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I. Introduction

Automobile usage imposes substantial social costs, including the greenhouse gas emissions,

local pollution that is harmful to human health, tra�c congestion and accidents, and oil

dependency (Parry et al. 2007, Currie and Walker 2011, and Knittel et al. 2016). While

economists often advocate gasoline taxes to address these externalities, policy makers often

rely on more costly fuel economy standards (Austin and Dinan 2005 and Jacobsen 2013). A

major source of the ine�ciency of fuel economy standards is that they reduce marginal cost

of driving. This leads to two ine�ciencies on the intensive margin. The first has been well

documented: drivers will drive too many miles compared to the social optimum. This is known

as rebound. Reducing the marginal cost of driving leads to a second e↵ect, the magnitude

of which is less well known. In particular, on-road fuel economy will su↵er through changes

in either driving style or vehicle maintenance. Despite the potential importance of these

behavioral responses, we know little about this latter e↵ect. A major di�culty in estimating

this e↵ect is the lack of extensive and systematic data on fuel consumption at the micro level.

Instead, most existing studies rely on imperfect and often highly aggregated panel data, such

as monthly gasoline consumption at the state level (see, for example, Hughes et al. (2008)).

In this study, we investigate the short-run price elasticity of demand for gasoline con-

sumption using innovative, high-frequency data, collected from a mobile phone application.

The data report detailed micro-level information on gasoline consumption, vehicle distance

traveled, and gasoline prices paid at the refueling level over 90,000 drivers for 10 years.

The use of such micro data allows us to make unique contributions in three aspects. First,

by observing actual prices paid by individual drivers for fuel at every refueling level, we

can estimate the own-price elasticity of demand for gasoline at the driver-vehicle level. Sec-

ond, we can decompose the impact on fuel consumption into those behavioral changes that

capture changes in vehicle distance traveled and adjustments in driving style and vehicle

maintenance, as reflected in actual on-road fuel economy. Lastly, we can explore the extent

to which drivers adjust their actual fuel economy in response to a series of past gasoline

prices to understand habit formation of fuel-conserving driving behaviors from past events.

In addition to these, we also investigate asymmetric price e↵ects across price increases and

decreases.

We estimate an average elasticity of around -0.37. This is larger than conventional es-

timates of -0.02 to -0.04 in the macroeconomic forecast analysis (U.S. Energy Information

Administration 2018) or -0.034 to -0.077 from 2001 to 2006 in Hughes et al. (2008).1 Our

1See the similar estimates summarized in Lin and Prince (2013). Also note that Li et al. (2014), and
indirect so does Davis and Kilian (2011), documents evidence that changes in gasoline taxes are more salient
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estimate is similar to recent work by Levin et al. (2017) which uses daily expenditure data

from credit card receipts.

We next split our elasticity estimate into the elasticity of vehicle-kilometer traveled

(VKT) to gasoline prices and the price elasticity of actual on-road fuel economy achieved.

Our VKT elasticity is -0.30. The magnitude is also greater than the short-run elasticities

estimated in other studies (e.g., the one month elasticity in the 2000s is -0.07 in Hughes et

al. (2008) and -0.02 between 1997 and 2001 in Small and Dender (2007)), and our estimates

are even larger than the medium-run or long-run elasticities of around -0.123 over two years

in Knittel and Sandler (2018) and -0.15 in Gillingham (2011).

We also find meaningful response of on-road fuel economy to changes in gasoline prices,

likely manifesting itself through changes in driving style and/or changes in vehicle mainte-

nance behavior. The price elasticity of actual fuel economy is roughly 0.07. We are one of

the first, if not the first, to estimate this key parameter.2 Yet, growing discussions in the

energy e�ciency gap suggest great potential for behavioral adjustments on the energy cost

savings (Allcott and Greenstone 2012). We shed a new light on driving behavioral adjust-

ments drivers make for given distance in response to price changes. The existing literature on

the price e↵ect on fuel economy is exclusively limited to the extrinsic margin, in which high

gasoline prices incentivize consumers to switch to high fuel e�cient vehicles (Li et al. 2009,

Klier and Linn 2010, Busse et al. 2013). In contrast, evidence on the intrinsic margin, in

which consumers respond to day-to-day fluctuations in gasoline prices, is remarkably absent.

Our evidence highlights a relatively unexploited channel through which fuel consumption

responds to prices.

We further investigate whether the price e↵ects on on-road fuel economy persist or fade

away over time; are these e↵ects capturing drivers learning how to drive better or a short-

term response to price changes? By relating the current actual fuel economy to all past

prices paid by the drivers, we find that the recent prices have greater explanatory power

than distant past prices, suggesting that there is little learning or habit formation from the

past events that persists over time.

Additional analysis shows substantial asymmetry in the price elasticity of demand for

gasoline consumption when gasoline prices rise or fall. The neoclassical economics theory

predicts that comparable price changes have similar e↵ects regardless of the direction of

to consumers than day-to-day fluctuations in the tax-exclusive gasoline prices. Both papers find elasticity
estimates in line with our own when focusing on variation in gasoline prices coming from changes in gasoline
even when using more aggregate data.

2While not the focus of the paper, Langer and McRae (2017) includes regressions of trip-level fuel con-
sumption for 108 drivers that were loaned a set of identical Honda Accords over forty days. They find that
increases in gas prices increased fuel consumption, but do not untangle why this is. Given the short time
period it may be the case that gas prices varied little making it di�cult to identify the true response.
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its change. In contrast, the behavioral model of loss aversion proposed by Kahneman and

Tversky (1979) suggests that consumers perceive a price increase more greatly than an

equivalent price decrease. While a growing body of studies document evidence in favor of

the behavioral model (DellaVigna 2009), little is known about whether this asymmetric price

e↵ects holds for gasoline, a product for which price has been extremely volatile, and demand

is found to be relatively price inelastic (Lin and Prince 2013). The order of the magnitude

when price goes up from the previous purchase is -0.42, nearly twice greater than that for

falling prices of -0.22, suggesting that consumers are highly more sensitive to increasing

prices than decreasing prices. The magnitude of our estimated short-run elasticity for price

increase is close to the range of the long-run elasticities in other studies (e.g., -0.11 in Small

and Dender (2007) from 1997 to 2001, -0.35 in Bento et al. (2009), and similar estimates

summarized in Graham and Glaister (2002)).

This article proceeds as follows. Section II describes the primary data we use for the

analysis. Section III examines the price elasticity of demand for gasoline consumption, vehicle

distance traveled, and actual fuel economy. Section IV examines the learning e↵ect of a

history of prices paid on the current driving behavior. Section V explores the heterogenous

price elasticities across various dimensions. Section VI concludes.

II. Data3

The primary data on the on-road fuel consumption are collected by a private company

through a unique mobile phone application. Drivers can freely download and use the ap-

plication to learn about their own real-world fuel economy relative to that of other drivers

driving the same configuration of vehicles4 and tips to improve driving behaviors to save

fuel costs. For this purpose, drivers report the amount of fuel purchased to fill the tank

completely and the odometer value at every refueling level, from which fuel consumption

and the distance traveled can be obtained.

For each observation, we can also identify the date and time of the purchase, the price

of gasoline paid,5 and prefecture of the gasoline station where the purchase was made. The

average daily (i.e. 24-hour) fuel consumption and distance traveled are computed using the

date and time for the two consecutive refuels. The actual fuel-economy figures are computed

by dividing the distance traveled by the gasoline consumption.

3See Online Appendix A for more detailed description of the data and the variables construction.
4The vehicle configurations can be uniquely matched at the detailed level of model, manufacturing year

and month, displacement size, weight, engine type, wheel drive type, body type, and transmission type.
5All prices are converted into the 2010 January value using the monthly consumer price index reported

by the Statistics Bureau of Japan.
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The technology to photograph receipts and odometer for reporting simplifies the process

and helps minimize the typing errors (see Online Appendix Figure A.1). In addition, the

drivers can indicate if there is any unreported refuelling since the last report to avoid inflat-

ing distance traveled for the reported fuel consumption. The additional processes to guard

against outliers and unreasonable values are described in Online Appendix A. Our sample

is limited to gasoline-powered passenger vehicles and minicars6 manufactured by domestic

automakers.

