 
t	 Duration or time step [h] 
𝑣0	 Variable cost of plant i [$/MWh] 
xi	 Power capacity of plant i [MW] 
ACE	 Average cost of electricity [$/MWh] 
ACi	 Annual cost of plant i [$/yr] 
ARi	 Annual revenue of plant i [$/yr] 
𝐴𝐹L	 Availability factor of VRE plant [p.u.] 
𝐴𝐹L

[NOPQ,NO]	 Availability factor of VRE plant during the time segment between 𝑡0TU and 𝑡0 [p.u.] 
C	 Total annual system costs [$/yr] 
CRF	 Cost recovery factor [1/yr] 
Fi	 Annual fixed costs of plant i [$/MW/yr] 
𝐹W
XYZ	 Annual fixed cost of EES power capacity [$/kW/yr] 

𝐹WW6	 Annual fixed cost of EES energy capacity [$/kWh/yr] 
E	 Energy [MWh] 
𝐸𝐹\]W^	 Emission factor of fuel [tonCO2/MWhfuel] 
𝐸W	 Energy capacity of EES [MWh] 
𝐿 Lifetime [yr] 
𝐿𝐶𝑂𝐸 Levelized cost of electricity [$/MWh] 
𝑂𝑀L7Z,0	 Variable operation and maintenance cost of plant i [$/MWh] 
𝑂𝑀\08,0	 Fixed operation and maintenance cost of plant i [$/kW/yr] 
SCCi	 Specific capital cost of plant i [$/kW/yr] 
T	 Hours of the year (T=8760 h) 
WAPE	 Weighted average price of electricity [$/MWh] 

Sets 
E EES plants 
G	 (Thermal) generators 
V	 VRE plants 
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1 Introduction 

Variable Renewable Energy (VRE) technologies are now deployed at an accelerated phase in electricity 
markets all over the world. Up to now, investments in these resources have to a large extent been driven 
by different subsidy schemes, either in the form of feed-in tariffs, green certificates, compulsory power 
purchasing agreements (PPAs), investment refunds, tax credits or other mechanisms. However, in the 
last few years, the cost for field-ready VRE installations has declined so fast that in more and more 
areas, onshore wind and utility-scale solar have reached a cost-level that is lower than conventional 
generation without any form of subsidy (Smith 2019).  

In a future where VRE is the cheapest technology, calculated in terms of lifetime costs of kWh 
delivered, current electricity markets are challenged if no changes to their design takes place. First and 
foremost, this is due to the well-known merit-order effect (Sensfuß, Ragwitz, and Genoese 2008; 
Trötscher and Korpås 2008; Hirth 2013; Levin and Botterud 2015), which simply expresses that 
conventional generators with higher marginal costs are dispatched less and potentially pushed out of 
the market as more low or zero marginal cost VRE enters the system and reduce the average short-term 
price in the electricity market. 

In principle, the merit-order effect will also impact the deployment of VRE as long as they receive no 
subsidies and must rely on electricity short-term prices in the electricity market to cover their expenses. 
Although often discussed as a challenge in the literature (Milligan et al. 2015; Pollitt and Anaya 2016; 
Botterud and Auer 2019), this limiting factor of VRE expansion in electricity markets has not been 
studied in much depth, with regards to the cost recovery conditions of the VRE plants or other 
generators in the system. Other relevant studies have taken a central planner approach for future 
scenarios (California Energy Commission 2018; European Commission 2016), or investigated present 
subsidy schemes for VRE (Hiroux and Saguan 2010; Kalkuhl, Edenhofer, and Lessmann 2013; Nicolini 
and Tavoni 2017) or capacity credits (Bothwell and Hobbs 2017). The literature has often described 
how externally funded VRE plants (i.e. built outside the pure market incentives) lowers the net load and 
thereby lowers the income of thermal generators, see (Traber and Kemfert 2011), and impact the 
resource adequacy in the system (Milligan et al. 2016). As recently described in (Joskow 2019), most 
theoretical work so far has treated VRE capacity as given exogenously. An important exception is 
(Helm and Mier 2016), which present a two-stage model for efficient investment in VRE and fossil 
generators for deceasing VRE capacity costs, assuming a uniform1 availability function for VRE 
variability. In this paper, we will derive simple but generally valid cost recovery conditions for VRE 
and thermal generators in energy-only markets. Under a set of assumptions, we show that all generators 
(including VRE) recovers their costs by traditional marginal cost pricing, and that this results in an 
optimal generation capacity portfolio for the system. This implies that the merit-order effect of VRE 
may not be a problem for efficient development and operation of the power market as such, but it will 
obviously have an impact on the number of conventional generators that is needed in the system. 

In this paper, we further investigate the market equilibrium implications of introducing energy storage 
systems (ESS) in energy-only markets based on marginal cost pricing. VRE, ESS, and especially 
batteries, have experienced a tremendous cost reduction in recent years, and there is a vast number of 
research articles on how EES can be used to facilitate VRE in future power systems, both from technical, 
economical, and environmental viewpoints, see e.g (Toledo, Oliveira Filho, and Diniz 2010; Díaz-
González et al. 2012; Zhao et al. 2015; Denholm et al. 2010; Sioshansi et al. 2009). Most literature that 
studies the economic viability of EES either takes a system cost-minimization perspective (N. Li et al. 
2016; Arbabzadeh et al. 2019; de Sisternes, Jenkins, and Botterud 2016) or a price-taker perspective 
(Bathurst and Strbac 2003; Korpås, Holen, and Hildrum 2003; Sioshansi et al. 2009). To our knowledge, 
there is not much published material on the equilibrium conditions for EES in ideal energy-only markets 
based on marginal cost pricing. Green and Staffell (2015) analyze the impact of ESS on wholesale 
markets with large amount of renewable energy using a cost-minimizing optimization model. They 
show that ESS reduces the price volatility and some of the very highest prices, but also leads to higher 
near-peak prices due to the influence on the equilibrium condition of the conventional generators. They 
                                                   

1 Their model is not limited to uniform functions, but this representation is chosen for convenience in order to 
derive closed-form solutions. 
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also describe that ESS increases the market value of wind power by raising the prices in the low-price 
periods and reduces the number of zero-price hours. Steffen and Weber (2013) establish optimality 
conditions for ESS in a system with thermal generators and VRE plants using a similar duration curve 
as here, but do not analyze market aspects or optimality conditions for the VRE power plants. A recent 
contribution by Schmalensee (2019) takes a theoretical approach to analyze market aspects of both ESS 
and VRE plants. By introducing ESS and stochastic VRE into a two-stage model, the paper suggests 
that the long-run equilibrium value of storage capacity minimizes expected system cost in most cases. 
However, the paper also states that it cannot be ruled out that inefficient equilibria exist when ESS is 
introduced to the system. Schmalensee models the daily operation of EES within a two-stage model, 
and derives first-order and second-order optimality conditions for all units. In contrast, we derive system 
optimality and cost recovery conditions using a model that represents hourly operation of the system 
over a full year based on a load duration curve approach. Helm and Mier (2018) analyze optimal 
subsidies and capacities for VRE and EES in systems with imperfect carbon pricing. As in 
(Schmalensee 2019), they derive optimality conditions over a representative storage cycle for an 
assumed regular pattern of renewable energy input.  

In this paper, we take an analytical approach to study market equilibrium in competitive low-carbon 
electricity markets. We first derive analytical expressions for the optimality conditions for thermal 
generators, VRE and EES where the objective is to minimize the total cost of a system with fixed 
demand. We then show how profit maximization of each generation and storage resource in a market 
based on marginal cost pricing and administrative scarcity pricing can give the same results as the 
optimal investment portfolio under system cost minimization. Our approach follows to a large extent 
traditional literature on system optimality and cost recovery with thermal generators based on a load 
duration curve for demand and constant marginal generator costs (Stoft 2002; Green 2000). However, 
we extend the analysis to incorporate VRE and EES, and investigate the long-term market equilibrium 
implications that follow from different operational strategies used for the EES. Finally, the theoretical 
findings are illustrated by a simple, yet representative numerical example based on data and scenarios 
for the European power system in 2050. Although the duration curve approach is simplified with respect 
to representation of energy storage constraints, it is proven to be useful for illustrating the impacts of 
VRE and EES on market equilibrium in an easy and transparent way.  

The rest of the paper is organized as follows: Chapter 2 presents the general capacity expansion problem 
that is used to derive the system optimality conditions in Chapters 3-4. Chapter 3 recaptures the 
traditional system with only thermal generators meeting the load represented as a duration curve. 
Chapter 4 introduces a general representation of VRE technologies in the net load duration curve 
framework. Chapter 5 presents the EES, which is modelled for two system configurations: Only thermal 
power plants (Chapter 5.1) and VRE + thermal (Chapter 5.2). In the latter case, the optimality conditions 
of all types of plants are derived for three different operational strategies for EES. Throughout Chapters 
3-5, we verify that the optimal least-cost system solution is also obtained in a perfect market with 
marginal cost pricing, by investigating cost recovery conditions under profit maximization of price-
taking generation units. Chapter 6 presents the results of a numeric case study based on real data and 
scenarios for the European power system stadium 2050. Finally, Chapter 7 concludes the paper and 
provides directions for future research.      

2 Scope and methodology 

We consider an energy-only market with scarcity pricing, i.e. an administratively determined price 
during supply shortages, as the basis for analysis, without discussing additional capacity remuneration 
mechanisms. As shown in previous literature, e.g. by (Stoft 2002) and (Green 2000), an energy-only 
market with scarcity pricing provides the theoretically optimal incentives for investments in 
dispatchable generators. It is also known that the presence of VRE changes the amount of optimally 
installed thermal generation in a system (Levin and Botterud 2015), but less is known about how costs 
are recovered in equilibrium, including costs for VRE and ESS. In our model, we treat VRE and ESS 
capacity as endogenous variables using a simplified yet representative model of VRE output variations, 
and derive analytical expressions for the equilibrium conditions for all generators given marginal cost 
pricing. 
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Demand side flexibility is expected to play a vital role in enhancing VRE integration (Strbac 2008), and 
the system optimization problem must therefore in the general case be formulated as a welfare 
maximization problem. Since the scope of this paper is cost recovery of conventional generation, VRE 
and ESS devices, we reformulate the system optimization problem to a deterministic cost minimization 
problem, and leave the inclusion of demand side flexibility and uncertainty for future work as these are 
substantial topics on their own. Hence, the central planner’s least-cost problem can in its basic form be 
formulated as: 

 
min𝐶 = h i𝐹𝑔𝑥l + 𝑣l m𝑞l(𝑡)

p

q

𝑑𝑡r
𝐺

𝑔=1
+h𝐹𝑣

𝑉

𝑣=1
𝑥L +hv𝐹𝑒

𝑝𝑤𝑟 ∙ 𝑥𝑒 + 𝐹𝑒
𝑒𝑛 ∙ 𝐸W|

𝐸

𝑒=1

+ 𝑣} m𝑞}(𝑡)
p

q

𝑑𝑡 

(1) 

  
s. t.h𝑞l(𝑡) +h𝑞L(𝑡)

�

L�U

+h[𝑞W(𝑡) − 𝑞WT(𝑡)]
�

W�U

+ 𝑞}(𝑡) = 𝑞3(𝑡)
�

l�U

						 (2) 

 	0 ≤ 𝑞l(𝑡) ≤ 𝑥l		∀	𝑔 ∈ 𝐺	 (3) 

 	0 ≤ 𝑞L(𝑡) ≤ 𝐴𝐹L(𝑡) ∙ 𝑥L					∀	𝑣 ∈ 𝑉						 (4) 

 0 ≤ 𝑞W�(𝑡) ≤ 𝑥W							∀	𝑒 ∙∈ 𝐸 (5) 

 0 ≤ 𝑞WT(𝑡) ≤ 𝑥W								∀	𝑒 ∙∈ 𝐸					 (6) 

 
	
𝑑𝐸W(𝑡)
𝑑𝑡 = 𝜂WT ∙ 𝑞WT(𝑡) −

𝑞W�(𝑡)
𝜂W�

					∀	𝑒 ∙∈ 𝐸			 
(7) 

 	0 ≤ 𝐸W(𝑡) ≤ 𝐸W						∀	𝑒 ∙∈ 𝐸 (8) 

The objective function (1) minimizes the sum of annualized fixed costs, annual variable generation 
costs and annual costs of load shedding. Variable costs of VRE are set to zero under the assumption 
that variable O&M costs are negligible. ESS investment costs are linear functions of both power 
capacity and energy capacity. The instantaneous power balance is given in (2), conventional generation 
limits in (3) while VRE output is limited by the instantaneous availability factor in (4). EES limits and 
storage balances, including roundtrip losses, are expressed in (5)-(8). Note that our formulation focuses 
on the market for energy and does not include ancillary services. Moreover, the impacts of the 
transmission network and generator unit commitment are also ignored. 

The linear model described by (1)-(8) is applicable for any number and types of fossil generators, VRE 
generators and EES units. To ease the notation in the remainder of the paper, we limit the model to two 
types of thermal generators (i.e. peaker and baseload), one type of VRE technology and one type of 
EES. By “type” we here refer to a technology with a given cost and performance, i.e. two units of the 
same type are identical. Moreover, (8) explicitly models the limit on energy storage capacity, which is 
straightforward to implement in a time-sequential model, but only possible to account for indirectly in 
duration curve models as discussed in more detail in Chapter 5. By applying these assumptions, the 
cost-minimization problem can be simplified to: 

 min
8O,��(N),��P(N)

𝐶 = ∑ 𝐹0𝑥00 + ∑ 𝑣� ∫ 𝑞�(𝑡)
p
q 𝑑𝑡�   (9) 

  s. t.					𝑞3(𝑡) −h 𝑞�(𝑡)
�

+ 𝑞WT(𝑡) = 0 (10) 

 −𝑞�(𝑡) ≤ 0		, −𝑞WT(𝑡) ≤ 0	 (11) 

 𝑞^(𝑡) − 𝑥^ ≤ 0	, 𝑞WT(𝑡) − 𝑥W ≤ 0 (12) 

 𝑞L(𝑡) − 𝐴𝐹L(𝑡)𝑥L ≤ 0						 (13) 
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	𝜂W m𝑞WT(𝑡)𝑑𝑡

p

q

−m𝑞W(𝑡)𝑑𝑡
p

q

= 0						 
(14) 

 Sets: 𝑖 ∈ {𝑝, 𝑏, 𝑣, 𝑒}	, 𝑗 ∈ {𝑠, 𝑝, 𝑏}	, 𝑘 ∈ {𝑠, 𝑝, 𝑏, 𝑣, 𝑒}		, 𝑙 ∈ {𝑝, 𝑏, 𝑒}  

where indices s, p, b, v, e refers to load shedding, peaker, baseload, VRE plant and EES respectively. 
The administrative price assumed to be set during load shedding has been expressed as a variable cost 
𝑣} = 𝑝} for ease of notation. Moreover, we simplify storage notation by defining 𝑞W ≡ 𝑞W�, so that 𝑞W 
refers to discharging power, while charging is 𝑞WT as before. Equation (14) is the energy storage balance 
over the whole analysis period, where we have introduced the round-trip efficiency 𝜂W = 𝜂WT ∙ 𝜂W�.  

3 Conventional generators 

3.1 System optimality conditions 
Optimality conditions for conventional generators in power markets have been extensively covered in 
the literature e.g. (Joskow 1976; Stoft 2002; Green 2000). For the sake of consistency with the later part 
of the paper, we show here how to derive the first-order optimality conditions for a system consisting 
of only conventional generators which serve a given demand with a temporal profile over the year. The 
system cost-minimization problem (9)-(14) becomes: 

 min
𝑥𝑖,𝑞𝑗(𝑡)

𝐶 = ∑ 𝐹0𝑥00 + ∑ 𝑣� ∫ 𝑞�(𝑡)
𝑇
q 𝑑𝑡�  				∀	𝑖 ∈ {𝑝, 𝑏}, 𝑗 ∈ {𝑠, 𝑝, 𝑏}		 (15) 

  s. t.								 ∑ 𝑞�(𝑡)� − 𝑞3(𝑡) = 0   																							∀	𝑗 ∈ {𝑠, 𝑝, 𝑏}				(𝜆3) (16) 

 																																	−𝑞�(𝑡) ≤ 0	                      			∀	𝑗 ∈ {𝑠, 𝑝, 𝑏}			(𝜇�506) (17) 

 																												𝑞0(𝑡) − 𝑥0 ≤ 0																										∀	𝑖 ∈ {𝑝, 𝑏}							(𝜇0578)  (18) 

By sorting the time-varying demand over the year in descending order, we obtain the duration curve as 
illustrated in Figure 1. The time parameter 𝑡 ∈ [0, 𝑇] now refer to the sorted demand (i.e. the duration 
curve) and not the chronological time-series. The figure also displays how the demand is covered by 
the two generators for a solution where both generators are part of the optimal generation portfolio, i.e. 
𝑥X and 𝑥� are both strictly positive.  

