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Abstract

Governments use procurement auctions for renewable energy support to stim-

ulate investment in renewable energy. The main challenge in auction design

is the balance between cost-efficient procurement and high post-auction real-

ization, i.e., effective procurement. I empirically assess the effect of prevalent

auction design elements on effectiveness, using a unique dataset with results

of auctions for renewable energy support from 1990 to 2017. I find that pre-

qualifications and penalties drive realization rates, while technological banding

or the pricing rule do not affect effectiveness. The former is in line with existing

theory, while the latter sheds new lights on auction models and case studies

discussing auction outcomes, as literature has thus far broadly agreed on a ma-

jor influence of all design elements. According to my results, policy makers

which focus on high realization rates should include pre-qualification measures

and penalties into their design. Importantly, they gain more degrees of free-

dom regarding other design features to tailor renewable energy auctions to their

country. This freedom is advantageous in view of a large variety of countries

adapting renewable energy auctions.
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1. Introduction

The climate crisis urges policy makers to accelerate decarbonization. A

first step in climate strategies is to decarbonize power markets, as two-thirds of

global greenhouse gas emissions originate from the energy sector (OECD/IEA &

IRENA, 2017). Emission reduction typically requires to shift production from

fossil fuels towards nuclear and renewable generation (Williams et al., 2012).

Although the cost of renewable energy production has dropped drastically in

the last decades, new capacities still depend on subsidies—worldwide transfer

payments for renewables amounted to $US 140 billion in 2016 (IEA, 2017).

Governments have used different support schemes, such as feed-in-tariffs,

feed-in premiums, and tax reductions, to foster investment in renewable tech-

nologies. For many years, regulators have mainly determined subsidy rates

based on cost estimates. Recently, governments started to allocate subsidies

with auctions for renewable energy capacity (renewable auctions). In renewable

auctions, governments auction off contracts that guarantee subsidized remuner-

ation for producers of renewable energies (del Ŕıo and Linares, 2014; Buckman

et al., 2014; Mayr et al., 2014). Regulators try thereby to exploit competition

in order to discover relevant needs for subsidies.

Price discovery and competition have dropped auction prices far below ex-

pectations (del Ŕıo and Linares, 2014). But amid enthusiasm about cost effi-

ciency in renewable auctions, authorities started to realize that winning bidders

might have bid below cost, consequently not realizing their projects. In view of

the climate crisis and the state of renewable generation in many countries, effec-

tiveness (i.e., how much capacity is deployed) is just as important as efficiency

(i.e., at what subsidy rate it is deployed). Obviously, the choice of the policy

instrument is as important as its design (del Ŕıo, 2012; del Ŕıo et al., 2015). In

a recent strand of literature, researchers have discussed auction design and its

impact on the trade-off between efficiency and effectiveness (e.g., del Ŕıo and

Linares, 2014; Kreiss et al., 2017b; Matthäus et al., 2019).

In this paper, I empirically analyze the effect of prevalent auction design el-
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ements on the effectiveness of renewable auctions. I use a unique hand-collected

dataset comprising auction results from 1990 until 2017. I find that particularly

pre-qualifications and penalties can act as powerful enforcement mechanisms to

drive effectiveness. This confirms results from recent literature (Kreiss et al.,

2017b; Gephart et al., 2017; Matthäus et al., 2019). However, I do not find ev-

idence for effects of technological banding or pricing rule on effectiveness. This

sheds new light on findings from auction models and case studies, which argue

in favor of specific configurations of technological banding or pricing rule to

steer effectiveness (e.g., Haas et al., 2004; Anatolitis and Welisch, 2017; Kreiss

et al., 2017c,b; Mora et al., 2017; Haufe and Ehrhart, 2018; Kreiss, 2018). To

the best of my knowledge, the study is the first to present a dataset of renewable

auction results worldwide over a multi-year period. Thereby, it is also the first

to test prevailing theoretical findings and anecdotal evidence on the design of

renewable auctions.

The work closest to my approach is (Shrimali et al., 2016) and (Winkler et al.,

2018). The former assess the impact of risk on efficiency and effectiveness on a

sample of up to 20 auctions, mainly from India, UK, and South Africa. The lat-

ter employ a panel design for case studies on auctions from Brazil, Netherlands,

France, Italy, and South Africa. They compare efficiency and effectiveness of

renewable auctions to efficiency and effectiveness of previous subsidy schemes,

such as feed-in-tariffs. Yet, they do not explore the effects of the particular

auction design.