Table 1 reports the summary statistics of our final sample used for the analysis. In total,

the sample includes over 4 million observations of fuel consumption at every refueling from

2005 to 2014 for more than 90,000 driver-vehicle pairs driving more than 3,900 configurations.

On average, drivers consume 3.54 liters per day (L/day) (equivalent to 0.93 gallons per day),

drive 36.7 kilometers per day (km/day) (22.8 miles), and pay U136.6 per liter ($5.21 per

gallon). Average frequency of refueling is every 14.1 days. The observations come from every

prefecture with some preponderance on large prefectures such as Saitama, Kanagawa, Aichi,

Tokyo, Chiba, and Osaka (Online Appendix Table A.2).

It would be ideal to have randomly selected representative drivers record on-road fuel

consumptions at every trip. In the absence of such data, our data rely on information sub-

mitted by drivers who voluntarily engage with the application. We can compare VKT, fuel

consumption, and average fuel economy in our sample to a representative sample of Japanese

drivers and vehicles from the Annual Statistical Report on Motor Vehicle Transport.7 Our

sample drives more, consumes more gasoline, but has greater fuel economy. The survey re-

ports an average VKT for vehicles, conditional on driving during a given day, that is quite

close to our average; the survey’s average is 35.5 km/day, compared to our average of 36.7

km/day. However, once you account for the fact that vehicles in the national survey are only

driven 67.0% of the days, the unconditional mean in the survey is lower (23.8 km/day). The

gasoline consumption per day in the national survey is 3.62 L as opposed to 3.54 L/day in

our sample, which translates into actual fuel e�ciency of 10.01 km/L in the survey, and this

6Minicars (called “kei-cars”) constitute one of the primary classifications of vehicles in Japan. They are
tiny vehicles whose displacement is 660 cubic centimeter or lower and are popular because roads are typically
narrow, and automobile-related taxes are substantially lower than those imposed on passenger vehicles.

7This is one of the fundamental statistics managed by the Ministry of Land, Infrastructure, Transport
and Tourism (MLIT). The survey is conducted every month for randomly selected owners of all registered
vehicles with the sample size of 33,000 vehicles in February, June, and October, and 10,000 vehicles in
the remaining months. The subjects are mandated to answer the survey. The reports (both monthly and
annual) can be downloaded directly from the MLIT website. We use the report in 2009 because the data
after 2010 report vehicles for business use only. We also use the values based on the passenger transport
instead of the freight transport. These values are reported separately for passenger cars and minicars. We
use the share of passenger cars in our data to compute the weighted average. Unfortunately, there is no
information on national average o�cial fuel economy of vehicles on the road to investigate the similarity of
vehicle composition of our sample in this respect.
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is lower than our average fuel e�ciency of 10.85 km/L.

Given how drivers select into the sample—the app’s goal is to provide information on

how drivers can improve their fuel e�ciency—one may expect our estimated fuel economy

elasticity to be larger than the population’s. However, it is not clear whether they will have a

larger elasticity than the population. It may be the case that they turned to the app as a way

to respond to gasoline prices because they have less discretion over their VKT. Below, we

explore heterogeneities in the estimated elasticities across various dimensions to o↵er some

insights on how the elasticities would look like for the general population relative to what

we find in our sample.

Appendix Figure A.2 plots the weekly observations of the national average retail gasoline

prices per liter over our study period. Clearly, the prices have been very volatile during this

time; the prices have gone up and peaked at U185.0 on August 4, 2008 but declined sharply

to the bottom value of U110.3 on January 13, 2019, and have been rising more steadily

ever since. Note that the price trend is very similar to that of the U.S. during this period,

although the fuel prices in Japan are substantially higher than those in the U.S. The short-

term fluctuations in fuel prices as illustrated provide an important source of variation for

our identification of demand elasticities.

III. The Price Elasticity of Demand for Gasoline

We begin with a simple log-log model of gasoline demand, given by:

lnYivt = ↵ + � ⇥ lnPriceivt + µt + ⌫iv + "ivt, (1)

where lnYivt denotes the log of gasoline consumption per day (L/day) for driver i, driving

the vehicle v, at time t, and Priceivt is the fuel price per liter paid by driver for that amount

of gasoline consumption. We include a variant of the time fixed e↵ects, µt, to control for

any correlations between gasoline consumption and gasoline price. This is crucial because

there are strong seasonality e↵ects in both demand for gasoline and fuel prices, whereas the

macroeconomic conditions can also lead to a spurious correlation. In our preferred model,

we include the year-by-month fixed e↵ects to account for the transitory shocks specific to

each month of the year.

One advantage of our data is that we can include the driver-by-vehicle fixed e↵ects,

⌫iv, which allows us to estimate the relationship within the driver-vehicle levels.8 Thus, any

8In our sample, 79.0% of all drivers are matched with a single vehicle, whereas 16.8% report two vehicles.
It would be pointless given the purpose of the program for multiple drivers to report for a single vehicle.
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heterogeneity across drivers that is likely to correlate gasoline consumption and fuel prices

paid will not be a threat to identification. We compare our results with those that would

be estimated in comparable studies using the vehicle model fixed e↵ects to understand the

potential bias that may arise.

An important identification issue is reverse causality. For instance, drivers can search

for cheaper gasolines when they consume more, in which case the estimated elasticities are

overstated. Alternatively, when drivers drive a long distance on highways (which are all toll

roads in Japan) or in rural areas, drivers are more likely to pay high gasoline prices due to

little competition among gasoline stations, as drivers are required to utilize gasoline stations

at the service areas or those out of few options in rural areas, causing a positive correlation

between fuel consumption and prices paid.

To address this issue, we use the instrumental variable (IV) approach to estimate the

model. The first stage of the IV model is:

lnPriceivt = � + � ⇥ lnPricet + µt + ⌫iv + ✏ivt, (2)

where actual prices paid by drivers are instrumented by Pricet, the average gasoline price

in the same prefecture on the date of the purchase.9

The coe�cient of interest, �, estimated in the second stage of the IV model measures the

price elasticity of demand for gasoline consumption. The identification assumption is that

after controlling for time e↵ects, the day-to-day fluctuations in gasoline price in the market

are orthogonal to unobserved factors that a↵ect the driving decisions by individual drivers

other than going through the fuel prices paid. This is a common assumption and likely to

hold as the market price of gasoline is determined largely by the world supply and demand of

crude oil (Knittel and Sandler 2018). All standard errors are clustered at the driver-vehicle

level.

Figure 1 plots the elasticities estimated from various models (individual coe�cients are

presented in Table 2) and the distribution of prices paid by individual drivers in our sample.

The coe�cient estimated from the OLS model is positive (shown in Column (1) in Table 2),

suggesting that the endogeneity of price results in substantial upward bias in the estimated

elasticity.10 Conversely, all estimates illustrated in the figure based on either IV or the reduced

9The national average daily prices are obtained from the same company that we obtained the fuel con-
sumption data. The information is available only after 2010. For data before 2009, we use the weekly gasoline
retail prices at the prefecture level reported by the Institute of Energy Economics, Japan. We computed the
daily fuel prices for non-reported days by taking the arithmetic averages of the two most recently reported
values. All fuel prices are converted into the January 2010 yen using the consumer price index.