Consider first the operational problem for an arbitrary time instant 𝑡 and given plant capacities 𝑥0. The 
investment cost term in (15) becomes 0, and we can write the Lagrangian  

 ℒ�X�𝑞�, 𝜆3,𝜇�506, 𝜇0578, 𝑡�

=h 𝑣�𝑞�(𝑡)
�

+ 𝜆3(𝑡) ∙ �𝑞3(𝑡) −h 𝑞�(𝑡)
�

 

+h 𝜇�506(𝑡) ∙ ¡−𝑞�(𝑡)¢
�

+h 𝜇0578(𝑡) ∙ (𝑞0(𝑡) − 𝑥0)
0

 

∀	𝑖 ∈ {𝑝, 𝑏}, 𝑗 ∈ {𝑠, 𝑝, 𝑏} 

(19) 

where 𝜆3 is the Lagrange multiplier associated with the demand balance (16), 𝜇�506 is the Lagrange 
multiplier for generator 𝑗 in (17) and 𝜇0578   is the Lagrange multiplier for  generator 𝑖 in (18). Note that 
multiplier 𝜇�506 also applies for load shedding, i.e. for 𝑗 ∈ {𝑠, 𝑝, 𝑏}. 𝜆3 is the system marginal cost, 
which defines the spot price for energy under marginal pricing (Hasan, Galiana, and Conejo 2008). The 
optimal dispatch is given by the Karush-Kuhn-Tucker (KKT) conditions which in addition to (16)-(18) 
comprises 

 𝑣0 − 𝜆3(𝑡) + 𝜇0578(𝑡) − 𝜇0506(𝑡) = 0	∀	𝑖 ∈ {𝑝, 𝑏} (20) 

 𝑣} − 𝜆3(𝑡) − 𝜇}506(𝑡) = 0 (21) 

 𝜇0578(𝑡) ∙ (𝑞0(𝑡) − 𝑥0) = 0	∀	𝑖 ∈ {𝑝, 𝑏} (22) 

 𝜇�506(𝑡) ∙ ¡−𝑞�(𝑡)¢ = 0	∀	𝑗 ∈ {𝑠, 𝑝, 𝑏} (23) 
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where we have followed the sign convention from (Gabriel et al. 2013). It should be noted that the 
Lagrangian and corresponding KKT-conditions derived above apply to any number of generators in the 
set 𝑖, although we have used an example with only two generators here. The KKT conditions provide 
the optimal operation of each generator for all demand levels, as summarized for our two-generator 
problem in Table 1.  

Table 1. System marginal cost and optimal operation for different demand levels. 

𝑡 ≤ 𝑡}: 
𝑥� + 𝑥X ≤ 𝑞3(𝑡) 

𝑡} < 𝑡 ≤ 𝑡X:	 
𝑥� ≤ 𝑞3(𝑡) < 𝑥� + 𝑥X 

𝑡 > 𝑡X: 
	𝑞3(𝑡) > 𝑥� 

𝜆3(𝑡) = 𝑣} 𝜆3(𝑡) = 𝑣X 𝜆3(𝑡) = 𝑣� 
𝑞�(𝑡) = 𝑥� 𝑞�(𝑡) = 𝑥� 𝑞�(𝑡) = 𝑞3(𝑡) 
𝑞X(𝑡) = 𝑥X 𝑞X(𝑡) = 𝑞3(𝑡) − 𝑥� 𝑞X(𝑡) = 0 

𝑞}(𝑡) = 𝑞3(𝑡) − 𝑥X − 𝑥�  𝑞}(𝑡) = 0 𝑞}(𝑡) = 0 
 

From Table 1, we see that the output of each generator and load shedding are functions of the demand 
𝑞3(𝑡) and the installed capacities 𝑥0∀	𝑖 ∈ {𝑝, 𝑏}. For given installed capacities, we also know the output 
of each unit, since the units must be dispatched due to the merit order to minimize operating costs. We 
can therefore convert the problem (15)-(18) to an unconstrained cost minimization problem: 

 min
8¦,8§

𝐶 = 𝐹X𝑥X + 𝐹�𝑥� + 𝑣} ∫ v𝑞3(𝑡) − 𝑥X − 𝑥�|
N¨
q 𝑑𝑡 + 𝑣X ∙ ¡∫ 𝑥X

N¨
q 𝑑𝑡 +

∫ [𝑞3(𝑡) − 𝑥�]
N¦
N¨

𝑑𝑡¢ + 𝑣� ∙ ¡∫ 𝑥�
N¦
q 𝑑𝑡 + ∫ 𝑞3(𝑡)

p
N¦

𝑑𝑡¢ = 𝐹X𝑥X + 𝐹�𝑥� +

𝑣}¡𝐸3
[q,N¨] − �𝑥X + 𝑥��𝑡}¢ + 𝑣X ¡𝐸3

[N¨,N¦] + �𝑥X + 𝑥��𝑡} − 𝑥�𝑡X¢ + 𝑣� ¡𝐸3
[N¦,p] + 𝑥�𝑡X¢  

(24) 

where 𝐸3
[NQ,N©] is the energy demand over the period 𝑡U to 𝑡?, corresponding to the area in Figure 1 

bounded by [𝑡U, 𝑡?] and [𝑞3(𝑡U), 𝑞3(𝑡?)]. The relation between the durations and generation capacities 
is also illustrated in the figure and we can write 𝑡X = 𝑓(𝑥�) and 𝑡} = 𝑓(𝑥X, 𝑥�). Derivation of 𝐶 with 
respect to the unknowns 𝑥X and 𝑥� gives: 

 
𝜕𝐶
𝜕𝑥X

= 𝐹X − �𝑣} − 𝑣X�𝑡} + 𝑣}

⎝

⎜
⎛𝜕𝐸3

[q,N¨]

𝜕𝑥X
− �𝑥X + 𝑥��

𝜕𝑡}
𝜕𝑥X

¯°°°°°°±°°°°°°²
q

⎠

⎟
⎞

+ 𝑣X

⎝

⎜
⎛𝜕𝐸3

vN¨,N¦|

𝜕𝑥X
+ �𝑥X + 𝑥��

𝜕𝑡}
𝜕𝑥X

¯°°°°°°°±°°°°°°°²
q

⎠

⎟
⎞
= 𝐹X − �𝑣} − 𝑣X�𝑡} 

(25) 

 
¶=
¶8§

= 𝐹� − �𝑣} − 𝑣X�𝑡} − �𝑣X − 𝑣��𝑡X + 𝑣} ·
¶�¸

[¹,º¨]

¶8§
− �𝑥X + 𝑥��

¶N¨
¶8§

¯°°°°°°±°°°°°°²
q

»+

𝑣X

⎝

⎜
⎛¶�¸

vº¨,º¦|

¶8§
+ �𝑥X + 𝑥��

¶N¨
¶8§

− 𝑥�
¶N¦
¶8§

¯°°°°°°°°°±°°°°°°°°°²
q

⎠

⎟
⎞
+ 𝑣�

⎝

⎜
⎛¶�¸

vº¦,¼|

¶8§
+ 𝑥�

¶N¦
¶8§

¯°°°°±°°°°²
q

⎠

⎟
⎞
= 𝐹� −

�𝑣} − 𝑣X�𝑡} − �𝑣X − 𝑣��𝑡X  

(26) 

The first-order optimality conditions become: 

 𝜕𝐶
𝜕𝑥X

= 0 ⇒ 𝑡} =
𝐹X

�𝑣} − 𝑣X�
 

(27) 

 𝜕𝐶
𝜕𝑥�

= 0 ⇒ 𝑡X =
𝐹� − 𝐹X
�𝑣X − 𝑣��

 
(28) 
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When the durations are known, the optimal capacities are found from the demand curve 𝑥� = 𝑞3(𝑡X) 
and 𝑥X = 𝑞3(𝑡}) − 𝑥�. Problem (24) with solutions (27) and (28) are valid under the assumption that 
both 𝑥X and 𝑥� are strictly positive. To find the true optimal solution of (15) using the duration curve 
method, we must compare the result of (24) with the result for all other possible generator combinations. 
In this case, that means to remove the peaker and the baseplant, respectively, from the solution space 
and obtain optimal durations for these cases. 

 
Figure 1. Load duration curve with durations and optimal capacities of peaker and base plants.  

 

3.2 Profit maximization and cost recovery 
The annual profit of generator 𝑖 in the market is: 

 
𝜋0 = 𝐴𝑅0 − 𝐴𝐶0 = m (𝑝(𝑡) − 𝑣0)𝑞0(𝑡)𝑑𝑡

NO

q
− 𝐹𝑖𝑥0 

(29) 

The price 𝑝(𝑡) is equal to the dual value 𝜆3 of the load balance (16) in a system with marginal cost 
pricing. Using the values of 𝜆3 and the optimal operation regimes derived in the previous section, the 
profit functions for the peaker and baseplant become: 

 𝜋X = �𝑣} − 𝑣X�𝑡}𝑥X − 𝐹X𝑥X = ¡�𝑣} − 𝑣X�𝑡} − 𝐹X¢𝑥X (30) 

 𝜋� = (𝑣} − 𝑣�)𝑡}𝑥� + �𝑣X − 𝑣���𝑡X − 𝑡}�𝑥� − 𝐹�𝑥�
= ¡(𝑣} − 𝑣�)𝑡} + (𝑣} − 𝑣�)�𝑡X − 𝑡}� − 𝐹�¢𝑥�  

(31) 

It follows that in the system optimum, the profits of the individual generators are 0, i.e. all generators 
recovers their cost: 𝜋X = 0 for 𝑡} = 𝐹X/�𝑣} − 𝑣X� and 𝜋� = 0 for 𝑡X = �𝐹� − 𝐹X�/�𝑣X − 𝑣��. This 
holds true independently of how many generator firms that are participating in the market.  Costs are 
recovered in optimum whether 𝑥0 represents the aggregated capacity of generators owned by different 
firms, or it represents the capacity of one firm being the only owner of a given generator type 𝑖.  

In a long-term market equilibrium, no individual firm has an incentive to change its capacity, given that 
the other firm’s capacities (and all parameters) are kept constant. Under perfect market conditions with 
no barriers to exit and entry, no single firm 𝑓 can influence the duration of the different generators (or 
load shedding) by changing its capacity. Profit maximization of firm 𝑓 owning a peaker plant yields:  

  
max
8Á,¦

𝜋\,X = m (𝑝(𝑡) − 𝑣X)𝑞\,X(𝑡)𝑑𝑡
N¦

q
− 𝐹X𝑥\,X = ¡�𝑣} − 𝑣X�𝑡} − 𝐹X¢𝑥\,X 

(32) 

Since 𝑡} is not influenced by the investment 𝑥\,X of firm 𝑓, the first-order optimality condition becomes: 

 𝜕𝜋\,X
𝜕𝑥\,X

= 0 ⇒ �𝑣} − 𝑣X�𝑡} − 𝐹X = 0 ⇒ 𝑡} =
𝐹X

�𝑣} − 𝑣X�
 

(33) 

MW

𝑞"

𝑞"

𝑇
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which exemplifies the well-known general result that the profit of each single generator company 
maximizes its profit in system optimum in a perfect market. Similarly, the market solution for the 
baseplant technology becomes: 

 
max
8Á,§

𝜋\,� = m (𝑝(𝑡) − 𝑣�)𝑞\,�(𝑡)𝑑𝑡
p

q
− 𝐹�𝑥\,�

= ¡(𝑣} − 𝑣�)𝑡} + �𝑣X − 𝑣���𝑡X − 𝑡}� − 𝐹�¢𝑥\,� 

(34) 

 𝜕𝜋\,�
𝜕𝑥\,�

= 0 ⇒ 𝑡X =
𝐹� − 𝐹X
�𝑣X − 𝑣��

 
(35) 

 

4 Variable Renewable Energy (VRE) power plants 

VRE plants are powered by weather-driven and variable primary energy sources with zero fuel costs. 
Dependent on the conversion technology and control systems, the output of VRE plants can be 
controlled in both downwards (by reducing its output) or upwards (by initially running at a set-point 
lower than maximum possible) directions (Milligan et al. 2015). In this paper, we simplify the 
representation of VRE plants by assuming zero variable costs and full downward dispatch capability. 
By assuming that the VRE output scales linearly with its installed capacity, the relative power output 
variations become independent of the capacity of the VRE generator, and we can write 𝑞L(𝑡) = 𝐴𝐹L(𝑡) ∙
𝑥L where 𝐴𝐹L(𝑡) is the availability factor at time instant 𝑡. The assumption of linear scaling of VRE 
output is a significant simplification since e.g. different wind power sites have different wind conditions 
which lead to smoothing of aggregated output as a function of capacity. Nevertheless it is a common 
approximation in more detailed modelling work than what is presented here (Sepulveda et al. 2018; De 
Vita, Kielichowska, and Mandatowa 2018; Cole et al. 2016; de Sisternes, Jenkins, and Botterud 2016). 

With zero marginal costs, VRE plants will always be dispatched first, and the conventional generators 
must cover the net demand 

 𝑞63(𝑡) = 𝑞3(𝑡) − 𝑞L(𝑡) = 𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L (36) 

 where 𝑞L(𝑡) refer to the uncurtailed available VRE generation. The time parameter t  now refers to the 
duration of the net demand, sorted from highest to lowest value over the year, as illustrated in Figure 2.  

 

 
Figure 2. Load duration curve for demand (grey line) and net demand (black) line for a system with two 
conventional generators (“peak” and “base”) and one VRE plant. The optimal capacities of peaker and baseplant 
with and without VRE are indicated in the figure as “new” and “old”, respectively.  

 

MW
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With a VRE plant added to the system in addition to the peaker and baseplant, the optimization problem 
becomes 

 min
8O,��(N)

𝐶 = ∑ 𝐹0𝑥00 + ∑ 𝑣� ∫ 𝑞�(𝑡)
p
q 𝑑𝑡�   (37) 

  s. t.					𝑞3(𝑡) −h 𝑞�(𝑡)
�

= 0 (38) 

 −𝑞�(𝑡) ≤ 0	 (39) 

 𝑞^(𝑡) − 𝑥^ ≤ 0 (40) 

 𝑞L(𝑡) − 𝐴𝐹L(𝑡)𝑥L ≤ 0						 (41) 

 Sets: 𝑖 ∈ {𝑝, 𝑏, 𝑣}	, 𝑗 ∈ {𝑠, 𝑝, 𝑏}	, 𝑘 ∈ {𝑠, 𝑝, 𝑏, 𝑣}	, 𝑙 ∈ {𝑝, 𝑏}  

 

4.1 System optimality conditions  
As for the case with only conventional generators, we first derive the conditions for optimal dispatch 
with given plant capacities. The Lagrangian of the operation problem for an arbitrary time instant 𝑡 is: 

 ℒ�X(𝑡) =h 𝑣�𝑞�(𝑡)
�

+ 𝜆3(𝑡) Â𝑞3(𝑡) −h 𝑞�(𝑡)
�

Ã +h 𝜇^578(𝑞^(𝑡) − 𝑥^)
^

+h𝜇L578(𝑞L(𝑡) − 𝐴𝐹L(𝑡)𝑥L) +h 𝜇�506�−𝑞�(𝑡)�
�

 

∀		𝑗 ∈ {𝑠, 𝑝, 𝑏}, 𝑘 ∈ {𝑠, 𝑝, 𝑏, 𝑣}, 𝑙 ∈ {𝑝, 𝑏} 

(42) 

The KKT-conditions for this problem consist of (38)-(41), in addition to the following equations: 

 𝑣^ − 𝜆3(𝑡) + 𝜇^578 − 𝜇^506 = 0	∀	𝑙 ∈ {𝑝, 𝑏} (43) 

 −𝜆3(𝑡) + 𝜇L578 − 𝜇L506 = 0 (44) 

 𝑣} − 𝜆3(𝑡) − 𝜇}506 = 0 (45) 

 𝜇^578 ∙ (𝑞^(𝑡) − 𝑥^) = 0	∀	𝑙 ∈ {𝑝, 𝑏} (46) 

 𝜇L578 ∙ (𝑞L(𝑡) − 𝐴𝐹L(𝑡)𝑥L) = 0  

 𝜇�506 ∙ �−𝑞�(𝑡)� = 0	∀	𝑘 ∈ {𝑠, 𝑝, 𝑏, 𝑣} (47) 

From the KKT-conditions, we get the dispatch according to the merit-order similarly to Chapter 3, but 
now with the VRE plant added. The resulting optimal dispatch levels of each generator in each period 
are provided in Table 2, where the time parameter 𝑡 is sorted after the net demand.  

