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Abstract

The cost of utility-scale photovoltaics (PV) has declined rapidly over the past

decade. Yet increased renewable electricity generation, decreased natural gas prices,

and deployment of emissions-control technology across the United States have led to

concurrent changes in electricity prices and power system emissions rates, each of

which influence the value of PV electricity. An ongoing assessment of the economic

competitiveness of PV is therefore necessary as PV cost and value continue to evolve.

Here, we use historical nodal electricity prices, capacity market prices, marginal power

system emissions rates of CO2 and air pollutants, and weather data to model the value

of PV electricity at over 10 000 locations across the continental United States. We

identify locations with persistently high PV value and calculate break-even PV costs

based on the value of offset energy, capacity, CO2 emissions, and public health costs

arising from SO2, NOx , and PM2.5 emissions. Under 2017 prices and grid conditions,

PV breaks even at 50 % of nodes in New York and 60 % of nodes in the mid-Atlantic

region based on the value of energy, capacity, and public health benefits, and at 100 %

of nodes in Texas, the Midwest, and the mid-Atlantic under an additional 50 $/ton CO2

price.
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Graphical abstract

1 Introduction

Solar photovoltaics (PV) have demonstrated impressive reductions in cost and increases in

deployment over the last decade: From 2010 to 2017, utility-scale system costs fell from

6 $/Wac to <1.5 $/Wac and worldwide deployment increased from 40 GW to >400 GW. [1, 2]

Yet numerous studies have noted that as the deployment of PV (or other zero-marginal-cost

generation sources such as wind) increases, the value of PV electricity tends to decline as PV

displaces higher-cost generators on the margin and reduces the wholesale price of electricity.

[3, 4, 5, 6] This “merit-order effect” is most pronounced during times of day when solar energy

generation is highest, causing the average market value of solar electricity to decline even

more rapidly than the average electricity price. [7, 8, 9] At the same time, the adoption of

emissions-control technology for coal generation over the last decade has reduced the marginal

public health benefits of PV capacity, [10] and continued decarbonization of the power sector

will further reduce these marginal benefits.

A number of strategies have been explored for mitigating the observed and projected

value decline of variable renewables at the system level, including long-distance geographic
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aggregation, [11] incorporation of energy storage and price-responsive demand, [11, 12] and

use of high-capacity-factor system designs. [13, 14] Additional analyses have shown that

siting renewables in locations with high electricity prices [15] or high power-system emissions

rates [16, 17] can lead to larger benefits than siting in locations with the highest capacity

factor or lowest levelized cost of energy (LCOE). However, the significant variability in prices

and emissions rates within and across electricity markets, the effects of different market

structures (particularly related to resource adequacy, i.e. capacity), and the large shifts in

emissions rates and prices over the last decade have yet to be synthesized into a consistent

framework that captures the spatial and temporal variability in the value of PV.

In this work we address the overarching question: How has the declining cost of PV aligned

with changing conditions on the U.S. grid, and what does that imply for the competitiveness

of PV today? More specifically: If a marginal addition of solar capacity had been installed

at the site of a locational marginal electricity price (LMP) node in a given year between

2010–2017, what benefits would it have provided in terms of displaced energy, capacity,

public health, and climate change costs in that year, and what upfront cost would the PV

installation have had to achieve to break even over its lifetime, assuming that grid conditions

in that year persist for the life of the PV installation?

To answer this question we assemble a large temporally- and spatially-synchronized

dataset of historical day-ahead LMPs, system loads, capacity prices, marginal emissions rates

and marginal damage rates from power system particulate matter emissions (resulting from

SO2, NOx , and direct PM2.5 emissions), and simulated solar generation, spanning more than

10 000 locations and eight years of operation. We identify significant variation in the value

of PV electricity over time and across length scales substantially smaller than the size of

Independent System Operators (ISOs). Marginal additions of PV capacity at recent upfront

system costs are found to break even at large fractions of nodes for some regions on the basis

of energy value, capacity value, and public health benefits alone, and at modest carbon prices

for the remainder of locations.

1.1 Analytical approach

Our analysis covers six major U.S. ISOs: California ISO (CAISO), the Electric Reliability

Council of Texas (ERCOT), Midwest ISO (MISO), the Pennsylvania-New Jersey-Maryland

Interconnection (PJM), New York ISO (NYISO), and ISO-New England (ISONE), with node

locations shown in Figure 1a. At each pricing node for which geographic information and a

complete day-ahead LMP timeseries could be obtained for a given year (a sample size ranging
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Figure 1: Variation in locational marginal electricity price (LMP) and solar penetration over
the time period analyzed. a, Map of all pricing nodes considered in this study, with the corresponding
ISO for each node indicated by the node color. Nodes labeled “non-CAISO WECC” lie outside of the CAISO
system territory but have LMP and geographic data reported by CAISO. LMP data for a given node are not
necessarily available for all years. b, Map of average nodal LMP on the day-ahead wholesale market in 2017. c,
Yearly statistics for day-ahead nodal LMP by ISO for 2010–2017. d, Solar capacity penetration for each ISO
between 2010 and 2017, given by cumulative installed solar generation capacity (utility-scale and distributed)
divided by peak electricity demand within the ISO in each year. Data are from EIA, OpenPV, and the
respective ISOs. [18, 19] Each column on each subplot in c corresponds to a single ISO-year and includes two
components: on the left, summary statistics including the median (empty black circle), bootstrapped 95 %
confidence interval for the median (gray bar), inter-quartile range (IQR, 25 %–75 %; white area between black
whiskers), whiskers from the edge of the IQR to 1.5×IQR or the max/min value, whichever is closer (black
lines), and outliers beyond the edge of the whiskers (gray circles); on the right, colored 101-bin histograms
showing the distribution of values for each ISO-year. Sample sizes for each ISO-year are given in Table SI.1.
Y-axis limits for c exclude some outlying nodes.
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from ∼7400 nodes in 2010 to ∼13 700 nodes in 2017, as shown in Figure SI.1 and Table SI.1),

the output of a utility-scale PV generator is simulated using historical irradiance data from

the National Solar Radiation Database (NSRDB) [20] as inputs to a PV generation model

based on the open-source PVLIB toolbox. [21, 22] The model accounts for PV module

orientation, inverter DC/AC ratio, system and inverter losses, and temperature-induced

module efficiency losses. This analysis assumes the use of 1-axis-tracking crystalline silicon

(c-Si) PV arrays with a north/south axis of rotation (tracking from east to west throughout

each day) and assumes must-run (i.e. non-curtailable) PV operation. A companion analysis

uses this dataset to explore the impact of temporal PV output shaping—through tracking,

curtailment, and orientation optimization—on the wholesale market value of PV energy. [23]

Modeled PV generation is validated at the monthly timescale against reported generation

from hundreds of utility-scale PV plants, [18, 24] and at the hourly timescale against reported

generation from a ∼1 MW PV array at the site of the National Renewable Energy Laboratory

(NREL). [25] Full validation results are described in the Supplementary Information (SI

Note 3 and Figures SI.10 to SI.19).

At each node we assess four separate components of the value of a modeled PV generator:

energy (from the LMP), capacity (i.e. resource adequacy), public health benefits (arising from

the offset of SO2, NOx , and PM2.5 emissions), and climate change mitigation arising from

CO2 emissions abatement. (The climate impact of abatement of non-CO2 greenhouse gases

is not included here; if included it would increase the modeled value of PV for climate change

mitigation.) Yearly energy revenue in $/kWac per year at each node is given by the summed

product of the time-synchronized PV AC power generation and LMP. Capacity revenue is

given by combining historical capacity market clearing or contract prices with the calculated

“capacity credit” for PV—the amount of firm generation capacity that a unit of PV capacity

can displace while maintaining system reliability at the same level, indicating the fraction of

the PV unit’s peak capacity for which it is compensated on the capacity market. Capacity

credit is here calculated from the modeled PV capacity factor during hours of peak net load

(load minus utility-scale solar and wind generation). [26, 27, 15] Monetized public health

benefits are calculated using the EASIUR model [28, 29, 30] and are given by the summed

product of historical marginal damages from power system emissions and hourly modeled

PV power generation. [31, 16]. Climate benefits are given by the summed hourly marginal

emissions abatement [31, 32] multiplied by a chosen carbon price. Marginal emissions rates

and damages are differentiated geographically by U.S. Environmental Protection Agency

(EPA) Emissions & Generation Resource Integrated Database (eGRID) region [33] and
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temporally by year, hour of day, and season (summer, winter, and spring/fall). [34] All

monetary values are given in 2017 U.S. dollars (inflated from nominal input data using the

Consumer Price Index [35]), and electric power and capacity factors are given in terms of AC

output from the PV inverter. Additional details on the calculations and input data are given

in the Methods and Supplementary Information.

