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Abstract 

Fuel-switching is inevitable to achieve deep decarbonization. Humanity has used approximately 

two-thirds of the carbon budget compatible with the goal to limit global warming to 2 °C. This has, 

inter alia, contributed to growing opposition against the use of coal, prompting an increasing 

number of countries to announce coal phase-out mandates in the power sector. Advocates of coal 

phase-outs highlight the expected climate benefits of fuel-switching from coal to gas. However, a 

narrow focus on coal and gas ignores advancements in low-carbon technologies. I present a simple 

model to find the least-cost approach to achieve committed climate targets, through fuel-switching 

in the power sector. A case-study, drawing on the example of Germany, reveals counter-intuitive 

results that go against conventional assumptions about the role of coal. The findings suggest that, 

when accounting for stranded assets, a decarbonization pathway that is based on gradual transition 

to renewable energy and initially retains coal generating assets turns out to be less expensive than 

a strict coal phase-out. 
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1 Introduction 

Humanity has used up two thirds of the carbon emission budget compatible with the goal of 

limiting global warming to 2 °C.1 Global mean temperature has increased by 0.9 °C, and out of 

the last twenty years, eighteen were among the warmest since 1880.2 As emissions continue to 

rise, limiting global warming below 2 °C is widely considered to require substantial policy 

intervention. As a result, 195 countries agreed to take respective actions in 2015 in Paris.3 

To reduce carbon emissions, economic theory suggests use of carbon pricing4 as the most cost-

efficient policy instrument.5 From a welfare perspective, carbon pricing, in the form of a carbon 

tax or cap-and-trade mechanism, reduces emissions at the lowest cost.6 However, in practice, 

policy makers increasingly resort to phase-out mandates to achieve committed emission 

reductions.7 As climate policy research focuses on carbon pricing as the first-best option, research 

into the effects and design of phase-out mandates has lagged behind. 

To decarbonize the power sector, the public debate has increasingly focused on phasing out coal 

power plants. Promoters of coal phase-outs highlight the expected climate benefits of fuel-

switching from coal to gas. For every year of coal displacement, fuel-switching to gas adds 1.4 to 

2.4 years until depletion to the carbon budget, as gas combustion emits less than half the CO2 of 

coal.8 Therefore, gas may act as a bridge-fuel until zero-emission technologies are available at 

scale.9 

                                                
1 We have used up 1,890 GtCO2-eq of 2,900 GtCO2-eq that preserve a 66% probability to limit global warming to 2°C 
above pre-industrial time, which refers to the average temperature between 1850 and 1900, see (IPCC, 2013), p. 27; 
first mentioned by (Nordhaus, 1977), the 2°C bound is commonly used as the upper limit to avoid the worst 
consequences of climate change. 
2 See (GISTEMP, 2018; Hansen, Ruedy, Sato, & Lo, 2010). 
3 See COP21 Paris Agreement (UNFCCC, 2015). 
4 Definition: “carbon pricing refers to initiatives that put an explicit price on greenhouse gas emissions, i.e. a price 
expressed as a value per ton of carbon dioxide equivalent (tCO2e)” (Worldbank, 2017). 
5 See (Stiglitz, Stern, & Duan, 2017). 
6 See (Goulder & Schein, 2013). 
7 The poster example is the bans of inefficient light bulbs in the residential sector, see (Tonzani, 2009). In the transport 
sector, bans of cars from inner cities are increasingly under discussion, see (Möhner, 2018), and the number of 
announced coal phase-outs in the power sector is growing: e.g. France (by 2022), Sweden (by 2022), Italy (by 2025), 
UK (by 2025), Austria (by 2025), Finland (by 2030), Netherlands (by 2030) and Portugal (by 2030), see (Powering 
Past Coal Alliance, 2018). 
8 See (Wilson & Staffell, 2018). 
9 See (Kerr, 2010; Levi, 2013; X. Zhang, Myhrvold, Hausfather, & Caldeira, 2016). 
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Research has suggested that phase-outs are politically more feasible than carbon pricing at 

sufficiently high levels,10 and highlighted their ability to destroy existing structures while creating 

space for innovation.11 Phase-out policies are touted as transparent, simple, and influential in 

creating anti-fossil norms.12 An example is the nuclear phase-out in Germany, which has been 

credited with triggering more R&D spending on renewable resources than the Renewable Energy 