My study provides policy makers with two major implications on the design

for renewable auctions. First, regulators should include pre-qualifications or

penalties if they aim to boost realization rates. Both reduce the real-option value

inherent in non-realization drastically (Kreiss et al., 2017b; Matthäus et al.,

2019) and might impede highly aggressive market entry strategies (Gephart

et al., 2017), attracting more serious bids through both channels. Second, pol-

icy makers can use other design criteria to adapt the auction design to the

regulatory scheme, social norms, or non-monetary goals without deteriorating

effectiveness. Regulators can, for example, unconcernedly choose between tech-
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nological banding or technology-neutral auctions. The former can help to ensure

a reliable mix of generation technologies and foster small scale, immature tech-

nologies (del Ŕıo and Linares, 2014). The latter has the potential to maximize

efficiency (Kreiss et al., 2017c).

The remainder of this paper is organized as follows. In Section 2, I discuss the

setting of renewable auctions, related literature, and the results to be tested. In

Section 3, I present the research design and variable measurement. In Section 4,

I provide background regarding data. I present my empirical findings Section 5.

Section 6 concludes and provides policy implications.

2. Background: Designing Auctions for Renewable Energy Capacity

In a typical renewable auction, an auctioneer procures a previously fixed

amount of renewable generation capacity. Bidders may develop several projects

of different capacity size. Bidders submit a bid for each project, specifying the

size (in MW) and the required subsidy per MWh of electricity generated from

that project. The auctioneer gathers bids and chooses winning bidders. As

renewable auctions are reverse auctions, the lowest bids are accepted until pro-

cured capacity is reached. Winning bidders receive subsidy rates according to a

previously specified pricing rule, such as discriminatory or uniform pricing. Win-

ning bidders have a grace period—typically between 2 and 5 years (del Ŕıo and

Linares, 2014)—to develop their project. Variants of these multi-unit auctions

find application across the globe and have consequently received an increased

interest in research (e.g., Buckman et al., 2014; del Ŕıo and Linares, 2014; Mayr

et al., 2014; Eberhard and K̊aberger, 2016; Kruger and Eberhard, 2018) and

status reports (REN21, 2010; Lucas et al., 2013; IRENA, 2015; REN21, 2016;

IRENA, 2019). According to REN21 (2016), 64 countries used auction schemes

to allocate renewable energy subsidies by 2016, compared to 21 in 2009 (REN21,

2010)

With an increasing popularity in political practice, researchers and regula-

tors discuss cost-efficiency and effectiveness of renewable energy auctions. While
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cost-efficiency refers to cost of generation and support, effectiveness refers to

the actual increase in renewable energy capacity (del Ŕıo and Linares, 2014).

In terms of cost-efficiency, renewable auctions have exceeded expectations and

support levels dropped considerably (del Ŕıo and Linares, 2014; Gephart et al.,

2017). However, experience with past auctions reveals concerns about effective-

ness (Mitchell, 2000; Mitchell and Connor, 2004; del Ŕıo and Linares, 2014).

Literature has identified a variety of factors impeding effectiveness, such as low

bids due to an inherit real-option value in auctioned subsidy contracts (Kreiss

et al., 2017b; Matthäus et al., 2019), winner’s curse (Gephart et al., 2017; Kreiss

et al., 2017a), or aggressive market entry strategies (Gephart et al., 2017). Other

factors include unreliable technical and financial background of project devel-

opers and undersubscribed auctions (del Ŕıo and Linares, 2014). Consequently,

researchers and politicians have proposed and tested auction design elements to

avoid bids below cost and ensure serious and reliable bids.

When designing renewable auctions, regulators have discretion about a wide

variety of design elements with influence on admission for bidders, approved

technologies, admitted bid range, winner selection, and post-auction project

framework, among others. del Ŕıo and Linares (2014) provide a comprehen-

sive review of design elements in renewable auctions worldwide. They differ-

entiate between physical pre-qualification, financial pre-qualification, penalties,

technology-specific banding, pricing rule, among others. Based on these cate-

gories, researchers have investigated the impact of auction design on effectiveness

in renewable auctions. In the following paragraphs, I discuss the most prevalent

design options in detail: physical pre-qualification, financial pre-qualification

and penalties, technological banding, and the pricing rule. I also explain how

these design options can influence effectiveness and use them in my study to

test impact of auction design on post-auction realization.

Physical pre-qualification comprises non-financial criteria which bidders have

to fulfill in order to participate in the auction. Common examples of physical

pre-qualification measures are the attainment of building permits or completion

of conduction studies previous to the auction (del Ŕıo and Linares, 2014). This
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may increase effectiveness of renewable auctions through two channels: First,

physical pre-qualification can be considered a participation cost that ensures the

capability of bidders. Only bidders with serious intent to deliver their project

will bear the (otherwise sunk) cost. Second, bidders may have an information

gain from completing requirements set by the auctioneer and adapt their bids

accordingly. Based on the first channel, Kreiss et al. (2017b) establish a positive

relationship between physical pre-qualification and effectiveness of renewable

auctions in a simple single unit auction model.

