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Abstract

We use causal forests to evaluate the heterogeneous treatment effects (TEs) of repeated be-
havioral nudges towards household energy conservation. The average response is a monthly
electricity reduction of 9 kilowatt-hours (kWh), but the full distribution of responses ranges
from -30 to +10 kWh. Selective targeting of treatment using the forest raises social net
benefits by 12-120 percent, depending on the year and welfare function. Pre-treatment con-
sumption and home value are the strongest predictors of treatment effect. We find suggestive
evidence of a “boomerang effect”: households with lower consumption than similar neighbors
are the ones with positive TE estimates.
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Introduction

The rise of randomized controlled trials (RCTs) in economics has produced a wealth of evidence

on the average causal effect of a great number of social and private-sector programs.1 Yet such

programs quite often have widely divergent impacts across the treated population. Understanding

how different subgroups respond to a given treatment has the potential to unlock large increases in

program effectiveness, by allowing for improved targeting of the existing treatment (i.e., identifying

whom to treat) as well as improved design of the treatment itself (e.g., tailoring treatment for

specific subgroups).

Machine-learning (ML) methods are an attractive option for estimating heterogeneous treat-

ment effects (Athey and Imbens, 2017). They offer disciplined ways to search non-parametrically

for heterogeneity, and are especially useful when the researcher observes a large number of baseline

characteristics. They also offer tools for minimizing overfitting and thus maximizing out-of-sample

predictive power. However, ML algorithms have traditionally been built for prediction of y from

x, rather than parameter estimation of treatment effects β (Mullainathan and Spiess, 2017). Con-

sequently, there is an active body of research on the use of ML algorithms for causal inference

(e.g., Imai and Ratkovic, 2013; Chernozhukov et al., 2018). Tree-based methods (Breiman et al.,

1984; Breiman, 2001) are one class of ML algorithms in which significant progress has been made.

Athey and Imbens (2016) propose methods for causal estimation of conditional average treatment

effects (CATEs) from regression trees, which they denote “causal tree” estimators. Wager and

Athey (2018) extend these methods to the estimation of “causal forests.”

In this paper, we apply the causal forest algorithm to the evaluation of a series of large-scale

randomized experiments in household energy use. We predict treatment effects among more than

900,000 households and investigate the role of observed and unobserved household characteristics

in determining outcomes. To illustrate the value of forest-derived CATEs, we measure the potential

welfare gains from selective targeting of treatment to maximize, alternatively, social and private

(i.e., electric utility) objective functions. Finally, we construct tests of internal and external

validity to assess absolute and relative performance of the causal forest method in this context.

Our results borrow from, build on, and add to an emerging literature on empirical machine

learning (e.g., Davis and Heller, 2017b; Burlig et al., 2017; Kleinberg et al., 2017; Hussam et al.,

2018). Davis and Heller (2017b) are the first to apply the causal forest algorithm to impact

evaluation of a randomized experiment—in their case, a youth summer employment program.

In comparison, we investigate the heterogeneous impacts of behavioral “nudges” towards energy

efficiency and using a much larger (10x) sample. Our findings additionally relate to a large

literature on the treatment effects of behavioral nudges, which have wide application ranging from

1The list of RCTs in economics is far too long to detail here, but see, for example, Duflo et al. (2007).
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water use (Ferraro and Price, 2013), to tax compliance (Kettle et al., 2016), to charitable giving

(Andreoni et al., 2017).

Our empirical setting is the retail electricity service territory of Eversource, the largest electric

utility in New England. Eversource’s flagship behavioral energy efficiency product is the Home

Energy Report (HER), a short, regular mailing that compares a customer’s electricity (and natural

gas) consumption to that of similar, nearby households and provides information on ways to save

energy. Since 2011, the company has been experimentally rolling out HER programming in waves.

Our program evaluation leverages data from 15 experimental waves covering 902,581 Eversource

residential customers. We observe monthly household electricity consumption from 2013-2018 and

cross-sectional characteristics pertaining to homes and their occupants. This context is especially

ripe for estimation of heterogeneous treatment effects for two reasons: first, the large overall

sample size available to us provides greater statistical power than is normal in randomized control

trials (RCTs); and second, intuition and empirical evidence alike suggest that HERs likely induce

a wide variety of behavioral responses (Allcott, 2011; Costa and Kahn, 2013).

Our central estimate of the pooled average treatment effect (ATE) across all Opower program

waves—which we estimate via panel regression—is a reduction in monthly electricity usage of 9

kilowatt-hours (kWh), or 1 percent. This ATE is consistent with the lower end of the range of

existing estimates (Allcott, 2011; Ayres et al., 2013; Allcott, 2015). However, the pooled average

masks heterogeneity across waves and over time, because sample makeup varies across waves

and the household response to HERs evolves with repetition, respectively. Our event study of

Eversource’s HER program shows a monotonic rise in the absolute value of month-specific ATEs

from months 1 through 5 of the intervention and a further net rise in the latter half of program

year 1. There is no evidence of attenuation of program impacts in years 2 and 3; if anything,

rather, the reductions in electricity consumption continue to increase. The year-three pooled ATE

in our sample is -14 kWh, or -1.5 percent.

Our causal forest methods reveal significant heterogeneity and potential for efficiency improve-

ments. In Figure 1 below, we show the estimated distribution of household-level, three-year average

treatment effects. At least three distinct modes are apparent, and the estimates range from roughly

-30 to +10 kWh per month. What accounts for this sizable heterogeneity? We find that the most

commonly-used household characteristics in the forest are baseline (i.e., pre-treatment) consump-

tion and home value, which indicates that these variables have significant predictive power. In

addition, we find suggestive evidence that the social comparison embedded in HERs induces a

“boomerang effect” (Bhanot, 2017; Schultz et al., 2007; Byrne et al., 2018): the households that

are predicted to raise their consumption appear to be the ones that receive “positive” messaging

about their own consumption relative to others (i.e., are told that they are consuming less than
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Figure 1: Distribution of Predicted Treatment Effects: 3-Year Average

0.00

0.02

0.04

0.06

−40 −30 −20 −10 0 10

Predicted Household Treatment Effects

D
en

si
ty

Notes: Estimates are from a causal forest grown from all households with three years of post-treatment
data, using three-year average consumption as the dependent variable. See Section 2.2 for details.

other, similar households).

In our targeting exercise, we compare the monetized net benefits of the actual HER distribution

to the net benefits of sending reports only to those households for which benefits exceed the

marginal cost of sending reports. We replicate this comparison with three different objective

functions: one inspired by the utility’s desire to help customers save money, and two that value

energy conservation according to its social value. In all cases, program net benefits can be increased

significantly through selective targeting; in every program year and with every objective function,

treatment leads to negative net benefits among at least 15 percent of households. Between $500K

and $1.2M of deadweight loss can hypothetically be avoided each year. These avoided losses are

particularly large as a percentage of the program’s social net benefits: for instance, according to

our preferred social objective function, the welfare gains from targeting are 66 percent in year 1,

36 percent in year 2, and 25 percent in year 3.

To check for internal validity of our forest results, we split the full sample into two random

subsamples, grow a forest with one of them, and compare actual CATEs (estimated via Ordinary

Least Squares regression) in the other with predictions derived from the forest. We observe small

differences and conclude that the forest produces internally valid estimates. To check for external

validity, we use a similar procedure but split the full sample non-randomly into three chronological

groupings and additionally compare the forest to lasso and traditional regression methods (without
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“learning”). All methods perform well in this test when in- and out-of-sample households are

relatively similar, but prediction errors rise significantly when these two sets of households exhibit

relatively more differences. These results suggest that selective targeting may be difficult at

the outset of an intervention, unless a previously-treated sample with similar characteristics is

available. We find, however, that one can learn a lot from the first year of treatment; household-

specific responses are persistent over time. From the stylized perspectives of society and the utility,

85 and 99 percent, respectively, of the welfare gains achieved in program years 2 and 3 through

targeting with perfect information can be realized by sending HERs only to those households that

show positive net benefits in the first year.

1 Empirical Context

The Home Energy Report (HER) was developed by Opower and rolled out via randomized control

trials in participating electric utility service territories beginning in 2008. The initial motivation

for the reports came from a field experiment in San Marcos, CA carried out by Schultz et al.

(2007), who found social norms messaging to be effective in reducing home energy consumption.

The Opower HER is characterized by two components. The first is information about absolute

and relative energy consumption. Usually, the HER lists a household’s consumption in the last

month and compares it (numerically and graphically) to a sample of similar, nearby households.

In the context of social norm theory, peer-rank information can serve as a non-financial incentive

to “nudge” individuals towards socially desirable behavior. By providing a relevant reference point,

households are able to compare their behavior to that of others when no other social standard is

available, inducing convergence towards the displayed social norm (Festinger, 1954).2 See Figure

2 for an example Eversource HER.

The second component of the HER is a set of action steps—suggestions for how to conserve

energy, both through changes to a household’s stock of energy-using durables and changes in the

use of that capital stock. Action steps can be made accessible through a customer portal (as

in Figure 2), or they can displayed directly in the report. Reports are generally sent out either

monthly or quarterly. The great majority of HERs have been delivered by mail in hard-copy form,

but Opower has recently experimented with email HERs. Customers can and (infrequently) do

opt out of the HER program, but it is unclear how many households are aware of the opportunity

to do so.