Act (EEG).13 

And yet, a view that focuses on coal and gas appears too narrow-minded, as it ignores central 

factors required for answering the question of which fuel-switching strategy is cost-optimal in 

order to remain on a politically agreed decarbonization pathway. In particular, zero-carbon 

resources inevitably become necessary at a certain point to remain on the decarbonization pathway, 

yet existing infrastructure carries the risk of long-term lock-in of high-carbon technologies.14 This 

potential lock-in has its roots in power plants that continue operations as they become stranded.15 

I present a simple model to find the least-cost resource mix, which is consistent with the committed 

climate targets. Firstly, I explain the intuition and logic of the model. This includes an explanation 

of how a capacity planner can determine the resource mix in order to cover load demand at least-

cost, how climate targets constrain the task, and how carbon constraints switch the roles of fuel 

types. Secondly, I mathematically formulate the problem so as to numerically determine the least-

cost resource mixes which satisfy distinct targets along the decarbonization pathway. Lastly, I 

solve the model, drawing on the example of Germany. 

The case-study, based on the example of Germany, reveals counter-intuitive results that go against 

conventional opinions on the role of coal. The findings suggest that, when considering stranded 

assets, a decarbonization pathway that involves the expansion of renewables and includes a 

continued, but gradually declining role for coal, turns out to be less expensive than a strict coal 

phase-out. Committed decarbonization targets can still be achieved by adding only minimal new 

gas capacity. It is more cost-effective to initially keep existing coal resources in the market, and 

                                                
10 See (Bertram, Luderer, et al., 2015). 
11 See (Geels, Sovacool, Schwanen, & Sorrell, 2017). 
12 See (Green, 2018). 
13 See (Rogge & Johnstone, 2017). 
14 See (Bertram, Johnson, et al., 2015; Seto et al., 2016; Unruh, 2000). 
15 This ‘asset stranding’ would be accompanied by devastating wealth loss, distributional impacts, see (Mercure et al., 
2018), and potential destabilized the financial system, see (ESRB, 2016). ‘Stranded assets’ are defined as “assets that 
have suffered from unanticipated or premature write-downs, devaluations or conversion to liabilities”, see (Caldecott, 
Tilbury, & Carey, 2014), p. 2. 
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expand zero-carbon technologies. The costs in a scenario with a politically forced coal phase-out 

are significantly higher, as additional gas resources have to fill the supply gap. 

 The paper is organized as follows: Section 2 provides the intuition and logic of the model. Section 

3 presents the model. Section 4 quantifies the effects, drawing on the example of Germany. Section 

5 concludes. 
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2 Intuition and logic of the model 

Fuel-switching in the power sector is inevitable to achieve deep decarbonization. Section 2 

introduces the impact of decarbonization on capacity expansion modelling. In the first sub-section, 

I explain the objective of capacity expansion modelling. In the second sub-section, I explain the 

implications of climate targets for capacity expansion modelling. In the last part, I explain the 

effects of decarbonization on the roles of fuel types. 

2.1 Capacity expansion modelling 

The classic objective of capacity expansion modelling in the power sector is to minimize the cost 

of power generation. The costs of power generation consist of investment and generation costs, 

which vary among resource technologies. Generation costs are variable, and depend on the degree 

of capacity utilization, which is measured by a capacity factor (CF) between zero and one. One 

denotes full-load operations over 8,760 hours throughout the year. Investment costs are annualized 

over the life-time of the resource technology.16 

Based on the technology-specific cost functions, a central planner seeks to find the least-cost 

resource mix to meet a given load demand. The load demand to be covered can be displayed as a 

load duration curve (LDC), that is, the annual demand sorted by size, starting with the hour of 

highest load. The planner finds the least-cost resource mix by mapping the cheapest resource 

technology for each CF to the LDC. 