Financial pre-qualification and penalties require payments from the bidder

to the auctioneer. Financial pre-qualifications demand up-front payments of the

bidders in order to participate in the auction. The pre-qualification payment

is typically implemented as non interest-bearing deposit, a so called bid bond.

In case of non-realization of the contract within the grace period, the deposit

is not refunded. Pre-qualification payments are thereby easier to collect than

penalties, as penalties are only claimed if a winning bidder does not complete its

contract upon end of the grace period. Penalties and financial pre-qualification

are comparable in their incentive structure and they are equivalent under the

assumptions of no credit risk and without stochastic interest rates. Different

researchers establish a positive relationship between financial pre-qualification

or penalties and effectiveness of auctions through three channels: First, it makes

a non-realization option less attractive, resulting in a lower real-option value of

the project (Kreiss et al., 2017b; Matthäus et al., 2019). Second, it increases av-

erage bids and thereby average subsidies for all participants, making realization

economically more viable (Matthäus et al., 2019). Third, it makes aggressive

market entry strategies with strategic low bids less effective (Gephart et al.,

2017).

Technology-specific banding, compared to technology-neutral auctions, refers

to an auction design where different technologies do not compete directly in the

same auction. For each technology—such as wind-offshore, wind-onshore, or

solar—there is a separate tender. Scholars argue that technology-specific finan-

cial support is critical for the success of support systems (Haas et al., 2004).
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Technology-specific designs help to address actual market conditions as well as

the status of the technological life cycle. Furthermore, they avoid crowding

out of less mature technologies (e.g., Haas et al., 2004; del Ŕıo and Bleda, 2012;

Polzin et al., 2015). Investors face thereby less uncertainty, reducing system cost

and capital cost, respectively (Kreiss et al., 2017c; Kreiss, 2018). Technology-

neutral auctions might have additional negative effects on effectiveness: Few

mature technologies outperform other technologies in the auction and receive

the lion’s share of capacity. Since the capacity was originally planned to be

shared among different technologies, suitable construction space for the pre-

vailing technology is more scarce than expected. The resulting post-auction

competition for sites can severely harm effectiveness (Buckman et al., 2014).

The pricing rule of an auction determines the subsidy which is paid to win-

ning bidders. I differentiate two main pricing rules for renewable auctions:

uniform pricing and discriminatory pricing. With uniform pricing, all winning

projects receive the clearing price, i.e., the last accepted bid. With discrim-

inatory pricing (also called pay-as-bid pricing), each winning project obtains

payments according the corresponding bid. The evidence in literature regard-

ing the impact of pricing rules on effectiveness is divided. Anatolitis and Welisch

(2017) and Matthäus et al. (2019) find that bid curves in uniform and pay-as

bid pricing do not deviate much and are asymptotically identical. Accordingly,

governments need to pay more subsidies and average profits for developers are

higher when using uniform pricing. This comes at the benefit of higher effec-

tiveness as more projects become economically viable. On the other hand, the

model of Kreiss et al. (2017b) predicts higher expected award prices and thereby

higher effectiveness in the discriminatory setting. Mora et al. (2017) and Haufe

and Ehrhart (2018) support the latter view and advise for pay-as-bid pricing

for higher effectiveness.

The influence of these four design elements (physical pre-qualification, fi-

nancial pre-qualification and penalties, technological banding, pricing rule) on

effectiveness and efficiency have been studied based on game-theoretic auc-

tion studies (Kreiss et al., 2017a,b; Ehrhart et al., 2018; Haufe and Ehrhart,
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2018), simulations (Anatolitis and Welisch, 2017), or single country case studies

(Mitchell, 2000; Mitchell and Connor, 2004; Buckman et al., 2014; Eberhard and

K̊aberger, 2016; Cassetta et al., 2017; Gephart et al., 2017; Bayer, 2018; Kruger

and Eberhard, 2018, among others). In the present paper, I test predictions

regarding effectiveness from game-theoretic models, simulations, and from case

studies and assess them in an empirical framework.

3. Methodology

3.1. Research Design

I employ a two-tier research design to study the effect of auctions design

on effectiveness of renewable auctions. First, I test the effect of auction design

elements on mean effectiveness of renewable auctions individually. Second, I

use a multivariable approach to test the effect of integrated auction design on

effectiveness.