Table 2. System marginal cost and optimal operation for different net demand levels. 

𝑡 ≤ 𝑡}: 
𝑥� + 𝑥X ≤ 𝑞63(𝑡) 

𝑡} < 𝑡 ≤ 𝑡X:	 
𝑥� ≤ 𝑞63(𝑡) < 𝑥� + 𝑥X 

𝑡X < 𝑡 ≤ 𝑡�: 
0 ≤ 𝑞63(𝑡) < 𝑥� 

𝑡 > 𝑡�: 
𝑞63(𝑡) < 0 

𝜆3(𝑡) = 𝑣} 𝜆3(𝑡) = 𝑣X 𝜆3(𝑡) = 𝑣� 𝜆3(𝑡) = 0 
𝑞L(𝑡) = 𝐴𝐹L(𝑡)𝑥L 𝑞L(𝑡) = 𝐴𝐹L(𝑡)𝑥L 𝑞L(𝑡) = 𝐴𝐹L(𝑡)𝑥L 𝑞L(𝑡) = 𝑞3(𝑡) 

𝑞�(𝑡) = 𝑥� 𝑞�(𝑡) = 𝑥� 𝑞�(𝑡) = 𝑞63(𝑡) 𝑞�(𝑡) = 0 
𝑞X(𝑡) = 𝑥X 𝑞X(𝑡) = 𝑞63(𝑡) − 𝑥� 𝑞X(𝑡) = 0 𝑞X(𝑡) = 0 

𝑞}(𝑡) = 𝑞63(𝑡) − 𝑥X − 𝑥� 𝑞}(𝑡) = 0 𝑞}(𝑡) = 0 𝑞}(𝑡) = 0 
 

Following the method from Chapter 3, we can use the result in Table 2  to express the capacity 
investment problem as: 
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 min
8¦,8§,8Ä

𝐶 = 𝐹X𝑥X + 𝐹�𝑥� + 𝐹L𝑥L + 𝑣} ∫ v𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L − 𝑥X − 𝑥�|
N¨
q 𝑑𝑡 + 𝑣X ∙

¡∫ 𝑥X
N¨
q 𝑑𝑡 + ∫ [𝑞3(𝑡) − 𝐶𝐹L(𝑡)𝑥L − 𝑥�]

N¦
N¨

𝑑𝑡¢ + 𝑣� ∙ ¡∫ 𝑥�
N¦
q 𝑑𝑡 + ∫ (𝑞3(𝑡) −

N§
N¦

𝐴𝐹L(𝑡)𝑥L) 𝑑𝑡¢  

(48) 

which is equivalent to problem (37)-(41) under the condition that all generators are present in the 
system. From the resource model of the VRE plant, we can calculate the average availability factor 
𝐴𝐹L

[NQ,N©] between two time steps 𝑡U and 𝑡?, and use this to solve the integral  

 
m 𝐴𝐹L(𝑡)

N©

NQ

𝑑𝑡 = (𝑡? − 𝑡U) ∙ 𝐴𝐹L
[NQ,N©] 

(49) 

Inserting into (49): 

 min
8¦,8§,8Ä

𝐶 = 𝐹X𝑥X + 𝐹�𝑥� + 𝐹L𝑥L + 𝑣} ¡𝐸3
[q,N¨] − ¡𝑥X + 𝑥� + 𝐴𝐹L

[q,N¨]𝑥L¢ 𝑡}¢ +

𝑣X ¡𝐸63
[N¨,N¦] + ¡𝑥X + 𝑥� + 𝐴𝐹L

vN¨,N¦|¢ 𝑡} − ¡𝑥� + 𝐴𝐹L
vN¨,N¦|𝑥L¢ 𝑡X¢ + 𝑣� ¡𝐸63

[N¦,N§] +

¡𝑥� + 𝐴𝐹L
vN¦,N§|𝑥L¢ 𝑡X − 𝐴𝐹L

vN¦,N§|𝑥L𝑡�¢  

(50) 

where we also have inserted the total energy demand 𝐸3
[NQ,N©] over the period [𝑡U, 𝑡?]. The first-order 

optimality conditions of (50) with respect to 𝑥X and 𝑥� becomes identical to the case without VRE given 
by (27) and (28). The optimal capacities are now found from the net demand curve, which is a function 
of the VRE capacity. Derivation of the cost function (50) with respect to 𝑥L yields: 

 𝜕𝐶
𝜕𝑥L

= 𝐹L − 𝑣}𝐴𝐹L
[q,N¨]𝑡} − 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� − 𝑣�𝐴𝐹L
vN¦,N§|�𝑡� − 𝑡X� 

(51) 

 𝜕𝐶
𝜕𝑥L

= 0 ⟹ 𝐹L = 𝑣}𝐴𝐹L
[q,N¨]𝑡} + 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� + 𝑣�𝐴𝐹L
vN¦,N§|�𝑡� − 𝑡X� 

(52) 

During all periods when the net demand is higher than zero, each additional kWh from the VRE plant 
will reduce the output of the marginal generator with the same amount, while all other generator outputs 
are unchanged. In optimum, the marginal value of this replacement of thermal generators and load 
shedding will equal the marginal cost of installing the corresponding capacity. Since 𝑡} and 𝑡X are 
known, we can solve (52) with respect to 𝑡�: 

 𝑡� = 𝑡X + ¡𝑣�𝐴𝐹L
[N¦,N§]¢

TU
∙ ¡𝐹L − 𝑣}𝑡}𝐴𝐹L

[q,N¨] − 𝑣X(𝑡X − 𝑡})𝐴𝐹L
[N¨,N¦]¢ (53) 

A special case occurs when the optimal 𝑥L is non-zero, but still not high enough to cause surplus 
generation, i.e. the optimal 𝑡� is equal to 𝑇. The optimality condition (52) then indirectly determines 𝑥L 
through the availability factor 𝐴𝐹L. Consider a situation where 𝑥L = 0, and the right-hand side of (52) 
is larger than the left-hand side, i.e. it is profitable marginally increase the VRE capacity. A marginal 
increase in VRE capacity pushes the net demand curve downwards, and thus also changes the average 
availability factor in the different price segments. As more VRE capacity is installed, more of the 
generation is pushed towards the periods of the year with less net demand and lower prices. At a certain 
value of 𝑥L, the marginal benefit for the system equals the marginal investment cost 𝐹L. This can occur 
at 𝑡� = 𝑇 or 𝑡� < 𝑇, depending on the VRE investment cost. Figure 15 in Appendix A exemplifies this 
result for a case using European offshore wind data. 

Thus, under the assumption of one type of VRE plant which scales linearly, it is the duration of the 
thermal generator with lowest marginal cost (in our case 𝑡�) and the VRE output variations, that 
determines its optimal capacity 𝑥L. The duration 𝑡� expresses the duration of the year when the net 
demand is non-negative. The optimal VRE capacity 𝑥L is the capacity that leads to net demand of zero 
at exactly 𝑡�, and can easily be found from the load and VRE resource data. When 𝑥L is known, the 
peaker and baseplant capacities can be found directly from the net demand curve. 

In Figure 2, the base generator capacity is reduced significantly while the peak generator capacity is 
marginally increased when VRE is included, which is a result of the illustrated VRE variability; higher 
availability factor during low loads than high loads. Maximum load shedding is therefore higher with 
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VRE, to ensure optimal duration of the peaker with the changed net demand. However, note that the 
duration of load shedding 𝑡} remain unchanged with the introduction of VRE. If the energy cost of the 
VRE plant is sufficiently low, it might push one of the thermal generators out of the solution space. To 
find the true optimum of the capacity investment problem (37)-(41), we must therefore compare the 
result of sub-problem (48) with the remaining options, i.e. VRE+peaker and VRE+baseplant. With only 
one thermal generator, here denoted 𝑖, the problem becomes a simpler variant of (48): 

 min
8O,8Ä

𝐶 = 𝐹0𝑥0 + 𝐹L𝑥L + 𝑣} ¡𝐸3
[q,N¨] − ¡𝑥0 + 𝐴𝐹L

[q,N¨]𝑥L¢ 𝑡}¢

+ 𝑣0 ¡𝐸63
[N¨,NO] + ¡𝑥0 + 𝐴𝐹L

[N¨,NO]𝑥L¢ 𝑡} − 𝐴𝐹L
[N¨,NO]𝑥L𝑡0¢ 

(54) 

with the VRE optimality condition: 

 
𝑡0 = 𝑡} +

¡𝐹L − 𝑣}𝑡}𝐴𝐹L
[q,N¨]¢

𝑣0𝐴𝐹L
[N¨,NO]

 
(55) 

Again, the optimal VRE capacity is found from the net demand curve that fulfils 𝑞63(𝑡0) = 0. 

4.2 Profit maximization and cost recovery 
Given a market where any number of VRE plants of the same type 𝑣 is fully exposed to the electricity 
market prices, their aggregated profit function is: 

 
𝜋L = 𝐴𝑅L − 𝐴𝐶L = m 𝑝(𝑡)𝑞L(𝑡)𝑑𝑡

p

q
− 𝐹L ∙ 𝑥L = 𝑥L m 𝑝(𝑡)𝐴𝐹L(𝑡)𝑑𝑡

p

q
− 𝐹L ∙ 𝑥L 

(56) 

In a market based on marginal cost pricing, we have from Table 2: 

 
𝜋L = 𝑥L Æ𝑣} m 𝐴𝐹L(𝑡)𝑑𝑡

N¨

q
+ 𝑣X m 𝐴𝐹L(𝑡)𝑑𝑡

N¦

N¨
+ 𝑣� m 𝐴𝐹L(𝑡)𝑑𝑡

N§

N¦
Ç− 𝐹L ∙ 𝑥L 

𝜋L = ¡𝑣}𝐴𝐹L
[q,N¨]𝑡} + 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� + 𝑣�𝐴𝐹L
vN¦,N§|�𝑡� − 𝑡X� − 𝐹L¢ ∙ 𝑥L 

(57) 

We see from (57) that the VRE power plants exactly recover their cost in a market based on marginal 
cost pricing if plant capacities are according to system optimum: 𝜋L = 0 leads to (52) and the 
corresponding optimal duration of the baseplant in (53). 

Maximization of the profit function (56) for a firm 𝑓 owning some VRE capacity 𝑥L,\ gives the same 
result: 

 𝛿𝜋L,\
𝛿𝑥L,\

= 0 ⇒ 𝐹L = m 𝑝(𝑡)𝐴𝐹L(𝑡)𝑑𝑡
p

q
 

(58) 

where we have required that each owner of the VRE plant is too small to change the generator durations 
alone. Thus, market based VRE investments reaches an equilibrium at system optimum where it is not 
profitable for any single owner to change its capacity given that all external parameters remain constant.  

5 Electric Energy storage (EES) 

EES are applied for numerous services in the power system, such as load shifting, energy arbitrage, 
operating reserves, backup capacity, transmission and distribution deferral, among others (Dell and 
Rand 2001; Denholm et al. 2010; Akhil et al. 2015). Conventional storage technologies like pumped 
hydro has been used for shifting energy from base load to peak load periods for decades (Mcdaniel and 
Gabrielle 1966; Botterud, Levin, and Koritarov 2014; Harby et al. 2013). Newer storage technologies 
like Li-Ion batteries and flow batteries has received a lot of attention the last two decades, both with 
respect to renewable energy integration, price arbitrage and grid services (Aneke and Wang 2016; 
Denholm et al. 2010; Akhil et al. 2015). In this paper we will keep EES modelling at a simple and 
general level, in order to derive analytical expressions for all optimality conditions when EES is present 
in the system. A similar load duration method for analysis of storage systems is reported in (Steffen and 
Weber 2013), which derives optimality conditions for EES, but is limited to cases where the VRE plant 
capacity is an external input and not part of the system optimum. 
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Inclusion of EES in a modelling framework based on duration curves cannot be achieved without major 
simplifications, due to the chronological nature of the EES dispatch. EES is limited by the power 
capacity, energy capacity and round-trip efficiency of the storage devices. Capacity degradation 
mechanisms and other aging effects are also important to consider for certain EES types such as most 
electrochemical batteries (Xu et al. 2018). The aim of the modelling framework presented here is to 
supplement, not replace detailed optimization studies. To get a principal understanding of the potential 
for EES under ideal conditions, we therefore choose a representation of storage which takes explicitly 
into account the power capacity and round-trip efficiency, but only indirectly accounts for the energy 
capacity. This is obviously a simplistic representation, but, as will be shown, is still useful to indicate 
what potential role ESS have in power market equilibrium. 

5.1 EES with conventional generators 
5.1.1 System optimality conditions  
We will first investigate how the optimality conditions for thermal generators are influenced by the 
presence of ESS. The output of the ESS will depend on the installed capacity of conventional generators 
when we use ESS for load shifting. Hence, it follows that the optimal duration of conventional 
generators also will change in the presence of storage, as earlier derived in (Steffen and Weber 2013). 
We simplify the analysis by first assuming that we can shift energy from any instance of time to any 
other, i.e. that the storage only has a power (kW) constraint, as also assumed in (Steffen and Weber 
2013). The optimal operational strategy of an EES unit will then be to shift as much energy as possible 
to the hours with load shedding. If EES charged by baseload is cheaper than the peaking generator, the 
ESS will also be discharged when the peaker is the marginal unit, as illustrated in Figure 3.  

 
Figure 3. Load duration curve including energy storage, which is charged by the base plant. The storage device 
sets the price between tp and te. The grey areas are the charging and discharging energy.   

Referring to Figure 3, we can split the whole year into four main periods: 

[0, 𝑡}]: EES is discharging at full power during load shedding. A marginal increase in 𝑥W causes 
a marginal decrease of load shedding over the whole period. From energy storage preservation 
it follows that this generation must be compensated by charging of the same amount divided by 
the round-trip efficiency 𝜂W. We have assumed that the energy storage capacity is sufficiently 
large to be charged only by the cheapest generator.   

⟨𝑡},𝑡X|: EES is discharging at full power when the peaker is the marginal generator. A marginal 
increase in 𝑥W causes a marginal decrease in generation from the peaker. As above, this is 
compensated by marginally more charging energy. Again, this operating strategy assumes that 
the EES energy capacity is sufficiently large and that 𝑣X > 𝜂W𝑣�. 

Ê𝑡X,𝑡W]: EES is the marginal generator. A marginal increase in demand increases marginally the 
discharge by the same amount. This leads to a marginal increase in charging sometime during 
⟨𝑡W,𝑇] of the same amount, divided by the round-trip efficiency 𝜂W.   

