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The solar industry in the United States typically uses a standard credit score, such as a FICO 
score, as an indicator of consumer utility payment performance and credit worthiness to approve 
customers for new solar installations. Using data on over 800,000 utility payment performance 
and over 5,000 demographic variables, we compare machine learning and econometric models 
to predict the probability of default to credit-score cutoffs. We compare these models across a 
variety of measures, including how they affect consumers of different socio-economic 
backgrounds and profitability. Relative to FICO, the machine learning model increases the number 
of low-to-moderate income consumers approved for community solar by 1.1% to 4.2% depending 
on the stringency used for evaluating potential customers, while decreasing the default rate by 
1.4 to 1.9 percentage points. Using electricity utility repayment as a proxy for solar installation 
repayment, shifting from a FICO score cutoff to the machine learning model increases profits by 
34% to 1882%  depending on the stringency used for evaluating potential customers.   

 
Most solar companies currently use credit scores to 
determine whom to approve for solar installations. 
Despite their widespread use, credit scores consider 
many aspects of a consumer's credit history that are 
not directly related to utility payment; therefore, the 

FICO score is an imperfect proxy for predicting utility 
payment performance. This implies that traditional 
credit score cutoffs exclude people with low credit 
scores and those with insufficient credit history, which 
disproportionately hurts low-to-moderate (LMI) income 
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households.  
The goal of this research is: (1) to develop an 

alternative prediction model of default based on 
machine learning algorithms, specifically LASSO, 
SVM, and random forests; and (2) to compare its 
overall forecasting performance, as well as its 
implications for LMI consumers, to traditional credit 
metrics. We do so by developing a model that predicts 
the probability of non-delinquency of utility bill 
payments using a large data set of utility repayment 
and other financial data obtained from a credit 
reporting agency (CRA). We find that a traditional 
regression analysis using a small number of variables 
specific to utility repayment performance greatly 
increases accuracy and LMI inclusivity relative to FICO 
score, and that using machine learning techniques 
further enhances model performance. 

A number of regression and machine learning 
techniques were used to predict utility bill delinquency. 
Among the variety of models that we explored, the 
random forest algorithm was clearly superior in terms 
of accuracy. Moreover, the random forest algorithm not 
only has better accuracy, but it also requires less data 
pre-processing. Finally, it is easier to interpret and runs 
more quickly.  

The alternative scoring methods developed with 
traditional regression analysis and machine learning 
techniques were compared to standard FICO cutoffs, 
with a number of different metrics, including accuracy, 
default rate, and LMI inclusion.  

For example, Figure 1 displays the probabilities of 
non-delinquency using the random forest algorithm 
against the individual's FICO Score. There are many 
individuals who have a high probability of non-
delinquency with the random forest algorithm, but do 
not have a very high FICO score, which demonstrates 
the amount of people that would have been rejected 
with the FICO cutoff, but accepted according to the 
random forest algorithm ("false negatives"). 
Additionally, there are quite a few data points with high 

FICO scores but do not have a very high probability 
with the random forest algorithm, who would be 
erroneously accepted ("false positives"). Figure 1 
suggests that there are a high numbers of false 
negatives and false positives under traditional FICO 
scoring. Though the FICO Score is one variable used 
by the random forest algorithm, there are many other 
variables as well. 

Importantly, the random forest algorithm, when 
tested with both 30 and 90 day definitions of 
delinquency, increase the number of LMI applicants 
approved. The random forest algorithm using a 30 day 
definition increases the number of LMI accounts 
approved by 11.4% to 14.0% depending on the 
stringency, while that using a 90 day definition 
increases LMI customers by 1.1% to 4.2%.  

Finally, the impact of the alternative scoring 
methods on the profitability is estimated. The results 
shown in the paper demonstrate that the random forest 
algorithm leads to an increase in profits for the firm, 
which is a very significant result from our study. The 
random forest algorithm both benefits the customers, 
by accepting more LMI customers, and benefits the 
firms, by increasing profits.  

We can decompose the increase in profits from 
the random forest algorithm to two sources. First is the 
increase in profits due to accepting new customers 
who would have been denied under the FICO score 
cutoff, or a decrease in false negatives (π from New 
Customers). Second is a reduction in losses from 
rejecting those who are accepted under the FICO 
Score cutoff but whom the random forest algorithm 
identifies as high-risk, or a decrease in false positives 
("π from Less Delinquents").  

Overall, the random forest algorithm improves 
accuracy when compared to the FICO Score, offers 
access to solar energy for more LMI customers, and 
leads to an increase in profits when compared to the 
FICO score cutoff, regardless of the stringency of the 
industry standard. 
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