To illustrative the solution process, for now, assume there are only two resource technologies 

available. The first one has high investment and low generation cost, while the second one has low 

investment and high generation cost. An example of this cost constellation may be coal and gas 

resources, in regions where variable cost of gas fired power generations is more expensive than of 

coal fired power generation, due to fuel prices of coal and gas. Consequently, if investment cost 

of gas resources are below those of coal, gas can provide cheaper electricity at low capacity 

utilization. Yet, at a certain CF, the lower generation costs of coal may offset the higher investment 

costs. A respective constellation is charted in Figure 1, and, by mapping the cheapest resource 

                                                
16 See (Stoft, 2002). 
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technology for each CF to the LDC reveals the least-cost resource mix; the least-cost capacity by 

resource technology can be read off the y-axis of the LDC.17 

 

Figure 1: Stylized power system with two technologies.18 

The illustrated capacity planning model is known as the ‘Screening curve method’ in energy 

economics research.19 The Screening curve method is used to find first-order estimates of the least-

cost resource mix to service a given load, as it ignores factors like operational constraints20 and 

existing capacity.21 

2.2 Capacity expansion modelling with carbon constraints 

Keeping global warming below 2 °C requires reducing emissions in the power sector. The required 

emission reductions define an annual carbon budget, which represents the upper limit of 

                                                
17 Note: In case of more than two technologies only the intersection points of the cost curves at the upper limit of the 
trapezoid among x-axis, y-axis and cost curves are relevant. 
18 Own illustration. 
19 The method was originally proposed by (Phillips, Jenkin, Pritchard, & Rybicki, 1969). 
20 See (Batlle & Rodilla, 2013; De Sisternes, 2013). 
21 See (Güner, 2018; T. Zhang & Baldick, 2017). 
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cumulative emissions over a defined time period. This sub-section explains how a carbon budget 

constrains the central planner when determining the least-cost resource mix. 

Economic theory suggests carbon pricing22 as the most cost-effective policy instrument to reduce 

carbon emissions.23 Putting a price on carbon emissions, for instance through a carbon tax or cap-

and-trade mechanism, is found to reduce emissions at a lower cost to society, that is, from an 

aggregate welfare perspective, than direct regulation such as performance standards or technology 

mandates.24 In theory, taxes25 and tradable permits26 can achieve equal results, and the preference 

for one or the other policy instrument ultimately depends on the curving of functions of marginal 

damage and benefit of emissions around the optimal quantity level.27 

In the optimization model, a shrinking carbon budget becomes binding at one point in time, and 

restricts the potential combinations of resource technologies. When solving the model, a binding 

constraint correlates with a positive shadow price, that is, the marginal cost per unit of carbon in 

the optimal solution. This shadow price has the exact same effect as a carbon tax at a price level 

to meet exactly the carbon budget constraint. Consequently, the carbon constraint alters the cost 

of power generation, in line with the carbon intensity of each resource technology.28 As a result, 

low-carbon technologies become increasingly competitive. 

2.3 Fuel-switching under carbon constraints 

The challenge to limit global warming appears to be more than a capacity expansion problem. The 

challenge also includes capacity dispatch and replacement, as limiting global warming blow 2°C 

requires achieving carbon neutrality during the second half of the century.29 Thereby, a rising 

carbon price can switch the cost-sequence among resource technologies with dissimilar carbon 

intensity. This fuel-switching can refer to a complete switch of the cost sequence (i.e. across the 

entire LDC), or a partial switch for certain CFs. 

                                                
22 Definition: “carbon pricing refers to initiatives that put an explicit price on greenhouse gas emissions, i.e. a price 
expressed as a value per ton of carbon dioxide equivalent (tCO2e)” (Worldbank, 2017). 
23 See (Stiglitz et al., 2017). 
24 See (Goulder & Schein, 2013). 
25 See (Pigou, 1920). 
26 See (Coase, 1960). 
27 Based on (Weitzman, 1974), a large body of literature discusses criteria to rank taxes over cap and trade, see e.g. 
(Karp & Traeger, 2018). 
28 An analysis of regional differences (USA, China, and Germany) can be found in Appendix 1. 
29 See (UNFCCC, 2015). 
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Firstly, assume a green field decision, as is the case in a capacity expansion problem. In this case, 

which involves a long-term perspective, investment cost matters. The introduction of a price on 

carbon alters the variable cost of generation, and a rising carbon price will make low-carbon 

technologies increasingly competitive. For instance, coal power plants require an increasing 

number of full-load hours to offset the lower fixed cost of gas resources. At a certain carbon price, 

gas resources become cheaper than coal at any capacity utilization. The upper left chart of Figure 

2 depicts the constellation when gas resources become cheaper at any CF. 