⟨𝑡W,𝑇]: The baseplant is the marginal generator, while the EES is either charging or stand-by. 
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The system cost minimization problem is identical to the general problem described in Chapter 2 
without the VRE plant: 

 min
8O
𝐶 = ∑ 𝐹0𝑥00 + ∑ 𝑣� ∫ 𝑞�(𝑡)

p
q 𝑑𝑡�   (59) 

  s. t.					𝑞3(𝑡) −h 𝑞�(𝑡)
�

+ 𝑞WT(𝑡) = 0 (60) 

 −𝑞�(𝑡) ≤ 0		, −𝑞WT(𝑡) ≤ 0	 (61) 

 𝑞0(𝑡) − 𝑥0 ≤ 0	, 𝑞WT(𝑡) − 𝑥W ≤ 0 (62) 

 
	𝜂W m𝑞WT(𝑡)𝑑𝑡

p

q

−m𝑞W(𝑡)𝑑𝑡
p

q

= 0						 
(63) 

 Sets: 𝑖 ∈ {𝑝, 𝑏, 𝑒}	, 𝑗 ∈ {𝑠, 𝑝, 𝑏}	, 𝑘 ∈ {𝑠, 𝑝, 𝑏, 𝑒}  

We first consider the optimal operation during the whole discharging period [0, 𝑡W]. According to the 
assumptions stated above, all generated power from the EES comes from the baseplant with variable 
cost 𝑣�. With a storage round-trip efficiency of 𝜂W, the variable cost of generation from EES is 𝑣W =
𝑣�/𝜂W. Under the assumption that there is enough energy available for charging the EES, it can be 
treated as a conventional generator with variable cost 𝑣�/𝜂W during the discharge period. Based on the 
operation problem formulation (15)-(18) with corresponding Lagrangian (19) and KKT-conditions 
(20)-(23), which applies for any number of conventional generators, we derive the optimal operating 
policy during discharging as shown in Table 3. In the charging period ⟨𝑡W,𝑇], the baseplant supplies the 
consumer demand and the charging power. Since the marginal cost of generation is constant equal to 
𝑣� over the whole period ⟨𝑡W,𝑇], the charging can take place any time in this interval as long as the 
storage conservation (63) is fulfilled. The cost of charging is thus equal to 𝑣�. 

Table 3. System marginal cost and optimal operation for different demand levels with EES charged by the 
baseplant, under the assumption that 𝑣X > 𝜂W𝑣�. 

𝑡 ≤ 𝑡}: 
𝑥� + 𝑥W + 𝑥X ≤ 𝑞3(𝑡) 

𝑡} < 𝑡 ≤ 𝑡X:	 
0 ≤ 𝑞3(𝑡) − 𝑥� − 𝑥W < 𝑥X 

𝑡X < 𝑡 ≤ 𝑡W:	 
0 ≤ 𝑞3(𝑡) − 𝑥� < 𝑥W 

𝑡 > 𝑡W: 
	𝑞3(𝑡) + 𝑞WT(𝑡) > 𝑥� 

𝜆3(𝑡) = 𝑣} 𝜆3(𝑡) = 𝑣X 𝜆3(𝑡) = 𝑣�/𝜂W 𝜆3(𝑡) = 𝑣� 
𝑞�(𝑡) = 𝑥� 𝑞�(𝑡) = 𝑥� 𝑞�(𝑡) = 𝑥� 𝑞�(𝑡)

= 𝑞3(𝑡) + 𝑞WT(𝑡) 
𝑞W(𝑡) = 𝑥W  𝑞W(𝑡) = 𝑥W 𝑞W(𝑡) = 𝑞3(𝑡) − 𝑥� 𝑞W(𝑡) = 0 
𝑞X(𝑡) = 𝑥X 𝑞X(𝑡) = 𝑞3(𝑡) − 𝑥� − 𝑥W 𝑞X(𝑡) = 0 𝑞X(𝑡) = 0 

𝑞}(𝑡) = 𝑞3(𝑡) − 𝑥X − 𝑥W − 𝑥� 𝑞}(𝑡) = 0 𝑞}(𝑡) = 0 𝑞}(𝑡) = 0 
 

Table 3 contains the the operational constraints (60)-(62) for problem (59) solved for optimal operation 
over the whole duration [0, 𝑇]. We can use these operational conditions to express the total cost 
minimization problem as: 

 min
8¦,8§,8�

𝐶 = 𝐹X𝑥X + 𝐹�𝑥� + 𝐹W𝑥W + 𝑣} ∫ v𝑞3(𝑡) − 𝑥X − 𝑥W − 𝑥�|
N¨
q 𝑑𝑡 + 𝑣X ∙

¡∫ 𝑥X
N¨
q 𝑑𝑡 + ∫ [𝑞3(𝑡) − 𝑥� − 𝑥W]

N¦
N¨

𝑑𝑡¢ + 𝑣� ∙ ¡∫ 𝑥�
N�
q 𝑑𝑡 + ∫ [𝑞3(𝑡) + 𝑞WT(𝑡)]

p
N�

𝑑𝑡¢  
(64) 

 s.t. 	𝜂W ∫ 𝑞WT(𝑡)𝑑𝑡
p
N�

− ∫ 𝑞W(𝑡)𝑑𝑡
N�
q = 0						 (65) 

By the use of the storage constraint (65) and the optimal operation strategy from Table 3, the last term 
of the objective function can be substituted by: 

 	∫ 𝑞WT(𝑡)𝑑𝑡
p
N�

= 𝜂WTU ∫ 𝑞W(𝑡)𝑑𝑡
N�
q = 𝜂WTU ¡∫ 𝑥W

N¦
q 𝑑𝑡 + ∫ [𝑞3(𝑡) − 𝑥�]

N�
N¦

𝑑𝑡¢  (66) 
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The optimization problem can now be written as 

 min
8¦,8§,8�

𝐶 = 𝐹X𝑥X + 𝐹�𝑥� + 𝐹W𝑥W + 𝑣} ∫ v𝑞3(𝑡) − 𝑥X − 𝑥W − 𝑥�|
N¨
q 𝑑𝑡 + 𝑣X ∙

¡∫ 𝑥X
N¨
q 𝑑𝑡 + ∫ [𝑞3(𝑡) − 𝑥� − 𝑥W]

N¦
N¨

𝑑𝑡¢ + 𝜂WTU𝑣� ∙ ¡∫ 𝑥W
N¦
q 𝑑𝑡 + ∫ [𝑞3(𝑡) − 𝑥�]

N�
N¦

𝑑𝑡¢ +

𝑣� ∙ ¡∫ 𝑥�
N�
q 𝑑𝑡 + ∫ 𝑞3(𝑡)

p
N�

𝑑𝑡¢  

(67) 

which is identical to a three-generator problem where the mid-merit generator has marginal cost 𝜂WTU𝑣�. 
The optimality condition for the peaker is unchanged from (27), while the EES and baseplant conditions 
becomes: 

 𝜕𝐶
𝜕𝑥W

= 0 ⟹ 𝐹W − (𝑣} − 𝜂WTU𝑣�)𝑡} − �𝑣X − 𝜂WTU𝑣��(𝑡X − 𝑡}) = 0 
(68) 

 ⟹ 𝑡X =
𝐹W − 𝐹X

𝑣X − 𝜂WTU𝑣�
 (69) 

 𝜕𝐶
𝜕𝑥�

= 0 ⟹ 𝐹� − (𝑣} − 𝑣�)𝑡} − �𝑣X − 𝑣���𝑡X − 𝑡}� − (𝜂WTU𝑣� − 𝑣�)�𝑡W − 𝑡X� 
(70) 

 ⟹ 𝑡W =
𝐹� − 𝐹W

𝑣�(𝜂WTU − 1)
 (71) 

These conditions apply for an ideal storage device which can move energy from any instant of time to 
another, only limited by its power capacity and round-trip efficiency, i.e. with unbounded energy 
capacity. For real-world applications, the last assumption is of course too optimistic, so the results 
should be regarded as an upper limit to how much storage can contribute with in system optimum. 
Furthermore, the durations above only apply for storage efficiencies less than 1, which is always the 
case in real systems. The conversion losses make discharge more expensive in operation than direct 
supply from the generator used for charging. From (71) we see that the optimality condition leads to an 
infeasible solution for round-trip efficiency of 1. The discharge duration according to (74) goes to 
infinity; you will replace as much thermal energy as you can with ESS as long as the fixed costs of ESS 
are lower than for the baseload plant. However, the discharge duration is strictly limited by the storage 
preservation (65) which always applies, since it is not possible to discharge more energy than available 
from the charging period. 

The optimality conditions state that the optimal duration of the peaker is proportional to the EES fixed 
cost 𝐹W, while the baseplant duration is negatively proportional to 𝐹W. The durations are equal when 

 
𝐹WË = �𝐹� − 𝐹X�

�𝑣X − 𝜂WTU𝑣��
�𝑣X − 𝑣��

 
(72) 

𝐹W > 𝐹WË implies that 𝑡X > 𝑡W, which is not feasible if 𝑣X > 𝜂W𝑣�, i.e. EES investment is zero in that case. 
If 𝑣X < 𝜂W𝑣�, on the other hand, the EES and the peaker will shift places in the merit-order, and we can 
directly set up the optimality conditions in a similar manner as above:: 

 𝜕𝐶
𝜕𝑥W

= 0⟹ 𝑡} =
𝐹W

𝑣} − 𝜂WTU𝑣�
 

(73) 

 𝜕𝐶
𝜕𝑥X

= 0 ⟹ 𝑡W =
𝐹X − 𝐹W

𝑣X(𝜂WTU − 1)
 

(74) 

where it is still assumed that all stored energy is generated from the baseplant. For a less optimistic 
case where EES is charged only by the peaker, it is necessary to replace 𝑣� in the denominator of (73) 
with 𝑣X. The optimality condition for the baseplant is given by (28), since the peaker again is adjacent 
to the baseplant in the merit-order. 

5.1.2 Cost recovery 
The profit function of EES is  

 
𝜋W = 𝐴𝑅𝑒 − 𝐴𝐶𝑒 = m 𝑝(𝑡) ¡𝑞𝑒(𝑡) − 𝑞𝑒−(𝑡)¢𝑑𝑡

𝑇

0
− 𝐹𝑒 ∙ 𝑥𝑒 (75) 
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where the instantaneous charging and discharging power is given by the storage operation strategy and 
is generally a function of the storage capacity (power and energy) and the market price. In our modelling 
framework, we take explicitly into account the power constraint by (61) and (62), while energy storage 
conservation is fulfilled on an annual basis by (63). In the previous section, it was shown that the 
marginal cost of energy generated from the EES is equal to the variable cost of the marginal thermal 
generator that is used for charging, divided by the round-trip efficiency.  

By using the segments from the KKT-conditions in Table 3 and marginal cost pricing, the profit function 
can be expressed as  

 
𝜋W = 𝑣𝑠𝑥𝑒𝑡𝑠 + 𝑣𝑝𝑥𝑒(𝑡𝑝 − 𝑡𝑠) + 𝑝𝑒 m 𝑞𝑒(𝑡)𝑑𝑡

𝑡𝑒

𝑡𝑝

− 𝑣𝑏 m 𝑞𝑒−(𝑡)𝑑𝑡
𝑇

𝑡𝑒

− 𝐹𝑒 ∙ 𝑥𝑒	 (76) 

where 𝑝W is the short-term electricity price during period [𝑡X, 𝑡W], when the storage is the marginal 
generator. From the KKT-conditions, we know that this price should be equal to 𝜂WTU𝑣� to ensure 
optimal operation, since this is the marginal cost of charging the EES. In other words, we assume perfect 
knowledge of the future to determine the value of stored energy, by applying a deterministic model of 
the system on an annual basis. In a real market setting, on the other hand, the future prices, demand, 
weather conditions etc. are not known, and the marginal value of the stored energy, i.e. the opportunity 
cost (Førsund 2015) will consequently change over time. In hydropower planning this is referred to as 
the “water value” (Stage and Larsson 1961; Fosso et al. 1999; Førsund 2015), which is typically 
calculated as an expectation value based on stochastic representation of future unknown parameters. 
For detailed treatment of uncertainty in EES operation strategies, see (Xu, Botterud, and Korpås 2019). 
The use of stochastic parameters for storage valuation in the duration curve framework is an area for 
future research.    

By applying 𝑝W = 𝜂WTU𝑣�, and the storage conservation 𝜂W ∫ 𝑞WT(𝑡)𝑑𝑡
p
N�

= 𝑥W𝑡X + ∫ 𝑞W(𝑡)𝑑𝑡
N�
N¦

, the profit 
function becomes: 

 𝜋W = 𝑣}𝑥W𝑡} + 𝑣X𝑥W(𝑡X − 𝑡}) + 𝜂WTU𝑣�𝑥W𝑡X − 𝐹W ∙ 𝑥W	 (77) 

By setting 𝜋W = 0 we obtain the optimality condition for EES given by (69). In perfect competition 
where no EES owner is large enough to change the durations 𝑡} or 𝑡X, profit maximization yields  

 𝜕𝜋W
𝜕𝑥W

= 0⟹ 𝑣}𝑡} + 𝑣X�𝑡X − 𝑡}� + 𝜂WTU𝑣�𝑡X − 𝐹W = 0	 (78) 

which also gives the optimality condition (69). As shown above, the optimal price for discharging 
energy is equal to the marginal cost of charging, under the assumption of perfect foresight and annual 
storage balance.  

5.2 Energy storage in systems with VRE  
Building on the storage model for conventional generators from Section 5.1, we explore two main ESS 
operating strategies when introducing VRE. The first principle is to use storage exclusively for utilizing 
surplus VRE, which is discussed further in Section 5.2.1 and 5.2.2. The second operating principle is 
general price arbitrage regardless of the source of energy, which is covered in Section 5.2.3. 

In the storage model introduced in the previous section, it was assumed that it was possible to move 
energy from any instant of time to another over the course of the year. Although very optimistic, the 
assumption can at least partly be justified for systems with only conventional generators, which 
alternate in setting the price on a daily or weekly basis. With VRE, this assumption is more questionable, 
as the time of surplus VRE generation and the time of peak load might be in different seasons of the 
year and would require very large amounts of storage capacity. Therefore, we also present a restrictive 
operational strategy in Section 5.2.2, where we assume that the stored VRE energy is only able to 
replace base plant generation due to storage limitations. 
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5.2.1 VRE storage with unlimited energy capacity 
In the ideal case with no storage limits, it is possible to discharge the stored energy in the periods with 
highest price first. This is illustrated in Figure 4 for a system with one peaker p, one base plant b, one 
VRE plant p and one energy storage device e. In the illustrated case, there is enough surplus VRE energy 
to discharge during all periods where load shedding and conventional generators sets the price for 
electricity. A new variable 𝑡L is introduced in the figure, which is defined as the time instant when the 
negative net load equals the charging capacity: 𝑞63(𝑡L) = −𝑥W.    

 
Figure 4. Net load duration curve including energy storage charged by surplus VRE energy. Left: Storage as 
individual generator and consumer. Right: Storage as part of the net demand. These are equivalent 
representations. 

Consider the illustrated case in Figure 4 where the available amount of discharged energy is limited by 
the power capacity of storage, the duration of VRE surplus and the storage efficiency. Since we assume 
unbounded energy storage, it is most beneficial to discharge at full power during load shedding [0, 𝑡}] 
and the peaker period [𝑡}, 𝑡X] and discharge the rest of the stored energy in the base plant period [𝑡X, 𝑡�]. 
The available discharge energy during [𝑡X, 𝑡�] is limited by: 

 
𝐸W
[N¦,N§] = m 𝑞W(𝑡)𝑑𝑡

N§

N¦
= 𝜂W m 𝑞WT(𝑡)𝑑𝑡

p

N§
− 𝑥W𝑡X = 𝜂W𝐸WT(𝑥L, 𝑥W) − 𝑥W𝑡X	 (79) 

where it is indicated that the annual charging energy is a function of both the VRE capacity and the 
storage capacity, as visualized in Figure 4. Equation (79) holds true if there is enough charging energy 
available to discharge at full power during the whole period [0, 𝑡X].    

It is indifferent at which time during [𝑡X, 𝑡�] that the storage is discharged, since the base plant is the 
marginal generator over the whole period. Note that it is not possible to cover a marginal load increase 
in [𝑡X, 𝑡�] by stored energy, as all the surplus energy from [𝑡�, 𝑇] is already utilized. Thus, the marginal 
generator in [𝑡X, 𝑡�] is the base plant, even with storage present, and the short-term marginal cost in this 
time segment is 𝑣�. However, in the long-term, there exists two additional options to cover a marginal 
demand increase during [𝑡X, 𝑡�]: 

• Increasing the power capacity of the storage 𝑥W while the VRE capacity is constant. Referring 
to Figure 4, this option increases the amount of charged energy during [𝑡�, 𝑇]. 

• Increasing the VRE capacity 𝑥L while 𝑥W is constant. This option moves the net demand curve 
to the left, and thus increases the length of [𝑡�, 𝑇] which leads to more available stored energy. 

As will be shown in the next section, the optimal response to a marginal increase in demand is a 
combination of these two options, i.e. increasing both 𝑥W and 𝑥L, according to their optimality 
conditions.  