1.2 Limitations of this analysis

Before describing our results, we first note several important caveats. First, the PV system

services considered here include a combination of private benefits (resulting from market

earnings from the LMP and capacity market) and public benefits (from air pollution and

greenhouse gas mitigation); [36] we do not consider the impact of explicit subsidies (such as

the investment tax credit or renewable energy credits procured to meet renewable portfolio

standards) or implicit subsidies (such as net energy metering), which would entail a public-

to-private wealth transfer from taxpayers and ratepayers to the solar owner. There are two

potential interpretations within which the private and public benefits considered here can be

put on equal footing. The first interpretation is to consider these values in a hypothetical

policy environment where market-based policies capture the external cost of emissions, such

that the total revenues calculated here are equivalent to private monetary gains by the solar

owner. The second interpretation is from the point of view of a centralized power system

planner. In this interpretation all benefits are public; net revenue represents the net benefit

to society of avoided expenditures for energy and capacity provision and realized public

health and climate benefits. We note that PV can result in further benefits and costs on the

distribution system, including impacts (positive and negative) on distribution system losses,

congestion, and upgrade requirements or deferral. These factors have been explored in other

studies, [37, 38, 39] but require significantly more data on distribution system structure than

is publicly available from the ISO sources used here.

Second, as we take the historical LMPs, loads, and marginal emissions rates as fixed, our

results are relevant for assessing how a marginal unit of PV capacity—a “price-taker” in the

context of the energy and capacity markets—competes with existing incumbent generators,

and the impact of replacing existing generation with new PV generation. In the framework of

Lamont [4] and Baker et al, [40] we thus address the “short-run” value of solar, as opposed to

the medium- or long-run value, where the generation mix and associated price of electricity

would be allowed to respond to additions of solar capacity. If a significant amount of PV

generation capacity is installed at a given node or within the node’s balancing area, LMPs and
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the value of PV electricity at that location, as well as the PV capacity credit and marginal

emissions offset, would decline due to the merit-order effect noted above. Other studies

have employed econometric methods to assess the degree of causal relationship between

solar deployment and solar value decline at the level of states or ISOs; [41, 42, 43] the data

presented here could be used to increase the spatial resolution of such studies in subsequent

work.

Third, we do not consider the impact of solar forecasting for participation in the day-ahead

market; in effect we assume that the hourly day-ahead availability of each PV generator is

perfectly predictable. A real PV plant would likely balance its participation in the day-ahead

and real-time markets based on its confidence in output forecasts, expected divergence between

day-ahead and real-time prices, and the magnitude of penalties imposed for deviation from

scheduled generation. We also note that while most utility-scale PV plants sign multi-year

power purchase agreements (PPAs) rather than rely solely on market revenues, the PPA

value should scale with changes in the market value in a competitive market (with additional

adjustments from applicable subsidies and the value of electricity price hedging, which are

not included here).

Fourth, the health and climate benefits assessed here are sensitive to assumptions, partic-

ularly regarding the value of a statistical life (VSL) and discount rate. Climate benefits are

difficult to quantify given the presence of positive and negative feedbacks, nonlinear tipping

points, and the intergenerational nature of climate impacts, [44] and the appropriateness of

using cost-benefit analysis to assess environmental impacts or existential risks such as climate

change is open to debate. [45, 46] We do not assert that the prices assumed here for abated

health and climate damages are the “right” prices; we simply explore the implications of

assuming values widely used in the literature. [16, 10] The quantitative values of our results

will change for different assumptions regarding these prices, but the directionality of the

trends will be the same. The impact of alternative assumptions on the results presented

here can be explored using the open-source computer code included in the Supplementary

Information.

Finally, the presence of an emissions cap and trade program can complicate an assessment

of the marginal emissions offset of solar. Under a firmly binding cap, a ton of emissions offset

by solar would be replaced by a ton of emissions from another source. There are two cap and

trade programs for carbon emissions active in the regions explored here: the California cap

and trade program, and the Regional Greenhouse Gas Initiative (RGGI) for Connecticut,

Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Rhode
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Island, and Vermont (covering all of ISONE and NYISO and part of PJM). As shown in

Figure SI.3, over the time period analyzed, market clearing prices for CO2 have been low: less

than 15 $/ton for California (within $3 of the floor price in all years) and less than 7 $/ton

for RGGI in all years. [47, 48] SO2 emissions are also subject to a cap and trade program

under the EPA Acid Rain Program, but prices have been consistently low over the time

period analyzed: 42 $/ton in 2010 and 3 $/ton or less in subsequent years, compared to a

maximum of 1074 $/ton in 2006 and a median public health cost ranging from 8000 $/ton to

47 000 $/ton over the regions and time period analyzed. [49, 31] For the assessment of the

climate benefits of a marginal unit of PV generation, we subtract the clearing price for CO2 in

the California cap and trade program and RGGI for nodes covered by these markets from the

chosen carbon price, as the clearing price is already factored into the LMP value. Effectively

we negate the effect of existing cap and trade regulations on energy prices, then re-apply a

uniform hypothetical carbon price across the ISOs. We do not model the effects of a higher

carbon price on the merit-order dispatch stack; if formally implemented, a higher carbon

price would make lower-emissions generators more likely to be dispatched, thus decreasing

the marginal emissions rate of CO2 and other pollutants and decreasing the emissions benefit

of PV. No correction is made for the market clearing price of SO2 given the very low price of

SO2 allowances over the time period analyzed compared to the social cost.

2 Results and discussion

2.1 PV energy value

Figure 2a displays a map of the modeled yearly energy revenue for PV arrays on the

day-ahead wholesale market in 2017, and Figure 2b,c displays trends in revenue and value

factor differentiated by ISO for each year from 2010–2017. Maps of the spatial distribution

of revenue and value factor for each year, as well as maps and trends for the average value

of solar electricity in $/MWh, are displayed in Figures SI.23 to SI.25 in the Supplementary

Information.

It is notable that the sunniest locations are not always the most profitable locations to

install solar: the median nodal LMP revenue in the northeast (ISONE and NYISO) is greater

than the median nodal LMP revenue in Texas (ERCOT) in three out of the seven years

analyzed, despite the ∼20 % higher median PV capacity factor in ERCOT. Two observations

indicate that variation in solar revenue between sites is dictated more by variation in nodal

LMP than by variation in capacity factor. First, the yearly variability in revenue (Figure 2b)
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Figure 2: Modeled yearly PV revenue (a) on the day-ahead wholesale electricity market in
2017, and yearly statistics for PV revenue (b) and value factor (c) by ISO for 2010–2017. Each
marker in a represents one pricing node. Statistics in b-c are displayed in the same format as Figure 1c. The
value factor is the ratio of the average value of a MWh of solar electricity to the average price of electricity
over the year.
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is much greater than yearly variability in capacity factor (Figure SI.20a): median revenues

over all ISOs and nodes range from 67 $/kWac per year in 2017 to 110 $/kWac per year in

2014 (a 65 % difference), while median capacity factors range from 22.5 % in 2011 to 24.7 % in

2016 (a 10 % difference) and median LMPs range from 28.1 $/MWh in 2016 to 48.5 $/MWh

in 2014 (a 73 % difference). Second, spatial trends in yearly revenue (Figure 2a) more closely

match spatial trends in average LMP than capacity factor (Figure 1b, Figure SI.21), and

variance arising from congestion is larger than variance arising from capacity factor in most

of the ISOs analyzed (Figure SI.30). These effects manifest most strongly in the observation

of “hotspots” within the PJM ISO along the east coast where the yearly solar revenue is in

some years more than double the median across the ISO as a whole.