I establish base effects of auction design elements on effectiveness by splitting

the sample in two groups, separating auctions with and without the respective

design element. I compare average effectiveness of the groups with t-tests for

each design element in question, thereby testing predictions of literature outlined

in Section 2.

In renewable auctions, design elements do not occur individually, but are

combined in a more elaborate design. To study the integrated effect of auction

design, I estimate the multivariable model

Effectivenessi = α0 + α1 · Auction Designi + α2 · Controlsi + εi. (1)

In this model, Effectiveness measures the actual increase in renewable energy ca-

pacity, Auction Design includes the specific design of the auction deconstructed

into single elements, and Controls is a vector of control variables.1

1One could argue that auction design influences auction effectiveness via the mediator
price. Here, I focus on the gross effect of auction design. Disentangling the paths to allow for
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3.2. Variable Measurement

I measure Effectiveness of renewable auction as the share of contracted ca-

pacity actually being commissioned. This so called realization rate of auctions

has been used as proxy to study effectiveness in previous studies (e.g., Huber

et al., 2004; del Ŕıo and Linares, 2014; Shrimali et al., 2016). Prior literature

defined realization rate either as the ratio of commissioned capacity to auc-

tioned capacity, or as the ratio of commissioned capacity to contracted capacity.

I opt for the latter definition and use the share of contracted capacity as this

treats over- and undersubscribed auctions more evenly. The realization rate

takes values between 0 and 1, where 1 is a highly effective auction with the en-

tire contracted capacity being commissioned. I expect the realization rate and

thereby Effectiveness to depend strongly on Auction Design.

The measurement of Auction Design is straightforward. I view the auc-

tion design as a set of dummy variables indicating the auction design elements

employed. I consider physical pre-qualification, financial pre-qualification and

penalties, technology-specific banding, and pricing rule, as discussed in Sec-

tion 2. This selection includes the most important components of the auction

designs which are likely to influence Effectiveness. Yet, some factors beyond

auction design might affect realization rates as well.

In the vector of Controls, I include 5-year periods to capture effects of eco-

nomic cycles, technological development, and the learning curve of renewable

energies and auction design. The results are robust to changes in the length of

the periods.

3.3. Implementation

My dependent variable ranges from 0 to 1. Hence, I use a Tobit regression

(Tobin, 1958). This estimator offers a better fit compared to a standard ordinary

least squares (OLS). Yet, I also include an OLS estimator with robust standard

more causal evidence would be interesting. Unfortunately, the current data availability does
not allow for such an analysis.
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errors for small sample sizes as best linear approximation in the regression tables.

I conduct all computations in R version 3.6.1 (R Core Team, 2019) and rely for

my analysis on packages VGAM, lmtest, and mltools (Yee, 2015; Zeileis and

Hothorn, 2002; Gorman, 2018). I use packages texreg, stargazer, and ggplot2

for creating tables and plots (Leifeld, 2013; Hlavac, 2018; Wickham, 2016).

4. Data

4.1. Sample Description

I use hand-collected data from scientific journals, government reports, policy

reports, and government websites to construct my sample. Each observation

contains information about auction year, country, governmental program name,

auctioned capacity, contracted capacity, commissioned capacity, grace period,

and the employed auction design.

The dependent variable Effectiveness is compiled from realization rates of

the auctions. For past auctions with expired grace period, I use completed

capacity.2 For auctions with still active grace period, I use project level data

of more than 1,500 capacity investments to project realization rates. A project

is regarded as realized if its construction has made significant progress and is

expected to be completed on schedule. I use projected realization rates for

roughly 10 percent of the observations.

Auction design is my independent variable of interest. It is stored in the

dummy variables Physical, Financial, Tech Band, and Pay-as-bid. Physical

takes value one if participation in the auction requires any building permits,

environmental permits, or prior experience with renewable energy projects in

the respective country. The variable Financial equals one if the auction re-

quires either up-front financial payments or deposits, or if bidders need to pay

a penalty for non-compliance. I treat financial pre-qualification and penalties

2The data abstracts from any delay in the process as exact start of commercial operation
cannot be determined for many past projects.This means, the realization rate includes every
completed project until now, regardless of its start of operation.
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equivalently. The variables Tech Band and Pay-as-bid take value one if the

auction is technology specific, or follows a pay-as-bid-pricing rule, respectively.

The control variable Auction Year Bins contains the year of the auction. To

adjust variable number to sample size, I do not use dummies for every year. I

split the interval from 1990 to 2017 into five equal bins. Results are stable for

bins of longer and shorter period.