5.2.1.1 Minimization of system costs 
The system cost minimization problem is identical to the main problem (9)-(14), except that we add the 
charging constraint: 
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 𝑞WT(𝑡) − 𝑞63(t) ≤ 0						 (80) 

which ensures that only surplus VRE energy is stored (general price arbitrage is treated in Section 
5.2.3). We first find the optimal operation in each of the periods indicated in Figure 4, under the 
assumption that there is sufficient stored energy available to discharge at full power during the whole 
period v0, 𝑡X|:  

[0, 𝑡}]: All dispatchable generators are operated at full power, so the marginal cost is given by 
load shedding. Hence 𝜆3 = 𝑣}  as before.  

⟨𝑡},𝑡X|: The baseplant and EES are operated at full power, and the marginal plant is the peaker. 
Hence 𝜆3 = 𝑣X as before. 

Ê𝑡X,𝑡�]: The demand is covered by the baseplant, VRE and EES. The baseplant is the marginal 
generator in the whole period,  hence 𝜆3 = 𝑣�. Consider that the EES covers a marginal demand 
increase over a small time interval Δ𝑡 during v𝑡X, 𝑡�|: Δ𝑃3 ∙ Δ𝑡 = Δ𝑃W ∙ Δ𝑡 The marginal increase 
in EES generation will reduce the storage level according to the instantaneous storage balance 
Δ𝐸}N�ZW3 = 𝜂WTUΔ𝑃W ∙ Δ𝑡 = 𝜂WTUΔ𝑃3 ∙ Δ𝑡 . However, the annual storage balance (14) must be 
fulfilled. Since all available VRE energy is already utilized, the EES is forced to charge energy 
from the baseplant to cover the storage deficit caused by the marginal demand increase: Δ𝑃� ∙
Δ𝑡 = 𝜂W,ÎÏTU Δ𝐸}N�ZW3 ⇒ Δ𝑃� = 𝜂WTUΔ𝑃3. Hence, without new investments, a marginal increase 
in EES generation during v𝑡X, 𝑡�| must be covered by the baseplant. Due to the storage 
efficiency, 𝜂W < 1, it will always be cheaper to cover a marginal demand increase during this 
period directly by the baseplant, i.e. the baseplant is the marginal generator and 𝜆3 = 𝑣� over 
the whole period. 

⟨𝑡�,𝑡L]: In this period, there is surplus of VRE energy, and the EES is charged below its full 
capacity, 0 ≤ 𝑞63(𝑡) < 𝑥W. Hence, during this period, the EES is the marginal load, and the 
marginal cost of electricity is set by the marginal value of stored energy, 𝜆3 = 𝜂W𝑣�. This 
corresponds to the increase in required baseplant generation in period Ê𝑡X,𝑡�] if EES charging 
is reduced in period ⟨𝑡�,𝑡L], accounting for the EES efficiency.  During [𝑡� , 𝑡L], there are two 
competing options for supplying a marginal increase in demand: 1) Starting up the baseplant 
with marginal cost 𝑣�. 2) Reducing the charging of EES with the same amount Δ𝑃WT ∙ Δ𝑡 =
−Δ𝑃3 ∙ Δ𝑡. This gives less stored energy Δ𝐸}N�ZW3 = −𝜂W,ÎÏΔ𝑃3 ∙ Δ𝑡, which reduces the 
available energy for discharging: Δ𝐸W

[N¦,N§] = 𝜂W,3ÎÏΔ𝐸}N�ZW3 = −𝜂WΔ𝑃3 ∙ Δ𝑡. The reduced 
energy from discharging must be substituted by the marginal generator in the least expensive 

discharging period, i.e. the baseplant: Δ𝑃� = −Ð��
vº¦,º§|

ÐN
= 𝜂WΔ𝑃3, with marginal cost 𝑣�. Hence, 

the cost of a marginal increase in demand Δ𝑃3 is 𝜆3 = 𝜂W𝑣�, which is always cheaper than the 
baseplant since 𝜂W < 1. 

⟨𝑡L,𝑇]: There is surplus of VRE energy, and the EES is charged at full power. Hence, VRE is 
the marginal plant and 𝜆3 = 0. 

With the optimal operating strategies for each period described above, we can formulate the total cost 
minimization problem: 

 min
0
𝐶 = ∑ 𝐹0𝑥00 + 𝑣} ∫ v𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L − ∑ 𝑥�� |N¨

q 𝑑𝑡 + 𝑣X ∙ ¡∫ 𝑥X
N¨
q 𝑑𝑡 +

∫ [𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L − ∑ 𝑥�� ]N¦
N¨

𝑑𝑡¢ + 𝑣� ∙ ¡∫ 𝑥�
N¦
q 𝑑𝑡 + ∫ [𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L −

N§
N¦

𝑞W(𝑡)] 𝑑𝑡¢	∀𝑖 ∈ {𝑝, 𝑏, 𝑒, 𝑣}, 𝑗 ∈ {𝑝, 𝑏, 𝑒}, 𝑘 ∈ {𝑒, 𝑏}	  

(81) 

 s.t. 	𝜂W ∫ 𝑞WT(𝑡)𝑑𝑡
p
N�

− ∫ 𝑞W(𝑡)𝑑𝑡
N�
q = 0						 (82) 

For this problem, the storage constraint (82) is equivalent to  
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 𝐸W
[N¦,N§] = 𝜂W𝐸WT

[N§,NÄ] + 𝜂W𝑥W(𝑇 − 𝑡L) − 𝑥W𝑡X  (83) 

where we have used the result that the EES is charging at maximum capacity during ⟨𝑡L,𝑇] and 
discharging at maximum capacity during v0, 𝑡X|. Substituting (83) into (81): 

 min
0
𝐶 = ∑ 𝐹0𝑥00 + 𝑣}𝐸3

[q,N¨] + 𝑣X𝐸3
[N¨,N¦] + 𝑣�𝐸3

[N¦,N§] − �𝑥X + 𝑥� + 𝑥W��𝑣} − 𝑣X�𝑡} −

(𝑥� + 𝑥W)�𝑣X − 𝑣��𝑡X − 𝑥W𝜂W𝑣�(𝑇 − 𝑡L) − 𝜂W𝑣�𝐸WT
[N§,NÄ] − 𝑥L �𝑣}𝐶𝐹L

[q,N¨]𝑡} +

𝑣X𝐶𝐹L
vN¨,N¦|�𝑡X − 𝑡}� + 𝑣�𝐶𝐹L

vN¦,N§|�𝑡� − 𝑡X� ∀𝑖 ∈ {𝑝, 𝑏, 𝑒, 𝑣}  

(84) 

Problem (84) without additional constraints minimizes the system cost under the following 
assumptions: 

• EES is only bounded by power capacity and yearly energy balance. EES operation is treated 
deterministic, i.e. with full foresight. 

• EES is only used for storing surplus VRE energy that otherwise would have been curtailed. 
• All power plants (peaker, baseload, EES and VRE) forms part of the solution. Other 

combinations form a simpler subset, and must be treated separately. 
• It is enough stored energy available for the EES to generate at full power during the whole 

period v0, 𝑡X|. Cases with less available charging are simpler variants of the problem and must 
be treated separately. 

It is possible to derive the first-order optimality conditions for all plants directly from (79). For the 
peaker and the baseload, we obtain the same result as in Chapter 3 since these generators have not 
changed position in the merit order, see (27) and (28). For the EES plant, we get: 

 𝜕𝐶
𝜕𝑥W

= 𝐹W − �𝑣} − 𝑣X�𝑡} − �𝑣X − 𝑣��𝑡X − 𝜂W𝑣�(𝑇 − 𝑡L) − 𝜂W𝑣�
𝜕𝐸WT

[N§,NÄ]

𝜕𝑥W
 

(85) 

where the last term is zero, since the EES is the marginal load during ⟨𝑡�,𝑡�] and therefore operates 
lower than its capacity. Setting ¶=

¶8�
= 0, the optimality condition for the EES becomes: 

 𝜂W(𝑇 − 𝑡L) =
𝐹W − 𝐹�
𝑣�

 (86) 

  ⇒ 𝑡L = 𝑇 +
𝐹� − 𝐹W
𝜂W𝑣�

 (87) 

Equation (86) is equivalent to the optimality condition of a generator with zero variable cost, with a 
duration 𝑡∗ = 𝜂W(𝑇 − 𝑡L). The duration 𝜂W(𝑇 − 𝑡L) expresses how long time it is necessary to charge 
the EES at full power, accounting for the storage losses 𝜂W. Rearranging to (87), we get directly the 
unknown duration 𝑡L, which is the time instant when the available surplus power is equal to the charging 
capacity 𝑥W. An equivalent definition of 𝑡L is the duration of full VRE energy utilization, i.e. the number 
of hours of the year without VRE curtailment. From (87) we see that 𝑡L is proportional to −𝐹W, i.e. if 
the fixed cost of EES is decreased, less hours with zero price is needed to make the EES beneficial for 
the system. The threshold for EES to be economically viable is when 𝑡L = 𝑡� . If the calculated 𝑡L is 
lower than 𝑡�, this implies a negative charging capacity 𝑥W which is infeasible (See Figure 4).  

The baseplant duration 𝑡� is found from the optimality condition for the VRE plant. From (84): 

 𝜕𝐶
𝜕𝑥L

= 𝐹L − 𝑣}𝐴𝐹L
[q,N¨]𝑡} − 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� − 𝑣�𝐴𝐹L
vN¦,N§|�𝑡� − 𝑡X�

− 𝜂W𝑣�
𝜕
𝜕𝑥L

𝐸WT
[N§,NÄ] 

(88) 

Previously in this section, we showed that a marginal increase in demand during ⟨𝑡�,𝑡L] caused a 
marginal decrease in charging of the same amount since the EES is the marginal load unit in this period. 
If instead the VRE capacity increases marginally, the net load during the period will decrease by 

𝐴𝐹L
vN¨,N¦|(𝑡L − 𝑡�). Since the EES does not operate at its maximum charging capacity during ⟨𝑡�,𝑡L], it 
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can absorb the whole amount of additional VRE energy. Thus, the marginal increase in charging energy 
is ¶
¶8Ä

𝐸WT
[N§,NÄ] = 𝐴𝐹L

[N§,NÄ](𝑡L − 𝑡�). The optimality condition for VRE becomes:  

 𝑑𝐶
𝑑𝑥L

= 0⟹ 𝐹L = 𝑣}𝑡} ∙ 𝐴𝐹L
[q,N¨] + 𝑣X�𝑡X − 𝑡}� ∙ 𝐴𝐹L

[N¨,N¦] + 𝑣��𝑡� − 𝑡X� ∙ 𝐴𝐹L
[N¦,N§]

+ 𝜂W𝑣�(𝑡L − 𝑡�) ⋅ 𝐴𝐹L
[N§,NÄ] 

(89) 

 
𝑡� =

𝐹L − 𝑣}𝑡} ∙ 𝐴𝐹L
[q,N¨] − 𝑣X�𝑡X − 𝑡}� ∙ 𝐴𝐹L

[N¨,N¦] − 𝑣� ¡𝜂W𝑡L𝐴𝐹L
[N§,NÄ] − 𝐴𝐹L

[N¦,N§]𝑡X¢

𝑣� ¡𝐴𝐹L
[N¦,N§] − 𝜂W𝐴𝐹L

[N§,NÄ]¢
 

(90) 

We see that the duration of the baseload plant, which determines the optimality condition for VRE, is 
dependent of the characteristic of the EES. If we set 𝑡L = 𝑡� (corresponding to zero EES investment) in 
(90), the duration 𝑡� becomes equal to the result for the case without EES given in (53). We find from 
(90) that ¶N§

¶NÄ
< 0. This shows that an investment in EES (corresponding to 𝑡L > 𝑡�) leads to a higher 

investment of VRE in optimum, since a reduction in 𝑡� only can be caused by increasing 𝑥L as long as 
the demand is not changing. 

When 𝑡� and 𝑡L has been calculated, it is straightforward to find the optimal VRE capacity and EES 
capacity from the net demand curve: 𝑞63(𝑡�) = 0 and 𝑞63(𝑡L) = −𝑥W.  

5.2.1.2 Cost recovery of EES 
As already mentioned, we present results for the case where no generator types are entirely pushed out 
of the market. Both the peaker and base plant will be present in the system. VRE and EES will cause a 
change in the capacity and generation of the base and peaker, but the duration of load shedding 
(optimality condition for the peaker) and duration of the peaker (optimality condition for the base plant) 
are both unchanged.   

The profit function of the EES is set up similarly to Section 5.1.2:  

 
𝜋W = m𝑝(𝑡)�𝑞W(𝑡) − 𝑞WT(𝑡)�

p

q

𝑑𝑡 − 𝐹W ∙ 𝑥W 
(91) 

Using the optimal EES operation from Section 5.2.1.1 and the corresponding Lagrange multipliers 𝜆3 
as price we can write: 

 𝜋W = 𝑣} ∫ 𝑥W
N¨
q 𝑑𝑡 + 𝑣X ∫ 𝑥W

N¦
N¨

𝑑𝑡 + 𝑣� ∫ 𝑞W(𝑡)
N§
N¦

𝑑𝑡 − 𝜂W𝑣� ∫ 𝑞WT(𝑡)
NÄ
N§

𝑑𝑡 − 𝐹W ∙ 𝑥W =

𝑥W ∙ �𝑣}𝑡} + 𝑣X�𝑡X − 𝑡}� − 𝐹W� + 𝑣� ¡𝐸W
[N¦,N§] − 𝜂W𝐸WT

[N§,NÄ]¢  

(92) 

Substituting the rightmost parenthesis with 𝜂W𝑥W(𝑇 − 𝑡L) − 𝑥W𝑡X from the annual storage balance (83) 
gives: 

 𝜋W = 𝑥W ∙ �𝑣}𝑡} + 𝑣X�𝑡X − 𝑡}� + 𝑣��𝜂W(𝑇 − 𝑡L) − 𝑡X� − 𝐹W�  (93) 

Cost recovery 𝜋W = 0 gives   

 𝑣}𝑡} + 𝑣X�𝑡X − 𝑡}� + 𝑣��𝜂W(𝑇 − 𝑡L) − 𝑡X� − 𝐹W = 0 

⇒ 𝑡L = 𝑇 −
1

𝜂W𝑣�
¡	𝐹W+𝑣�𝑡X − 𝑣}𝑡} − 𝑣X�𝑡X − 𝑡}�¢ = 𝑇 −

𝐹� − 𝐹W
𝜂W𝑣�

 

(94) 

which is equal to the system optimal condition found in (82) in the previous section.  

Profit maximization of an individual EES owner who is sufficiently small to not change the duration 𝑡L 
on its own gives the same result:  

 ¶Ó�
¶8�

= 0 ⟹ 𝑣}𝑡} + 𝑣X�𝑡X − 𝑡}� + 𝑣��𝜂W(𝑇 − 𝑡L) − 𝑡X� − 𝐹W = 0  (95) 
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5.2.1.3 Cost recovery of VRE 
The general profit function for VRE is given in (56). Inserting the prices (Lagrange multipliers) 
derived from the optimal operation in Section 5.2.1.1, we get: 

 𝜋L = 𝑣}𝐴𝐹L
[q,N¨]𝑥L𝑡} + 𝑣X𝐴𝐹L

vN¨,N¦|𝑥L�𝑡X − 𝑡}� + 𝑣�𝐴𝐹L
vN¦,N§|𝑥L�𝑡� − 𝑡X�

+ 𝜂W𝑣�𝐴𝐹L
[N§,NÄ]𝑥L(𝑡L − 𝑡�) − 𝐹L𝑥L 

(96) 

Cost recovery, 𝜋L = 0, gives the same result as system optimum (90): 

 𝐹L = 𝑝}𝐴𝐹L
[q,N¨]𝑡} + 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� + 𝑣�𝐴𝐹L
vN¦,N§|�𝑡� − 𝑡X�

+ 𝜂W𝑣�𝐴𝐹L
[NÄ,N�](𝑡L − 𝑡�) 

(97) 

We see directly from (96) that this result is also obtained by maximizing the profit of an individual 
VRE owner in a perfect market: 3ÓÄ

38Ä
= 0 gives the same result since 𝜋L is a linear function of 𝑥L.  