There are several potential reasons why an electric utility may choose to send HERs to its

customers. Perhaps the most frequently discussed reason is compliance with energy efficiency

2The algorithm that identifies “similar” households is an Opower trade secret, but we believe it is a function of,
at least, home location and home size.
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Figure 2: Eversource Home Energy Report

Source: Eversource.
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standards, which, in 26 states, requires utilities achieve a certain amount of new cost savings

through energy efficiency measures every year. HERs may provide a cost-effective way to comply

with such standards. Another reason to send HERs is to improve customer satisfaction by keeping

households informed about their bill and ways to potentially reduce it. Research on HER impacts

has, to date, focused almost exclusively on energy consumption rather than customer satisfaction,

perhaps due to limitations on the latter’s data availability.

Allcott (2011) studies the electricity usage impacts of the first wave of Opower experiments

and estimates a short-run average treatment effect (ATE) of -2.0% (i.e., a 2% monthly reduction in

electricity consumption).3 Ayres et al. (2013) concurrently study the effects of two other Opower

interventions and find ATEs of -2.1% and -1.2%, respectively (the latter is an aggregate estimate

for home electricity and natural gas usage). Allcott (2015) identifies “site selection bias” in HER

experiments: using results from the first ten Opower experiments to predict results in the next 100

experiments significantly overstates program effectiveness. Allcott and Rogers (2014) study the

long-run impacts of HERs and shed light on the time-pattern of a household response. Initially,

treated households reduce energy use right after receiving a report but slide back upwards over

time until receiving the next report. This “action and backsliding” pattern dissipates over time,

but the monthly conservation effect continues rising even after two years of repeated treatment.

Finally, the conservation effect is relatively persistent after reports are stopped: the decay rate of

the effect is 10-20% per year.

While it is intuitive that HERs’ impact on actions, savings, and well-being will vary across

households, there is limited evidence of such heterogeneity. Allcott (2011) finds that the treatment

effect varies with pre-treatment electricity consumption: the top decile has an ATE of 6.3%,

while the bottom decile’s ATE is statistically indistinguishable from zero. Ayres et al. (2013)

similarly find a positive correlation between pre-treatment usage and HER-induced reductions in

usage. Costa and Kahn (2013) show that politically liberal households reduce energy usage in

response to HERs two to four times more than politically conservative ones. Allcott and Kessler

(2019) elicit willingness-to-pay for HERs and identify significant heterogeneity across households.

According to correspondence with Eversource, Opower’s only strategy for targeting customers for

HER experimental participation is high pre-treatment consumption.

1.1 Data

We combine three types of data in order to estimate the impacts of home energy reports: house-

hold monthly electricity consumption from Eversource; treatment assignment and timing of Ev-
3In Allcott (2011)’s context, 2.0% is equivalent to 0.62 kilowatt-hours (kWh) per day. A reduction of this

magnitude could be achieved, for example, by turning off a typical air conditioner for 37 minutes per day, or by
switching off a 60-watt incandescent lightbulb for 10.4 hours per day.
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ersource’s HER experiments; and cross-sectional demographic and socioeconomic characteristics

of participants. Eversource’s service territory is divided into four regions: Eastern Massachusetts,

Western Massachusetts, Connecticut, and New Hampshire. Some of its customers receive both

electric and natural gas service, while others receive only one or the other; Figure 3 maps the cov-

erage of these services. We obtained monthly electricity consumption totals (in kilowatt-hours, or

kWh) for the universe of Eversource customer accounts (“households”) with residential electricity

service in the period from January 2013 to December 2017. The raw total number of accounts is

3,055,682.

Opower has run 26 waves of home energy report experiments in the Eversource electric service

area, with the earliest beginning in February 2011 and the latest beginning in January 2017. We

drop 11 waves that either (a) begin outside our five-year period of observation for household energy

consumption, (b) target natural gas customers, or (c) target households that have just moved

into new homes (who, in these waves, receive different HERs that additionally vary over time).

This leaves us with fifteen waves with which to conduct our analysis. Table 1 details the timing,

location, and size of each wave that we use in our analysis. Twelve of these waves use the standard,

or “base,” Eversource treatment: a periodic, hard-copy mailed report showing the customer’s

electricity consumption last month, average consumption among “similar” nearby households, and

a textual comparison of the two. Three program waves deviate from this standard treatment: one

of these replaces hard-copy reports with emailed ones; another exclusively covers households that

have previously received “home energy assessments” aimed at providing recommendations on how

to save energy; and the third targets households with, on average, significantly lower incomes than

the norm for Opower. All waves use either monthly or quarterly report frequency.4

We drop households with outlier values of home square footage and number of rooms, house-

holds enrolled in multiple Opower waves, and households that own multiple properties. We further

limit our sample to those households for which at least 12 months of pre-experiment data and 12

months of post-experiment data are available. This leaves us with 902,581 households and a total

of 49,491,297 household-monthly observations.

We combine these consumption and treatment assignment data with cross-sectional home and

household characteristics from Experian, via Eversource. We include thirteen characteristics in

our analysis. To capture home attributes, we use home age, value, and square footage, as well

as number of rooms. To describe family size, we use the number of adult residents and an indi-

cator for the presence of children. We further include indicators for single-family occupancy and

owner occupancy. Finally, we include average pre-enrollment consumption, income, educational

4Table 1 shows that treatment-control ratio varies significantly across wave and is always at or above 50:50.
Opower chose such high treatment probabilities in order to meet its electricity savings goals while keeping the
number of waves low.
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Figure 3: Eversource service territory map

Source: Eversource.com.
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Table 1: Summary of experimental Home Energy Report program waves

Date Location Type N % Treatment

February 2014 New Hampshire Base 42,709 50
February 2014 Western Massachusetts Base 95,455 91.9
April 2014 Connecticut E-Delivery 85,360 83.3
April 2014 Connecticut HEA 11,883 66.4
April 2014 Connecticut Base 199,802 91.7
April 2014 Eastern Massachusetts Base 49,610 88.4

January 2015 Western Massachusetts Base 24,837 71.1
April 2015 New Hampshire Base 32,571 71.5

December 2015 Western Massachusetts Base 11,272 86.6
February 2016 Connecticut Base 137,896 88.1
February 2016 Connecticut Low-Income 16,981 53
February 2016 Eastern Massachusetts Base 59,892 76.5
March 2016 Connecticut Base 17,395 80.0
January 2017 Connecticut Base 69,517 75.9
January 2017 Eastern Massachusetts Base 47,401 62.8

Notes: “Base” indicates the standard Opower treatment. “E-Delivery” indicates an email-only treatment.
“HEA” indicates a sample of participants who have previously received a home energy assessment, aimed
at providing recommendations on how to save energy. “Low-Income” indicates a lower-income sample
of participants.
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attainment, an index for “green awareness”, and an indicator for take-up of a subsidized home

energy assessment. We fill in missing values of these characteristics using multiple imputation (see

Appendix D for details on this procedure).

Table 2 tests for covariate balance across treatment and control observations in our pooled

analysis sample. Columns 1 and 2 present raw means for the characteristics that we use in our

main analysis. In column 3, we calculate the difference in means for each characteristic as the

coefficient from a regression of the particular variable on the treatment dummy and a set of wave

fixed effects, with weights equal to inverse treatment probability by wave and standard errors

clustered at the household level. Only one characteristic (home value) exhibits a statistically

significant difference across treatment and control (p = 0.07).5

2 Empirical Strategy

We use conventional difference-in-differences regression, leveraging random assignment of house-

holds into treatment and control groups, to estimate average Home Energy Report program effects

on electricity consumption. To test for heterogeneity in these effects and investigate the role of

household characteristics in predicting them, we use the causal forest algorithm, implemented with

Tibshirani et al.’s (2018) generalized random forest package. This algorithm yields a distribution

of predicted, individual household impacts on consumption, as well as information about the use

of each characteristic in growing the forest from which those impacts are predicted.

2.1 Estimation of average treatment effects

We use our household-monthly panel data on electricity consumption to estimate the average

treatment effect via the following regression:

kWhiwt = α1 + α2Tiwt +Xiη + θw + ωt + eiwt, (1)

where kWhiwt is electricity consumption for household i from program wave w in year-month t.

Tiwt is the binary treatment variable, Xi is a vector of household characteristics, and θw and ωt

are wave and year-month fixed effects, respectively. We cluster standard errors by wave, and we

account for different treatment probabilities across waves by using inverse probability weights. α2

is the coefficient of interest—the average treatment effect in kWh per month.