4.2. Descriptive Statistics

I start by collecting information on 189 observations of renewable auctions

from 42 countries held between 1990 and 2017. In line with the increasing

popularity of renewable auctions, 138 observations took place after 2010, while

39 took place between 2000 and 2010, and only 13 auctions took place be-

tween 1990 and 2000. About half the sample (102 observations) is from OECD

countries, while the other half is from emerging markets and developing coun-

tries in Central and South America (41), Asia (28), Africa (11), Eastern Eu-

rope (5), and the Middle East (4). 36 auctions were single-unit auctions. Fig-

ure 1 provides an overview of 132 auctions where realization rates are available.

The data is balanced regarding economic background and exhibits a significant

variation in the dependent variable.

For my analysis, I restrict the sample in three steps. First, I drop observa-

tions where I can not compute realization rates due to missing data, reducing the

sample size from 189 to 131. Second, I exclude 11 observations with realization

rate equal to zero, corresponding to auctions such as VRET (Australia 2017),

Large Scale CSP 2 (France 2013), or Al Jouf and Rafha (Saudi Arabia 2017).

In these auctions, authorities have revoked the call for tender prior to awarding

any contracts, or problems in the bureaucratic process forestalled construction.

Third, I exclude all 36 single unit auctions from my sample, arriving at a final

sample size of 94 observations. Final contracts in single unit auctions are often

based on bilateral negotiation. Hence, realization is less dependent on actual

action design, but on the contractual post-auction process.

Table 1 summarizes descriptive statistics of my sample. Panel A presents
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Table 1
Descriptive Statistics

The sample consists of 94 observations of auctions. My dependent variable is Effectiveness,
measured as realization rate of the auction. Physical is a dummy variable with value one if
participation in the auction requires any building permits, environmental permits, or prior
experience with renewable energy projects in the respective country. Financial is a dummy
variable with value one if the auction requires either up-front financial payments or deposits,
or includes a penalty for non-compliance. Tech Band is a dummy variable with value one
if the auction is technology specific. Pay-as-bid is a dummy variable with value one if the
auction follows a pay-as-bid pricing rule. Auction Year Bins are dummy variables with value
one if the auction took place in the respective period.

Panel A: Summary Statistics

Num. obs. Mean St. Dev. Min Median Max

Effectiveness 94 0.743 0.280 0.100 0.885 1
Physical 93 0.839 0.370 0 1 1
Financial 93 0.860 0.349 0 1 1
Tech Band 94 0.436 0.499 0 0 1
Pay-as-bid 94 0.915 0.281 0 1 1
Auction Year Bins

1990 - 1995 94 0.064 0.246 0 0 1
1995 - 2000 94 0.064 0.246 0 0 1
2000 - 2006 94 0.032 0.177 0 0 1
2006 - 2011 94 0.181 0.387 0 0 1
2011 - 2017 94 0.660 0.476 0 1 1

Panel B: Correlation Matrix

Effectiveness Physical Financial Tech Band

Physical 0.482
Financial 0.510 0.835
Tech Band 0.165 0.213 0.233
Pay-as-bid 0.065 0.387 0.208 0.041
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Figure 1: Overview of the dataset where a realization rate is known. Effectiveness is measured
as the share of contracted capacity actually being commissioned. Early auctions took mostly
place in OECD countries, while in recent years the sample is balanced between OECD and
non-OECD countries. Single unit auctions typically have realization rates close to zero and
close to one.

number of observations, means, standard deviations, minima, medians, and

maxima for each variable. My main dependent variable Effectiveness has a mean

of 0.743, a median of 0.885 and exhibits considerable variation. At first glance,

mean and median seems surprisingly high, but having in mind that all project

developers are bound by a contract to deliver their capacity sets the numbers

into perspective. The median auction features all design elements except for

technological banding. Most notably, a considerable amount of auctions (91.5 %)

feature pay-as-bid pricing. Panel B depicts the correlation table of my sample.

Effectiveness is positively correlated with all design elements. Most correlations

of design elements among one another are positive and between 0.2 and 0.4.

Notable exceptions are the correlation of Physical and Financial, which is high

at 0.835, and the correlation of Tech Band and Pay-as-bid, which is low at

0.041. This means, physical pre-qualification and financial pre-qualification or

penalties are particularly often employed together. Furthermore, technology-

neutral auctions are more often designed with uniform pricing rule.
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5. Results and Discussion

I test predictions from Section 2 on the influence of physical pre-qualification,

financial pre-qualification or penalties, technological banding, and pricing rule

on Effectiveness. Literature predicts a positive effect on Effectiveness for all de-

sign options under consideration. Regarding the pricing rule, model predictions

are mixed. I establish base effects of auction design elements in t-tests on split

samples, followed by a multivariable approach.