10This evidence e↵ectively suggests a limited role of searching behaviors by drivers in biasing the estimates.
Dorsey et al. (2019) also show little search by drivers in choosing where to stop for gasoline by tracing all
trips made and refueling patterns by 108 drivers driving the test vehicles for forty days.
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form models show consistently negative elasticities. The model with only the basic year and

month fixed e↵ects suggests less elastic demand. In contrast, all estimated elasticities with

more granular time fixed e↵ects present relatively more elastic demand with the order of

-0.213 to -0.371. The preferred IV model with the year-by-month fixed e↵ects produces an

estimated elasticity of -0.371, which represents an order of magnitude more elastic than

those inferred from aggregate gasoline expenditure data. To put this into the context, our

estimated elasticities suggest that a one standard deviation increase in fuel prices leads to

about a 4.14%, or 0.146 L, fewer gasoline consumption a day.

To see how gasoline consumption is determined, we decompose the e↵ect between the

vehicle distance traveled and the actual on-road fuel economy of the vehicle. These results

are reported in Columns (6) and (7) of Table 2. We find that about 81% of reductions in fuel

consumption come from reduced vehicle distance traveled, whereas the remaining 19% come

from improvement in fuel conserving driving behaviors. The estimated elasticities are -0.302

for vehicle distance traveled and 0.070 for actual fuel e�ciency, and both are statistically

significant at the 1% level, suggesting that a one standard deviation increase in gasoline

prices leads to a 3.37% (1.237 km) fewer vehicle distance traveled a day and a 0.776% (0.084

km/L) increase in actual fuel economy.11 These findings highlight the importance to account

for driving behaviors in fully understanding how gasoline prices a↵ect fuel consumption.

We conduct several robustness checks to these results. First, we include observations

of extremely long vehicle distance traveled12 and repeat the same analysis. The results are

consistent with our findings above (Online Appendix Table B.4). Notably, the point estimate

with the OLS model enlarges, whereas all estimates based on the IV model are smaller in

magnitude. This is consistent with our story that positive bias arises due to higher gasoline

prices paid by longer distance drivers (driving on toll roads or rural places). In contrast,

these extremely long distance drivers are less elastic to prices possibly because these trips

cannot be simply reduced.

Second, we explore alternative functional forms, in particular linear and semi-log models.

The double-log specifications, as we model in the main analysis, is the most conventional in

the literature. Yet, some have proposed for other specifications (Hsing 1990). We find that

the findings are robust to both linear and semi-log functional forms (Online Appendix Table

B.5).

11It is worth noting that since drivers have control over and simultaneously determine all three variables:
gasoline consumption, distance traveled, and actual fuel economy, their relationship should not be interpreted
as causal but only indicate a correlational relationship among the three variables.

12The main analysis removes observations beyond 100 km/day of daily distance traveled since they are
unlikely to reflect normal driving distances in Japan. Nonetheless, this robustness check includes observations
of up to 250 km/day, a 6% increase in the number of observations.

7



Finally, we also define fuel prices based on the average fuel price of all days since the last

refuel until this time as the main independent variable, in Table B.6. Our results are robust

to this alternative definition.

The comparison of our results to those estimated only with the vehicle configuration fixed

e↵ects (presented in Online Appendix Table B.7) reveals that the elasticities estimated with

driver-vehicle fixed e↵ects are consistently more elastic, suggesting that estimates based on

repeated cross-sectional data (e.g., the National Household Travel Survey in the U.S.) may

be understated. This provides strong support to account for important heterogeneities across

drivers to better estimate the demand elasticities.

IV. Learning E↵ect

The evidence thus far suggests that drivers alter their driving style (or vehicle maintenance)

in response to price changes. The second question we investigate is how persistent such e↵ects

remain over time. To test this, we explore whether the fuel prices paid in the distant past

a↵ect behavior in similar ways than more recent prices, where we can measure driving style

via real-world fuel economy. Implicitly, this is a test as to whether there is a utility cost

of driving less aggressively. If consumers value aggressive driving either because it provides

utility directly or through their value of time, then the e↵ect of gasoline prices on real-world

fuel economy will be temporary. If, instead, high gasoline prices prompt consumers to learn

about the virtues of less aggressive driving, we will see long-run e↵ects from price changes.

One way to flexibly estimate the e↵ects from past events is to separately include all prices

paid in the past at every refuel level by estimating a distributed lag model of the form:

lnYivt = ↵ +
kX

j=0

�j lnPt�j + µt + ⌫iv + ✏ivt, (3)

where Pt�j is the price paid at the j-th previous refuel.

However, such a flexible estimation faces two challenges. First, prices paid this time and

the recent past are highly serially correlated. For instance, the correlation coe�cient between

the price paid for this cycle and the previous one is 0.959.13 Second, we do not observe a

consistent set of past prices across, and even within, drivers, since refills do not occur at

fixed intervals. With these issues being noted, below we present the results when we include

the six most recent prices paid by a given driver.

We formalize an approach based on the household finance models within the seminal

works of Ulrike et al. (2011), Greenwood and Shleifer (2014), and Malmendier and Nagel

13Online Appendix Table C.1 shows the correlation coe�cient matrix for the most recent six prices paid.
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(2016).14 In particular, we summarize all prices paid in the past as a weighted average of those

prices, while allowing the weight to increase, be constant, or decline over time. If the weight

is constant, then all past prices a↵ect behavior equally, if the weight is increasing over time,

then more recent prices matter more, while if the weight is decreasing over time, consumers

are adopting behavioral changes that are not costly once adopted. Most importantly, we

allow the data to identify the weighting function. In particular, for each price paid at the

k-th refuel, we construct the following weighted average of past prices:

⌦ivk(�) =
kX

j=0

wj lnPt�j, (4)

and

wj =
�j

Pk
m=0 �

m
, (5)

where the sum of all past weights is equal to one.

The parameter � determines how quickly fuel-consuming driving manners die out in

actual driving behaviors. To illustrate how the parameter � determines the shape of the

weighting function, Figure 2 Panel A plots the weights for a 100th refuel for two values of

�. If � > 1 (e.g., for � = 1.1), the weight is decreasing over time, assigning greater weights

toward past prices, and thereby being indicative that current driving behavior is influenced

more by the distant past events. Alternatively, for � < 1 (e.g., � = 0.9), the influences of

past events fade away, while the recent events carry greater weights on the current driving

behaviors. With � = 1, each event in the past is equally weighted.

The cost of this approach, compared to a distributed lag model, is that the weighting

function is more parametric and constrained to be monotonic.

In our estimation, we include all prices paid from the first observation in our data and

simultaneously estimate the price elasticity of demand and the weighting parameter by the

specification:

lnYivt = ↵ + � ⇥ ⌦ivk(�) + µt + ⌫iv + eivt, (6)

where the outcome variable of interest is the log of actual fuel economy.15 Because ⌦ivk(�) is

a nonlinear function with respect to the weighting parameter, �, we adopt a nonlinear least

14Ulrike et al. (2011) studies the e↵ect of life-time experiences in stock market returns on current risk
attitudes and financial market participation; Greenwood and Shleifer (2014) studies investor’s expectation
of future stock market returns as a function of a series of past returns; and Malmendier and Nagel (2016)
show how the lifetime experiences of inflation form the future inflation expectation.

15To reduce the computational burden, we adopt the reduced form analysis with year and month fixed
e↵ects and include up to 100th refuel, which accounts for 87% of all sample. The evidence on the actual fuel
economy suggests that including up to 200th refuel, accounting for 98% of all observations, remains similar.
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squares method that minimizes the sum of squared residuals. As starting values, we first

estimate the model without the weighted average of past prices to obtain the parameters for

other variables and set them as well as � = 1.

Figure 2 Panel B plots the estimated � for KPL (individual coe�cients and � values

are reported in Online Appendix Table C.2 for all three dependent variables: KPL, VKT,

and gasoline consumption).16 For all variables, the estimated �’s are statistically significantly

lower than one, suggesting that more recent prices have greater impacts on the current driving

behaviors than the distant past prices. This suggests that although changes in driving style

can increase fuel economy, there is a utility cost to these changes. Therefore real-world fuel

economy will depend only on the current price of gasoline and not past prices.