Secondly, assume a brown field decision with existing capacity, as is the case in a short-run 

dispatch decision. In this case, only marginal cost of power generation matters. The sorted 

marginal cost of resource technologies – called merit order – determines which resources are 

utilized to cover load demand. The upper right chart of Figure 2 depicts the constellation where 

coal and gas resources break even for any capacity utilization. In this case, the fuel-switching 

potential is limited by the idle capacity of low carbon resources and the current amount of power 

generated by high carbon resources.30  

Thirdly, assume a combination of the two previous cases, as is the case in a capacity replacement 

decision. As existing units fully depreciate prior to leaving the market, investment cost only matter 

for candidate units.31 Still, new gas resources become competitive to existing coal resources at a 

certain carbon price, once the lower carbon intensity of gas (and the relative advantage under a 

carbon price) offsets higher investment costs. The lower left chart of Figure 2 depicts a 

constellation where new gas resources break even with existing coal at full capacity utilization. 

With a further rise in the carbon price, it becomes increasingly attractive to replace existing high-

carbon coal resources with low-carbon gas resources. The lower right chart of Figure 2 depicts an 

intersection point at 10% capacity utilization. 

                                                
30 In many countries, the current power generation from coal surpasses the idle gas capacity. The idle gas capacity can 
therefore be seen as an upper limit of coal-to-gas switching in the short run, as it assumes ideal storage and 
transmission capacity. See Appendix 2 for an estimate of regional differences (USA, China, and Germany). 
31 As fixed O&M cost are minor (~1% of capital cost), I assume zero fixed cost for existing resources that are fully 
written-off, see (Güner, 2018; T. Zhang & Baldick, 2017); The term “candidate units” refers to potential new plants. 
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Figure 2: Coal-to-gas fuel-switching under carbon constraints.32 

 

                                                
32 Own illustration; The cost functions and carbon intensities are based on German parameters in order to illustrate the 
relative scale; data sources: carbon emission factors from (UBA, 2017b); cost data from (IEA & NEA, 2015); 
calculation of annualized fixed cost based on overnight cost assuming 7% interest rate and a plant life-time of 30 years 
for gas and 40 years for coal-fired power plants in line with (IEA & NEA, 2015); equal split of natural gas in CCGT 
(Combined Cycle Gas Turbines) and OCGT (Open Cycle Gas Turbines) for Germany as argued in (Schill, Pahle, & 
Gambardella, 2017). 
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3 Model: Least-cost power generation with carbon constraints 

Section 3 provides the mathematical formulation of the model explained in Section 2.33 The aim 

is to quantify cost, timing, and scope of fuel-switching under carbon constraints. As explained in 

Section 2, the objective is to minimize the average cost of electricity, which is equal to minimizing 

total system cost (TC) for a given load demand. Thereby, TC consists of annualized investment 

cost (FC) and variable generation cost (VC). In mathematical formulation, the objective function 

can be expressed as: 

min 𝑇𝐶 = 	∑ 𝐹𝐶' ∗ 𝑘'*
'+, + ∑ ∑ 𝑉𝐶' ∗ 𝑒'01

0+,
*
'+, , (1) 

where ki denotes resource capacity and eij produced energy by technology i, in hour j in a certain 

period: 

i = 1, …, n      (2)  

j = 1, …, m.      (3)  

To incorporate the effect of existing infrastructure, I assume zero fixed cost for existing resources 

(i ∈ old).34 The cost sequence of resource technologies can be summarized as: 

VCi < VCi+1 ∀ i  (4)  

FCi > FCi+1 ∀ i ∉ old                                         (5) 

FCi > 0  ∀ i ∉ old (6) 

FCi = 0  ∀ i ∈ old. (7) 

The total energy produced by technology i is determinined by: 

∑ 𝑒'00 = ∫ 𝐿7,	(𝑧)	𝑑𝑧<=>?
<=

 ∀ i, (8) 

with 𝐿7,	(𝑧)	being the inverse of the load duration curve, and Di being the loading point. The 

loading point of a resource technology is determined by the sum of utilized capacities that come 

prior in the merit order:  

                                                
33 The mathematical formulation of the static cost optimization, considering existing units, is derived from 
formulations in previous studies, see (Levin & Zahavi, 1984; Murphy & Weiss, 1990). 
34 Fixed Operation and Maintenance cost are minor (~1% of Capital cost), see (Güner, 2018; T. Zhang & Baldick, 
2017). 
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𝐷, = 0 ∀ i = 1 (9) 

𝐷' = ∑ 𝑘B'7,
B+,  ∀ i = 1, …, n + 1  (10) 

𝐷*C, = 𝐿1,      (11) 

where 𝐿1 represents peak load during the period.  