5.2.2 VRE storage with limited energy capacity 
As discussed in the introduction to this chapter, EES storage is only represented by its power capacity 
and efficiency since the duration curve model cannot handle energy capacity limitations of the storage 
explicitly. So far, we have assumed that it is possible to shift the stored energy between any time instants 
over the year, which obviously is a very optimistic assumption for both present and emerging storage 
technologies such as batteries, flow batteries, CAES and pumped hydro. These technologies are often 
reported with durations in the range of hours, both in real-world installations and future scenario studies 
(Pinnangudi, Kuykendal, and Bhadra 2017; Argyrou, Christodoulides, and Kalogirou 2018; Cole et al. 
2016; McPherson, Johnson, and Strubegger 2018; Sepulveda et al. 2018; de Sisternes, Jenkins, and 
Botterud 2016). Although there are several promising alternatives for long-duration storage, these are 
so far limited by different factors, e.g. 1) Being at the R&D  stage, such as Aqueous sulfur/sodium/air 
systems (Z. Li et al. 2017). 2) High round-trip losses such as hydrogen storage (Pellow et al. 2015; 
Korpås 2004). 3) Specific geographical locations such as seasonal-storage from reservoir hydro with 
pumping capability (Graabak et al. 2019). 

In this section, we introduce an EES model that is limited to only discharge in the baseload period. The 
motivation behind this model is to represent short-term storage of e.g. PV energy from day to night, so-
called “valley filling” strategy. The model is also used as a building-block of the general price arbitrage 
model (Section 5.2.3). 

 
Figure 5. Net load duration curve for a system where stored VRE energy replaces baseload power only. 

5.2.2.1 System optimality conditions 
Based on the conservative assumption explained above, we can directly derive a simplified variant of 
the model presented in Section 5.2.1 where the storage only shifts energy between the surplus period 

MW

𝑡"
𝑡# 𝑡$ 𝑡%

𝑥%

𝑥$

𝑞(

𝑥)

𝑇

𝑞+((𝑡)

Ee

Ee-



M. Korpås, A. Botterud. Optimality Conditions and Cost Recovery in Electricity Markets with Variable 
Renewable Energy and Energy Storage, MIT CEEPR Working Paper 2020-005, March 2020. 
 

22 
 

[𝑡�, 𝑇] to the base plant period [𝑡X, 𝑡�]. In this case, neither the optimal duration nor the sizing of the 
peaker and base plant is affected by the inclusion of the storage. The optimality condition for the VRE 
plant is also unchanged. For EES, on the other hand, the periods when load shedding and peaker sets 
the marginal cost are no longer available for discharge, so the optimality condition similar to (85)-(87) 
becomes: 

 𝜂W𝑣�(𝑇−𝑡L) = 𝐹W (98) 

 ⟹ 𝑡L = 𝑇 −
𝐹W
𝜂W𝑣�

 (99) 

since the EES now discharges all its energy from surplus VRE to replace energy from the baseload plant 
in the period [𝑡X, 𝑡�]. 

5.2.2.2 Cost recovery 
Cost recovery and profit maximization follows directly from the derivations in Section 5.2.1, by simply 
setting the EES profits to zero in the period [0, 𝑡X]. The equivalents of (94) and (95) for this case both 
gives: 

 𝐹W = 𝜂W𝑣�(𝑇 − 𝑡L) (100) 

which is equal to the system optimum (98).  

For the VRE-plant, the conditions for cost recovery and profit maximization is unchanged from Section 
5.2.1, thus (97) applies also here. 

5.2.3 Storage for general price arbitrage 
In this section, we combine the limited VRE storage model from Section 5.2.2 with the storage model 
for conventional generators from Section 5.1. The rationale behind this combined model is to utilize 
ESS whenever it is profitable, whether that means storing thermal energy or renewable energy. In 
principle, a time-sequential optimization model based on the general formulation presented in Chapter 
1 will seek cost-minimum without restricting the use of storage charging to any type of power plant. 
However, it is not possible to fully represent time-sequential storage optimization in a duration model 
approach due to the lack of chronology of the sorted net load. Based on the storage operations strategies 
presented previously, we propose in this section a combined storage model with the following operating 
strategy: 

⟨𝑡�,𝑇]: The EES stores surplus VRE energy and discharges it sometime during [𝑡X, 𝑡�]. In 
Figure 6, this period is illustrated to be immediately before 𝑡�, but it is not a necessary 
assumption as long as the storage is discharged sometime during the baseplant period. The 
operation strategy follows Section 5.2.2.   

⟨𝑡W,𝑡�]: During this period, the baseload is the marginal generator. During a part of this period, 
the EES discharges surplus VRE energy, indicated by 𝐸W,? in Figure 6. In the rest of the period, 
the EES is available for charging baseload power to replace peaker and load shedding during 
[0, 𝑡X].  

[0, 𝑡W]: The EES energy which was charged by the baseload is discharged in this period. Surplus 
energy from VRE is assumed not to be available for discharge in this period. This is a simplistic 
representation of the limited energy capacity (kWh capacity) of the storage, which also was 
used in Section 5.2.2. 

For this EES representation to be practically applicable, the baseload period [𝑡X, 𝑡�] must be sufficiently 
long to have room for both discharging VRE energy from [𝑡�, 𝑇] and to shift energy to the load shedding 
peaker periods. As an example, consider a system with peaker duration equal to 500 hours and with 
2000 hours of surplus VRE energy. The period [𝑡X, 𝑡�] will then be 6260 hours, which is more than 
enough for the proposed storage operation. Nevertheless, the result should always be checked for this 
limitation. 
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Figure 6. Net Load duration curve including energy storage, which is charged by baseload (𝐸WT,U) and VRE 
(𝐸WT,?). The stored energy from the baseplant is discharged during load shedding and peaker operation (𝐸W,U). 
The stored energy from VRE replaces only baseload (𝐸W,?) due to the model assumption of limited storage 
capacity.   

5.2.3.1 System optimality conditions 
The EES operational model is a combination of two modes: 1) Store baseload energy (𝐸WT,U) to supply 
during load shedding and peaker operation (𝐸W,U). 2) Store surplus VRE energy (𝐸WT,?) to supply during 
baseload period (𝐸W,?). These operating and storage regimes do not interfere, and occurs at different 
periods, so we can treat them separately when deriving the optimal system operation.  

[0, 𝑡}], ⟨𝑡},𝑡X],	Ê𝑡X,𝑡W] : The optimal operation in the these intervals is identical to what is stated 
in Table 3, except that the thermal generators and EES must meet the net demand instead of 
demand since VRE is present. 

⟨𝑡W,𝑡�]: The baseload is the marginal generator, both when EES is charging from the baseload 
(See Table 3) and when it is discharging previously stored VRE energy (as explained in Section 
5.2.1.1).  

⟨𝑡�,𝑡L], ⟨𝑡L,𝑇]: The optimal operation is the same as in Section 5.2.1.1 for these intervals.  

Based on the optimal operation in the different duration segments according to Figure 6, we can set up 
the system cost minimization problem in the same manner as previously: 

 min
0
𝐶 = ∑ 𝐹0𝑥00 + 𝑣} ∫ v𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L − ∑ 𝑥�� |N¨

q 𝑑𝑡 + 𝑣X ∙ ¡∫ 𝑥X
N¨
q 𝑑𝑡 +

∫ [𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L − ∑ 𝑥�� ]N¦
N¨

𝑑𝑡¢ + 𝑣� ∙ ¡∫ 𝑥�
N�
q 𝑑𝑡 + ∫ [𝑞3(𝑡) − 𝐴𝐹L(𝑡)𝑥L +

N§
N�

𝑞WT(𝑡) − 𝑞W(𝑡)] 𝑑𝑡¢	∀𝑖 ∈ {𝑝, 𝑏, 𝑣, 𝑒}, 𝑗 ∈ {𝑝, 𝑏, 𝑒}, 𝑘 ∈ {𝑒, 𝑏}	  

(101) 

 s.t. 	∫ 𝑞WT(𝑡)𝑑𝑡
N§
N�

= 𝜂WTU𝑥W𝑡X + 𝜂WTU ∫ 𝑞W(𝑡)𝑑𝑡
N�
N¦

						 (102) 

       	∫ 𝑞W(𝑡)𝑑𝑡
N§
N�

= 𝜂W ∫ 𝑞W(𝑡)𝑑𝑡
NÄ
N§

+ 𝜂W𝑥W(T − 𝑡L) (103) 

By setting ∫ 𝑞WT(𝑡)𝑑𝑡
N§
N�

= 𝐸WT
[N�,N§], and applying storage conservation of the charged baseload energy, 

we can formulate (102): 

 𝐸WT
[N�,N§] = 𝜂WTU𝑥W𝑡X + 𝜂WTU𝐸W

[N¦,N�]

= 𝜂WTU𝑥W𝑡X + 𝜂WTU𝐸3
[N¦,N�] − 𝜂WTU(𝑥� + 𝐴𝐹L

vN¦,N�|𝑥L) ∙ (𝑡W − 𝑡X) 

(104) 

Similarly, for the VRE storage constraint (103): 

MW
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 𝐸W
[N�,N§] = 𝜂W𝐴𝐹L

[N§,NÄ]𝑥L − 𝜂W𝐸3
[N§,NÄ] + 𝜂W𝑥W(T − 𝑡L) (105) 

As previously, we write for convenience 𝐸3
[0,N¨] = ∫ 𝑞3(𝑡)𝑑𝑡

N¨
q  and 𝐴𝐹L

[0,N¨] = ∫ 𝐴𝐹L(𝑡)𝑑𝑡
N¨
q  etc. We 

insert the reformulated storage constraints (104) and (105) into the objective function (102) and 
rearrange with respect to the generator capacities 𝑥0. The cost minimization problem can then be written: 

 min
0
𝐶 = ∑ 𝑎0𝑥00 + 𝑏	∀𝑖 ∈ {𝑝, 𝑏, 𝑒, 𝑣}  (106) 

where  

 𝑏 = 𝑣}𝐸3
[q,N¨] + 𝑣X𝐸3

vN¨,N¦| + 𝜂WTU𝑣�𝐸3
vN¦,N�| + 𝑣�𝐸3

[N�,N§] + 𝜂W𝑣�𝐸3
[N§,NÄ]  (107) 

 𝑎X = 𝐹X − (𝑣} − 𝑣X)𝑡}   (108) 

 𝑎� = 𝐹� − 𝑣}𝑡} − 𝑣X�𝑡X − 𝑡}� − 𝑣�𝜂WTU�𝑡W − 𝑡X� + 𝑣�𝑡W   (109) 

 𝑎L = 𝐹L − 𝑣}𝐴𝐹L
[q,N¨]𝑡} − 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� − 𝜂WTU𝑣�𝐴𝐹L
vN¦,N�|�𝑡W − 𝑡X� −

										𝑣�𝐴𝐹L
[N�,N§](𝑡� − 𝑡W) − 𝜂W𝑣�𝐴𝐹L

[N§,NÄ](𝑡L − 𝑡�)   

(110) 

 𝑎W = 𝐹W − 𝑣}𝑡} − 𝑣X�𝑡X − 𝑡}� + 𝑣�𝜂WTU𝑡X − 𝑣�𝜂W(𝑇 − 𝑡L)   (111) 

Since 𝑎0 is the partial derivate of 𝐶 with respect to 𝑥0, the optimality condition for the investment in 
each technology 𝑖 ∈ {𝑝, 𝑏, 𝑣, 𝑒} is found by setting 𝑎0 = 0 in (108)-(111). 𝑡} is solved directly from 
(108) as before. We then have three equations left with four unknowns (𝑡X, 𝑡�, 𝑡W , 𝑡L). However, the 
durations are also constrained by the net demand curve 𝑞63(𝑡) = 𝑞3(𝑡) − 𝐴𝐹L(𝑡) ∙ 𝑥L. The net demand 
is zero at 𝑡 = 𝑡�: 

 
𝑞63(𝑡�) = 𝑞3(𝑡�) − 𝐴𝐹L(𝑡�) ∙ 𝑥L = 0 ⇒ 𝑥L =

𝑞3(𝑡�)
𝐴𝐹L(𝑡�)

 (112) 

Equation (112) expresses 𝑥L as a function of 𝑡�. Furthermore, the net demand is equal to −𝑥W at 𝑡 = 𝑡L: 

 𝑥W = −𝑞63(𝑡L) = −𝑞3(𝑡L) + 𝐴𝐹L(𝑡L) ∙ 𝑥L (113) 

From the left part of Figure 6, we see that 𝑥W is also bounded by: 

 𝑥W = 𝑞63�𝑡X� − 𝑞63(𝑡W) = 𝑞3�𝑡X� − 𝐴𝐹L�𝑡X� ∙ 𝑥L − 𝑞3(𝑡W) + 𝐴𝐹L(𝑡W) ∙ 𝑥L  (114) 

By combining (112), (113) and (114) we get a non-linear equation 𝑓�𝑡X, 𝑡�, 𝑡W, 𝑡L� = 0 which bounds 
the solutions to the net demand curve, Thus, there are in total four equations with four unknowns 
which determines the optimality conditions for EES, VRE and the baseplant: 

 0 = 𝐹� − 𝑣}𝑡} − 𝑣X�𝑡X − 𝑡}� − 𝑣�𝜂WTU�𝑡W − 𝑡X� + 𝑣�𝑡W   (115) 

 0 = 𝐹L − 𝑣}𝐴𝐹L
[q,N¨]𝑡} − 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� − 𝜂WTU𝑣�𝐴𝐹L
vN¦,N�|�𝑡W − 𝑡X� −

										𝑣�𝐴𝐹L
[N�,N§](𝑡� − 𝑡W) − 𝜂W𝑣�𝐴𝐹L

[N§,NÄ](𝑡L − 𝑡�) = 0   

(116) 

 0 = 𝐹W − 𝑣}𝑡} − 𝑣X�𝑡X − 𝑡}� + 𝑣�𝜂WTU𝑡X − 𝑣�𝜂W(𝑇 − 𝑡L) = 0   (117) 

 0 = 𝑞3(𝑡L) + 𝑞3�𝑡X� − 𝑞3(𝑡W) −
�¸(N§)
ÕÖÄ(N§)

∙ ¡𝐴𝐹L(𝑡L) + 𝐴𝐹L�𝑡X� − 𝐴𝐹L(𝑡W)¢  (118) 

This set of equations can be solved with respect to the unknowns 𝑡0	∀	𝑖 ∈ {𝑝, 𝑏, 𝑒, 𝑣} by a suitable 
iterative procedure or non-linear equation solver. i.e. the bisection method. When the durations are 
found, it is straightforward to calculate the optimal capacities 𝑥0	∀	𝑖 ∈ {𝑝, 𝑏, 𝑒, 𝑣} from the net demand 
duration curve.    

5.2.3.2 Cost recovery and profit maximization 
According to the optimal operating strategy derived in the previous section, there are now six periods 
with different prices obtained from the Lagrange multiplier 𝜆3, displayed in Table 4. 

Table 4. Price (𝜆3) periods for the EES model with general price arbitrage. 
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Period [0, 𝑡}] ⟨𝑡},𝑡X] Ê𝑡X,𝑡W] ⟨𝑡W,𝑡�] ⟨𝑡�,𝑡L] ⟨𝑡L,𝑇] 
𝜆3 𝑣} 𝑣X 𝜂WTU𝑣� 𝑣� 𝜂W𝑣� 0 

 

The cost recovery and profit maximization results for the all technologies can be summarized as follows: 

Peaker: Operation is similar to the previous sections, so results from Section 3.2 also applies here. 

Baseload: Operation is similar to the case with EES but no VRE (Section 5.1.2), except that there are 
some discharge of stored energy from VRE during ⟨𝑡W,𝑡�]. However, this does not change the profit of 
the baseload, because it is the marginal generator during ⟨𝑡W,𝑡�]. Therefore, the profit function is equal 
to the one found in Section 5.1.2, and the results applies here as well. 