The results based on Equation (3) also provide consistent evidence that the driving

behaviors respond to the most recent prices more strongly than the second or third most

recent prices paid (Online Appendix Table C.4). The point estimates suggest that the e↵ects

of recent prices quickly lessen; even the fifth most recent prices have no longer any influence

on the current behavior. The finding that there is little path dependence in driving behaviors

contrasts with recent evidence by Severen and van Benthem (2019) showing that consumers

who experienced the 1979/80 oil crisis around age 16 substantially lowered vehicle usage

later years at both extensive and intensive margins.

V. Asymmetric Price Elasticities of Demand

The final part of our analysis explores the heterogeneity of elasticities across a number of

dimensions. We start with comparing elasticities across price increases and decreases, where

the price change is based on the price at the previous fill up. The neoclassical economic

theory predicts that consumers respond similarly to the given price changes regardless of the

direction. To simplify the analysis, we focus on the reduced-form analysis where the outcome

variable is regressed upon the daily average gasoline price in the market on the day of the

purchase.17 In particular, the regression models are:

16We focus our discussions on � because the estimated � has little economic interpretation. The coe�cient
� measures how much the outcome changes with respect to a unit change in ⌦ivk(�), holding everything
else constant. Thus, multiplying � by ⌦ivk(�) with the estimated weight wj(�, j) measures the e↵ect of price
paid at j-th time ago on the current outcome.

17The reduced-form approach helps avoid the case of multiple endogenous variables with multiple instru-
mental variables, which makes the interpretation of their coe�cients di�cult. Nonetheless, we also conducted
the instrumental variable approach and present the results in Online Appendix Table D.1. In general, the
estimated elasticities from the IV regressions are greater than those from the reduced-form regressions.
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lnYivt = ↵ + �+ ⇥ lnPrice+vt + �� ⇥ lnPrice�vt + ⇢⇥ 1(Pvt � Pvt�1) + µt + ⌫iv + "ivt, (7)

where

Price+vt = P ⇥ 1(Pvt � Pvt�1)

Price�vt = P ⇥ 1(Pvt < Pvt�1),
(8)

and 1(·) is an indicator function.

Figure 3 shows the estimated elasticities with 95% confidence intervals (individual coef-

ficients are presented in Online Appendix Table D.1). For each elasticity, we compute and

list changes in the amount of gasoline consumption per day with respect to a one standard

deviation increase in fuel prices and its associated 95% confidence interval. What is striking

is that the elasticity is substantially higher when prices go up than when they go down

with elasticities of -0.415 and -0.224 respectively, suggesting that drivers are relatively more

sensitive to increased prices than decreased prices.18 The evidence that for a given amount

of price change, consumers perceive a price increase more strongly than a price decrease is

consistent with the behavioral model of loss aversion (Kahneman and Tversky 1979).

In addition, we explore if elasticities di↵er when prices are above or below the mean value

of what individual drivers paid during the study period.19 The coe�cients are estimated from

the single regression when Equation (8) is replaced by:

Price+vt = P ⇥ 1(Pvt � P̄ )

Price�vt = P ⇥ 1(Pvt < P̄ ),
(9)

where P̄ = 1
N

PN
t=0 Pivt, and N represents the total number of observations for each driver-

vehicle pair in our data. We find that the elasticity is higher when prices are low relative to

when they are high. Combining this result with the results with respect to price increases

and decreases is consistent with consumers being more responsive to price increases in the

very short period but soon adapt to persistently high prices. However, we can not rule out

the case where elasticities vary over time and prices are mean reverting and those periods

with price increases are also periods where prices are low.

18Note that the weighted average elasticity of these two cases, which is essentially the � coe�cient in
Equation (1) when 1(Pvt � Pvt�1) is additionally controlled for, is -0.321 with the standard error of 0.025.

19We take advantage of our observations of the history of prices individual drivers paid with the expectation
that prices each driver paid are more salient than the market prices. Nonetheless, we also repeated the analysis
using the market average price during the same period, and the results are similar.
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Next we explore heterogeneity across drivers in our sample and the vehicles they drive.

We split the sample by the vintage of the vehicle, the fuel economy, vehicle type, when the

driver signed up with the app, and the average distance the driver drives per day. We find that

drivers with more recently manufactured vehicles than the average time in our sample are

more elastic than those driving older vehicles, and those who are driving more fuel e�cient

vehicles than the average in our sample are more elastic than the counterparts. We also find

that drivers of minicars are more elastic than those of passenger vehicles, indicating that

those who prefer smaller and thus cheaper cars are more elastic. Online Appendix D show

that drivers of cheaper cars consistently have greater elasticities among both passenger cars

and minicars owners. Together, consumers who are more sensitive about vehicle prices are

also responsive to fuel prices.

Next, we find that users who started using application before and after the mean starting

time have similar elasticities. This suggests that those consumers that selected into the app

earlier are not di↵erent from those that selected into the sample later. While ideally we

could compare elasticities of our sample with the population, this provides some, albeit

weak, evidence that sample selection may not be a big concern. Lastly, we compare drivers

whose average distance traveled per day is greater and less than the sample average vehicle

distance traveled. The point estimates suggest that drivers who drive more are more price

elastic than those who drive less, yet their di↵erence is not statistically significantly di↵erent

each other.

VI. Conclusions

This study o↵ers three important findings. First, the short-run price elasticities of fuel con-

sumption are in the order of magnitude larger than what is previously estimated using more

aggregated data. In addition, fuel consumption responds to price changes not only by adjust-

ing vehicle distance traveled but also by altering driving manners. Second, a price increase is

more salient to consumers than a price fall, a finding that is consistent with the behavioral

model of loss aversion. Third, drivers adjust their driving manners in response to prices they

actually paid for that trip, suggesting little driving habit formation over time. Although

increases in gasoline taxes may be more salient than daily fluctuations in gasoline prices we

exploit, as evidenced in Li et al. (2014), our findings suggest only a transitory impact of such

price increase, and consumers adapt to that level of prices. These findings suggest limited

e�cacy of gasoline taxes alone on reducing gasoline consumption and may provide support

to other instruments including fuel economy standards and other incentives programs such

as feebate policies.

12



References

Allcott, Hunt and Michael Greenstone, “Is There an Energy E�ciency Gap?,” Journal

of Economics Perspectives, 2012, 26 (1), 3–28.

Austin, David and Terry Dinan, “Clearing the air: The costs and consequences of higher
CAFE standards and increased gasoline taxes,” Journal of Environmental Economics and

Management, 2005, 50 (3), 562–582.

Bento, Antonio M., Lawrence H. Goulder, Mark R. Jacobsen, and Roger H.
von Haefen, “Distributional and E�ciency Impacts of Increased US Gasoline Taxes,”
American Economic Review, 2009, 99 (3), 667–699.

Busse, Meghan R., Christopher R. Knittel, and Florian Zettelmeyer, “Are Con-
sumers Myopic? Evidence from New and Used Car Purchases,” American Economic Re-

view, 2013, 103 (1), 220–256.

Currie, Janet and Reed Walker, “Tra�c Congestion and Infant Health: Evidence from
E-ZPass,” American Economic Journal: Applied Economics, 2011, 3 (1), 65–90.

Davis, Lucas W. and Lutz Kilian, “Estimating the E↵ects of a Gasoline Tax on Carbon
Emissions,” Journal of Applied Econometrics, 2011, 26 (7), 1187–1214.

DellaVigna, Stefano, “Psychology and Economics: Evidence from the Field,” Journal of

Economic Literature, 2009, 47 (2), 315–371.

Dorsey, Jackson, Ashley Langer, and Shaun McRae, “Fueling Alternatives: Evidence
from Real World Driving Data,” Mimeo, 2019.