Results of t-tests are reported in Table 2. The mean Effectiveness of auc-

tions with physical pre-qualification, financial pre-qualification or penalties, and

technological banding respectively, is higher compared to auctions without the

respective design feature. This is in line with predictions of literature. The dif-

ference in the sample split is more pronounced for pre-qualifications. Average

realization rates in the sample with pre-qualification measures are approximately

40 percentage points higher and statistically significant at the 1 %-level. Tech-

nological banding increases average realization rates by about 10 percentage

points. This result is statistically significant at the 5 %-level. Mean realization

rates for pay-as-bid auctions are about 6 percentage points higher than mean

realization rates for uniform auctions, which is in favor of the theory developed

in (Kreiss et al., 2017b; Mora et al., 2017; Haufe and Ehrhart, 2018). Yet, this

difference is not statistically significant at usual levels. Apparently, the choice

of pricing rule does not play a major role in designing effective renewable energy

auctions. This is surprising as theory predicts (either way) a relevant impact on

effectiveness. Yet, results regarding pricing rule have to be taken with a grain of

salt as a vast majority of auctions in my sample employs discriminatory pricing,

limiting the variance in the data.

My approach provides a clear picture of the individual effects and serves as

a first basis. Yet, it is prone to an omitted variable bias and might not be able

to capture the complex auction environment. To this end, I use a multivariable

approach and regress Effectiveness on a vector of design elements and a vector

of control variables, as specified in Equation (1). Table 3 presents regression
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Table 2
t-Tests Mean Effectiveness

This table presents effects of Auction Design on Effectiveness in t-tests. For each t-test,
I split the sample into two subsamples with respect to the auction design element under
consideration. I report mean and standard deviation of the subsamples with (yes) and without
(no) the design element under consideration. Reported t-values are based on t-tests for samples
with the same variance. For unambiguous predictions (Physical, Financial, and Tech Band),
I use one-sided t-tests. For ambiguous predictions (Pay-as-bid), I use a two-sided t-test.
Physical, Financial, and Tech Band have a positive impact on Effectiveness on a 0.01, 0.01,
and 0.05 percent level, respectively. I cannot reject the null hypothesis for Pay-as-bid, i.e., I
can not infer a significant difference in average effectiveness for a change in pricing rule.

Means and STD of Effectiveness for subsamples

Mean
(yes)

St. Dev.
(yes)

Mean
(no)

Std. Dev.
(no) t-value

Num.
obs.

Physical 0.8041 0.2444 0.4380 0.2628 5.2498∗∗∗ 93
Financial 0.8025 0.2423 0.3915 0.2401 5.6599∗∗∗ 93
Tech Band 0.7968 0.2917 0.7006 0.2664 1.6667∗∗ 94
Pay-as-bid 0.7478 0.2787 0.6863 0.3109 0.5918 94

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

results. The dependent variable in all columns is Effectiveness. The auction

design variables Physical, Financial, Tech Band, and Pay-as-bid are my primary

variables of interest. I present results of the Tobit estimator in columns (1) and

(3), complemented by results of the OLS estimator with robust standard errors

for small sample sizes in columns (2) and (4).

The coefficient of Financial is positive and insignificant in my baseline To-

bit estimator, but significantly positive in the baseline OLS estimator. The

economic effect is meaningful and estimated at an increase of 25 percentage

points in realization rates. Surprisingly, all other variables have coefficients

that are not significantly different from zero. My estimators are able to explain

a fair portion of the variation with an R2 of 0.14 for the Tobit estimator and an

adjusted R2 of 0.25 for the OLS estimator.

Yet, the findings in the first columns may result from an insufficiently spec-

ified regression model. Realization rates might also be driven by technological

advancement, economic cycles, or learning curves, among others. I control for

these macroeconomic effects by including five dummy variables that are equal

to one in the periods 1990 - 1995, 1995 - 2000, 2000 - 2006, 2006 - 2011, 2011 -
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Table 3
Effectiveness

This table shows regression estimates of Auction Design on Effectiveness, specified by the
model

Effectivenessi = α0 + α1 · Auction Designi + α2 · Controlsi + εi.

Effectiveness is the realization rate of the auction, and auction design elements are as specified
in Sections 2 to 4. The two right columns include the vector of control variables. Standard
errors are depicted in parentheses. For the OLS estimators, I use robust standard errors for
small sample sizes.