The first constraint of the model is a full coverage of price-inelastic demand at all times, which 

implies a respective capacity: 

∑ 𝑘'' ≥ 𝐿1. (12) 

To illustrate graphically how the first constraint limits the solution space, I again draw on the 

example of coal and gas resources. As illustrated in Figure 3, all combinations of coal and gas 

generation equal or greater than demand fulfill the constraint. As the objective is to minimize cost, 

the optimal combination can be found on the demand constraint line. 

  

Figure 3: Impact of the demand constraint on the solution space.35 

The second constraint reflects an annual carbon emissions budget (B): 

∑ ∑ 𝑒'0 ∗ 𝐶'	 ≤ 𝐵0' ,  (13) 

                                                
35 Own illustration. 

Solution space

Coal generation
[MWh]

Gas generation
[MWh]

Demand constraint



11 
 

where the total emissions are the product of generated energy eij multiplied by the technology 

specific emission factor Ci.  

Figure 4 illustrates the effect of a binding carbon constraint in two distinct cases: firstly, a carbon 

budget below the current emissions level, but achievable with a combination of coal and gas 

resources (Case I). Second, a carbon budget below the current emissions level that cannot be 

satisfied with any gas-coal-mix (Case II). 

 

Figure 4: Impact of a tightening budget constraint on the solution space.36 

To obtain a permissible solution in Case II, a less carbon-intense technology is required. Hence, I 

introduce ‘clean power’ as a carbon-neutral technology. Examples for carbon neutral37 resources 

are nuclear, renewables like wind and solar, and fossils plus carbon capture and storage (CCS). By 

deploying such clean power resources, the residual load to be covered by coal and gas diminishes, 

as illustrated in Figure 5 by shifting the demand constraint down. 

                                                
36 Own illustration; note: The slope of the carbon budget constraint illustrates the carbon intensity of both fuel types. 
37 Note: “Carbon neutral” refers to the emissions from power generation. This does not include life cycle emissions, 
which would include for instance emissions during construction or along the fuel supply chain. 
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Figure 5: Impact of clean power deployment on the demand constraint and solution space.38 

The third constraint captures that the installed capacity limits the maximum hourly load: 

𝑒'0	 ≤ 𝑘' ∗ 1	h,	 ∀ i, j,	    (14) 

and a non-negativity constraint complements the model: 

𝑒'0	 ≥ 0 ∀ i, j. (15) 

                                                
38 Own illustration. 
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4 Case-study: Fuel-switching and Deep Decarbonization in Germany 

To solve the model introduced in Section 3, I draw on the example of Germany. Germany is an 

example for comparatively ambitious climate targets, as it is committed to a 40% reduction of 

GHG emissions by 2020, 55 % by 2030, 70 % by 2040, and 80-95 % by 2050, all compared to 

1990 levels. Figure 6 charts this decarbonization pathway. 

 

Figure 6: Emissions by sector and German decarbonization targets.39 

4.1 Model calibration 

This sub-section describes the data used to calibrate the model. This includes cost, load, and carbon 

emission data. 

Table 1 depicts annualized fixed and variable costs of lignite, hard coal and gas, based on official 

statistical data obtained from (IEA & NEA, 2015). Annualized fixed costs are based on overnight 

cost, which are the sum of all costs to build a respective power plant. These costs can be annualized 

based on the plant life-time and the respective interest rate. Table 1 further depicts the actual 

capacity of existing resources. 

                                                
39 Own illustration, data source: (BUMB, 2017; UBA, 2017b). 
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Table 1: Cost data for generation resources in Germany.40 

To configure the representative zero-carbon technology clean power, three low-carbon 

technologies appear suitable for deployment at scale: nuclear, renewables plus storage,41 fossil 

resources with CCS, or any combination of those.42 Due to high uncertainty about the future costs 

and technological feasibility of each resource technology, combined with unpredictability of 

innovation, I use four cost scenarios: First, I assess the effects of coal-to-gas fuel-switching, 

assuming no competitive clean power alternative is available. Second, clean power generation is 

not competitive with existing coal and gas resources in the near-term, but available. Third, clean 

power generation is close to becoming competitive in the near-term.43 Finally, I consider a 

politically forced coal phase-out in 2030.  