Gillingham, Kenneth, “How Do Consumers Respond to Gasoline Price Shocks? Hetero-
geneity in Vehicle Choice and Driving Behavior,” Mimeo, 2011.

Graham, Daniel J. and Stephen Glaister, “The Demand for Automobile Fuel: A Survey
of Elasticities,” Journal of Transport Economics and Policy, 2002, 36 (1), 1–26.

Greenwood, Robin and Andrei Shleifer, “Expectations of Returns and Expected Re-
turns,” The Review of Financial Studies, 2014, 27 (3), 714–746.

Hsing, Yu, “On the Variable Elasticity of the Demand for Gasoline,” Energy Econoimics,
1990, 12 (2), 132–136.

Hughes, Jonathan E., Christopher R. Knittel, and Daniel Sperling, “Evidence of a
Shift in the Short-Run Price Elasticity of Gasoline Demand,” The Energy Journal, 2008,
29 (1), 113–134.

Jacobsen, Mark R., “Evaluating US Fuel Economy Standards in a Model with Producer
and Household Heterogeneity,” American Economic Journal: Economic Policy, 2013, 5
(2), 148–187.

13



Kahneman, Daniel and Amos Tversky, “Prospect Theory: An Analysis of Decision
under Risk,” Econometrica, 1979, 47 (2), 263–292.

Klier, Thomas and Joshua Linn, “The Price of Gasoline and New Vehicle Fuel Economy:
Evidence from Monthly Sales Data,” American Economic Journal: Economic Policy, 2010,
2 (3), 134–153.

Knittel, Christopher R. and Ryan Sandler, “The Welfare Impact of Second-Best
Uniform-Pigouvian Taxation: Evidence from Transportation,” American Economic Jour-

nal: Economic Policy, 2018, 10 (4), 211–242.

, Douglas L. Miller, and Nicholas J. Sanders, “Caution, Drivers! Children Present:
Tra�c, Pollution, and Infant Health,” Review of Economics and Statistics, 2016, 98 (2),
350–366.

Langer, Ashley and Shaun McRae, “Step on It: A New Approach to Improving Vehicle
Fuel Economy,” Mimeo, 2017.

Levin, Laurence, Matthew S. Lewis, and Frank A. Wolak, “High Frequency Evidence
on the Demand for Gasoline,” American Economic Journal: Economic Policy, 2017, 9 (3),
314–347.

Li, Shanjun, Christopher Timmins, and Roger H. von Haefen, “How Do Gasoline
Prices A↵ect Fleet Fuel Economy?,” American Economic Journal: Economic Policy, 2009,
1 (2), 113–137.

, Joshua Linn, and Erich Muehlegger, “Gasoline Taxes and Consumer Behavior,”
American Economic Journal: Economic Policy, 2014, 6 (4), 302–342.

Lin, Cynthia C.-Y. and Lea Prince, “Gasoline price volatility and the elasticity of
demand for gasoline,” Energy Economics, 2013, 38 (1), 111–117.

Malmendier, Ulrike and Stefan Nagel, “Learning from Inflation Experiences,” The

Quarterly Journal of Economics, 2016, 131 (1), 53–87.

Parry, Ian W. H., Margaret Walls, and Winston Harrington, “Automobile Exter-
nalities and Policies,” Journal of Economic Literature, 2007, 45 (2), 373–399.

Severen, Christopher and Aurthur van Benthem, “Formative Experiences and the
Price of Gasoline,” mimeo, 2019.

Small, Kenneth A. and Kurt Van Dender, “Fuel E�ciency and Motor Vehicle Travel:
The Declining Rebound E↵ect,” The Energy Journal, 2007, 28 (1), 25–51.

Ulrike, Malmendier, and Stefan Nagel, “Depression babies: Do Macroeconomic Experi-
ences A↵ect Risk Taking?,” The Quarterly Journal of Economics, 2011, 126 (1), 373–416.

U.S. Energy Information Administration, “Short-Term Energy Outlook,” Technical
Report October 2018.

14



Figures

Figure 1: Price Elasticity of Demand for Gasoline

Notes: The left figure plots the estimated elasticities from various time e↵ects
and methods (IV or reduced) as specified in the labels. The intercepts are
adjusted to allow all demand curves to pass the mean price and quantity
values. The blue shaded area represents the 95% confidence interval of the
elasticity estimated from the model with the year-by-month fixed e↵ects.
The right figure plots the distribution of prices paid by individual drivers
in our sample. The units are Japanese yen for price and liter per day for
quantity. Average exchange rate during this period is US$ = U99.2.
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Figure 2: Learning E↵ect

Panel A: Simulated weight

Panel B: Estimated weight

Notes: Panel A plots the weighting function for the two values of
� in Equation (6). Panel B plots the estimated weighting function
for KPL (� = 0.778) using up to 100th refuel.
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Figure 3: Asymmetric Price Elasticities of Demand for Gasoline

Notes: This figure presents the estimated price elasticities of demand for gasoline consumption per
day. The square dots represent the coe�cients, and the lines indicate the associated 95% confidence
interval. The asymmetric e↵ects for fuel prices going up/down and fuel prices high/below are
estimated from the single regressions, whereas other specifications are estimated from separate
regressions. KPL represents the actual fuel economy in km/L, and VDT represents the vehicle
distance traveled per day in km. The e↵ect size is the changes and the associated 95% confidence
interval of gasoline consumption per day in liter in response to a one standard deviation increase
in gasoline price (U15.24).
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Table 1: Summary Statistics

Mean Std. N U.S. standard

Panel A: Individual report level

Gasoline consumption per day (L/day) 3.535 2.034 4,088,789 0.93 gallon/day
Vehicle distance traveled per day (km/day) 36.70 20.66 4,088,789 22.81 mile/day
Actual fuel economy (km/L) 10.85 3.538 4,088,789 25.51 MPG
Gasoline price paid (U/L) 136.55 15.24 4,088,789 $5.21/Gallon
# of days b/w refueling 14.12 25.54 4,088,789
Odometer (km) 66,359.8 48,788.9 4,088,789 41,234.2 mile
Panel B: Driver-vehicle level

# of reports 48.59 49.43 90,411
Initial year 2008.7 2.906 90,411
Panel C: Driver level

Male 0.889 0.314 33,804
Age 35.514 8.277 33,428
Panel D: Vehicle level

Manufacturing year 1,999.7 7.130 3,932
Vehicle price (U10,000) 191.0 101.5 3,663 $19,249
Dummy for regular gasoline (vs. highoctane) 0.760 0.427 3,932
Dummy for passenger vehicle (vs. minicars) 0.695 0.461 3,932
Seating capacity 4.838 1.130 3,830
Dummy for automatic transmission 0.710 0.454 3,932
Vehicle weight (kg) 1192.9 336.9 3,783 2,630 lb
Displacement (cc) 1631.4 851.2 3,931
O�cial fuel economy (km/L) 14.71 4.966 3,707 34.6 MPG

Notes: This table reports the summary statistics for the variables of primary interests. Additional information is
provided in Online Appendix A.2. Each panel indicates the units of observations. The values of the relevant variables
are converted into the U.S. standards for the reference purpose. In Panel C, the total number of drivers is 71,263,
only part of which report these driver characteristics.
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Table 2: The Price Elasticities of Driving Behaviors

Dep. Var. ln(Gasoline) ln(VKT) ln(KPL)

(1) (2) (3) (4) (5) (6) (7)

ln(Price) 0.139*** -0.0743*** -0.213*** -0.371*** -0.245*** -0.302*** 0.0695***
(0.00599) (0.00782) (0.0128) (0.0348) (0.0230) (0.0367) (0.00735)

Model OLS IV IV IV Reduced IV IV
Driver-vehicle FE Y Y Y Y Y Y Y
Time FE Year Year Year Year Year Year Year