5Appendix Tables C1-C4 report summary statistics separately for each of Eversource’s four service regions, to
provide a glimpse of Opower’s selection strategy. As a general rule, Opower appears to target households with
higher baseline usage, more wealth, and more education.
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Table 2: Average Characteristics and Treatment-Control Balance

Treatment Control Balance
Mean/SD Mean/SD Difference/SD

Baseline consumption (kWh) 849.685 745.597 0.110
(412.996) (376.888) (0.979)

Home value ($) 363,281.560 343,071.887 -2,062.288*
(370,144.602) (339,779.476) (1,071.788)

Home square footage 19.370 19.225 -0.014
(10.983) (11.226) (0.036)

Annual income 99,592.697 93,693.277 -226.122
(67,443.015) (65,175.334) (208.421)

Education (1-5) 3.211 3.138 -0.005
(1.238) (1.238) (0.004)

Number of rooms in home 7.060 7.046 -0.008
(2.142) (2.214) (0.007)

Year home built 1,968.271 1,969.043 0.037
(23.463) (23.613) (0.074)

GreenAware score (1-4) 2.144 2.158 -0.000
(1.135) (1.119) (0.004)

Renter (=1) 0.122 0.162 0.001
(0.328) (0.368) (0.001)

Single-family occupancy (=1) 0.850 0.811 -0.002
(0.357) (0.392) (0.001)

Child in home (=1) 0.475 0.461 -0.001
(0.499) (0.499) (0.002)

Participated in EA (=1) 0.335 0.380 0.000
(0.472) (0.485) (0.002)

Age 57.366 57.224 -0.028
(14.650) (14.911) (0.048)

Notes: Columns (1) and (2) display the mean of each listed household characteristic for the treatment
and control groups, respectively. Standard errors are listed beneath in parentheses. Column (3) checks
for balance between the control and treatment groups with respect to the given characteristic. Results
are from a linear regression of the characteristic on treatment status with wave fixed-effects and robust
standard errors. ∗ p < 0.01, ∗∗p < 0.05, ∗∗∗ p < 0.01.
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With variation in the timing of wave start dates, we use an event study model to investigate

the evolution of HER impacts over time. The estimating equation is:

kWhiwt = β1 + Σ37
j=−12τ

jDj
iwt +Xiη + θw + ωt + eiwt. (2)

Here, the index j denotes a time period relative to the event of interest –the beginning of treatment

in the relevant wave. Dj
wt is thus a binary variable equaling one if an observation is in wave w, j

months after (or before) HER mailings begin in that wave, where j ∈ [−12, 37].6 We omit D0
wt—

corresponding to the month immediately preceding the start of mailings—from the estimating

equation, so that all coefficients are interpretable as the monthly ATE relative to this month. We

employ the same clustering and weighting as in Equation 1.

2.2 Causal Forests

The causal forest algorithm (Athey et al., 2019) is an adaptation of random forests (Breiman,

2001) for the measurement of causal effects. Random forests are themselves an ensemble method

applied to classification and regression trees (CART) (Breiman et al., 1984), which employ recur-

sive partitioning to split a sample into subgroups that maximize heterogeneity across splits. A

tree is a single run of recursive partitioning; a forest is a collection of trees, where each tree is

grown from a randomly drawn (bootstrapped) subsample of the data.

CART was originally developed for prediction of outcomes ŷ as a non-parametric function of

covariates. Athey and Imbens (2016) adapt CART for prediction of treatment effects β̂, enabling

the construction of valid confidence intervals for these effects. Wager and Athey (2018) do the same

for random forests, establishing the consistency and asymptotic normality of their “causal” forest

estimators. Athey et al. (2019) nest causal forests in a “generalized random forest” framework;

we implement the causal forest algorithm using the generalized random forests (grf ) R package

(Tibshirani et al., 2018).

The basic building block of the causal forest is a regression tree. For a single tree, we start

by drawing a random subsample, without replacement, from the full cross-section of Opower

households. A single root node is created containing this random subsample. The root node is

split into child nodes, and child nodes are split recursively to form a tree. Splits are chosen to

maximize heterogeneity in subgroup ATEs, subject to penalties for within-node variance in ATEs

and treatment-control imbalance. If splitting a given node would not result in an improved fit,

that node is not split further and forms a “leaf” of the final tree (Tibshirani et al., 2018).

6We include 37 post-period months because some households begin being treated towards the end of the month
in which the program starts.
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Conventional regression tree algorithms use the same dataset to both grow tree structure and

estimate ATEs at each node. Athey and Imbens (2016), however, show that this practice tends

to overstate goodness of fit with deeper and deeper trees; they introduce the practice of “honest

estimation”, in which the full random subsample is split in half, one subset is used to grow the tree

structure, and the other subset is used to estimate leaf ATEs. We employ this honest estimation

in our trees.

Within-leaf ATE estimation in the generalized random forest package is implemented as a

cross-sectional, difference-in-means comparison between treatment and control group. To take

advantage of our panel data structure, we define our dependent variable as the difference between

average monthly electricity usage in year X of the relevant HER program wave (where X ∈ 1, 2, 3)

and average usage in the year prior to wave start date. Additionally, we residualize our dependent

variable and treatment assignment, by regressing each of these on observable characteristics and

wave fixed effects and recovering the residuals (again using weights by inverse probability of

treatment).

Figure 4 shows a sample causal tree constructed using data from the April 2014 Connecticut

“base” wave. The top node is the root: it contains 169,000 randomly chosen households, whose

ATE is -15.7 kWh. The first split is made at a baseline consumption (“pre_mean”) value of 1,706

kWh, and it creates two child nodes with different size and CATE. The algorithm can (a) split on

the same variable in two successive branches, (b) split on different covariates across branches at

the same level, and (c) stop branches at different depths.

The terminal nodes, or leaves, report the estimated average treatment effect for households of

the corresponding type. For example, if we follow the right-most set of branches, households that

have baseline consumption less than 1,706, home square footage less than 1,680, and home value

greater than 270,000 have an ATE of +4.48 kWh. In this particular tree, the right-most leaf is

the only one with a positive ATE. The remainder of terminal-leaf ATEs range from -2.44 to -38.6

kWh.

We grow a forest consisting of 10,000 trees. In our causal forest, each tree is grown with a

different random 50% subsample of households and a different subset of available characteristics.7

The whole, tree-specific procedure can thus be represented as follows:

1. Randomly draw (1) a sample of households and (2) a subset of available characteristics.

2. Randomly split the sample in half, creating a “training set” Str and an “estimation” set Sest.

3. Using Str, grow a tree.

4. Match households in Sest to leaves of the tree, according to observed characteristics.
7The number of characteristics chosen varies by tree according to a draw from a Poisson distribution.
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Figure 4: A sample causal tree
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Notes: The tree is constructed from the Connecticut “base” wave beginning in April 2014. The depen-
dent variable is the difference between average monthly electricity usage in program year 2 and the year
prior to program start. Reported numbers in each box are leaf-specific ATE (in kWh), the number (n)
of households falling into this leaf, and the corresponding proportion (in %) of total households used.
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5. Estimate ATEs in each leaf using the matched observations from Sest in that leaf.8

For each of the 10,000 trees, we predict treatment effects for all households not used at all in

the tree-growing procedure (i.e., not selected in Step 1 above). We thus obtain a large number

of predictions for each household (in expectation, 5,000). We aggregate these predictions into

a single, central estimate of a household’s treatment effect using adaptive neighborhood estima-

tion (Tibshirani et al., 2018). For each household i, we assign every other household a weight

corresponding to the frequency with which it falls into the same leaf as i. These weights define

the forest-based adaptive neighborhood. We then estimate household i’s treatment effect as the

weighted average of all other households’ average predictions.

In addition to the relative size of the bootstrapped sample and the number of characteristics

used, a few other parameters influence the forest algorithm and thus the estimates that emerge

from it: minimum node size (a threshold number of observations in a node, below which no further

splits can be made); maximum split imbalance (between child-node treatment and control N); and

the penalty for split imbalance. For all of these parameters except minimum node size, we use the

default values provided by the generalized random forest algorithm. The distribution of household

treatment effect predictions is sensitive to minimum node size; we tune this parameter by training

forests with different minimum node size values and choosing the value that minimizes R-loss, as

defined in Nie and Wager (2017).

3 Results

3.1 Average treatment effects

Figure 5 displays ATE estimates in each individual Opower wave as well as for the full, pooled

sample. These results correspond to Equation 1. The pooled ATE is -8.85 kWh (per month), or

-1 percent. While this is somewhat lower than the ATEs found in earlier Opower experiments

(Allcott, 2011; Ayres et al., 2013; Costa and Kahn, 2013), the difference may be explained at least

in part by “site selection bias” (Allcott, 2015): earlier Opower experiments systematically targeted

areas and households with larger potential to reduce consumption. Wave-specific ATEs range in

magnitude from -1.6 to -17.7 kWh. The pooled ATE and 12 of the 15 individual program-wave

ATEs are statistically significant at the five-percent level or lower.

While the timing and household makeup of each program wave likely explain some of the

heterogeneity in wave-specific ATEs, differences in the length of the post-period may also be a

8Due to computational considerations, an approximate criterion is computed using gradient-based approxima-
tions of the in-sample conditional average treatment effect estimators of the child nodes.

16



Figure 5: Average treatment effects, by wave: consumption

Pooled
CT 4/2014 EDelivery

CT 4/2014 HES
CT 4/2014 Standard

CT 2/2016
CT 2/2016 Low-Income

CT 3/2016
CT 1/2017

EMA 4/2014
EMA 2/2016
EMA 1/2017

NH 2/2014
NH 4/2015

WMA 2/2014
WMA 1/2015

WMA 12/2015
-20 -10 0 10

Average treatment effect (Kwh)

Notes: The y-axis denotes a specific wave (“Pooled” indicates all waves put together). The x-axis
measures the treatment effect. Error bars denote 95% confidence intervals. CT = Connecticut; EMA
= Eastern Massachusetts; NH = New Hampshire; WMA = Western Massachusetts. All effects are
estimated using Equation 1 as described in Section 2.