While we focus on the years 2010–2017 for the bulk of this study given more complete

data coverage across all ISOs for these years, PJM and NYISO provide LMP data dating back

to 2001 and 2000, respectively. As shown in Figures SI.26 to SI.28, the hotspots noted above,

particularly on Long Island and the Delmarva peninsula, have been observed for more than a

decade, and the same collection of nodes tend to remain at the high extreme of the nodal

revenue distribution from year to year. Disaggregation of the LMP into the marginal costs of

energy, congestion, and losses (Figures SI.29 to SI.31) shows that these hotspots are driven

by high congestion prices, which increase energy-only revenues by more than 50 $/kWac per

year for some years. While the observed revenue dispersion is long-lived, the magnitude of

the revenue at these nodes tends to rise and fall in line with trends in the ISO median value,

driven by year-to-year variation in the energy price.

There is also notable variation in value factor between the different ISOs. ERCOT

demonstrates the highest median value factor in each year (Figure 2c); given ERCOT’s low

solar penetration, high air conditioning load during sunny periods, and high price cap for

electricity (associated with ERCOT’s unique status as the only “energy-only” electricity

market among the ISOs considered here), PV generation is likely to coincide with high-price

periods in the ERCOT system, increasing its value factor. CAISO demonstrates the most

pronounced decline in value factor over the period studied—from a median value factor of

1.09 in 2010 (1.06–1.12 at the central 95 % of nodes) to 0.87 in 2017 (0.72–0.96 at the central

95 % of nodes)—coinciding with its ∼15× increase in solar capacity penetration over this

time period (Figure 1d).
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2.2 PV capacity value

In markets where the LMP is administratively capped at an upper limit, additional payments

to generators are necessary to ensure that there is adequate incentive to install sufficient

generation capacity to meet demand across all hours. These “capacity payments” are made

either through bilateral contracts between grid operators and individual generators (in the

case of CAISO), or through a capacity market that clears seasonally or yearly (in the case of

MISO, PJM, NYISO, and ISONE). Figure 3a shows the historical capacity prices for the

five ISO capacity markets considered here, [50, 51, 52, 53, 54] and Figure 3b shows the nodal

distribution of calculated capacity credits for 1-axis-tracking PV over 2010–2017. Where

possible, capacity credits are shown using both ISO-defined critical hours (red curves) and

the highest 7.04 % of net-load hours (blue curves) per year, where 7.04 % is the average of the

number of hours used by MISO, PJM, NYISO, and ISONE for PV capacity credit assessment.

[55, 56, 57, 58]

As shown in Figure 3b and Figure SI.33 and noted in [26, 27], the capacity credit is

sensitive to the number of hours counted as critical; in general the higher the number of

hours considered, the lower the capacity credit for PV. The high fraction of hours and explicit

inclusion of winter evenings in the ISO-defined capacity credit calculations for NYISO and

ISONE, in conjunction with the relatively low capacity factor of PV in the Northeast, leads

to a low capacity credit for these ISOs. As CAISO does not specify specific hours for the PV

capacity credit calculation, we only include the capacity factor calculated over peak-net-load

hours, which has fallen from a median value of 53 % in 2010 to 25 % in 2017 as increased PV

generation has pushed peak-net-load hours to the morning and evening.

Figure 3c shows the calculated capacity revenues over time, using the ISO-defined critical

hours for MISO, PJM, NYISO, and ISONE and the top 7.04 % of net-load hours for CAISO.

For most nodes and years the capacity revenue is small compared to the energy revenue

(Figure 2b), but for some nodes—particularly those centered around New York City, and the

Boston area in 2017—the capacity revenue can reach 40 % to 80 % of the energy revenue. The

PJM and NYISO markets demonstrate the most within-ISO variability in capacity revenues,

driven by large variation in capacity prices between their constituent capacity zones: in

NYISO the interquartile range (IQR) of capacity revenues is ≥ 25 $/kWac per year in each

year, and in both PJM and NYISO the IQR is ≥ 42 $/kWac per year in at least one year.
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Figure 3: Capacity value of PV by ISO. a, Historical capacity price by ISO resource-adequacy zone.
[50, 51, 52, 53, 54] Zone maps are shown in Figure SI.7 in the Supplementary Information. Prices for CAISO
are weighted average (median for 2010–2011 due to data availability) capacity contract prices; prices for
MISO, PJM, NYISO, and ISONE are market-clearing prices. ERCOT is not included in this analysis as it
does not have a capacity market. Intervals before the capacity market became active in a given ISO (before
the 2010/2011 season in ISONE and before the 2013/2014 season in MISO) are assigned a price of zero. Data
for CAISO, MISO, PJM, and ISONE reflect annual capacity auction prices, while data for NYISO include
both summer and winter capacity auction prices. Markers are located at the beginning of the corresponding
compliance period; lines between markers are guides to the eye. b, Distribution of modeled PV capacity
credits across all nodes in each ISO from 2010–2017, given by the average capacity factor of a modeled
1-axis-tracking PV array during “critical-load hours” over each year. Red curves indicate capacity credit
calculated assuming ISO-specified critical-load hours; blue curves indicate capacity credit calculated with the
top 7.04 % of net load hours (ISO-wide demand minus modeled utility-scale solar and ISO-reported wind
production) taken as critical-load hours. c, Distribution of modeled PV capacity revenues by ISO over time
for PV arrays at all modeled ISO nodes. Revenues are calculated using the top 7.04 % of net load hours for
CAISO and the ISO-specified hours for MISO, PJM, NYISO, and ISONE.
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Figure 4: Public health and climate benefits from PV generation by ISO. a, Distribution of
modeled public health benefits associated with SO2, NOx , and PM2.5 mitigation by 1-axis-tracking PV
arrays across nodes within each ISO. Marginal damage rates are calculated using the EASIUR model. [31] b,
Modeled CO2 abatement associated with PV generation at nodes within each ISO. Marginal emissions rates
are from [31]. Marginal damages and emissions rates are differentiated by operational year, eGRID region,
season, and hour of day; nodes are assigned to eGRID regions based on their geographic location (Figures 1
and SI.4).

2.3 PV health and climate benefits

Marginal public health benefits from PV generation arising from SO2, NOx , and PM2.5

emissions mitigation have been declining with time in MISO, PJM, NYISO, and ISONE

(Figure 4a), as noted by Millstein et al. [10] In spite of this decline, median public health

benefits in 2017 are still substantial, equating to roughly 70 % of median 2017 energy revenue

in MISO, 100 % in PJM, and 70 % in NYISO (Figure 2b). The majority of public health

benefits over the time period analyzed have resulted from SO2 mitigation, as shown in

Figure SI.35, which disaggregates benefits by pollutant. Some of the highest-health-benefit

nodes—such as those in New York City—do not necessarily have high marginal emissions

rates, but have large associated damages resulting from their high population density.

CO2 emissions offsets associated with PV generation, shown in Figure 4b, have been more

stable than SO2, NOx , and PM2.5 offsets over the time period analyzed, suggesting that the

decline in air pollutant emissions has primarily resulted from the adoption of tighter air-

quality standards and installation of SO2- and NOx -control technologies. While average CO2
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emissions rates across ISOs have declined as a result of increased natural gas and renewables

generation (Figure SI.5), [59] the distribution of marginal generators has undergone little

change, [10] leading to a relatively small change in marginal CO2 emissions rates over time

(Figure SI.6). [31]

2.4 PV system breakeven costs

To assess the competitiveness of an investment in PV capacity at a given node, we calculate

the net present value (NPV) of PV electricity assuming that the value of PV services described

above (energy, capacity, and emissions mitigation) for a given year is maintained for the

duration of the plant’s life, solving for the “breakeven” upfront cost that would set the NPV

to zero.

The NPV is given by

NPV =
L∑

t=1

(
(R + CCO2MCO2) (1− d)t − COM

)
(1− T ) + Dt

(1+i)t
CPV T

(1 + ρ)t
− CPV (1)

where L is the lifetime of the PV array; R is the yearly PV revenue, including contributions

from energy (Figure 2b), capacity (Figure 3c), and public health (Figure 4a) where noted;

CCO2 is the price on carbon emissions; MCO2 is the annual marginal CO2 displaced per

unit of PV capacity in a given ISO (Figure 4b); d is the annual degradation rate in PV

output; COM is the annual operations and maintenance cost; T is the combined federal

and state tax rate; Dt is the percentage of the upfront cost depreciated in year t using the

5-year Modified Accelerated Cost Recovery System (MACRS), assuming the PV owner can

completely monetize the tax benefits of depreciation; i is the annual inflation rate; ρ is the

real weighted average cost of capital (WACC); and CPV is the upfront system cost. [60]

Numerical values and sources for financial parameters are given in Table 1. The effects

of federal, state, and local subsidies are not included here. Calculated breakeven costs are

sensitive to input assumptions, particularly regarding the WACC, as shown in Figure SI.37.