Effectiveness

Tobit OLS Tobit OLS

Physical 0.21 0.19 0.29 0.28∗

(0.17) (0.13) (0.23) (0.16)
Financial 0.26 0.25∗ 0.36∗∗ 0.35∗∗∗

(0.17) (0.14) (0.18) (0.11)
Tech Band 0.07 0.02 0.08 0.03

(0.07) (0.05) (0.06) (0.05)
Pay-as-bid −0.06 −0.10 −0.04 −0.08

(0.13) (0.09) (0.14) (0.08)
Tobit Constant 1 0.41∗∗∗ 0.25∗

(0.12) (0.14)
Tobit Constant 2 −1.22∗∗∗ −1.29∗∗∗

(0.10) (0.10)
OLS Constant 0.45∗∗∗ 0.28∗∗∗

(0.12) (0.10)

Control Variables No No Yes Yes
Num. obs. 93 93 93 93
R2 0.14 0.19
Adj. R2 0.25 0.31

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

2017, respectively and zero otherwise.3 The results are robust to changes in

the period length of these dummies. The coefficient of Financial continues to

be significantly positive. Bidders in auctions with financial pre-qualification

or penalties realize significantly more projects, increasing the realization rate

by about 35 percentage points. This effect is economically meaningful and in

the same order of magnitude as my results of the t-tests. The coefficients of

Pay-as-bid and particularly Tech Band remain insignificant. This suggests that

only pre-qualification measures are necessary to push realization rates. Yet, the

interpretation of the combined effect of Physical and Financial remains difficult.

3Note that the period length is equally spaced on a monthly basis.
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Based on column (4) of Table 3, one might conclude that introducing physical

pre-qualification on top of financial pre-qualification leads to a further increase

in realization rate by 28 percentage points. I analyze this inference in more

detail by assessing the interaction of Financial and Physical. I present results

of this analysis in Table 4. To allow for a apparent inference, I change the

base levels of Financial and Physical when moving from the models shown in

columns (1) and (2) to the models shown in columns (3) and (4).

All columns confirm that adding physical pre-qualification or financial pre-

qualification has a positive effect on effectiveness. This is in line with theory

and with results in Table 3. Also, the coefficients of Tech Band and Pay-as-bid

continue to be insignificant. The effect of financial pre-qualification is significant

in columns (2)-(4) and the effect of physical pre-qualification is significant in

column (2). Column (2) suggests that adding physical pre-qualification to a

design with financial pre-qualification can increase realization rates by 30 %.

Columns (3) and (4) reveal an effect of about 46 % when adding financial pre-

qualification to a design with physical pre-qualification. This indicates that

financial pre-qualification carries a slightly larger effect, but a combination of

both design features helps to design effective auctions.

Apart from auction design, there are likely other sources influencing effec-

tiveness. Literature finds an effect of country characteristics, such as OECD

versus non-OECD or developing versus developed country, on investment in re-

newable energies (Painuly, 2001; Schmidt, 2014; Polzin et al., 2015; Eberhard

et al., 2017). Based on a larger dataset, it would be possible to assess how

these findings transfer to the effectiveness of renewable energy auctions. Future

research could disassemble country categories into single factors—such as regu-

latory quality, political stability, and amount of foreign direct investment—and

study interactions with auction design. This could yield interesting insights for

policy makers. After understanding the underlying mechanisms of renewable

energy auctions, it is essential to tailor auction design to the specific circum-

stances in each country. So far, my sample size does not admit for analyses

with multiple interactions, but with a multitude of auctions in 2018 and 2019,
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Table 4
Additional Analysis: Effect of Financial and Physical Pre-Qualification

This table shows regression estimates of Auction Design on Effectiveness, specified by the
model

Effectivenessi = α0 + α1Financial × Physical + α2 · Auction Designi + α3 · Controlsi + εi.

Effectiveness is the realization rate of the auction. Financial and Physical are the indicator
variables for financial and physical prequalification and Auction Design contains the remaining
design elements as specified in Sections 2 to 4. I include the same control variables as in Table 3
in all columns. Analyses without control variables yield the same results. Standard errors
are depicted in parentheses. For the OLS estimators, I use robust standard errors for small
sample sizes.