+ month + month ⇥ quarter ⇥ month ⇥ month ⇥ month ⇥ month

Notes: The outcome variables are the logs of gasoline consumption (in liter) per day (i.e. 24 hours) in Columns (1)–(5),
vehicle-kilometer traveled (VKT) per day in Column (6), and the real-world fuel economy (in km/liter) (KPL) obtained
by dividing gasoline consumption by vehicle-kilometer traveled in Column (7). All models except Column (1) and (5) are
estimated by the instrumental variable approach, whose first stage results are presented in Online Appendix Table B.3. All
specifications include the driver-vehicle fixed e↵ects and variant time fixed e↵ects as specified in each column. The number
of observations is 4,088,789. Standard errors clustered at the driver-vehicle level are reported in the parentheses.
***p < 0.01
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A. Additional Information on Data

The primary data we use for the analysis were obtained and can be purchased from the IID,

Inc. Group, the private company that operates the mobile phone application, called e-nenpi

(nenpi means fuel economy). The application is free to download and use for users. Figure

A.1 illustrates the sample screenshots of the application. Using this application, users report

the amount of gasoline purchased, odometer values, and gasoline prices paid at every time

they refuel. The information can be uploaded by simply taking the photographs of the receipt

and the odometer to minimize the typing errors. Using the date and time of the gasoline

purchase, we computed the daily (e.g., 24 hours) gasoline consumed and distance traveled

between the two consecutive refuels. Further, the actual fuel-economy figures were computed

by dividing the distance traveled by the gasoline consumption.

The original data we obtained included 5,884,179 observations at the refueling level. The

data used for the analysis are limited to gasoline-powered passenger vehicles and minicars by

domestic automakers. Minicars (called “kei-cars”) constitute one of the primary classifica-

tions of vehicles in Japan. They are tiny vehicles whose displacement is 660 cubic centimeter

(cc) or lower and are popular because roads are typically narrow, and automobile-related

taxes are substantially lower than passenger vehicles. Passenger cars include light duty vehi-

cles whose displacement is under 2000 cc for gasoline-powered vehicles and regular vehicles

but excludes motorcycles, buses, and trucks. According to the report by the Japan Automo-

bile Dealers Association, passenger cars and minicars together account for close to 84% of

all new vehicles sold (slightly more than 5 million vehicles) within the domestic economy, 30

percentage points of which are minicars. This process e↵ectively removes trucks (0.42% of

the original sample), hybrid cars (3.13%), foreign automakers (8.12%), and other fuel types

(1.84% of diesel) as shown in Table A.1.

As a guard against extreme values and potential typing errors, we removed outliers in

terms of the bottom and top one percentile of vehicle distance traveled and the actual fuel-

economy. Because daily vehicle distance traveled was highly skewed to the right tail, the

main analysis is limited to observations where travel is less than 100 kilometers (km) per

day to focus on a range of daily lives. As a robustness check, we expand observations with up

to 250 km a day (adding about 7% more observations). Lastly, because our model includes

the driver-vehicle fixed e↵ects, we removed single observations at this level. Ultimately, the

sample for the analysis came down to 4,088,789 observations.

The national daily average gasoline prices are also collected by and obtained from the IID,

Inc. Group. Their data start from 2010, and thus for years before 2009, we use the weekly

gasoline retail price at the prefecture level reported by the Institute of Energy Economics,

2



Japan. We computed the daily fuel prices for non-reported days by taking the arithmetic

averages of the two most recently reported values. All fuel prices are converted into the

January 2010 yen using the consumer price index.
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Figure A.1: Sample Screenshots of the Application

Notes: These pictures were obtained from di↵erent sources only to
illustrate how the application can be operated and do not necessarily
reflect actual reports. The author translated the language originally in
Japanese to English.
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Figure A.2: Gasoline Price Trend

Notes: This figure plots the weekly average price of the regular and high
octane gasoline between 2005 and 2014. The units are Japanese yen per
liter in January 2010 value. Average exchange rate during this period is
US$ = U99.2.
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Table A.1: Share of the original sample

Category Percentage

Truck 0.42
Hybrid 3.13
Foreign maker 8.12
Fuel type
Regular 66.84
High octane 31.31
Electricity 0.00
LP Gas 0.00
Diesel 1.84

Notes: The original sample in-
cludes 5,884,179 observations at
the driver-vehicle level.
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Table A.2: Summary Statistics

Mean Std. N US standard

Panel A: Individual report level

Gasoline consumption per day (L/day) 3.535 2.034 4,088,789 0.93 gallon/day
Vehicle distance traveled per day (km/day) 36.70 20.66 4,088,789 22.81 mile/day
Actual fuel economy (km/L) 10.85 3.538 4,088,789 25.51 MPG
Gasoline price paid (U/L) 136.55 15.24 4,088,789 $5.21Gallon
# of days b/w refueling 14.12 25.54 4,088,789
Odometer (km) 66,359.8 48,788.9 4,088,789 41,234.2 mile
Prefecture (%)
Saitama 5.30 4,088,789
Kanagawa 5.23 4,088,789
Aichi 4.81 4,088,789
Tokyo 4.35 4,088,789
Chiba 4.04 4,088,789
Osaka 3.15 4,088,789

Report year (%)
2005 8.69 4,088,789
2006 10.13 4,088,789
2007 10.27 4,088,789
2008 11.12 4,088,789
2009 11.00 4,088,789
2010 11.87 4,088,789
2011 10.51 4,088,789
2012 9.59 4,088,789
2013 8.27 4,088,789
2014 8.54 4,088,789

Panel B: Driver-vehicle level

# of reports 48.59 49.43 90,411
Initial year 2008.7 2.906 90,411
Panel C: Driver level

Total number of drivers 71,263
Male 0.889 0.314 33,804
Age 35.514 8.277 33,428
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Summary Statistics cont.

Mean Std. N US standard

Panel D: Vehicle level

Manufacturing year 1,999.7 7.130 3,932
Vehicle price (U10,000) 191.0 101.5 3,663 $19,249
Dummy for regular gasoline (vs. highoctane) 0.760 0.427 3,932
Dummy for passenger vehicle (vs. minicars) 0.695 0.461 3,932
Seating capacity 4.838 1.130 3,830
Dummy for automatic transmission 0.710 0.454 3,932
Vehicle weight (kg) 1192.9 336.9 3,783 2,630 lb
Displacement (cc) 1631.4 851.2 3,931
O�cial fuel economy (km/L) 14.71 4.966 3,707 34.6 MPG
Automaker (%)
Toyota 21.44 3,932
Nissan 16.91 3,932
Suzuki 11.72 3,932
Honda 11.06 3,932
Mitsubishi 10.40 3,932
Subaru 9.16 3,932
Daihatsu 9.21 3,932
Mazda 9.00 3,932
Isuzu 0.56 3,932
Lexus 0.53 3,932

Notes: Prefectures are shown only for the six largest shares, and prefecture is unknown for about 30.9%
of the sample.
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B. Additional Information on Price Elasticities of De-

mand for Gasoline

Table B.1: The Price Elasticity of Vehicle Distance Traveled

Dep. Var. ln(VKT)

(1) (2) (3) (4) (5)

ln(Price) 0.179*** -0.0408*** -0.0551*** -0.302*** -0.199***
(0.00643) (0.00839) (0.0136) (0.0367) (0.0242)

Model OLS IV IV IV Reduced
Driver-vehicle FE Y Y Y Y Y
Time FE Year Year Year Year Year

+ month + month ⇥ quarter ⇥ month ⇥ month

Notes: The outcome variables are the log of vehicle-kilometer traveled (VKT) per day. All
models except Column (1) and (5) are estimated by the instrumental variable approach, whose
first stage results are presented below. All specifications include the driver-vehicle fixed e↵ects
and variant time fixed e↵ects specified in each column. The number of observations is 4,088,789.
Standard errors clustered at the driver-vehicle level are reported in the parentheses.
***p < 0.01
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Table B.2: The Price Elasticity of Actual Fuel Economy