VRE: Profits are similar to Section 5.2.1.3, expect that there is an additional price segment Ê𝑡X,𝑡W] to 
account for:  

 𝜋L = ¡𝑣}𝐴𝐹L
[q,N¨]𝑡} + 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� + 𝜂WTU𝑣�𝐴𝐹L
[N�,N§](𝑡� − 𝑡W)

+ 𝑣�𝐴𝐹L
[N�,N§](𝑡� − 𝑡W) + 𝜂W𝑣�𝐴𝐹L

[N§,NÄ](𝑡L − 𝑡�) − 𝐹L¢ ∙ 𝑥L 

(119) 

Cost recovery and profit maximization both yields: 

 𝑣}𝐴𝐹L
[q,N¨]𝑡} + 𝑣X𝐴𝐹L

vN¨,N¦|�𝑡X − 𝑡}� + 𝜂WTU𝑣�𝐴𝐹L
vN¦,N�|�𝑡W − 𝑡X� + 𝑣�𝐴𝐹L

[N�,N§](𝑡� − 𝑡W)
+ 𝜂W𝑣�𝐴𝐹L

[N§,NÄ](𝑡L − 𝑡�) − 𝐹L = 0 

(120) 

which is the equal to the optimality condition for the VRE found in Section 5.2.3.1. 

EES: The market operation is now a combination of the optimal strategies from Section 5.1.2 and 
Section 5.2.2.2 with profit function: 

 𝜋W = 𝑣} ∫ 𝑥W
N¨
q 𝑑𝑡 + 𝑣X ∫ 𝑥W

N¦
N¨

𝑑𝑡 − 𝑣� ∫ 𝑞WT(𝑡)
N§
N�

𝑑𝑡 + 𝑣� ∫ 𝑞W(𝑡)
N§
N�

𝑑𝑡 −

𝜂W𝑣� ∫ 𝑞WT(𝑡)
NÄ
N§

𝑑𝑡 − 𝐹W ∙ 𝑥W   

(121) 

Substituting ∫ 𝑞WT(𝑡)
NÄ
N§

𝑑𝑡 and ∫ 𝑞W(𝑡)
NÄ
N§

𝑑𝑡 with the storage conservation equations (104) and (105) 
yields: 

 𝜋W = �𝑣}𝑡} + 𝑣X�𝑡X − 𝑡}� − 𝑣�𝜂WTU𝑡X + 𝑣�𝜂W(𝑇 − 𝑡L) − 𝐹W� ∙ 𝑥L  (122) 

We see that both cost recovery (𝜋L = 0) and profit maximization (3ÓÄ
38Ä

= 0) lead to the system optimal 
condition from Section 5.2.3.1.   

6 Numerical example 

6.1 Case study description 
To illustrate potential use of the proposed model we constructed a numerical example based on 
European energy and cost data from the EU 2050 Reference Scenario (European Commission 2016) 
and an associated technology data set from the EU-project ASSET (De Vita, Kielichowska, and 
Mandatowa 2018). The analyzed cases are listed in Table 5, where the case numbering follows the order 
of appearance in Chapters 3-5.  

Table 5. Case study description. 

Case Peaker Base VRE EES EES model Chapter 
1 x x   - 3 
2 x x x  - 4 
3 x x  x EES for thermal plants 5.1 
4 x x x x Unlimited VRE storage 5.2.1 
5 x x x x Limited VRE storage 5.2.2 
6 x x x x General price arbitrage 5.2.3 
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The peaker and baseload technologies are chosen to be OCGT and CCGT, respectively. Simple OCGT 
plant data are not included in the EU Reference data, so we set the capital cost was set to 50 % of the 
CCGT capital cost, based on data from the U.K. Dept. of Energy and Climate Change, 2013 (Parsons 
Brinckerhoff 2013). Offshore wind is implemented as the VRE technology, while stationary Li-Ion 
Battery Energy Storage System (BESS) and Pumped Hydro Energy Storage (PHES) are used as 
examples of EES. Costs of Li-ion BESS are based on the low cost assumptions from (Cole et al. 2016).  

We use the Norwegian reservoir hydropower system as basis for setting up the PHES model parameters. 
Several papers have described the possibilities for extending parts of the Norwegian hydro system by 
installing new reversible pump systems between large existing reservoirs (Harby et al. 2013; Korpås, 
Wolfgang, and Aam 2015; Askeland, Jaehnert, and Korpås 2019; Graabak et al. 2019). Previous studies 
have revealed that there is a large potential for utilizing the existing hydro reservoirs with additional 
pumping capability and increase the capacity of offshore HVDC connections to balance North Sea 
offshore wind and to connect to the continental European power system. In our case study, we analyze 
the investment of pumping capacity to the existing seasonal hydro storage system in Norway based on 
cost and technology data from (Korpås, Wolfgang, and Aam 2015). This means that this EES option 
has all its costs associated with power capacity, assuming seasonal storage by existing reservoirs.  

We use load time series from the ENTSO-E 2040 GCA dataset for the following European countries: 
AT, BE, BG, CH, CZ, DE, DK, EE, ES, FI, FR, EL, HR, HU, IE, IT, LT, LU, LV, NL, NO, PL, PT, 
RO, SI, SK, SE, UK. Offshore Wind production data is provided by the JRC EMHIRES data set 
(European Commission 2019) for the countries above with shoreline. We use generation capacities from 
the ENTSO-E 2040 Global Climate Action Scenario (ENTSO-E 2018) for the same countries.  
Aggregated offshore wind time-series are given in p.u. of the total installed capacities. All time-series 
represent historical weather and load conditions for year 2007. We set the scarcity price in the market 
to 3000 €/MWh, which is equal to the current maximum price in the EPEX spot market 
(http://www.epexspot.com). 

The cost and technology data are summarized in Table 6. Variable cost of thermal generation is 
calculated from 

 𝑣0 = 𝜂0TU�𝑝\]W^,0 + 𝑝=>?𝐸𝐹\]W^,0� + 𝑂𝑀L7Z,0 (123) 

The resulting variable costs are 155.0 €/MWh and 103.2 €/MWh for the peaker and the baseplant, 
respectively. Annual fixed costs are calculated from 𝐹0 = 𝑆𝐶𝐶0 ∙ 𝛼0 + 𝑂𝑀\08,0 where 𝛼0 is the annuity 
factor, 𝛼0 = 𝑟 ∙ (1 − (1 + 𝑟)TØO)TU.  Since energy capacity restrictions of the EES are not handled 
explicitly in the duration curve model, it is necessary to assume a certain energy capacity to calculate 
the total fixed cost of EES per kW. This is done by specifying the storage duration 𝑑 in the BEES cost 
function provided in Table 6. For the PHES model, this is not necessary since the energy storage 
capacity is assumed to be the existing one, and all investment costs are associated with expanding the 
existing hydro plant with reversible pumps and necessary extensions of grid infrastructure. 

Table 6. Cost data and power system data for the numerical example. e1 is BESS, e2 is PHES. The total cost of 
e1 depends on its assumed duration d. 

Parameter Value Unit Parameter Value Unit 
𝑝\]W^,0	, 𝑖 ∈ [𝑝, 𝑏] [48.5 48.5] €/MWhfuel 𝑣} 3000 €/MWh 
𝑂𝑀L7Z,0	, 𝑖 ∈ [𝑝, 𝑏, 𝑣, 𝑒] [1.73 1.73 0 0] €/MWh 𝑝=>? 63 €/tonCO2 
𝑂𝑀\08,0	, 𝑖 ∈ [𝑝, 𝑏, 𝑣, 𝑒] [15 15 40.7 0] €/MW/yr 𝑃3 100 MW 
𝐸𝐹\]W^,0	, 𝑖 ∈ [𝑝, 𝑏] [0.18 0.18] tonCO2/MWhfuel 𝑟 8.5 % 
𝐿0	, 𝑖 ∈ [𝑝, 𝑏, 𝑣, 𝑒] [30 30 25 15] yr    
𝜂0	, 𝑖 ∈ [𝑝, 𝑏, 𝑒] [39 59 81] %    
𝑆𝐶𝐶0	, 𝑖 ∈ [𝑝, 𝑏, 𝑣] [320 640 1891] €/kW    
𝑆𝐶𝐶WU    265+d·65 €/kW    
𝑆𝐶𝐶W? 2500 €/kW    
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The analytical solutions derived in chapters 3-5 showed that the market solution gives the optimal 
solution for all the cases listed in Table 5. Thus, the Weighted Average Price of Electricity (WAPE) for 
the costumers in the market will be equal to the Annual Cost of Electricity (ACE):  

 
 𝐴𝐶𝐸�X =

L¨ ∫ �¨(N)3N�
º¨
¹ L¦ ∫ �¦(N)3N�

º¦
¹ L§ ∫ �§(N)3N

º§
¹

∫ �¸(N)3N
¼
¹

= L¨�¨�L¦�¦�L§�§
�¸

  
(124) 

 
 

𝐴𝐶𝐸\08 =
∑ ÖO∙8OO∈{¦,§,Ä,�}

�¸
  (125) 

 
 

𝐴𝐶𝐸 = 𝐴𝐶𝐸�X + 𝐴𝐶𝐸\08  (126) 

The general equation for WAPE used here is 

 
𝑊𝐴𝑃𝐸 = ∫ X(N)�¸(N)3N

¼
¹

�¸
  

(127) 

where the price 𝑝(𝑡) is given by the marginal generator/consumer of electricity at time instant (𝑡). For 
the most general case with EES, Case 6, WAPE becomes: 

 
𝑊𝐴𝑃𝐸 =

L¨ ∫ �¸(N)3N
º¨
¹ �L¦ ∫ �¸(N)3N

º¦
º¨

�
Ä§
Ú�
∫ �¸(N)3N
º�
º¦

�L§ ∫ �¸(N)3N
º§
º�

�Û�L§ ∫ �¸(N)3N
ºÄ
º§

�¸
  

(128) 

In all cases 𝑊𝐴𝑃𝐸 = 𝐴𝐶𝐸 so we only report 𝐴𝐶𝐸 in the results for convenience. 

Finally, we use the Levelized Cost of Electricity (LCOE) for VRE to analyze the economic impact of 
curtailment: 

 𝐿𝐶𝑂𝐸LX�N =
�ÖÄ�>ÜÁOÝ,Ä�8Ä

∫ �Ä¦Þº(N)3N
¼
¹

=
ÖÄ�>ÜÁOÝ,Ä

∫ ÕÖÄ(N)3N
¼
¹

  (129) 

 𝐿𝐶𝑂𝐸L =
�ÖÄ�>ÜÁOÝ,Ä�8Ä

∫ �Ä(N)3N
º§
¹

=
ÖÄ�>ÜÁOÝ,Ä

∫ ÕÖÄ(N)3N
º§
¹

  (130) 

where 𝑞𝑣𝑝𝑜𝑡(𝑡) is the potential VRE output in time instant 𝑡 in the absence of curtailment.  

6.2 Results without EES (Case 1 and 2) 
The main results for the two cases without EES are given in Table 7. From Case 2 we see that VRE is 
competitive in the market, with an optimal capacity of 94.4 % of the peak demand, resulting in a VRE 
share of 62.1 %. There is surplus VRE generation, and the price becomes zero in 31 % of the year. VRE 
pushes some baseplant capacity out of the market and gives room for some more peaker capacity. This 
shift in capacities is visualized in Figure 7 where the duration curves for Case 1 and Case 2 are plotted 
together. With the assumed cost estimates for 2050, unsubsidized VRE reduces the average cost of 
energy for the customers by almost 30 %. Note that the number of hours with load shedding 𝑡} is the 
same in two cases due to the optimality condition for the peaking plant, which does not change with the 
introduction of VRE. However, there is an increase in the energy not supplied (ENS) and maximum 
load shedding in Case 2. This effect of VRE is unavoidable given that 1) there are no entry of new 
technologies, 2) demand is inelastic, 3) all generators must recover their costs in the energy-only market. 
Changes in reserve requirements and/or capacity payments due to VRE integration may lead to a 
different ENS result, but such analyses are left for future works using models with more detailed 
representation of system operation. 

Table 7. Results for Case 1 (Only thermal) and Case 2 (Thermal+VRE). In Case 2, the energy share of wind is 
62.1 % of the annual demand. Wind curtailment is 9.5 % of the annual available wind energy. 

 𝑡} 𝑡X 𝑡� 𝑥X 𝑥� 𝑥L 𝐴𝐶𝐸 max(𝑞}) 𝐸𝑁𝑆 
Case [h] [h] [h] [MW] [MW] [MW] [€/MWh] [MW] [%] 

1 15.7 572.5 8760 8.2 89.1 - 115.0 2.4 0.003 
2 15.7 572.5 6029 15.0 66.7 94.3 81.6 11.4 0.008 
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Figure 7. Duration curves for Case 1 and Case 2. The duration of load shedding is too short to be clearly visible. 
Price segments are placed beneath the x-axis. 

The results presented above are obtained for a specific 2050 scenario for offshore wind in Europe, where 
future investment costs are obviously very uncertain. It is therefore important to study how the optimal 
capacities and durations is influenced by changes in VRE investment cost. In Figure 8, we have plotted 
the optimal installed VRE capacity as a function of its investment cost. The shape of the curve is 
interesting; an almost exponential increase as the cost decreases from 5000 to 4500 €/kW, followed by 
a long segment with linear increase. Finally, at very low investment costs, the VRE capacity increases 
at a higher pace again. Detailed analysis of this effect is provided in Appendix A.  

 
Figure 8. Optimal installed capacity of VRE as a function of its specific investment cost. The result of the 
selected EU cost scenario for 2050 is shown with dotted lines.  

From Figure 9 (upper), we see that the VRE energy share follows in general the same pattern as its 
capacity when the investment cost comes down. However, at very low investment costs, the energy 
share increases more moderately due to the unavoidable curtailment of excess wind generation. In the 
same figure (lower), we have also plotted the energy share as function of installed capacity, where we 
recognize the expected saturation of utilized VRE energy as the capacity increases beyond the minimum 
demand of 42 MW. 

Figure 10 shows ACE and LCOE as functions of VRE investment costs. The LCOE of the baseload 
plant first start to increase noticeably when its duration becomes less than 8760 hours, which occurs for 
VRE costs lower than 4500 €/kW. At very low VRE investment cost, the ACE starts to tip downwards. 
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This might seem as a surprising result, as since the VRE curtailment increases at the same time. 
However, this effect can be explained by recalling the non-linear increase in optimal VRE capacity in 
the same cost region (see rightmost part of Figure 8 and detailed discussion in Appendix A). If we 
instead plot the ACE as a function of optimal VRE capacity, we see that the ACE reduction slows down 
at the higher capacities due to the curtailment of surplus VRE generation (Figure 11). 

 
Figure 9. VRE share of supply (blue) and VRE curtailment (red) as a function of VRE investment cost (upper) 
and installed capacity (lower). The optimal result of the selected EU 2050 cost scenario is shown with dotted 
lines. 

 

Figure 10. Average Cost of Electricity (ACE) and Levelized Cost of Electricity (LCOE) as a function of VRE 
investment cost. The result of the selected EU 2050 cost scenario is shown with dotted lines. 
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Figure 11. Average Cost of Electricity as a function of optimal VRE capacity. 

 

6.3 Results with EES 
6.3.1 Case 3: Peaker+Baseload+EES 
Here, EES is only used for shifting energy from the base plant period to the peaker and load shedding 
periods. The highest possible fixed cost 𝐹WË for EES to be feasible can be found from (72). With the 
parameters in Table 6, 𝐹WË = 60.7	€/kW/yr, corresponding to 𝑆𝐶𝐶WË = 504	€/kW. Using the BESS 
cost formula from Table 6 (𝑆𝐶𝐶W = 265 + 𝑑 ∙ 64) the maximum economically feasible storage duration 
becomes 𝑑 = 3.74	h.  

We found in the previous section that 𝐴𝐶𝐸 = 115	€/MWh with only peaker and baseplant in the 
system. If we add BESS with very optimistic cost estimate 𝑆𝐶𝐶W = 100	€/kW, the ACE is only reduced 
by 1 %. This is because the EES does not contribute to more than a modest amount of load shifting 
between thermal generators which highly limits the cost reduction potential for the system. Therefore, 
the cases with VRE is more interesting, since EES can facilitate a higher VRE share and thus a 
significant change in system characteristics.  