Figure 5b shows the distribution in calculated breakeven PV cost across all nodes in 2017

considering different collections of PV services, compared to observed upfront PV system

costs (Figure 5a). [1] Under the stated financial assumptions and considering the value

of energy, capacity, and public health benefits (green curves, leaving out climate benefits),

PV would break even at the 2017 upfront cost of 1.44 $/Wac at 30 % of the modeled nodes,

ranging from 0 % of nodes in CAISO, MISO, and ISONE to ∼50 % in NYISO and ∼60 %

in PJM. At a carbon price of 50 $/tonCO2 (corresponding to the central value for 2020

14



Figure 5: Observed capital cost and distribution of breakeven costs for PV arrays across all
modeled nodes. Observed PV capital costs (a) are taken from Fu et al [1] for a 100 MW 1-axis-tracking PV
array. The U.S. Department of Energy SunShot PV cost target for 2030 is included in a for context. [66] Each
trace in b shows the percentage of nodes across each ISO that would break even below the corresponding
upfront system cost on the y-axis, assuming that the nodal revenue in 2017 persists for the lifetime of the
system. Colored traces and areas indicate the cumulative inclusion of revenue from the wholesale energy
(LMP) market (purple), capacity market (blue), public health benefits (green), carbon mitigation assuming a
50 $/ton CO2 price (orange), and carbon mitigation assuming an additional 50 $/ton CO2 price (100 $/ton
total) (red). Dotted lines are included at 1.44 $/Wac, the 2017 observed PV system cost, to guide the eye. c,
Breakeven CO2 prices for PV in 2017, assuming an upfront system cost of 1.44 $/Wac. Note that in c, PV
breaks even at CO2 prices above the plotted line; in plots of the breakeven PV system cost (b,d), PV breaks
even at upfront costs below the plotted line. d, Breakeven upfront costs for energy, capacity, and climate
benefits for 2010–2017 profile years, assuming a 50 $/ton CO2 price. In d, colored arrows along the leftmost
y-axis indicate the observed upfront PV system costs for each year shown in a. The black trace labeled
“mean” is the nodal average breakeven cost, including all available years of data for each node. Figure SI.38
in the Supplementary Information shows yearly breakeven costs under alternative carbon price assumptions.
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Table 1: Default assumptions for net-present-value calculation.

Parameter Symbol Value Units Reference

PV array lifetime L 30 [years] [1]
Revenue (energy, capacity, health) R calculated [$/kWac per year]
CO2 price CCO2 [0, 50, 100] [$/tonCO2]
CO2 displacement MCO2 calculated [ton/kWac per year]
Degradation rate d -0.5 [%/yr] [61, 62]
Operations & maintenance cost COM 20 [$/kWac per year] [1]
Federal & state tax rate T 28 [%] [63]
5-year MACRS depreciation in year t Dt variable [%] [64]
Inflation rate i 2.5 [%] [1]
Real weighted average cost of capital ρ 7.0 [%] [65]

historically used by the U.S. federal government [67]), PV would break even at ∼75 % of

the modeled nodes, ranging from 5 % in CAISO to 100 % in ERCOT, MISO, and PJM. A

small reduction in upfront PV cost would deliver large gains: with a 10 % reduction in PV

upfront cost, PV would break even at 90 % of modeled nodes and 50 % of CAISO nodes.

(For comparison, PV costs have dropped 18 % per year on average since 2010. [1]) At a

carbon price of 100 $/tonCO2, which approaches the floor price estimated to be necessary to

achieve the goals of the 2015 Paris agreement (floor price estimates in the literature range

from 116 $/tonCO2 to at least 220 $/tonCO2 [68, 69, 70, 71, 72]), PV at today’s upfront cost

would break even at 100 % of nodes in all ISOs.

If only market revenues from energy and capacity are counted (neglecting social benefits

from abated emissions), median breakeven costs in 2017 range from 0.50 $/Wac in MISO

to 0.85 $/Wac in NYISO. An alternative metric is the breakeven carbon price: as shown in

Figure 5c, at the 2017 upfront PV cost of 1.44 $/Wac, median breakeven carbon prices range

from 0 $/tonCO2 in PJM to 60 $/tonCO2 in CAISO in 2017 if energy, capacity, and public

health values are included, and from 45 $/tonCO2 in PJM to ∼80 $/tonCO2 in ISONE if only

energy and capacity are included.

As noted above, energy and capacity revenues and the value of abated emissions demon-

strate a large amount of variability from year to year, so the breakeven costs for 2017 shown

in Figure 5b,c do not hold for all years. Some of the drivers of this variability—such as

variations in gas price, hydropower availability, and capacity price—are relatively cyclical,

while others—such as the decline in PV value factor and capacity credit in CAISO and

the decline in marginal health benefits associated with the adoption of emissions-control

measures—reflect longer-term trends that appear unlikely to change direction. To illustrate
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the effect of year-to-year price variations, Figure 5d shows the calculated breakeven PV costs

using different yearly profiles for energy and capacity prices, including a 50 $/ton CO2 price

but leaving out marginal health benefits (which, as noted above, appear unlikely to return to

the high levels witnessed early in the decade). Breakeven costs for 2017 are near the bottom

of the distribution over the years analyzed, as natural gas prices (and correspondingly LMPs)

in 2017 were at the low end of their distribution over 2010–2017. Averaging the calculated

energy, capacity, and climate benefits over 2010–2017 (heavy black lines in Figure 5d), PV

breaks even at 2017 PV costs at ∼85 % of modeled nodes, from ≤25 % in MISO and ISONE

to ∼55 % in NYISO, 80 % in CAISO, and ≥ 98 % in ERCOT and PJM.

3 Conclusions

While the marginal value and upfront system cost of PV have both declined over the last

decade, the results described here suggest that cost decline has outpaced value decline, such

that in 2017 the net benefits of utility-scale PV outweigh the cost across the majority of

U.S. electricity markets when the social benefits of particulate matter and CO2 emissions

abatement are included. Current cap-and-trade market prices for CO2 and SO2 emissions

are much lower than estimates of the social cost of emissions, suggesting that emissions

caps should be lowered (or that emissions floor prices should be raised) in order to provide

appropriate incentives for low-carbon generation sources such as PV. A next-best alternative

to instituting appropriate emissions prices is to tailor PV deployment support mechanisms to

reflect spatial differences in the benefits of PV generation. Persistent transmission congestion

over the time period analyzed results in variation in the energy, capacity, health, and climate

benefits of a unit of PV generation capacity depending on its location of interconnection with

the electric grid. As shown in Figure 4a, nodal public health benefits from PV generation in

the New York ISO have varied by roughly a factor of 2 across the state in any given year

from 2010–2017, but existing renewable energy credits reward generation equally, irrespective

of its location within the state.

The analysis described here applies primarily to utility-scale generators on the transmission

grid, which are exposed to the spatially- and temporally-varying signals provided by the LMP.

Residential and small commercial electricity customers on the distribution grid typically

are not exposed to such signals, leading to installation incentives that are not necessarily

matched to the system value of PV energy. Passing the spatial and temporal signals from

the LMP (along with appropriate emissions prices) as far into the distribution system as
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possible could help steer PV deployment to congested high-price locations, reducing prices

for other electricity consumers and ensuring that distributed and utility-scale solar generators

can compete on equal footing. [73]

It is important to emphasize that the breakeven costs shown here are for a marginal unit

of PV capacity. As grid conditions change—through continued deployment of renewables,

expansion of transmission capacity, retirement of existing plants, shifts in the price of natural

gas, variations in hydropower availability, changes in climate and demand patterns, and

evolution in other factors—there will be associated changes in LMP, net load, and marginal

emissions rate profiles, leading to corresponding changes in the breakeven cost for PV

and other technologies. Current electricity market designs, particularly regarding resource

adequacy, will also need to be adjusted to adapt to generation mixes dominated by low-

and zero-marginal-cost sources. [74, 75] On the whole, the upfront cost whereat PV breaks

even is expected to decline with increasing PV penetration, [6] necessitating continued cost

reductions for PV. Nevertheless, the experience so far in CAISO, where despite its 5–10×
higher PV penetration than the other ISOs, PV would still break even at most nodes at an

upfront cost within 10 % of observed 2017 costs, suggests that there is still considerable room

for competitive PV expansion across the continental U.S., particularly in the interior and

mid-Atlantic regions. The strategies presented here for assessing the locational value of PV

electricity can be extended to other distributed energy resources such as wind power [76] and

energy storage, [60] and incorporation of spatial, temporal, and technological resolution will

become increasingly important as the electric power system evolves and relies increasingly on

variable renewable energy resources.