Dep. Var. ln(KPL)

(1) (2) (3) (4) (5)

ln(Price) 0.0399*** 0.0336*** 0.158*** 0.0695*** 0.0459***
(0.00164) (0.00209) (0.00295) (0.00735) (0.00485)

Model OLS IV IV IV Reduced
Driver-vehicle FE Y Y Y Y Y
Time FE Year Year Year Year Year

+ month + month ⇥ quarter ⇥ month ⇥ month

Notes: The outcome variables are the log of real-world fuel economy (in km/liter) (KPL)
obtained by dividing gasoline consumption by vehicle distance traveled. All models except
Column (1) and (5) are estimated by the instrumental variable approach, whose first stage
results are presented below. All specifications include the driver-vehicle fixed e↵ects and variant
time fixed e↵ects specified in each column. The number of observations is 4,088,789. Standard
errors clustered at the driver-vehicle level are reported in the parentheses.
***p < 0.01

Table B.3: The First Stage Results of the IV Estimates

Dep. Var. ln(Price paid)

(1) (2) (3)

ln(Price) 0.965*** 0.888*** 0.660***
(0.00109) (0.00149) (0.00237)

Driver-vehicle FE Y Y Y
Time FE Year Year Year

+ month ⇥ quarter ⇥ month
F -stat 779,684 353,091 77,504

Notes: This table presents the first stage results from the IV esti-
mates with variant time fixed e↵ects as specified in each column.
The F -statistics of the excluded instrument are also reported.
The number of observations is 4,088,789.
***p < 0.01
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Table B.4: Robustness: Including Long Distance traveled

Dep. Var. ln(Gasoline) ln(VDT) ln(KPL)

(1) (2) (3) (4) (5) (6) (7)

ln(Price) 0.264*** -0.0482*** -0.123*** -0.225*** -0.148*** -0.142*** 0.0832***
(0.00676) (0.00846) (0.0135) (0.0358) (0.0235) (0.0380) (0.00738)

Model OLS IV IV IV Reduced IV IV
Driver-vehicle FE Y Y Y Y Y Y Y
Time FE Year Year Year Year Year Year Year

+ month + month ⇥ quarter ⇥ month ⇥ month ⇥ month ⇥ month

Notes: This table presents the analogous results to Table 2 in the main text except that the sample includes observations
whose vehicle distance traveled is up to 250 km per day. The number of observations is 4,304,452.
***p < 0.01

Table B.5: Robustness: Alternative Specifications

Dep. Var. Gasoline VKT KPL

(1) (2) (3) (4) (5) (6) (7)

Panel A: Level-level

Price 0.00158*** -0.00289*** -0.00569*** -0.0160*** -0.00698*** -0.106*** 0.00769***
(0.000131) (0.000177) (0.000266) (0.00144) (0.000630) (0.0149) (0.00126)

Panel B: Semi-log

Price 0.000770*** -0.000560*** -0.00132*** -0.00399*** -0.00174*** -0.00334*** 0.000650***
(0.0000426) (0.0000515) (0.0000791) (0.000430) (0.000188) (0.000477) (0.000129)

Model OLS IV IV IV Reduced IV IV
Driver-vehicle FE Y Y Y Y Y Y Y
Time FE Year Year Year Year Year Year Year

+ month + month ⇥ quarter ⇥ month ⇥ month ⇥ month ⇥ month

Notes: This table presents the results of the robustness check in Table 2 to alternative specifications: the level-level specifi-
cation in Panel A and the semi-log specification in Panel B. The dependent variables are in levels in Panel A and in logs in
Panel B. The number of observations is 4,088,789.
***p < 0.01
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Table B.6: Robustness: Using Average Daily Prices between Refuels

Dep. Var. ln(Gasoline) ln(VKT) ln(KPL)

(1) (2) (3) (4) (5)

ln(Price) -0.117*** -0.288*** -0.684*** -0.642*** 0.0420***
(0.00704) (0.0108) (0.0317) (0.0337) (0.00717)

Model Reduced Reduced Reduced Reduced Reduced
Driver-vehicle FE Y Y Y Y Y
Time FE Year Year Year Year Year

+ month ⇥ quarter ⇥ month ⇥ month ⇥ month

Notes: The outcome variables are the logs of gasoline consumption (in liter) per day (i.e. 24
hours) in Columns (1)–(3), vehicle-kilometer traveled (VKT) per day in Column (4), and
the real-world fuel economy (in km/liter) (KPL) obtained by dividing gasoline consumption
by vehicle-kilometer traveled in Column (5). The main independent variable reflects the
average fuel price of all days since the last refuel until this time. All specifications include
the driver-vehicle fixed e↵ects and variant time fixed e↵ects as specified in each column. The
number of observations is 4,088,789. Standard errors clustered at the driver-vehicle level are
reported in the parentheses.
***p < 0.01

Table B.7: The Price Elasticity of Vehicle Distance Traveled Using Configuration FE

Dep. Var. ln(VKT)

(1) (2) (3) (4) (5)

ln(Price) 0.146*** 0.00252 -0.0187 -0.246*** -0.133***
(0.0135) (0.0137) (0.0237) (0.0644) (0.0355)

Model OLS IV IV IV Reduced
Configuration FE Y Y Y Y Y
Time FE Year Year Year Year Year

+ month + month ⇥ quarter ⇥ month ⇥ month

Notes: This table presents the analogous results to Table B.1 with including the vehicle
configuration fixed e↵ects in place of driver-vehicle fixed e↵ects.
***p < 0.01

12



C. Additional Information on Learning E↵ect

Table C.1: Correlation Coe�cients

Pricet Pricet�1 Pricet�2 Pricet�3 Pricet�4 Pricet�5

Pricet 1.000
Pricet�1 0.959 1.000
Pricet�2 0.899 0.960 1.000
Pricet�3 0.832 0.901 0.961 1.000
Pricet�4 0.765 0.836 0.903 0.961 1.000
Pricet�5 0.699 0.769 0.837 0.902 0.959 1.000

Notes: This table presents the correlation coe�cients of the six most recent prices, of
which the most recent one at time t is the price paid for the current trip.
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Table C.2: Learning E↵ect of Price on Driving Behavior

Dep. var. ln(KPL) ln(VKT) ln(GPD)
(1) (2) (3)

Panel A: Up to 50th obs.

� 0.0575*** -0.204*** -0.262***
(0.00310) (0.0148) (0.0142)

� 0.747*** 0.814*** 0.810***
(0.0187) (0.0156) (0.0115)

Test: � = 1 p=0.000 p=0.000 p=0.000
Panel B: Up to 100th obs.

� 0.0621*** -0.311*** -0.373***
(0.00293) (0.0136) (0.0129)

� 0.778*** 0.833*** 0.830***
(0.0135) (0.00846) (0.00659)

Test: � = 1 p=0.000 p=0.000 p=0.000

Notes: The table reports the estimated � and � based on
Equation (6) for the dependent variable specified at the
column head using up to 50th refuel from the initial one in
Panel A and up to 100th one in Panel B. The test statis-
tics for the null hypothesis: � = 1 are also reported. The
numbers of observations are 2,705,006 (66% of total obser-
vations) and 3,565,208 (87%), respectively.
***p < 0.01
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Table C.3: Learning E↵ect of Price on Driving Behavior

(1) (2) (3)
50th 100th 200th

� 0.0575*** 0.0621*** 0.0679***
(0.00310) (0.00293) (0.00308)

� 0.747*** 0.778*** 0.793***
(0.0187) (0.0135) (0.0108)

Test: � = 1 p=0.000 p=0.000 p=0.000
N 2,705,006 3,565,208 4,024,897
Share of N 0.66 0.87 0.98