17



part of the explanation. Figure 6—generated through estimation of Equation 2—sheds light on

how the consumption impact of HERs evolves over time, on average. In the 12 months prior to

program start date, none of the point estimates are statistically different from zero. In months 1

and 2, too, there is no discernible impact on consumption. But from months 2 through 8, there

is a consistent, steep downward trend in average consumption. Month-specific point estimates

are statistically significant beginning in month 4. The ATE in each successive year is larger than

that of the previous one. In sum, households take time to ramp up their response to reports but

continue changing behavior into at least the third year of treatment.

Figure 6: Event study of pooled experimental waves: consumption
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Notes: The solid-line data points are event-study coefficients from estimation of Equation 2. Dashed
lines indicate 95% confidence intervals. D0

iwt—which corresponds to the month immediately preceding
program start—is omitted.

3.2 Conditional average treatment effects, via causal forest

Figure 7 depicts the distribution of household treatment effect predictions produced by the causal

forest. We plot separate distributions for each of the first three years of treatment. It is immedi-

ately clear from this graph that the distribution of treatment effects is multi-modal. In year 1 of

treatment, there is a large peak centered on -10 kWh, as well as an even larger, albeit narrower,

peak centered on zero. This zero peak implies that a significant number of households don’t ini-

tially respond to, or perhaps even read, their home energy reports. In years 2 and 3 of treatment,

18



both peaks progressively widen and shift away from zero. Households that respond by reducing

consumption appear to learn to do more of that over time, but a sizeable subset of the sample

(18 percent) is predicted to raise its consumption. The full range of predicted treatment effects

in Year 3 extends from roughly -40 to +10 kWh.9

Figure 7: Distribution of Predicted Treatment Effects
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Notes: Each plotted distribution is a kernel density of household treatment effects in a specific year (1,
2, or 3) of HER programming. Treatment effect predictions come from our causal forest (Section 2.2).

Figure 8 provides a picture of the average difference in households predicted to reduce their

consumption versus those predicted to raise it. There are significant differences in every charac-

teristic used in the forest: “reducers” are more likely to own their residence; their homes tend to

be larger, newer, and more valuable; and they tend to have more children, higher income, and

younger and more educated heads of household. Finally, those who reduce their consumption

have significantly higher average baseline electricity consumption, and the difference dominates

all others in magnitude. This finding validates Opower’s documented strategy of targeting high-

consumption users for HER delivery, and it is consistent with the idea that there is more “room”

for energy savings when baseline consumption is larger. In Appendix Figure C1, we measure the

predictive power of our household characteristics in a different way, by plotting the frequency of

each characteristic’s use as a splitting variable in the forest. The results are highly consistent

with the story told by Figure 8: baseline consumption is used far more frequently than any other

9In Appendix A, we describe a test of internal validity, based on Davis and Heller (2017a), that compares forest
predictions from a training set of households to actual estimates in a test set. The differences are minimal, which
suggests that the forest’s household-specific treatment effects are internally valid.
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Figure 8: Characteristics of “reducers” vs. “increasers”

Baseline usage

Home value ($)

Home square footage

Income

Education

Number of rooms

Age of Home

Green-aware

Homeowner type (Renter=1)

Dwelling Type (Single-family=1)

Children

Participation in Energy Assessment

Age of household head

-.5 0 .5 1
Difference in means (standard deviations)

Notes: Bars denote differences in mean between households with negative predicted treatment effects
and those with positive ones, for each listed characteristic. Units are standard deviations of the relevant
characteristic. Error bars denote 95% confidence intervals.

characteristic and is chosen for the first split in 90 percent of trees. Home value is the second most

often-used, and it catches up to baseline consumption in frequency of use at the sixth split level.

Figure 9 provides evidence on the relationship between the empirical distribution of predicted

treatment effects and three key household attributes. Each panel presents a scatterplot of individ-

ual values: the y-axis measures predicted treatment effect, and the x-axis measures the attribute

in question. We fit smooth, local polynomial functions to each scatterplot’s data. The first two

panels give us a more refined understanding of how treatment is related to the two most important

predictors, baseline consumption and home value, while the third panel sheds light on the role of

the HER’s social comparison.

Panel A illustrates the potential for improved program outcomes through selective targeting

on observable characteristics. The overwhelming majority of households with positive treatment

effects have baseline consumption less than 800 kWh per month; setting the threshold for program

inclusion at this level would thus have avoided nearly all adverse consumption impacts. Accord-

ing to the fitted line, treatment effect increases steadily with baseline consumption up to about

1800 kWh, at which point the trend flattens out and baseline consumption ceases to distinguish

treatment effects on its own.

The relationship between treatment effect and home value in Panel B is flat throughout the
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Figure 9: Average treatment effect vs. household type

Panel A. Baseline consumption Panel B. Home value

Panel C. Pre-treatment residual

Notes: Each plotted point represents a household. In each panel, the x-axis measures the value of the
indicated household characteristic, while the y-axis measures treatment effect (TE) predicted by our
causal forest; see Section 2.2 for implementation details. Lines display the local smoothed polynomial
relationship between ATE and the characteristic. In Panel C, the x-axis “characteristic” is a household’s
residual from a zip-code specific regression of pre-treatment consumption on home characteristics.
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range of observed home values. However, the largest predicted reductions in consumption are

confined to the very bottom of the home value distribution. Nobody with home value above

100,000 dollars is predicted to reduce consumption by more than 23 kWh, while the households

below that dollar threshold in some cases are predicted to reduce by 30-35 kWh. Panels A and

B together thus imply that the largest “reducers” have high baseline consumption but low home

value.

Panel C provides suggestive evidence of the mechanism by which certain households (who,

according to Panel A, have low baseline consumption) are driven to raise their consumption: low

electricity consumers are more likely to receive positive Opower feedback. Previous studies have

documented a so-called “boomerang effect” (Bhanot, 2017; Schultz et al., 2007), in which a social

comparison aiming to reduce the use of of some good inadvertently ends up increasing it. In our

context, a household that discovers it is relatively more energy-efficient than other households may

actually raise its electricity consumption. While Schultz et al. (2007) find evidence of a boomerang

effect of social comparisons in energy consumption among 290 California households, subsequent,

larger-scale evaluations of HERs (for example, Allcott, 2011) have not found evidence of such an

effect.10

We are not able to directly test for a boomerang effect, because we do not have access to the

specific social comparison received by each household each month (that is, we do not know whether

a given household was told they were consuming more or less than their respective comparison

group). To work around this limitation, we construct a proxy for a household’s comparison to

its similar neighbors: for each zip code, we regress pre-treatment household average consumption

on household characteristics. The residual of this regression provides a measure of how a given

household’s consumption compares to an average household with the same home characteristics

and in the same zip code. We expect that households with negative residuals are more likely to

have received a home energy report stating that they are consuming less than their comparison

group.

It is apparent from Panel C that households predicted to raise their consumption in response

to HERs are overwhelmingly likely to have a negative residual. The result is suggestive of a

boomerang effect at scale in household energy conservation. From the utility’s perspective, it

also exemplifies the potential gains of tailoring its treatment, to prevent “adverse” consumption

outcomes.11 More generally, predicted treatment effect is tightly correlated with the calculated

residual (the correlation coefficient is -0.9). Over a large range of residual values (approximately

10(Byrne et al., 2018), however, find a boomerang effect in HER-treated households who specifically are observed
to have overestimated their own energy use.

11Some HERs (especially earlier versions) include “injunctive norms”—that is, smiley faces accompanying message
of low relative use—in an effort to reduce boomerang. The HERs delivered by Opower to Eversource customers,
however, do not use injunctive norms, in order to avoid adverse customer satisfaction outcomes.
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-1,000 to 1,000), households appear to respond in a continuous way to nudges: the larger the

disparity with one’s comparison group, the larger the predicted response.

4 Economic Benefits of Targeting

High-resolution conditional average treatment effects (CATEs) are potentially very useful because

they point to possible improvements to program effectiveness through targeting and tailoring. We

illustrate this by evaluating the gains to targeting according to three different objective functions.

The first of these is meant to approximate the utility’s perspective. In this case, we assume that

the utility’s objective is to maximize electricity savings, net of the cost of creating and sending

Home Energy Reports.12 This assumption is motivated by the existence of standards requiring

Eversource to show evidence of new electricity savings from energy efficiency annually, as well as

the notion that customers like to save money. On the other hand, it is clear from conversations

with Eversource that this assumption is an oversimplification; the utility’s objective function has

other components, such as broadly maintaining (and increasing) goodwill among customers.

To optimize this objective function, we require estimates of both the value of electricity savings

and the marginal cost of sending HERs. For the value of kWh reductions, we use Eversource’s

average retail electricity rate of $0.21 per kWh. We multiply this number by a household’s forest-

predicted treatment effect to find the gross benefit of sending an HER to that household. Based

on consultation with Eversource, we assume that the marginal cost of HERs is $7 per household

per year.

Alternatively, targeting may be structured to maximize social welfare. To model this perspec-

tive, we adjust the valuation of electricity savings to reflect the social marginal cost of electricity,

which includes both generation costs and environmental externalities.13 We value kWh reductions

at the short-run social marginal cost estimated by Borenstein and Bushnell (2018) for the New

England electricity region in 2016—$0.065/kWh. In this iteration of the analysis, we continue to

assume that the social marginal cost of one year of treatment is $7, though we acknowledge that

the true social marginal cost could be below the price charged by Opower.