4 Methods

4.1 Data sources

Meteorological data: Meteorological data including global horizontal irradiance (GHI, W/m2),

direct normal irradiance (DNI, W/m2), diffuse horizontal irradiance (DHI, W/m2), surface

air temperature (◦C), and surface wind speed at 2 m height (m/s) are taken from the National

Solar Radiation Database Physical Solar Model (NSRDB PSM). [20] These data are derived

from satellite observations and are available on a 4 km × 4 km grid across the continental

United States, at 30 min resolution for historical data from 1998–2017 and at 60 min resolution

for a typical meteorological year (TMY). The meteorological data for a given timestamp are

assumed to remain constant until the next timestamp; for example, the reported insolation,
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wind speed, and temperature at 8:00 are assumed to remain constant until 8:30. Historical

meteorological data are used for all calculations; Figures SI.9 and SI.21 show the observed

difference between historical and TMY capacity factors.

Electricity price: Complete sets of hourly day-ahead locational marginal price (LMP)

data for electricity at all reported pricing nodes are obtained from the respective ISOs.

[77, 78, 79, 80, 81, 82, 83] For simplicity, all nodes within California are labeled as “CAISO”,

even though the CAISO footprint does not cover the entire state of California. Only nodes

with serially complete LMP availability for a given calendar year are utilized. All dollar

values are converted to 2017 U.S. dollars using the historical consumer price index. [35]

The geographic locations of pricing nodes for CAISO, MISO, PJM, and NYISO are

obtained from publicly-available sources. Node latitudes and longitudes for CAISO and MISO

are available directly. [84, 85] For PJM, node locations are inferred from a list of the closest

nodes to each zip code within the PJM service area; [86] the location of each node is taken

as the centroid of the centers of all of the zip codes that list that node. For NYISO, node

locations are resolved at the city or county level; [87] if a single node is listed for multiple

cities or counties, the location of that node is taken as the centroid of the centers of all the

cities or counties that list that node. Node locations for ERCOT and ISONE are not publicly

available, and were obtained through correspondence with ISO representatives. Only pricing

nodes with both LMP and geographic information are used in this analysis. A map of nodal

data availability is given in Figure SI.1.

Capacity market clearing prices are obtained from the respective ISOs. [50, 51, 52, 53, 54]

Pricing nodes are assigned to capacity zones based on their geographic locations (for MISO,

NYISO, and ISONE) [85, 88] or published node-to-zone listings (for CAISO and PJM).

[84, 89]

Load: Hourly load used in the calculation of PV capacity credit is taken from the FERC

Form 714 Database. [90] The MISO coverage area has changed over the analyzed time period;

MISO load in each year is taken as the sum of loads for MISO, SMEPA (South Mississippi

Electric Power Association), Cleco, and Entergy.

Marginal emissions and damages: Marginal emissions rates for CO2, SO2, NOx , and

PM2.5, and marginal public health damages for SO2, NOx , and PM2.5, are taken from [31]

and described in detail in [32, 16]. Emissions rates are disaggregated by EPA eGRID region,

[33] year, season (Summer, May–September; Winter, November–March; Transitional, April

and October), and hour of day. Marginal damages are calculated using the EASIUR model

[28, 29, 30] assuming a value of a statistical life (VSL) of 8.6 million USD2010 and a relative
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risk of 1.06 per 10 µg/m3 increase in PM2.5 concentration. Marginal damages calculated using

the AP2 model, which are not used in the analysis but are provided for comparison with

results from the EASIUR model, are shown in Figure SI.36. [91, 92, 93, 31]

PV capacity: PV capacity penetration in Figure 1d includes utility-scale PV capacity

reported in EIA Form 860 [18] and distributed PV capacity reported by the OpenPV project.

[19] The EIA Form 860 database only includes installations greater than 100 kW in capacity,

so to prevent double-counting between the two data sets, only installations with capacity

less than 100 kW are included from OpenPV. Capacity penetration is calculated by dividing

the sum of utility-scale PV and distributed PV capacity by the peak ISO-wide demand in

each year. The DC/AC ratio χ is assumed to be 1 for installations reported in the OpenPV

dataset. For the purpose of PV capacity quantification in Figure 1d, CAISO includes all

of California; ERCOT includes all of Texas; PJM includes all of Ohio, Pennsylvania, New

Jersey, Delaware, Maryland, West Virginia, and Virginia; MISO includes all of North Dakota,

South Dakota, Minnesota, Wisconsin, Iowa, Illinois, Indiana, Michigan, Arkansas, Louisiana,

and Mississippi; NYISO includes all of New York; and ISONE includes all of Maine, Vermont,

New Hampshire, Massachusetts, Rhode Island, and Connecticut.

4.2 PV generation

4.2.1 Model formulation

Time-resolved alternating-current (AC) PV power generation for a PV generator at each

pricing node is simulated using the open-source PVLIB Python toolbox originally developed

at Sandia National Laboratories, [94, 21, 22] with input meteorological data taken from

NSRDB as described above. Numerical assumptions for PV system characteristics are listed

in Table 2. Assumptions generally match those used in the PVWatts model for crystalline

silicon modules [95, 96] and recent PV industry trends. [97, 1]

For a given node location, the solar position and extraterrestrial DNI are calculated at each

timestamp, and airmass is determined from the calculated solar position. For 1-axis tracking,

the tracker angle ψ is calculated at each timestamp from the solar position, axis tilt (θ), and

axis azimuth (φ), subject to the maximum tracker angle ψmax and ground coverage ratio κ.

“Backtracking” – a reduction in the tracker angle ψ during times close to sunrise and sunset

to prevent shading between parallel rows of panels – is employed for all tracking simulations.

[98] Direct and diffuse plane-of-array (POA) irradiance are calculated according to the Reindl

diffuse sky model, [99, 100] taking into account the solar position, array orientation, measured
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Table 2: Default assumptions for PV generation model.

Parameter Symbol Value Units

Axis tilt, 1-axis tracking array θ 0 degrees from horizontal [°]
Axis azimuth φ 180 degrees clockwise from north [°]
DC/AC ratio χ 1.3 fraction [.]
DC system losses ηsystem 14 percent [%]
Nominal inverter losses ηinverter 4 percent [%]
Temperature coefficient γ -0.4 percent relative to 25 ◦C [%/◦C]
Maximum tracker angle ψmax 60 degrees from center [°]
Ground coverage ratio κ 0.33 fraction [.]
Ground albedo α 0.2 fraction [.]
Antireflection coating index nar 1.3 fraction [.]

irradiance (GHI, DNI, and DHI) from NSRDB, airmass, extraterrestrial DNI, [101, 102] and

ground albedo (which contributes to diffuse POA irradiance at nonzero tilt angles). Off-

normal reflection losses for direct POA irradiance are calculated from Fresnel’s equation as in

[95] assuming indexes of refraction nair = 1 for air, nar given in Table 2 for the antireflection

coating, and nglass = 1.526 for glass. Global POA irradiance is calculated from the sum

of direct (after reflection losses), sky diffuse, and ground diffuse POA irradiance. PV cell

temperature is calculated using the Sandia PV Array Performance Model [103] assuming open

rack mounting with polymer backplane modules, taking into account surface air temperature

and wind speed from NSRDB and global POA irradiance. DC power output as a fraction of

nameplate DC capacity P 0
dc is given by

Pdc

P 0
dc

=
IPOA
G

1000
(1 + γ (Tcell − 25 ◦C)) (1− ηsystem) (2)

where IPOA
G is global POA irradiance (W/m2), γ is the temperature coefficient of the PV cell,

Tcell is the calculated PV cell temperature, and ηsystem is the DC system losses. AC power

output as a fraction of nameplate AC capacity is calculated as in PVWatts [95] incorporating

the DC/AC ratio χ and nominal inverter losses ηinverter. When (Pdc/P
0
dc)× χ > 1, the AC

output is clipped to the nameplate AC capacity. All capacities and capacity factors are

presented in terms of nameplate alternating-current (AC) capacity and AC capacity factor.