Effectiveness

Tobit OLS Tobit OLS

Physical 0.32 0.31∗

(0.23) (0.17)
No Financial −0.28 −0.28∗

(0.23) (0.16)
No Financial × Physical −0.21 −0.18

(0.36) (0.16)
Financial 0.49∗ 0.46∗∗∗

(0.28) (0.03)
No Physical −0.11 −0.13

(0.38) (0.17)
Financial × No Physical −0.21 −0.18

(0.36) (0.16)
Pay-as-bid −0.04 −0.08 −0.04 −0.08

(0.14) (0.08) (0.14) (0.08)
Tech Band 0.07 0.02 0.07 0.02

(0.06) (0.05) (0.06) (0.05)
Tobit Constant 1 0.57∗∗∗ 0.39

(0.18) (0.35)
Tobit Constant 2 −1.29∗∗∗ −1.29∗∗∗

(0.10) (0.10)
Constant 0.60∗∗∗ 0.44∗∗∗

(0.14) (0.15)

Control Variables Yes Yes Yes Yes
Num. obs. 93 93 93 93
R2 0.18 0.18
Adj. R2 0.31 0.31

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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a larger dataset is realistically obtainable in the near future.
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6. Conclusion and Policy Implications

This paper analyzes outcomes of auctions for renewable energy capacity.

It uses a unique dataset containing auction design and realization rates for

auctions between 1990 and 2017. On this data, I test predictions from literature

regarding the effects of auction design on realization rates. My analysis confirms

strong effects of pre-qualification and penalties, which is in line with literature

and robust in several tests. I find no association of technological banding or

the pricing rule with the realization rate of auctions in a multivariable setting.

This is surprising as existing literature suggests a strong effect. Collectively,

my findings suggest that proper auction design does have a positive influence

on realization rates. Yet, less design options than expected have substantial

impact on effectiveness.

Some constraints might limit my analysis. My result are based on an em-

pirical analysis which is inherently descriptive. This means I cannot expect a

causal relation between my independent and dependent variables. Yet, my setup

is less exposed to issues of reverse causality. Post-auction realization rates are

very unlikely—if not incapable—to affect the pre-auction design choice. Still,

missing country-characteristics and economic cycles might explain parts of the

effect. Unfortunately, my sample size does not allow for large a vector of control

variables. Still, effects are stable when controlling for year effects, which cover

economic trends, learning curves, and technological advancement.

This paper has important implications for policy makers and researchers

who work on the design of renewable energy auctions. Regulators should in-

clude financial pre-qualification in form of bid bonds if the auction design aims

for high realization rates. This reduces the value of non-realization and thereby

decreases the value of the underlying real option. This mechanic increases real-

ization probability and leads to more substantial bids. Also, aggressive market

entry strategies to push competitors out of the market become more expen-

sive and less likely. Both financial pre-qualifications and penalties have the

same effect from a theoretical point of view, but the former are easier to col-
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lect for the auctioneer and might set stronger incentives in practice. Physical

pre-qualification should be implemented in an auction design aiming for high

realization rates as well. However, investors face often time consuming and

costly bureaucratic procedures to pre-qualify. Governments should not impose

bureaucratic barriers, insurmountable particularly for smaller investors4.

Rather, regulators should use the degrees of freedom they have in the other

design elements (i.e., technological banding and pricing rule of the auction) to

aim for a lean and easy process. They should also use their options to tailor

the auction to the regulatory scheme, social norms, or non-monetary goals. For

example if a high technology diversity is desired, technology banding should

be implemented. This allows to steer the generation system to a reliable mix

of production capacities and helps to foster small scale, immature technologies

(del Ŕıo and Linares, 2014). On the other hand, if technological diversity is a

lesser concern than price, a technology-neutral set up shifts procured capacities

towards cost-efficient technologies. Also, to counter implicit collusion, govern-

ments might consider to alternate pricing rules between uniform and pay-as-bid

pricing as this makes consistent price-rigging more difficult.

When aiming for high effectiveness, regulators need to keep in mind that

there is a substantial trade-off with efficiency. Pushing bidders towards realiza-

tion of the projects comes at the cost of a risk premium for projects. Participants

in the auction require compensation for excluding strategies from their decision

space. The exact balance between effectiveness and efficiency is an important

part of the respective country’s decarbonization strategy.

Adapting a policy framework that suits the specific needs and financial capa-

bilities of the country is essential for its success and the design of the instrument

is as important as its choice (del Ŕıo, 2012). With policy makers worldwide

choosing renewable auctions for the dissemination of renewable energies, my

study advocates for pre-qualifications and penalties to push realization rates in-

4If bidder diversity matters to the auctioneer, also employing very high financial pre-
qualifications can be detrimental. Smaller bidders are less likely and typically less capable of
paying high bid bonds.
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dependent of the specific country context. Yet, the individual traits of a country

might interact with the particular design element. Future studies could inves-

tigate the interaction of country characteristics and auction design elements on

a larger dataset based on country attribute such as regulatory quality, political

stability, or investment climate.
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del Ŕıo, P., Bleda, M., 2012. Comparing the innovation effects of support

schemes for renewable electricity technologies: A function of innovation ap-

proach. Energy Policy 50, 272–282.
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