Our third and final variant of the objective function augments the social welfare function

described above to account for customer willingness-to-pay (WTP) for HERs. Allcott and Kessler

12It is important to note that Eversource is predominantly an electricity retailer; it owns very little generation.
Therefore, the moral hazard concerns about asking a vertically-integrated utility to reduce consumption are less of
an issue in our context.

13We calculate social welfare here as the sum of individual net benefits of treatment, but the true social welfare
function embeds distributional preferences. Thus, socially “optimal” targeting decisions may deviate from simple
benefit-cost comparisons. Reames et al. (2018) find that, in Michigan, utilities spend four times more money on
energy efficiency programming for middle- and high-income customers than for low-income ones.
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(2019) elicit WTP for HERs experimentally, and they report results from a regression of household-

specific WTP on the logarithm of income, indicators for retirement, marriage, homeownership,

and single-family occupancy, and homebuyer’s credit worthiness score. We use the regression

coefficients of Allcott and Kessler (2019) to predict household-specific WTP in our sample, given

the characteristics of each household. Our data do not match up perfectly to theirs, but we do have

measures of income, age, number of adults in the household, homeownership, and single-family

occupancy. We define households with a head-of-household that is older than 65 as “retired.” We

define households with at least two adults living in the household as “married.” Allcott and Kessler

(2019) do not report a constant term for the regression but do report an average WTP. We thus

use, as our own constant term, the difference between their reported mean WTP and the fitted

mean value in our data using their regression coefficients. Social benefits in this last objective

function are then equal to the sum of our predicted WTP value and the social value of electricity

savings.

We restrict our sample to those households that received at least 36 months of HERs and the

corresponding control groups, which yields 449,824 households. Figure 10 plots, for each objective

function, the (reverse) cumulative distribution functions (CDF) of predicted household savings (in

$) in each of the first three years of HER programming. In every year and with every objective

function, the CDF crosses both the MC line and the zero line; that is, there are always households

whose responses to HERs translate to both net and gross negative benefits. This, in turn, implies

that in every scenario there are potential gains to selective targeting.

According to the utility’s objective function (Panel A), the total welfare gains created by the

actual HER program in years 1, 2, and 3 are $5.5M, $9.1M, $11.5M, respectively; this increase

is due to larger treatment effects over time (in both directions— but most households decrease,

rather than increase, consumption, so the net effect is to increase aggregate program benefits).

These numbers include deadweight losses of approximately $1M each year from sending reports

to households whose responses do not produce positive net benefits. With perfect foresight, the

utility could elect to send reports to the 72% of participating households that lay to the left of the

crossing point between the CDF and the MC in the first year. In that case, welfare gains would

increase by 14% to $6.3M. In the second year, the utility could use the same rule to send HERs to

73% of households, and welfare would increase by 14% to $10.4M. Finally, year-3 welfare would

increase by 12%, to $13.0M, due to such targeting.

Using our two social objective functions (Panels B and C) yields much smaller estimated welfare

gains from the actual program, because the social marginal cost of electricity is significantly lower

than the retail price of electricity. This fact also means that far fewer households respond in ways

that are net-beneficial to society. According to the first social objective function (Panel B), over
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Figure 10: The distribution of HER net benefits
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Notes: Each downward-sloping line is the reverse cumulative distribution function of annual savings in a given HER program year, estimated
via our causal forest. In Panel A, electricity consumption reductions are valued at the average retail price of electricity, $0.21/kWh. In Panel
B, they are valued at the social marginal cost (SMC) of electricity in New England in 2016, $0.065/kWh (Borenstein and Bushnell, 2018). In
Panel C, they are valued at the same SMC plus private willingness-to-pay for HERs estimated based on the findings of Allcott and Kessler
(2019). Note that the y-axis range is larger in Panel A than in Panels B and C. The two horizontal lines are drawn at $0 and $7, the latter of
which is an estimate of the marginal cost of sending one year’s worth of HERs. See Sections 2.2 and 4 for further details.
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50% of homes produce negative net benefits in the first year, while 44 and 32% of homes produce

negative net benefits in years 2 and 3, respectively. The gains from targeting with perfect foresight

are correspondingly large as a percentage of baseline welfare. Absent targeting, total welfare gains

in the first year of treatment amount to -$477K; targeting raises total welfare in the first year to

$616K. In the second year, targeting increases welfare from $633K to $1.8M, a rise of over 120%.

In the third year, targeting increases welfare from $1.4M to over $2.4, a rise of over 70%.

Our second social objective function serves as an intermediate case relative to the other two

functions, because the inclusion of WTP raises the social benefits of HERs somewhat. We estimate

that households are willing to pay, on average, $2.97 for HERs each year. With perfect foresight, a

social planner would treat 65, 68, and 74% of households in years 1, 2, and 3, respectively. Absent

targeting, social welfare gains from treatment in the first year are $860K; targeting increases this

by 66% to $1.4M. Welfare increases from $2.0M to $2.7M in year two—a rise of 36%. Finally, in

year 3 welfare increases from $2.7M to $3.4M, or 25%.

The reported magnitudes of welfare gains from selective targeting rely on the assumption

of perfect foresight—that is, that household treatment effects are known before treatment even

begins. This assumption may be appropriate in certain specific situations, such as when a causal

forest can be grown on a set of households that is very similar to the new set of households about

to be treated. In many cases, however, this is unlikely to be the case. In Appendix B, we test

the out-of-sample predictive accuracy of our causal forest along with several other methods, and

we find suggestive evidence that large differences between training and test datasets significantly

impedes forecasting accuracy out of sample.

Consequently, we investigate the efficacy of selective targeting in program years 2 and 3 based

on causal forest estimates from program year 1. We rely on the conservative rule that the utility

continues to send HERs to households with benefits greater than the marginal cost of HERs in

the first year; this ignores the fact that, over time, treatment effect magnitudes tend to increase.

Because this strategy does not require perfect foresight, it is a more realistic option for the utility

or social planner. In principle, however, it is vulnerable to false positives (sending HERs to

households that don’t produce net benefits in years 2 and 3) and false negatives (not sending

HERs to households that do produce net benefits).

Whether a household’s net benefits exceed the MC of a HER is quite stable over time. Table

3 displays, for each of the first two objective functions, the frequencies of false positives and false

negatives in the second and third year of treatment based on predictions from the household’s

savings in year 1 (the errors are the off-diagonals). According to Panel A, if the utility were to

base its targeting decisions off of the first year of treatment, it would send reports to 325,080

(321,722+3,358) households in year 2 and not send HERs to 124,744 (5,398+119,346) households.
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The share of mistakes from relying solely on the first year of the experiment is less than 2%.

Because ATEs tend to grow over time, there are more false negatives in year 2 (5,398) than

false positives (3,358). There are relatively more targeting “mistakes” in program year 3, but the

overwhelming majority of decisions (95 percent) produce net benefits.

Table 3: Targeting based on outcomes in program year 1

Panel A. Using retail electricity price
Year 2 Year 3

Send Do Not Send Send Do Not Send

Year 1 Send 321,722 3,358 324,707 373
Do Not Send 5,398 119,346 23,652 101,092

Panel B. Using social marginal cost of electricity
Year 2 Year 3

Send Do Not Send Send Do Not Send

Year 1 Send 186,744 10,409 196,811 342
Do Not Send 72,898 179,773 107,510 145,161

Panel C. Using social marginal cost of electricity plus WTP
Year 2 Year 3

Send Do Not Send Send Do Not Send

Year 1 Send 211,301 8,314 219,289 326
Do Not Send 62,825 167,384 93,140 137,069

Notes: The table summarizes the consequences of selective targeting in program years 2 and 3 based
on outcomes in program year 1. Each panel’s results rely on the use of a different objective function;
see Section 4 for definitions. Counts corresponding to (Send, Send) include all households whose HER-
induced benefits are larger than the marginal cost of HERs in year 1 and also year X, where X ∈ {2, 3}.
Those corresponding to (Do Not Send, Do Not Send) include all whose HER-induced benefits are lower
than marginal cost in year 1 and also in year X. Those with mismatched combinations are false positives
and negatives—i.e., those for whom year-1 outcomes would suggest one decision (ex ante) while year-X
would suggest the other (ex post). Counts are derived from year-specific, forest-based predictions of
household treatment effects; see Section 2.2 for implementation details.

With the social objective functions (Panels B and C), there are far more false negatives—for

example, 62,825 in year 2 and 93,140 in year 3 in Panel C, where estimated private WTP for HERs

is included in the measurement of program benefits. This is a consequence of there being far more

“Do Not Send” households in year 1 when the social objective function is used. In spite of this

fact, targeting based on program year 1 estimates achieves most of the available year-2 and year-3

welfare gains available with perfect foresight. This is partly driven by the fact that the benefits

lost due to false negatives and positives are small, since such households do not reduce their

consumption very much. Targeting based on year-1 estimates achieves 99 percent of theoretically

available welfare gains according to the utility objective function and 85 percent of such gains

according to the social objective function.
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5 Conclusion

Machine learning is fast becoming a powerful tool for high-resolution program evaluation. In this

paper, we provide an early example of its capability by applying one of the most recent machine-

learning methods—causal forests—to the evaluation of a large-scale behavioral intervention. Home

Energy Reports have long been studied as an example of a successful “nudge” towards behavior

that is both privately and socially beneficial. But despite consistent findings of modest, significant

reductions in electricity consumption, relatively little is known about the mechanisms that govern

the household response to HERs. Through estimation of a causal forest, we begin to shed light on

these mechanisms.