Figure SI.8 in the Supplementary Information shows the sensitivity of calculated AC capacity

factor to changes in each of the variables listed in Table 2.
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4.2.2 Model validation

To assess the accuracy of the PV generation model and the suitability of the model assumptions

noted above, modeled PV capacity factors are validated against two sets of empirical data:

monthly reported generation from hundreds of utility-scale PV plants from the EIA Form 860

and Form 923 databases; [18, 24] and hourly reported generation for a single PV installation

from the PVDAQ database. [25] Monthly validation is relevant for assessing the accuracy of

PV revenue calculations, which scale with capacity factor; hourly validation is additionally

relevant for average value and value factor calculations, which depend on the temporal profile

of PV generation throughout each day.

Monthly validation: The EIA Form 860 database includes information on plant location,

nameplate AC capacity, installation date, and technical design parameters for every utility-

scale power plant in the U.S. For PV plants, these data include PV module technology, array

tilt angle (θ), tracking strategy employed, and nameplate DC capacity (which, when divided

by the nameplate AC capacity, gives the DC/AC ratio χ). The EIA Form 923 database

reports monthly electricity generation for the majority of the plants included in the EIA

860 database. For each PV plant shared between the Form 860 and Form 923 databases,

we simulate the plant capacity factor using the reported system parameters and historical

insolation at the site of the plant and compare the simulated results (averaged over each

calendar month) with the historical reported monthly generation of the plant over the years

2014–2016. The data are subsetted to include only those plants with DC/AC ratio between

0.5 and 2.5 and either a single fixed-tilt orientation or one-axis tracking; dual-axis-tracking

plants, plants employing concentration or multiple orientations, and plants lacking orientation

data are dropped from the sample. All 1-axis tracking installations are assumed to have

θ = 0°. Plants with less than 0.1 MWh of reported generation in any month of a given year

and plants with an annual reported capacity factor of less than 5 % for a given year are

also dropped from the sample, as well as plants with less than a full year of operation for

any given year. The cleaned validation dataset includes 542 plants for 2014, 800 plants for

2015, and 1170 plants for 2016. The temperature coefficient γ is assumed to be −0.4 %/◦C

for plants employing crystalline silicon PV modules and −0.2 %/◦C for plants employing

thin-film PV modules. Other simulation parameters not reported in the Form 860 database

are taken from Table 2.

Figures SI.10 to SI.12 in the Supplementary Information display the locations of the

plants in the validation set and reported and simulated generation for 2014–2016. Simulation

accuracy is assessed in terms of the Pearson correlation coefficient (CC), mean absolute error
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(MAE), mean bias error (MBE), relative mean bias error (rMBE), root mean square error

(RMSE), and relative root mean square error (rRMSE) between the monthly simulated and

reported capacity factor for each plant in each year. Validation metrics are displayed in

Figures SI.13 to SI.15 and discussed in SI Note 3.

Hourly validation: The PVDAQ database includes time-resolved power generation data

for over 100 PV installations across the U.S., with varying levels of detail regarding the

system design parameters for each installation. We select system number 1332, a 1.135 MWac

fixed-tilt PV array at the site of the National Renewable Energy Laboratory, for hourly

validation purposes, as it is the largest array in the database and includes data on system

azimuth (180°), tilt (16.8°), and DC/AC ratio (1.02). Hourly validation results are discussed

in SI Note 3; Figures SI.16 and SI.17 display simulated and measured PV output for the

validation site over the years 2014–2016, and Figures SI.18 and SI.19 display simulation

accuracy statistics (CC, MAE, MBE, rBME, RMSE, and rRMSE) binned by month and by

hour of day.

4.3 Energy, capacity, and emissions abatement value

4.3.1 Wholesale energy value

Annual energy revenue Renergy in $/kWac per year for a PV generator at a given node is

given by

Renergy =
N∑
t=0

Pt

Pmax

Πt

( τ
60

)
(3)

where t is a timestamp, N is the number of timestamps in the year (e.g. 17520 for 30 min

timestamps in a non-leap year), Pt is the modeled AC power output of the PV system

in timestamp t, Pmax is the peak AC power output of the PV system, Πt is the LMP in

timestamp t, and τ is the period of the timestamp in minutes (i.e. 30 min for historical PV

output). As the native period of the LMP (60 min) is longer than that of the modeled PV

output (30 min), the LMP is resampled to match the period of the PV output, with new

timestamps taking the value at the most recent existing timestamp (i.e. forward-filled).

The average value of PV electricity V in $/MWh at a given node is given by

V =

∑N
t=0 Pt Πt∑N
t=0 Pt

. (4)
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The PV value factor VF at a given node is given by

VF =
V

Π
=

(∑N
t=0 Pt Πt∑N
t=0 Pt

)
× N∑N

t=0 Πt

. (5)

4.3.2 Capacity value

The capacity credit of PV can be calculated using a number of different methods. [104,

26, 105, 106, 107] The most rigorous method is to calculate the system-wide loss of load

expectation (LOLE) following the addition of the specific PV generator, then to determine

the equivalent capacity of a conventional firm generator that, if added to the system in place

of the PV generator, would result in the same LOLE. [106] This calculation requires a large

amount of system- and generator-specific operational data. A commonly-used approximation

method with fewer data requirements, which has historically been used by MISO, PJM,

NYISO, and ISONE in addition to several studies in the literature, [26, 105, 108, 109, 15, 110]

is to identify the capacity credit as the capacity factor of the PV generator during a specified

subset of (typically high-load or high-loss-of-load-probability) hours over a given time period.

Here we use the capacity-factor approximation method, which has been shown to agree

reasonably well with the more rigorous LOLE-based method for PV. [27]

PV capacity credit ξ for a given node and year is given by

ξ =

∑N
t=0 αt Pt∑N

t=0 αt Pmax

, (6)

where αt is 1 if t is a critical-load hour and 0 otherwise. Two different rules for identifying

critical-load hours αt are used here. In the peak net-load method, a specified percentage of

hours with the highest net load are labeled as critical, where net load is ISO-wide demand

minus simulated utility-scale solar generation and ISO-reported wind generation (where

available) in the specified year. ISO-wide solar generation is simulated as described above for

purposes of monthly model validation, using utility-scale solar plant locations and system

parameters from the EIA Form 860 database for plants located with each ISO boundary. [18]

Hourly wind generation is taken from the respective ISOs, and is available since 2010 for

ERCOT and MISO and since 2011 for CAISO, ERCOT, and PJM. [111, 112, 79, 80, 113, 114]

For NYISO and for years outside these ranges, wind is ignored and net load is taken as

demand minus solar generation. Figures SI.32 and SI.33 show the capacity credit under

different peak-hour thresholds and load assumptions.
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In the ISO-specified method, critical hours are defined by the ISOs as follows:

• MISO: Hours beginning at 2pm, 3pm, 4pm from June–August (276 hours) [55]

• PJM: Hours beginning at 2pm, 3pm, 4pm, 5pm from June–August (368 hours) [56]

• NYISO: Hours beginning at 2pm, 3pm, 4pm, 5pm from June–August, and hours

beginning at 4pm, 5pm, 6pm, 7pm from December–February (728 hours in a non-leap

year) [57]

• ISONE: Hours beginning at 1pm, 2pm, 3pm, 4pm, 5pm in June–September, and hours

beginning at 5pm, 6pm in October–May (1096 hours in a non-leap year) [58]

For both methods, the capacity credit for a given node and year is calculated using modeled

PV generation during the specified year. Some ISOs and literature studies [110, 115] use

multiple years of operational data to calculate PV capacity credit; here, for consistency across

ISOs and to maintain any historical correlation between PV availability and net load, we

use the production profile Pt for a single year to assess the capacity credit and revenue for

that year. Modeled nodal PV output Pt at 30 min resolution is downsampled via trapezoidal

integration to match the 60 min resolution of system load and wind generation (e.g. PV

output for the 8:00 bin is given by the integral of PV output between 8:00–9:00).