Notes: The table reports the estimated � and � for the log of
actual fuel economy based on Equation (6) in the main text
for three subsamples: up to the first 50th observations for
each driver in column (1), 100th in column (2), and 200th
in column (3). The test statistics for the null hypothesis: �
= 1 are also reported. Each share of the observations to the
total observations is reported at the bottom.
***p < 0.01
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Table C.4: Robustness: Distributed Lag Model

Variable (1) (2) (3) (4) (5) (6)

ln(Pricet) 0.0459*** 0.0271*** 0.0217*** 0.0215*** 0.0208*** 0.0201***
(0.00485) (0.00508) (0.00518) (0.00524) (0.00528) (0.00532)

ln(Pricet�1) 0.0198*** 0.0132*** 0.00784* 0.00759* 0.00651
(0.00356) (0.00417) (0.00427) (0.00431) (0.00435)

ln(Pricet�2) 0.0175*** 0.0220*** 0.0174*** 0.0178***
(0.00331) (0.00409) (0.00419) (0.00424)

ln(Pricet�3) 0.00141 0.0129*** 0.00881**
(0.00318) (0.00403) (0.00413)

ln(Pricet�4) -0.00791** -0.000571
(0.00308) (0.00402)

ln(Pricet�5) -0.00415
(0.00304)

N 4,088,789 3,998,378 3,907,967 3,818,660 3,730,273 3,642,848

Notes: This table reports the coe�cients of the six most recent prices paid based on the distributed lag
model as specified by Equation (3) in the main text. The regressions are based on the reduced-form,
where the fuel price on the day of purchase is used as the instrument. The dependent variable is the log of
actual fuel economy. The regressions include the year-by-month fixed e↵ects and the driver-vehicle fixed
e↵ects. The standard errors clustered at the driver-vehicle level are reported in the parentheses.
*p < 0.1, **p < 0.05, ***p < 0.01
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Table C.5: Exploring the Potential Mechanisms

Dep. var ln(GPD) ln(VKT) ln(KPL)
(1) (2) (3)

ln(Pricet) -0.165*** -0.128*** 0.0373***
(0.0285) (0.0290) (0.00389)

ln(Pricet+1) -0.184*** -0.164*** 0.0197***
(0.0323) (0.0344) (0.00744)

Notes: The dependent variables are the logs of gasoline con-
sumption per day (L/day) in Column (1), vehicle-kilometers
traveled per day (km/day) in (2), and the actual fuel econ-
omy (km/L) in (3). The independent variables are the logs of
prices paid for the current trip (Pricet) and for the next trip
(Pricet+1). All specifications include the driver-vehicle fixed
e↵ects, and the standard errors clustered at the customer-
vehicle level are reported in the parentheses.
***p < 0.01
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D. Additional Information on Heterogenous Price Elas-

ticities

Figure D.1: Asymmetric Price Elasticities of Demand for Gasoline

Panel A: Gasoline Consumption
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Panel B: Vehicle Kilometers Traveled
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Panel C: Actual Fuel Economy

Notes: Each panel presents the estimated price elasticities for the respective dependent variable.
The square dots represent the coe�cients, and the lines indicate the associated 95% confidence
interval. The asymmetric e↵ects for fuel prices going up/down and fuel prices high/low are esti-
mated from the single regressions, whereas other specifications are separately estimated for the
relevant subgroup. The e↵ect size indicated on the right side of the figure represents the changes
and the associated 95% confidence interval of gasoline consumption per day in liter in response
to a one standard deviation increase in gasoline price (U15.24).
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Table D.1: Heterogeneities in Price Elasticities

Dep. var. ln(Gasoline) ln(VKT) ln(KPL)

Subsample Reduced IV Reduced IV Reduced IV

Price going up -0.415*** -0.593*** -0.378*** -0.538*** 0.0367*** 0.0547***
(0.0249) (0.0363) (0.0262) (0.0382) (0.00528) (0.00770)

Price going down -0.224*** -0.351*** -0.172*** -0.278*** 0.0522*** 0.0731***
(0.0251) (0.0361) (0.0264) (0.0380) (0.00525) (0.00756)

Price high -0.128*** -0.00162 -0.109*** -0.00444 0.0186*** -0.00281
(0.0246) (0.0323) (0.0259) (0.0342) (0.00547) (0.00779)

Price low -0.347*** -0.851*** -0.292*** -0.714*** 0.0552*** 0.136***
(0.0254) (0.0560) (0.0268) (0.0590) (0.00546) (0.0124)

Mfg. year � 2000 -0.304*** -0.454*** -0.257*** -0.384*** 0.0469*** 0.0702***
(0.0283) (0.0422) (0.0299) (0.0447) (0.00610) (0.00914)

Mfg. year < 2000 -0.150*** -0.227*** -0.112*** -0.170*** 0.0381*** 0.0579***
(0.0395) (0.0599) (0.0413) (0.0627) (0.00790) (0.0120)

Low KPL -0.170*** -0.272*** -0.121*** -0.193*** 0.0493*** 0.0789***
(0.0293) (0.0468) (0.0309) (0.0494) (0.00634) (0.0102)

High KPL -0.337*** -0.401*** -0.313*** -0.373*** 0.0232*** 0.0277***
(0.0253) (0.0458) (0.0267) (0.0469) (0.00551) (0.00714)

Minicars -0.394*** -0.456*** -0.374*** -0.433*** 0.0200** 0.0231**
(0.0567) (0.0656) (0.0579) (0.0669) (0.00785) (0.00911)

Passenger vehicles -0.217*** -0.340*** -0.167*** -0.261*** 0.0502*** 0.0785***
(0.0253) (0.0395) (0.0267) (0.0417) (0.00551) (0.00863)

Late users -0.221*** -0.301*** -0.190*** -0.259*** 0.0308*** 0.0420***
(0.0340) (0.0464) (0.0354) (0.0483) (0.00665) (0.00909)

Early users -0.268*** -0.429*** -0.213*** -0.342*** 0.0547*** 0.0875***
(0.0300) (0.0480) (0.0318) (0.0508) (0.00651) (0.0104)

Low VKT -0.202*** -0.308*** -0.145*** -0.220*** 0.0573*** 0.0873***
(0.0275) (0.0418) (0.0291) (0.0443) (0.00633) (0.00966)

High VKT -0.303*** -0.468*** -0.270*** -0.418*** 0.0323*** 0.0500***
(0.0424) (0.0654) (0.0444) (0.0684) (0.00788) (0.0122)

Low passenger price -0.260*** -0.366*** -0.221*** -0.311*** 0.0386*** 0.0543***
(0.0352) (0.0496) (0.0370) (0.0521) (0.00712) (0.0100)

High passenger price -0.0958** -0.154** -0.0459 -0.0737 0.0499*** 0.0801***
(0.0373) (0.0599) (0.0394) (0.0632) (0.00807) (0.0130)

Low minicar price -0.432*** -0.494*** -0.409*** -0.467*** 0.0238** 0.0271**
(0.0775) (0.0885) (0.0790) (0.0902) (0.0105) (0.0120)

High minicar price -0.349*** -0.411*** -0.331*** -0.389*** 0.0182 0.0214
(0.0881) (0.103) (0.0900) (0.106) (0.0125) (0.0147)
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Notes: This table presents the estimated coe�cients and standard errors of price elasticities for gasoline

consumption (L/day), vehicle-kilometers traveled (km/day), and actual fuel economy (km/L). For each de-

pendent variable, both the reduced form and IV estimates are presented. In particular, they are elasticities

when a price goes up or down, a price is above or below the mean price paid, among vehicles whose manu-

facturing years are before or after 2000, vehicles with greater or lower than the mean o�cial fuel economy

level, minicars vs. passenger vehicles, users who started using the application before or after the average, and

vehicle prices above or below the mean prices separately for passenger cars and minicars. The asymmetric

e↵ects for fuel prices going up/down and fuel prices high/low are estimated from the single regressions,

whereas other specifications are estimated from separate regressions for the respective subsample.

**p < 0.05, ***p < 0.01
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