Across fifteen experimental waves of Opower’s HER program, the average household reduces

its monthly electricity consumption by approximately 9 kWh. The random forest reveals the

rich heterogeneity that underlay the consumption ATE: the distribution of household effects is

left-skewed, so that 81 percent of households reduce consumption by more than the monthly

mean. The largest reductions are three times the mean, while some households actually increase

their consumption. Pre-treatment consumption and home value are the strongest predictors of

individual responses, but several other characteristics have predictive power as well, and the

relationship between treatment effect and these characteristics is non-linear.

The forest results illustrate how machine learning might be used to improve the effectiveness of

interventions. We find large welfare gains from targeting treatment according to the perspective of

both the utility and society. While it may be difficult to accurately target treatment in a previously

untreated sample of households, outcomes in the first year of the intervention provide valuable

information for the targeting task. In our context, at least 85 percent of available welfare gains from

treatment in years 2 and 3 are achievable through the use of year-1 estimates. Among households

that do respond in privately or socially beneficial ways, it may be possible to raise welfare through

tailoring of treatment to include different information or rely on a different framing of the nudge.
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Appendix A - Test of Internal Validity

We can test the predictive power of our forest in a random hold-out subsample of our Eversource

households. We follow the procedure of Davis and Heller (2017b). First, we split the full set

of households randomly in half to create in- and out-of-sample groups Sin and Sout. Second, we

run the causal forest procedure only using Sin. Third, we predict treatment effects (TEs) in Sout

and group them by quartile of predicted TE. Lastly, we regress electricity consumption on the

treatment dummy as well as its interaction with TE-quartile dummies, separately for both Sin

and Sout. The estimating equation is:

Log(kWh)iwt = α0 + α1Tiwt + Σ4
j=2

(
αjTiwt ∗ 1[Qi = j]

)
+Xiη + θw + ωt + eiwt. (3)

where Qi is a household’s quartile of predicted treatment effect, j indexes quartile, and the bottom

quartile is the omitted group. The coefficients of interest are α1, α2, α3, and α4. We compare the

magnitudes of each of these coefficients in Sin versus Sout. Significant differences imply that the

causal forest procedure suffers from overfitting.

Figure A1 plots the in-sample and out-of-sample estimated ATEs across forest-predicted ATE

quartiles. Specifically, the x-axis indicates an ATE estimated using Equation 3, while the y-

axis shows the corresponding quartile of forest-predicted impacts. ATEs increase with quartile,

using both the in-sample data and the out-of-sample data. Top-quartile ATEs are nearly -18

kWhs, while bottom-quartile ATEs are approximately 4 kWhs. Furthermore, in-sample and out-

of-sample quartile-specific ATEs are very similar across the board. These results imply that the

forest method produces internally valid TE estimates. We note, however, that the hold-out sample

here is, by design, similar to the training sample, so this test does not provide insight into the

forest’s predictive accuracy in populations with different average characteristics.
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Figure A1: Test of out-of-sample performance

Quartile 4

Quartile 3

Quartile 2

Quartile 1

-20 -10 0 10
Average treatment effect (kwh)

In sample Out of sample

Notes: The y-axis denotes quartile of forest-predicted treatment effect on electricity consumption. The
x-axis measures the treatment effect. Lines show 95% confidence intervals. “In sample” refers to Sin, a
50% subsample of all households used in forest building; “Out of sample” refers to Sout, the remaining
50% subsample that is entirely omitted from forest building in this exercise. All effects are estimated
using Equation 3. Appendix A explains the exercise in further detail.
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Appendix B - A Test of External Validity

To test the external validity of the forest results, we follow the previous section’s procedure without

forcing training and test sets to have the same average characteristics. Instead, we take advantage

of the staggered nature of our fifteen Opower waves. Our conceptual strategy is to calibrate a

predictive model with earlier data, use it to predict outcomes in later data, and then compare

predicted to actual. We can assess the relative benefits of the causal forest out-of-sample by

“horseracing” it against other prediction methods.

We divide our sample of Opower waves into three chronological groups according to program

start date: 2/2014-4/2014, 1/2015-4/2015, and 2/2016-3/2016. For each predictive method in

consideration, we use the following algorithm:

1. Build a predictive model of treatment effects exclusively using households in group 1.14

2. Use that model to predict treatment effects for each household in group 2.

3. Aggregate group-2 households into quartiles by size of “predicted” treatment effect and cal-

culate quartile-specific averages.

4. Estimate “actual” average treatment effects in each of these quartiles via Ordinary Least

Squares (OLS) using group-2 data, and compare to “predicted”.

We replicate this procedure using groups 1 and 2 together as the input to the causal forest (step

1 above) and group 3 as the sample in which to compare predicted with actual (steps 2-4). There

are thus two rounds in which to assess performance.

We complete iterations of the above procedure with each of two causal forests calibrated in

slightly different ways. The first forest uses the same minimum node size as before (1,500) and

default values of all other parameters as provided by the grf package. The second uses the same

minimum node size but is otherwise “tuned” using the grf package’s built-in tuning algorithm.

We compare these two forest methods to five other methods: a lasso (least absolute shrinkage and

selection) estimator and four variants of a conventional regression-model approach (i.e., methods

without any machine learning).

Our lasso estimator considers a large number of candidate predictors of the outcome variable

(the pre-post difference in consumption). We include: the treatment dummy, all forest charac-

teristics, and dummies for service territory, zip code, revenue class, and tariff rate; interactions

between treatment and all other aforementioned characteristics; the squares of all continuous forest

14We define the dependent variable as the average monthly consumption in year 2 of HER receipt minus the
average monthly consumption one year prior to program start. We choose year 2 rather than year 3 because the
former yields a relatively larger sample size.
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characteristics as well as their interactions with treatment; decile dummies for all continuous for-

est characteristics and their interactions with treatment; double interactions between treatment

and every pair of forest characteristics; and splines of each forest characteristic (using deciles)

interacted with treatment.

In each of the four regression methods, we estimate treatment effects via OLS with a different

set of explanatory variables, all interacted with the treatment dummy. Method 1 (“Interacted”)

includes treatment interactions with all forest characteristics, their squares, and the product of

each combination of characteristics. Since this risks oversaturation and spurious correlation, we

define method 2 (“Parsimonious”) to be a simpler systematic model: a second-order Taylor se-

ries expansion based on all of the variables included in the forest. Method 3 (“Linear”) is more

parsimonious still: we include all forest variables linearly. Method 4 (“Pre-mean”) is meant to

mimic Opower’s targeting strategy by estimating treatment effect only as a function of baseline

consumption.

We judge the models along three dimensions that we believe might be relevant for a utility,

government, or other social planner. First, we check for monotonicity in within-quartile “actual”

treatment effects. Second, we inspect the magnitude of “actual” treatment effects in the top

quartile. Third, we calculate the average prediction error and average square prediction error of

each method.15

Table B1 reports the key results of our horserace: within-quartile predicted and actual average

treatment effects for each method in each round. For conciseness, we display results from only three

methods: the default forest, the second-order Taylor regression method, and the linear regression

method. These choices are motivated by the desire to compare a “standard” forest algorithm with

the best-performing alternative methods. Results from the remainder of methods are presented in

Table B2. Lasso is omitted from both tables; in our context, the lasso algorithm fails to uncover

any treatment effect heterogeneity because it never chooses to keep interactions between treatment

and household characteristics.

According to group 1 results (Panel A), none of the three methods stands out as clearly

superior. “Actual” ATEs drop monotonically in predicted quartile (from top to bottom) using all

three methods.16 The forest does identify a top quartile with a higher ATE than that of the two

displayed regression methods: -23.997 versus -19.535 and -19.692, respectively. More generally,

the forest method appears to do better at identifying households that belong in the outer quartiles

(1 and 4), while the regression methods sometimes do better at the inner ones (2 and 3). The final

15From our discussions with utilities, we have learned that they frequently submit energy efficiency plans for
future reduction in demand based on predictions of the Opower treatment effect.

16Note from Appendix Figure B2, however, that the tuned forest maintains monotonicity, while the other two
regression-based methods do not.
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Table B1: Horserace results for next-wave prediction, by method

Default Forest Parsimonious Regression Linear Regression

Predicted Actual Predicted Actual Predicted Actual

Panel A: Group 2

Quartile 4 -20.771 -23.997*** -24.700 -19.535*** -24.597 -19.692***
(4.427) (4.399) (4.393)

Quartile 3 -12.613 -14.703*** -16.203 -16.397*** -16.047 -15.469***
(3.633) (3.405) (3.430)

Quartile 2 -8.668 -14.348*** -10.595 -12.195** -10.525 -11.859***
(3.120) (3.182) (3.132)

Quartile 1 2.081 -4.852** -1.537 -9.309*** -1.753 -10.693***
(2.259) (2.492) (2.505)

Panel B: Group 3

Quartile 4 -11.009 -9.350 -13.587 -11.892 -13.342 -11.858**
(6.034) (5.218) (5.247)

Quartile 3 -0.666 -7.783** -5.139 -3.686 -5.254 -2.179
(3.869) (3.393) (3.273)

Quartile 2 2.988 -4.565* -0.502 -3.507*** -0.894 -4.793*
(2.401) (2.918) (2.854)

Quartile 1 5.342 -3.457 8.027 -4.229 7.705 -5.255
(2.284) (3.965) (4.021)

Notes: The “Predicted” column lists ATEs for the corresponding method, wave and percentile. The
“Actual” column lists the results of an OLS regression of the difference between year-2 post-treatment and
pre-treatment average consumption on treatment status, using wave fixed-effects and robust standard
errors. Standard errors are listed in parentheses. See the text of Appendix B for explanations of the
three methods. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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metric—prediction error—does not differ substantially across methods. For the default forest, the

average absolute-value prediction error is 4.48 kWh, while it is 3.68 kWh and 3.94 kWh for the

second-order and linear regression models, respectively. The corresponding comparison of average

squared prediction error is 23.78 versus 22.42 and 26.52.