PV capacity revenue Rcapacity ([$/kWac per year]) is given by

Rcapacity = 12

∑N
t=0 αt Pt Πcapacity

t∑N
t=0 αt Pmax

, (7)

where Πcapacity
t is the historical capacity price in $/kWac per month, and the factor of 12

converts the revenue from $/kWac per month to $/kWac per year.

4.3.3 Emissions mitigation

The annual marginal CO2 emissions abatement MCO2 in ton/kWac per year at a given node

is given by

MCO2 =
N∑
t=0

Pt

Pmax

mt (8)
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where mt is the hourly marginal CO2 emissions rate in the eGRID region containing the node.

Annual marginal abated public health cost H in $/kWac per year at a given node is given by

H =
∑

z∈[SO2,NOx,PM2.5]

N∑
t=0

Pt

Pmax

hzt (9)

where hzt is the hourly marginal damage rate of species z in the eGRID region containing the

node.
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Supplementary Information

SI Note 1 Input and background data

Figure SI.1: Number of complete years of day-ahead LMP data available per node.
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Table SI.1: Nodal day-ahead LMP and geographic data availability by ISO and year. Data
are reported in terms of the number of nodes in each ISO-year with complete data availability. The label
“non-CAISO WECC” refers to nodes that lie outside of the CAISO system territory but have LMP and
geographic data reported by CAISO.

RTO 2010 2011 2012 2013 2014 2015 2016 2017

CAISO 2118 2121 2150 2204 2234 2236 2237 2209
non-CAISO WECC 1049 1824 3461
ERCOT 1559 1563 1567 1569 1570 1570 1563
MISO 179 192 197 200 368 370 386 378
PJM 4288 4366 4967 5044 4936 4857 4741 4686
NYISO 402 412 424 430 434 435 436 436
ISONE 409 437 499 593 612 746 829 966

Figure SI.2: Annual Henry Hub natural gas price over time, measured in 2017 U.S. dollars
per million British thermal units (MMBTU). [116] The period of time corresponding to the period of
time analyzed in the rest of this study is signified by the white background from 2010–2017.

Figure SI.3: Cap-and-trade allowance prices. a, CO2 on the California Cap and Trade market (blue
squares and orange circles) and on the Regional Greenhouse Gas Initiative market (green triangles); [47, 48]
b, SO2 on the EPA Air Markets Program. [49]
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Figure SI.4: Mapping of LMP nodes to EPA eGRID zones [33] used for marginal emissions
offset analysis.
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Figure SI.5: Average emissions rates of CO2 by eGRID region. Data are from Azevedo et al. [31]
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Figure SI.6: Marginal emissions rates of CO2 by eGRID region. Data are from Azevedo et al. [31]
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Figure SI.7: Map of capacity market zones for NYISO (a), ISONE (b), MISO (c), and PJM
(d).
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SI Note 2 Model characterization

Figure SI.8: Sensitivity of PV capacity factor to input assumptions. Results are shown for a
1-axis-tracking array (blue traces) and a fixed-tilt array (red traces) located in Jackson County, MO in 2015.
The dashed vertical line in each panel denotes the value of the respective parameter in all of the other panels,
and is taken from Table 2 in the Methods section. “GCR” refers to ground coverage ratio (κ).
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Figure SI.9: Comparison of modeled capacity factors using historical irradiance and typical
meteorological year (TMY) irradiance. All modeled capacity factors are for a 1-axis-tracking PV array
(θ = 0°, φ = 180°). For b and c, xsim in (SI.4) and (SI.6) is the calculated capacity factor under TMY
irradiance and xmeas is the calculated capacity factor under historical irradiance. Replicates are node-years
within the labeled ISO. a, Distribution of ratios of capacity factor under historical TMY irradiance to capacity
factor under historical irradiance by ISO and year. b, Relative mean bias error (rMBE) of capacity factor
using TMY irradiance to capacity factor using historical irradiance. b, Relative root mean square error
(rRMSE) of capacity factor using TMY irradiance to capacity factor using historical irradiance.
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SI Note 3 Model validation

Figure SI.10: Location, capacity, and simulation accuracy of PV plants simulated for validation
purposes in 2014. a. Location, capacity (indicated by marker size), and yearly simulation accuracy
(indicated by marker color) of 542 utility-scale PV plants compared with reported monthly generation data
from EIA forms 860 and 923. [18, 24] b. Reported monthly generation for each of the 542 plants, and c,
simulated monthly generation for each of the 542 plants. Each filled band in b and c represents a single
measured and simulated plant.
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Figure SI.11: Location, capacity, and simulation accuracy of PV plants simulated for validation
purposes in 2015. a. Location, capacity (indicated by marker size), and yearly simulation accuracy
(indicated by marker color) of 800 utility-scale PV plants compared with reported monthly generation data
from EIA forms 860 and 923. [18, 24] b. Reported monthly generation for each of the 800 plants, and c,
simulated monthly generation for each of the 800 plants. Each filled band in b and c represents a single
measured and simulated plant.
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Figure SI.12: Location, capacity, and simulation accuracy of PV plants simulated for validation
purposes in 2016. a. Location, capacity (indicated by marker size), and yearly simulation accuracy
(indicated by marker color) of 1170 utility-scale PV plants compared with reported monthly generation data
from EIA forms 860 and 923. [18, 24] b. Reported monthly generation for each of the 1170 plants, and c,
simulated monthly generation for each of the 1170 plants. Each filled band in b and c represents a single
measured and simulated plant.
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Monthly model validation metrics

Model validation metrics are defined as in [20], with xmeas indicating the measured or reported

value, xsim indicating the simulated value, and n indicating the sample size:

CC =

∑n
i=1 ((xsımi − xsım)× (xmeas

i − xmeas))√∑n
i=1 (xsımi − xsım)

2 ×
√∑n

i=1 (xmeas
i − xmeas)

2
(SI.1)

MAE =
1

n

∑
|xsim − xmeas| (SI.2)

MBE =
1

n

∑
(xsim − xmeas) (SI.3)

rMBE =

∑
(xsim − xmeas)∑

xmeas

(SI.4)

RMSE =

√
1

n

∑
(xsim − xmeas)

2 (SI.5)

rRMSE =

√∑
(xsim − xmeas)

2∑
x2meas

(SI.6)

Monthly validation results are differentiated by PV plant capacity (Figure SI.13), tracking

strategy (Figure SI.14), and year of plant construction (Figure SI.15). Simulations for plants

with capacity ≥ 10 MW are more accurate than for plants with capacity < 10 MW; this result

is to be expected, as larger installations are also less likely to be subject to environmental

shading losses and may have better maintenance practices. Simulations for fixed-tilt PV

plants are more accurate than for 1-axis-tracking PV plants; this result is also intuitive,

as the output of 1-axis tracking plants depends on assumptions that are not reported in

EIA Form 860, [18] including ground coverage ratio, maximum tracker angler, and the

presence or lack of backtracking to avoid self-shading. The only discernible trend with year

of construction is that generation from the oldest PV plants, those constructed in 2009, tends

to be overestimated. Seasonally, errors tend to be highest during the winter and early spring

months. The overestimation in capacity factor at the beginning of each year likely arises

from snow cover, which is not included in our model.