6.3.2 Case 4: Peaker+Baseload+VRE+EES “Unlimited VRE storage” 
In this case, the EES is only charged by surplus VRE, and it can be discharged at any other period of 
the year. The optimality condition for the EES (87) determines the duration of the year 𝑡L when the 
available VRE is fully utilized. Equation (87) states that that 𝑡L is negatively correlated with the EES 
investment cost. The criterion for EES to be profitable is when 𝑡L is equal to the baseload duration for 
the case without EES: 𝐹WË = 𝐹� + 𝜂W𝑣�(𝑇 − 𝑡L). From this relation, we can find the maximum 
acceptable investment cost 𝑆𝐶𝐶WË = 𝐹WË/𝛼W. Inserting the case study parameters from Table 6, we get 
𝑆𝐶𝐶WË = 2514	€/kW. This is very close to the cost estimate of PHES of 2500 €/kW, indicating that a 
PHES investment would only have been marginally profitable in this case. If we use the BESS cost 
formula from Table 6 instead, the maximum economically feasible storage duration becomes 𝑑 = 35, 
which may be realistic for flow batteries in the future. For comparison, the generation expansion studies 
performed in (Cole et al. 2016; de Sisternes, Jenkins, and Botterud 2016; Cebulla, Naegler, and Pohl 
2017) reports Li-Ion BESS storage durations in the range of 2-8 hours.  
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Figure 12. Upper figure: Durations 𝑡L and 𝑡� as functions of EES investment cost 𝑆𝐶𝐶W. Lower figure: 
Capacities 𝑥L, 𝑥W and 𝑥� as functions of 𝑆𝐶𝐶W. The dotted line is the threshold cost of EES for being profitable. 

In the upper part Figure 12, we plot 𝑡L and 𝑡� as functions of EES investment cost, where the threshold 
cost 𝑆𝐶𝐶WË  also is marked. This is the point where 𝑡L and 𝑡� diverge, and we observe that the baseload 
duration 𝑡� is much more sensitive to the EES cost than 𝑡L. The resulting installed capacities are shown 
in the lower part of Figure 12. It is evident that EES triggers significant amounts of additional VRE 
capacity. This creates a double negative effect on the baseload capacity as the EES costs declines: Both 
the EES itself and the additional VRE capacity replace the baseload plant. The peaker capacity (not 
shown in the figure) is not noticeably affected (i.e. 𝑥X is around 15 MW for all EES costs, as in the 
VRE-only case). This is because it is still needed together with the EES in the peak hours, being less 
capital intensive than the baseplant.  

An interesting observation from Figure 13 (upper) is that the impact of EES investment cost on the ACE 
is almost negligible, as opposed to the impact of VRE cost, which has causes a much larger reduction, 
as shown in Figure 10. Hence, our results indicate that cost reductions in clean generation technologies 
are more important than cost reductions in balancing technologies. On the other hand, EES expansion 
makes a significant impact on the VRE share, and indirectly on emissions, since it both replaces thermal 
generation for balancing and causes an increase in system optimal VRE investment. This is illustrated 
in the lower part of Figure 13. From this figure, we also see that EES lead to less relative curtailments 
of VRE. Moreover, the total amounts of curtailed VRE (in MWh/year) also decreases, although the EES 
triggers more VRE capacity in the system.       
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Figure 13. Upper: Average Cost of Electricity. Lower: VRE share and VRE curtailment as a function of EES 
investment cost 𝑆𝐶𝐶W. 

6.3.3 Case 5: Peaker+Baseload+VRE+EES “Limited VRE storage” 
We only briefly report results from this special case, where the EES is assumed to be limited to 
discharge during the baseplant period. The rationale behind this assumption is that it is a “worst-case”, 
contrasting the much more optimistic assumption behind Case 4 above. The threshold EES investment 
cost is obtained by setting 𝑡L = 𝑡�  in the optimality condition (99). Using the input data from Table 6, 
we get:   

𝐹WË = 𝜂W𝑣�(𝑇−𝑡�) = 0.81 ∙ 103.2 ∙ (8760 − 6029) = 22	821
€

MW	yr	

𝑆𝐶𝐶WË =
𝐹WË

𝛼W
= 1000 ∙

22	821
0.1204 = 1	895

€
kW	

𝑑Ë =
(𝑆𝐶𝐶WË − 265)

65 = 25.5	h	

Not surprisingly, the threshold cost 𝑆𝐶𝐶WË  is lower than in Case 4, and considerably lower than the PHES 
investment cost (2500 €/kW), since the EES creates less value for the system here by only replacing 
baseload capacity. Equivalently, the maximum affordable energy capacity of BESS, measured in 
storage duration, is 25.5 h, compared to 33 h in Case 4.  

6.3.4 Case 6: Peaker+Baseload+VRE+EES “General price arbitrage” 
The last EES model that has been developed here combines the “limited VRE storage” of Case 5 with 
Case 3, where some baseplant energy is charged by the battery to reduce load shedding and peaker 
generation. It is therefore a model that places in between Case 4 and Case 5 when it comes to how EES 
contributes to the system. The threshold EES cost cannot be calculated directly from the optimality 
conditions, since they form a non-linear set of equations with four unknowns 𝑓�𝑡X, 𝑡�, 𝑡W, 𝑡L� = 0. 
Setting 𝑡L = 𝑡� = 6029 at the threshold of the EES investment, we get from (111): 

𝜕𝐶
𝜕𝑥W

= 𝑎W = 0 ⇒ 𝐹WË = 𝑣}𝑡} + 𝑣X�𝑡X − 𝑡}� − 𝑣�𝜂WTU𝑡X + 𝑣�𝜂W(𝑇 − 𝑡�) = 26	312	
€

MW	yr	

𝑆𝐶𝐶WË = 2	185
€
kW		,				𝑑Ë = 30	h 

As expected, the threshold cost is between the corresponding values from Case 4 (most optimistic case) 
and Case 5 (most pessimistic case). 
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6.4 Comparison with Linear Programming formulation 
To assess the proposed Duration Curve (DUR) model, we have also modelled the system as a time-
sequential Linear Programming (LP) problem based on the basic formulation (1)–(8) for comparison. 
Note that the LP model handles energy storage constraints explicitly by equation (8). We ran the model 
without activating this constraint, in order to represent the same system as in the DUR model for Cases 
1-3. Moreover, to model the case of storing only surplus VRE (Case 4 from Section 5.2.1) in the LP 
model, we added the following charging constraint to the LP model: 

 𝑞WT(𝑡) ≤ 𝑞L(𝑡) − 𝑞3(𝑡)				∀	𝑡 ∈ [1, 𝑇]		  (131) 
 

This constraint forces the charging power to be equal to or less than the surplus VRE power. The LP 
optimization model is implemented in Julia v. 0.64, using the JuMP and Clp libraries 
(https://julialang.org/). We compared the results of the DUR model with the LP model for Cases 1-4. 
Cases 5 and 6 are not directly comparable with the LP model due to the modelling of storage constrains, 
and therefore needs more extensive analyses which is a topic for future works.   

For the EES cases, the DUR model gives a threshold investment cost of 504 €/kW in Case 2 and 2514 
€/kW in Case 4. We have therefore chosen different EES costs for Case 2 (425 €/kW) and Case 4 (2377 
$/kW) to trigger some investments in EES in the respective cases. The EES cost of Case 2 is equivalent 
to a BESS with 2.5 h storage duration, while Case 4 is equivalent to a PHES plant with 5 % lower 
investment cost than the original data from Section 6.1. Table 8 presents the main results for both 
models. As expected, the results from LP and the duration curve model are identical in all four cases 
since they basically solve the same optimization problem for Cases 1 to 4. There are some negligible 
numerical discrepancies due LP discretization of the year into 8760 discrete time steps. 

Table 8. Results from the duration curve model and LP model for Cases 1-4.  

Case 1 2  3 4 
Model DUR LP DUR LP DUR LP DUR LP 

Obj. func. (𝐶) [k€/yr] 69.9 69.9 69.8 69.8 49.6 49.6 49.5 49.5 
𝑡} [h] 15.7 16.0 15.7 16.0 15.7 16.0 15.7 16.0 
𝑡X [h] 572.5 573.0 572.5 573.0 230.2 231.0 572.5 573.0 
𝑡W [h] - - - - 966 966 - - 
𝑡� [h] 8760 8760 6029 6028 8760 8760 5288 5289 
𝑡L [h] - - - - - - 6226 6226 

𝑥X [MW] 8.5 8.5 15.0 15.0 5.4 5. 4 15.2 15.2 
𝑥� [MW] 89.1 89.1 66.7 66.7 85.9 85.9 52.5 52.5 
𝑥L [MW] - - 94.3 94.3 - - 107.9 107.9 
𝑥W [MW] - - - - 6.2 6.2 13.2 13.2 

𝐴𝐶𝐸 [€/MWh] 115.0 115.0 81.6 81.6 114.9 114.9 81.4 81.4 
max(𝑞}) [MW] 2.4 2.4 11.4 11.4 2.4 2.4 11.9 11.9 

𝐸𝑁𝑆 [%] 0.003 0.003 0.008 0.008 0.003 0.003 0.009 0.009 
VRE share [%] - - 62.1 62.1 - - 72.5 72.5 

VRE curtail. [%]  - - 9.5 9.5 - - 7.7 7.7 
 

Figure 14 shows the duration curves which have been extracted from the LP optimization results of 
Case 4. It corresponds to the generic duration curve in Figure 4. From this figure, it is possible to extract 
the optimal durations that are derived directly from the analytic model and corresponding capacities, as 
summarized in Table 8 for both models. 
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Figure 14. Duration curves extracted from the LP model for Case 4. Optimal capacities, prices, and durations are 
displayed in the figure. The VRE capacity is not visible in the figure, since it is indirectly given through the net 
load. Moreover, the duration of load shedding is too short (16 hours) to be visible. 

7 Conclusions and further work 

We presented an analytical approach to analyze system optimality conditions and cost recovery in 
systems with VRE and EES. We proposed a duration curve methodology based on existing theoretical 
models for systems with only thermal generation. We used the methodology to show that in all the 
modelled cases, all power plants recover their costs in system optimum. This result also applies for 
cases where surplus VRE gives periods with zero prices, and cases where EES sets the price either 
based on the marginal cost of charging or the marginal value of discharging, depending on the 
instantaneous power balance. Our analytical results show how VRE changes the capacity of thermal 
generation in equilibrium, causing less baseload capacity but more peaker capacity. The impacts of EES 
on optimal thermal and VRE capacity depends on how EES is operated and what limitations that are 
assumed on the energy storage capacity.  

When EES is used for charging excess VRE that otherwise would have been curtailed, it triggers more 
VRE capacity in equilibrium, since the EES creates a new price segment based on the marginal value 
of storage, where the VRE gains additional profits. This result has several implications for the market 
equilibrium: 1) EES pushes more thermal capacity out of the market, both because of its balancing 
ability and because it triggers more investments in VRE, 2) EES leads to lower total amounts of 
curtailed VRE in equilibrium, although it triggers more VRE investments, 3) Numerical analyses 
indicates that the main benefit of EES is to increase the VRE share in the system and consequently 
further reduce emissions caused by thermal generation. The emission benefit is much more evident from 
the results than the impacts on electricity cost, even with high carbon prices in line with low-carbon 
scenarios for Europe stadium 2050. How a marginal economic benefit will impact the willingness to 
invest in merchant EES in electricity markets is a topic for further analyses. 

Since the approach is based on the duration curve of the net demand, the model represents the energy 
limit of ESS is in an approximate way. We presented different EES representations which are suited for 
duration curve modelling, and the models were tested against LP optimization which gave identical 
results. The analytical models are well suited for expansion in several ways. First and foremost, more 
research is needed to explore improved ways of modelling the energy constraints of EES and how they 
impact market prices and optimal generation capacities. Another important simplification is the 
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assumption of deterministic input data for demand and VRE, and optimal EES operation assuming 
perfect foresight of the whole year. Hence, adding uncertainty to the formulation is another direction 
for future work. The models could also be enhanced to include operating reserve requirements.  

Finally, we believe that customer participation in the market will be increasingly important as more of 
the generation is based on VRE technologies with zero marginal costs. Hence, crucial work lies ahead 
to include demand-side flexibility in analytical modelling frameworks as the one presented here, to gain 
further insights in how prices and optimal generation mix will evolve in markets based on marginal cost 
pricing in the future. 
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Appendix A: Optimal VRE capacity as a function of investment cost 

This appendix provides a detailed analysis of the shape of the VRE capacity curve in Figure 8. Recall 
from Figure 7 that the net demand curve determines the different price segments. The profitability of 
VRE depends on how much production that takes place in the different price segments. Lower 
investment cost leads to higher VRE capacity which again alters the net demand curve. 

In Figure 15 we have plotted the duration curve for net demand together with the corresponding VRE 
output for different VRE investment cost scenarios. With an investment cost of 4800 €/kW (blue curve), 
VRE is only marginally profitable, and the installed capacity is so low that the net demand is almost 
identical to the demand curve without VRE. We see that the VRE output variations sorted by the net 
demand follows a rather favorable pattern, with slightly higher production during high demand. This 
result is due to the weather variations of European offshore wind with highest average wind speeds 
during winter when the demand also is high. With a slight decrease in investment cost (red curve), the 
optimal installed VRE capacity increases, and pushes the net demand curve downwards. Consequently, 
more VRE production takes place during lower net demand. The VRE capacity is still so low that there 
are no hours with zero prices. When the investment cost is reduced to 4500 €/kW (yellow curve), the 
installed VRE capacity has reached a level where situations with price equal to zero are about to occur. 
A further decrease in investment cost from this point is expected to lead to marginally less added VRE 
capacity due to two reasons: 1) Higher VRE capacity leads to more and more hours with zero prices, 2) 
Higher VRE capacity alters the net demand slightly and thereby pushes even more of the VRE 
production to the low-price hours.  

When the investment cost is reduced below 2000 €/kW, the installed VRE capacity is already at such a 
high level that a continued increase in capacity does not noticeably change the VRE output variations 
in the different price segments (the green and purple VRE output curves are almost identical). This 
“saturation” of VRE variations gives rise to an interesting effect on the installed VRE capacity, which 
from this point on increases non-linearly again, as shown in Figure 7. This result can be explained from 
the cost recovery condition of the VRE plant from Chapter 4.1: 

𝜋L = 0 ⇒ 𝐹L = 𝑣} m 𝐴𝐹L(𝑡)𝑑𝑡
N¨

q
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where 𝐴𝐹L  refers to the Availability Factor of the VRE plant before curtailment. From Figure 15, we 
see that 𝐴𝐹L can be approximated by a step-wise linear function of 𝑡 for VRE investment cost of 1000 
€/kW (green) and 2000 €/kW (purple): 
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where 𝑎0, 𝑏0, 𝑐0 refers to constants. As explained in the main part of the paper, the optimal values of 
𝑡}	and 𝑡X remains constant as long as the peaker and baseplant are not entirely pushed out of the system. 
The cost recovery condition gives thus a quadratic relation between cost-optimal duration of the 
baseload plant 𝑡� and VRE investment cost if the availability factor of VRE, 𝐴𝐹L, is a linear function of 
the net demand duration 𝑡. The relation between 𝑡� and VRE capacity, 𝑥L, is given by the net demand 
curve. With an approximated linear relation between net demand duration and VRE output, we can also 
express the net demand as a linear function of VRE capacity 𝑥L: 𝑞63(𝑡) ≈ 𝑎ò − 𝑎ó ∙ 𝑡 ∙ 𝑥L. The base 
duration 𝑡� is given by 𝑞63(𝑡�) = 0 ⇒ 𝑡� = 𝑎ô/𝑥L. Inserting into the cost-optimality condition above, 
we obtain the following non-linear relation between VRE investment cost and VRE capacity:  

𝐹L = 𝐴𝑥LT? − 𝐵𝑥LTU + 𝐶 
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where A, B and C are constants. This function approximates the right part of Figure 8, with the axes 
inverted. For very high 𝑥L, the investment cost goes asymptotically towards the constant C, which we 
also can observe from Figure 8. As 𝐹L goes towards zero, the VRE capacity will go towards the amount 
that is required to supply the load by VRE only. This is theoretically possible if the VRE output is 
always higher than zero, which e.g. can be the case for aggregation of VRE over a large region or 
country.  

 

Figure 15. Duration curves of net demand (lower) and corresponding VRE output sorted by net demand (daily 
averages, upper) for different VRE investment cost scenarios. The corresponding VRE installed capacities and 
relative VRE curtailments are 3.6 MW / 0 % (blue), 19.4 MW / 0 %(red), 48.2 MW / 0.001 % (yellow), 93.0 
MW / 8.9 % (purple), 121.1 MW / 22 % (green).  
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