All methods perform significantly more poorly in group 3 (Panel B). Here, the default forest is

the only method that generates monotonically falling actual ATEs in prediction quartile. However,

its top-quartile ATE is smaller than that of the other two methods (-9.35 versus -11.892 and -

11.858), and it does not perform better in terms of prediction accuracy. Average prediction errors

for the three methods are 6.28, 4.6, and 5.35, respectively, while average squared prediction errors

are 46.96, 41.06, and 48.71, respectively. The relative difference between group-2 performance

and group-3 performance is stark: there is far less statistical significance of within-quartile ATE

estimates, and prediction error is significantly higher. It is worth noting, however, that each

method correctly recognizes the relatively low actual savings of group 3.
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Table B2: Horserace results using alternative methods

Tuned Forest Interacted Regression Pre-mean Regression

Predicted Actual Predicted Actual Predicted Actual

Panel A: Group 2

Quartile 4 -20.847 -23.399*** -31.676 -20.598*** -21.385 -18.998***
(4.436) (4.149) (4.541)

Quartile 3 -12.629 -17.699*** -17.560 -15.592*** -14.845 -19.262***
(3.595) (3.518) (3.611)

Quartile 2 -8.468 -11.661*** -9.879 -8.095*** -11.696 -15.622***
(3.122) (3.273) (3.005)

Quartile 1 2.179 -5.516** 2.698 -14.231*** -4.963 -4.256*
(2.288) (2.902) (2.208)

Panel B: Group 3

Quartile 4 -10.824 -11.171* -23.514 -6.308** -16.395 -8.985
(5.915) (4.678) (6.232)

Quartile 3 -0.861 -4.394 -9.104 -4.416 -8.197 -8.766**
(3.790) (3.962) (3.635)

Quartile 2 2.250 -4.973** -1.006 -14.196 -5.930 -2.618
(2.441) (3.459) (2.424)

Quartile 1 4.938 -4.316 13.315 1.013 -4.703 -4.400**
(2.661) (3.800) (2.097)

Notes: The table displays horserace results for the three alternative predictive methods not displayed in
Table B1. The “Predicted” column lists ATEs for the corresponding method, wave and percentile. The
“Actual” column lists the results of an OLS regression of the difference between year-2 post-treatment and
pre-treatment average consumption on treatment status, using wave fixed-effects and robust standard
errors. Standard errors are listed in parentheses. See the text of Appendix B for explanations of the
three methods. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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To understand why all of the methods perform poorly in round 2, we turn to Tables B3 and

B4, which summarize the differences between the training set (“in-sample”) and the test set (“out-

of-sample”) in each round of the horserace. The results reveal how different the households are,

in-sample versus out of sample. All thirteen characteristics show statistically significant differences

in both round 1 and 2, and both F-statistics for joint significance are very high (576 and 1,016,

respectively). However, differences-in-means of several characteristics—including the two most

often-used characteristics in our forests—become significantly larger in round 2. For instance, the

difference in home value is twice as large in round 2 as in round 1, and the analogous difference

in baseline consumption is six times as large. Thus, round 2 of the horserace asks all methods

to make predictions on a test set (group 3) characterized by comparatively little overlap with the

training data (groups 1 and 2).
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Table B3: Summary Statistics for Training and Prediction Samples - Group 2

Training Predicted
Mean/SD Mean/SD Difference/SD

Home value ($) 373,917.884 259,937.190 113,980.694***

Home square footage 19.610 20.746 -1.136***

Annual income 103,470.842 85,237.971 18,232.871***

Education (1-5) 3.266 2.939 0.327***

Num Adults 2.602 2.521 0.081***

Number of Rooms in Home 7.064 7.094 -0.030*

Year home built 1,969.490 1,973.687 -4.197***

GreenAware score (1-4) 2.139 2.299 -0.161***

Renter (=1) 0.086 0.186 -0.099***

Single-family occupancy (=1) 0.882 0.858 0.024***

Child in home (=1) 0.450 0.489 -0.039***

Participated in EA (=1) 0.349 0.504 -0.154***

Age 57.964 56.716 1.247***

Baseline Consumption (kwh) 901.648 848.410 53.238***

F-test 576.239
(0.000)

Number of HH 406,637 49,192

Treatment propensity 85.1 71.13

Notes: Columns (1) and (2) display the mean of the listed household characteristic for the treatment
and control groups, respectively. Standard deviations are listed beneath in parentheses. Column (3)
checks for the difference between the sample used in training and the one used in prediction with respect
to the household characteristic. Results are from a regression with robust standard errors. ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01. P-values for the F-test are listed beneath the F-statistic in parenthesis.
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Table B4: Summary Statistics for Training and Prediction Samples - Group 3

Training Predicted
Mean/SD Mean/SD Difference/SD

Home value ($) 362,349.622 586,541.115 -224,191.493***

Home square footage 19.722 19.041 0.681***

Annual income 101,502.777 100,247.262 1,255.516**

Education (1-5) 3.231 3.508 -0.277***

Num Adults 2.593 2.120 0.473***

Number of Rooms in Home 7.066 7.083 -0.017

Year home built 1,969.914 1,961.840 8.074***

GreenAware score (1-4) 2.156 1.982 0.174***

Renter (=1) 0.097 0.189 -0.092***

Single-family occupancy (=1) 0.880 0.562 0.318***

Child in home (=1) 0.455 0.432 0.022***

Participated in EA (=1) 0.366 0.372 -0.006*

Age 57.833 53.604 4.229***

Baseline Consumption (kwh) 895.903 541.111 354.792***

F-test 1,016.023
(0.000)

Number of HH 455,829 34,232

Treatment propensity 83.6 76.35

Notes: Columns (1) and (2) display the mean of the listed household characteristic for the treatment
and control groups, respectively. Standard deviations are listed beneath in parentheses. Column (3)
checks for the difference between the sample used in training and the one used in prediction with respect
to the household characteristic. Results are from a regression with robust standard errors. ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01. P-values for the F-test are listed beneath the F-statistic in parenthesis.
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Appendix C - Additional Tables and Figures

Table C1: Summary Statistics for Connecticut

Total Unenrolled Enrolled Balance
(1) (2) (3) (4)

Monthly consumption (kWh) 667 459 942 0.31
(763) (892) (405) (1.25)

Home value ($) 328,597 298,403 364,200 -2,910*
(407,528) (408,132) (403,926) (1,742)

Home square footage 1,881 1,807 1,947 -1.56
(1,292) (1,501) (1,071) (4.94)

Annual income ($) 89,971 78,625 104,736 -564*
(67,346) (63,585) (69,215) (291)

Education (1-5) 3.01 2.85 3.22 -0.007
(1.25) (1.23) (1.24) (0.005)

Number of rooms in home 6.99 6.92 7.05 -0.014
(2.49) (2.87) (2.11) (0.010)

Year home built 1,969 1,966 1,971 0.020
(24) (25) (23) (0.112)

GreenAware score (1-4) 2.18 2.19 2.17 0.001
(1.11) (1.07) (1.16) (0.005)

Renter (=1) 0.171 0.240 0.102 0.003**
(0.377) (0.427) (0.302) (0.001)

Single-family occupancy (=1) 0.788 0.704 0.877 -0.003*
(0.409) (0.457) (0.329) (0.002)

Child in home (=1) 0.444 0.407 0.489 -0.002
(0.497) (0.491) (0.500) (0.002)

Participated in EA (=1) 0.298 0.301 0.294 -0.002
(0.457) (0.459) (0.456) (0.002)

Age 57.7 58.3 57.2 -0.064
(16.6) (18.3) (14.8) (0.071)

Observations 1,017,854 580,152 437,702
Notes: This table lists summary statistics for all HH in Connecticut (Column (1)), for HH that are not
enrolled in a HER program (Column (2)), for HH that are enrolled in a HER program and participated
in a wave with available pre-enrollment data (Column (3)). Column (4) checks for balance between
treatment and control. Baseline consumption for the unenrolled HH corresponds to average consumption
for the entire analysis period. Results are from a linear regression of the listed HH characteristic on
treatment status with wave fixed-effects and robust standard errors. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table C2: Summary Statistics for Eastern Massachusetts

Total Unenrolled Enrolled Balance
(1) (2) (3) (4)

Monthly consumption (kWh) 503 497 558 -1.01
(557) (578) (289) (2.39)

Home value ($) 592,696 591,035 607,259 -5,744
(443,623) (444,486) (435,717) (4,138)

Home square footage 2,060 2,071 1,973 -11.64
(1,926) (1,965) (1,611) (15.84)

Annual income ($) 97,388 96,721 103,486 353
(70,902) (70,775) (71,769) (597)

Education (1-5) 3.44 3.43 3.51 0.003
(1.27) (1.27) (1.29) (0.011)