Combining results across all months, the yearly rMBE varies between +4.3 % to +6.6 %

across all system sizes and −0.1 % to +5.6 % for > 10 MW systems, depending on the year.
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The rRMSE varies between 18 % to 27 % across all system sizes depending on the year. This

level of accuracy is similar to that of the input NSRDB dataset itself, which demonstrates

a rMBE of ±5 % for GHI and ±10 % for DNI, and a rRMSE of up to 20 % for GHI and

up to 40 % for DNI. [20] The similar level of accuracy between our modeled results and the

input meteorological data, particularly given our unadjusted assumptions for system losses

and inverter losses and the possibility of inaccuracies from reporting error and curtailment

or outages in the reported EIA data, lends credence to the PV power output simulation

methodology employed here.
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Figure SI.13: Monthly model validation statistics, differentiated by PV plant nameplate ca-
pacity. Dashed lines represent the value across all months.
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Figure SI.14: Monthly model validation statistics, differentiated by PV plant tracking strategy.
Dashed lines represent the value across all months.
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Figure SI.15: Monthly model validation statistics, differentiated by PV plant vintage. Plants
are binned along the x-axis by year of construction. Dashed lines represent the value across all vintages.
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Hourly model validation metrics

Hourly measured [25] and simulated PV profiles are displayed in Figures SI.16 and SI.17, and

validation metrics as defined above are displayed in Figure SI.18 binned by month and in

Figure SI.19 binned by hour of day. As observed above for the monthly validation, simulated

results are overestimated in the winter months. The effect of snow cover on measured output

is expected to be significant for this array, which has a small tilt angle (θ = 16.77°) and is

located in a region with relatively high annual snowfall compared to the rest of the continental

U.S. Across the years analyzed, the summer rMBE across all hours ranges from +0.9 % in

2015 to +2.4 % in 2014 and the winter rMBE ranges from +30 % in 2014 to +42 % in 2015;

the summer hourly rRMSE across all hours ranges from 24 % to 29 % and winter hourly

rRMSE ranges from 54 % to 62 % (Figure SI.19). The low rMBE across all hours (except

for sunrise and sunset) in summer, which is again comparable to the rMBE for the NSRDB

input data, [20] builds confidence in the results presented here for the value factor of PV

electricity, which depends on the relationship between the time-resolved PV generation and

price profiles.
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Figure SI.16: Hourly simulated and measured AC output as a fraction of nameplate AC
capacity for a single PV array. “Measured” data (blue curve) are from the NREL PVDAQ database,
site number 1332 (NREL parking garage). “Simulated” data are from our model, with panel orientation,
inverter loading ratio, PV cell type, and installation location taken from the PVDAQ database. The height
of the y-axis scale bar in each month corresponds to an AC output of 50 % of nameplate capacity.
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Figure SI.17: Hourly timeseries data for simulated and measured output for a single PV array.
Monthly average of hourly measured and simulated data. “Measured” data (blue curve) are from the NREL
PVDAQ database, site number 1332 (NREL parking garage). “Simulated” data are from our model, with
panel orientation, inverter loading ratio, and PV cell type taken from the PVDAQ database.
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Figure SI.18: Hourly model validation statistics, sorted by month of year. Dashed lines represent
the value across all months.
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Figure SI.19: Hourly model validation statistics, sorted by hour of day and season of year.
Dashed lines represent the value across all hours.
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SI Note 4 Supplemental results: Energy value

Figure SI.20: Modeled nodal PV capacity factor for a 1-axis tracking array (a) and yearly
average energy value (b) sorted by ISO and year.

58



Figure SI.21: Yearly modeled capacity factor for 2010–2017 and TMY. Results assume 1-axis
tracking with θ = 0° and φ = 180°. The same color axis scale is used in all years.

59



Figure SI.22: Yearly average day-ahead locational marginal price (LMP). The same color axis
scale is used in all years. Note that mean values (bottom plot) include all available years of data for each
node; available years of data are shown in Figure SI.1.
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Figure SI.23: Modeled yearly revenue of 1-axis tracking PV installations (θ = 0°, φ = 180°) on
the day-ahead market without curtailment. The same color axis scale is used in all years. Note that
mean values (bottom plot) include all available years of data for each node; available years of data are shown
in Figure SI.1. 61



Figure SI.24: Modeled average value of electricity from a 1-axis tracking PV installation (θ = 0°,
φ = 180°) on the day-ahead market without curtailment. The same color axis scale is used in all
years. Note that mean values (bottom plot) include all available years of data for each node; available years
of data are shown in Figure SI.1. 62



Figure SI.25: Modeled value factor of a 1-axis tracking PV installation (θ = 0°, φ = 180°) on
the day-ahead market without curtailment. The same color axis scale is used in all years. Note that
mean values (bottom plot) include all available years of data for each node; available years of data are shown
in Figure SI.1. 63



SI Note 5 Long-term trends in nodal energy value

Figure SI.26: Long-term trends in nodal PV energy revenue in PJM (a-b) and NYISO (c-d).
a,c, Yearly nodal revenue distributions. b,d, Multi-year average nodal revenues. Each line represents one
node. Nodes are colored by their mean revenue over all available years: the highest-revenue node is reddest
and lowest-revenue node is bluest. In a and c, the values in a given year represent the average revenue
between that year and 2017. As shown by the persistent color distribution, the highest-revenue nodes in a
particular year tend to remain at the top of the revenue distribution across all collections of years analyzed.
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Figure SI.27: Nodal PV energy revenue in PJM from 2001–2017. Color axis scales vary between
plots; minimum (blue) and maximum (red) values are listed above each plot.
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Figure SI.28: Nodal PV energy revenue in NYISO from 2000–2017. Color axis scales vary between
plots; minimum (blue) and maximum (red) values are listed above each plot.
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SI Note 6 LMP disaggregation

Figure SI.29: Nodal trends in electricity price disaggregated by LMP component. a, Full
locational marginal price (LMP); b, marginal cost of energy (MCE); c, marginal cost of congestion (MCC);
d, marginal cost of losses (MCL). For a given node, LMP = MCE + MCC + MCL. MCE and MCL data for
CAISO prior to 2016 are not available. [77] All plots share the same y-axis scaling, but rows differ in y-axis
offset.
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Figure SI.30: Nodal trends in PV energy revenue disaggregated by LMP component. a, Full
locational marginal price (LMP); b, marginal cost of energy (MCE); a, marginal cost of congestion (MCC);
a, marginal cost of losses (MCL). MCE and MCL data for CAISO prior to 2016 are not available. [77] All
plots share the same y-axis scaling, but rows differ in y-axis offset.
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Figure SI.31: Maps of nodal marginal congestion costs (MCC) in PJM (a) and NYISO (b)
over 2010–2017.
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SI Note 7 Alternative assumptions for capacity credit

Figure SI.32: Dependence of calculated PV capacity credit on load metric. All traces use the top
7.04 % of load hours, with load defined as ISO-wide load (black), load minus utility-scale solar generation
(orange), load minus ISO-reported wind generation (blue), and load minus utility-scale solar generation minus
ISO-reported wind generation (green). The data associated with the green trace (load minus solar minus
wind) is used in the main text and is equivalent to the blue trace in Figure 3b.
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Figure SI.33: Dependence of calculated PV capacity credit on percentage of hours counted as
critical. Load is defined as ISO-wide load (a), load minus utility-scale solar generation (b), or load minus
utility-scale solar generation minus ISO-reported wind generation (c).
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SI Note 8 Supplemental results: Health benefits

Figure SI.34: Distribution of nodal PV air pollution emissions offsets disaggregated by pollu-
tant.
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Figure SI.35: Distribution of nodal PV public health benefits from air pollution mitigation
disaggregated by pollutant.
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Figure SI.36: Distribution of nodal PV public health benefits from air pollution mitigation
using the AP2 model. [91, 92, 93, 31] Median PV marginal health benefits calculated using AP2 in
2017 range from +64 % (in CAISO) to −37 % (in ISONE) of the benefits calculated using EASIUR. In a
multi-model comparison, Millstein et al. [10] conclude that the EASIUR model is best-suited for the purposes
of the present analysis, and find that EASIUR results are within 10 % of the central estimate across the five
models examined. We therefore use EASIUR results (Figures 4 and SI.35) in the present analysis.
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SI Note 9 Alternative assumptions for breakeven cost

Figure SI.37: Sensitivity of calculated breakeven upfront cost to financial assumptions. Results
are for a horizontal 1-axis tracking PV array (θ = 0°, φ = 180°) including revenue from the day-ahead
wholesale energy market and capacity market and the value of abated carbon emissions (leaving out public
health benefits) and are calculated according to (1). The gray line in a utilizes the median marginal carbon
displacement MCO2 across all years; colored markers in a utilize the median MCO2 from the corresponding
year. Each trace in b–l represents the breakeven cost for the median value of PV revenue R and marginal
carbon displacement MCO2

for each year. Horizontal dashed lines indicate the observed PV upfront system
cost in 2017. [1] Vertical dashed lines in each panel indicate the value assumed in Figure 5 and used in each
of the other panels. “SL period” refers to straight-line depreciation as an alternative to MACRS depreciation;
an SL period of 5 years indicates nominal depreciation of 20 % per year.
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Figure SI.38: Breakeven upfront PV costs for 2010–2017 profile years. Results are presented as
in Figure 5. Quantified benefits include (a), energy and capacity; (b), energy, capacity, and CO2 abatement
at 100 $/tonCO2;
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