Number of rooms in home 7.35 7.35 7.29 -0.053*
(3.09) (3.10) (3.05) (0.031)

Year home built 1,963 1,964 1,960 -0.023
(30) (30) (31) (0.329)

GreenAware score (1-4) 2.05 2.06 1.98 0.003
(1.09) (1.09) (1.08) (0.009)

Renter (=1) 0.216 0.220 0.188 -0.001
(0.412) (0.414) (0.391) (0.004)

Single-family occupancy (=1) 0.612 0.612 0.610 0.002
(0.487) (0.487) (0.488) (0.004)

Child in home (=1) 0.342 0.334 0.411 -0.001
(0.474) (0.472) (0.492) (0.004)

Participated in EA (=1) 0.290 0.280 0.371 0.000
(0.454) (0.449) (0.483) (0.004)

Age 56.3 56.4 55.5 -0.188
(17.2) (17.2) (17.1) (0.157)

Observations 922,802 832,851 89,951
Notes: This table lists summary statistics for all HH in Eastern Massachusetts (Column (1)), for HH
that are not enrolled in a HER program (Column (2)), for HH that are enrolled in a HER program
and participated in a wave with available pre-enrollment data (Column (3)). Column (4) checks for
balance between treatment and control. Baseline consumption for the unenrolled HH corresponds to
average consumption for the entire analysis period. Results are from a linear regression of the listed
HH characteristic on treatment status with wave fixed-effects and robust standard errors. ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01.
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Table C3: Summary Statistics for Western Massachusetts

Total Unenrolled Enrolled Balance
(1) (2) (3) (4)

Monthly consumption (kWh) 599 534 637 1.98
(1,273) (2,040) (347) (3.32)

Home value ($) 220,368 215,627 222,984 -1,538
(153,057) (173,478) (140,464) (1,500)

Home square footage 1,803 2,037 1,723 13.58
(1,465) (1,978) (1,232) (15.96)

Annual income ($) 67,663 60,280 71,917 -149
(52,110) (52,024) (51,682) (471)

Education (1-5) 2.82 2.69 2.90 0.010
(1.21) (1.20) (1.22) (0.011)

Number of rooms in home 6.93 7.58 6.70 0.005
(2.58) (3.24) (2.27) (0.028)

Year home built 1,961 1,959 1,962 0.149
(28) (30) (27) (0.300)

GreenAware score (1-4) 2.24 2.41 2.14 -0.013
(1.07) (1.03) (1.08) (0.010)

Renter (=1) 0.206 0.338 0.156 -0.000
(0.404) (0.473) (0.363) (0.004)

Single-family occupancy (=1) 0.819 0.704 0.866 -0.003
(0.385) (0.457) (0.340) (0.004)

Child in home (=1) 0.407 0.465 0.377 -0.007
(0.491) (0.499) (0.485) (0.005)

Participated in EA (=1) 0.417 0.397 0.426 0.003
(0.493) (0.489) (0.495) (0.005)

Age 57.5 49.9 60.1 0.075
(17.0) (17.7) (15.9) (0.166)

Observations 173,311 64,233 109,078
Notes: This table lists summary statistics for all HH in Western Massachusetts (Column (1)), for HH
that are not enrolled in a HER program (Column (2)), for HH that are enrolled in a HER program
and participated in a wave with available pre-enrollment data (Column (3)). Column (4) checks for
balance between treatment and control. Baseline consumption for the unenrolled HH corresponds to
average consumption for the entire analysis period. Results are from a linear regression of the listed
HH characteristic on treatment status with wave fixed-effects and robust standard errors. ∗p < 0.1,
∗∗p < 0.05, ∗∗∗p < 0.01.
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Table C4: Summary Statistics for New Hampshire

Total Unenrolled Enrolled Balance
(1) (2) (3) (4)

Monthly consumption (kWh) 558 505 795 -0.77
(442) (440) (364) (2.48)

Home value ($) 245,744 238,545 275,751 1,042
(166,378) (161,232) (183,283) (1,459)

Home square footage 1,885 1,844 2,017 1.79
(1,304) (1,370) (1,050) (8.94)

Annual income ($) 80,855 77,520 95,737 269
(57,082) (56,157) (58,780) (451)

Education (1-5) 2.95 2.91 3.14 -0.013
(1.13) (1.12) (1.17) (0.009)

Number of rooms in home 6.59 6.52 6.80 0.022
(2.29) (2.39) (1.95) (0.019)

Year home built 1,979 1,979 1,980 0.111
(24) (24) (22) (0.193)

GreenAware score (1-4) 2.29 2.32 2.19 0.001
(1.12) (1.11) (1.13) (0.009)

Renter (=1) 0.165 0.187 0.084 -0.000
(0.371) (0.390) (0.278) (0.002)

Single-family occupancy (=1) 0.795 0.768 0.896 -0.003
(0.404) (0.422) (0.305) (0.003)

Child in home (=1) 0.377 0.372 0.396 0.002
(0.485) (0.483) (0.489) (0.004)

Participated in EA (=1) 0.414 0.398 0.477 0.004
(0.493) (0.490) (0.499) (0.004)

Age 57.5 57.1 58.6 0.071
(15.3) (15.8) (13.5) (0.112)

Observations 393,075 321,699 71,376
Notes: This table lists summary statistics for all HH in New Hampshire (Column (1)), for HH that
are not enrolled in a HER program (Column (2)), for HH that are enrolled in a HER program and
participated in a wave with available pre-enrollment data (Column (3)). Column (4) checks for balance
between treatment and control. Baseline consumption for the unenrolled HH corresponds to average
consumption for the entire analysis period. Results are from a linear regression of the listed HH
characteristic on treatment status with wave fixed-effects and robust standard errors. ∗p < 0.1, ∗∗p <

0.05, ∗∗∗p < 0.01.
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Figure C1: Usage of characteristics in random forest for all post-treatment years
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Notes: The x-axis denotes the split level of a tree. The y-axis measures the percentage of trees that use
a household characteristic at the indicated split level. We plot percentages for the six most frequently-
used characteristics: baseline consumption, home value, home square footage, home year built, income,
and age of household respondent. See Section 3 for an explanation of the depicted results.
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Appendix D - Multiple Imputation

We use multiple imputation (MI) to fill in missing values of household characteristics. We im-

plement MI through the multivariate imputation by chained equations (MICE) approach. The

process can be broken down into the following steps:

1. We define a set of variables X1, . . . , Xn to be used in the imputation model. Every missing

value is filed in at random to act as a placeholder.

2. The placeholder values for the first variable with at least one missing value, X1, are returned

to missing and the observed vales of X1 are regressed on X2, . . . , Xn using a regression

model (e.g., linear, logistic) based on the data type of X1. Predictive mean matching (e.g.,

known-nearest neighbor) can also be performed.

3. The missing values of X1 are replaced by simulated draws from the posterior predictive

distribution of X1. In the remaining steps, X1 consists of the observed and imputed values.

4. Repeat steps 2-3 for the remaining n−1 variables where the value of each variable is updated.

For example, the next step would be to regressX2 is regressed on the newly imputed values of

X1 andX3, . . . , Xn and estimate missing values ofX2 with draws from its posterior predictive

distribution. A “cycle” is said to have passed when all variables have been imputed.

5. Repeat steps 2-4 for 20 cycles to stabilize the results. The placeholder values at the start

of each cycle are the imputed values from the previous cycle. A single imputed dataset is

produced at the end of all 10 cycles.

6. Repeat steps 1-5 M number of times. (White et al., 2011) suggests that a rule of thumb for

deciding M is that M should be a least equal to the percentage of incomplete cases in the

dataset.

47



MIT CEEPR Working Paper Series is published by 
the MIT Center for Energy and Environmental 
Policy Research from submissions by affiliated 
researchers.

Copyright © 2019
Massachusetts Institute of Technology

MIT Center for Energy and  
Environmental Policy Research 
77 Massachusetts Avenue, E19-411
Cambridge, MA  02139 
USA

Website: ceepr.mit.edu

For inquiries and/or for permission to reproduce 
material in this working paper, please contact:

Email	 ceepr@mit.edu
Phone	 (617) 253-3551
Fax	 (617) 253-9845

Since 1977, the Center for Energy and Environmental Policy Research (CEEPR) has been a focal point for research on 
energy and environmental policy at MIT. CEEPR promotes rigorous, objective research for improved decision making 
in government and the private sector, and secures the relevance of its work through close cooperation with industry 
partners from around the globe. Drawing on the unparalleled resources available at MIT, affiliated faculty and research 
staff as well as international research associates contribute to the empirical study of a wide range of policy issues 
related to energy supply, energy demand, and the environment.
 
An important dissemination channel for these research efforts is the MIT CEEPR Working Paper series. CEEPR 
releases Working Papers written by researchers from MIT and other academic institutions in order to enable timely 
consideration and reaction to energy and environmental policy research, but does not conduct a selection process or 
peer review prior to posting. CEEPR’s posting of a Working Paper, therefore, does not constitute an endorsement of 
the accuracy or merit of the Working Paper.  If you have questions about a particular Working Paper, please contact 
the authors or their home institutions. 


	Knittel-Stolper---2019-11-25.pdf
	Empirical Context
	Data

	Empirical Strategy
	Estimation of average treatment effects
	Causal Forests

	Results
	Average treatment effects
	Conditional average treatment effects, via causal forest

	Economic Benefits of Targeting
	Conclusion