The cost of clean power in Scenario 2-3 are charted in Figure 7. Figure 7 also charts screening 

curves of wind and solar to underline the appropriateness of the two levels of cost of clean power. 

Candidate wind and solar resources are already competitive with existing fossil technologies today. 

However, their generation patterns follow intermittent natural conditions, and provide power 

within a limited capacity factor range.44 Previous modelling work shows a cost-optimal ratio of 

storage capacity to generation capacity of 2.61 in a system with 100% renewable power supply 

                                                
40 Own illustration; data sources: (IEA & NEA, 2015); cost of natural gas as weighted cost of CCGT (Combined Cycle 
Gas Turbines) and OCGT (Open Cycle Gas Turbines) assuming equal capacity shares in line with (Schill et al., 2017) 
due to missing data granularity in (UBA, 2017c); calculation of annualized fixed cost based on overnight cost 
assuming 7% interest rate for fossils and a plant life-time of 30 years for gas and 40 years for coal respectively, in line 
with (IEA & NEA, 2015). 
41 The increasing number of PPAs for renewables-plus-storage in several U.S. States manifest the assumption to 
consider these complements as one technology; see (Miller & Carriveau, 2018) for solar-plus-storage PPAs. 
42 See (Jenkins & Thernstrom, 2017). 
43 Note: Lower cost are not considered, as the model targets the residual fossil load share and competitive clean power 
resources would have been deployed already. 
44 CF of solar PV: minimum 0.13 (residential), maximum 0.34 (utility scale); CF of wind: minimum 0.38 onshore, 
maximum 0.55 offshore; see (Lazard, 2018a). 

Technology Overnight cost 
[USD/kW]

Annualized fixed 
costs [USD/kWa]

Variable costs
[USD/MWh]

Actual capacity 
[GW]

Lignte 2,054 154 43 21.2
Hard coal 1,643 123 48 25.0
CCGT 974 78 84 14.8
OCGT 548 44 126 14.8
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from intermitting resources.45 In 2018, adding the respective cost of storage to the cost functions 

of wind and solar results in clean dispatchable resources, with costs in between the high and low 

cost scenarios of clean power.46 

 
Figure 7: Screening curves of existing fossils and candidate near-zero carbon technologies.47 

The hourly load data originate from (ENTSO-E, 2017). As scenario forecasts of electricity 

consumption in 2050 vary in a narrow range, and show no clear direction compared to current 

consumption, I assume the load duration curve to remain constant.48 Assuming that existing zero-

carbon resources stay in the market, I focus on the residual load demand, which has to be covered 

by fossil resources, as it is the part that needs to be decarbonized.49 To determine the residual load, 

                                                
45 See (Jacobson, Delucchi, Cameron, & Frew, 2015). 
46 Utility scale lithium batteries start at $251/kWy, see (Lazard, 2018b). 
47 Own illustration; data source: (IEA & NEA, 2015); cost of natural gas as weighted cost of CCGT (Combined Cycle 
Gas Turbines) and OCGT (Open Cycle Gas Turbines) assuming equal capacity shares in line with (Schill et al., 2017) 
due to missing data granularity in (UBA, 2017c); calculation of annualized fixed cost based on overnight cost 
assuming 7% interest rate for fossils and 5% for renewables, as well as a plant life-time of 30 years for gas and 40 
years for coal, and 25 years for renewables, in line with (IEA & NEA, 2015). 
48 See (Frauenhofer ISE, 2013; ÖkoInstitut, 2014; Prognos, EWI, & GWS, 2014). 
49 Note: I further assume that existing fossil resources remain available over the period under review, due to parts of 
the existing fossil generation resources, which have been commissioned recently, German fossil power plant fleet 
installations by capacity and commissioning year in Appendix 6. 
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I deduct all non-fossil generation from the load data. This includes the share of net power 

generation from renewable resources of 38.3 % in 2017.50 The resulting residual load duration 

curve is depicted in Figure 8. 

 

Figure 8: German residual fossil load duration curve.51 

In the power sector, climate targets require a 61-62% reduction of CO2 emissions by 2030. By 

2050, the German Climate Protection Plan aims for an almost complete decarbonization of the 

power system.52 Figure 9 illustrates the specific decarbonization pathway of the power sector.  

                                                
50 See (ENTSO-E, 2017). 
51 Own illustration; data source: (ENTSO-E, 2017); the load duration curve can be found in Appendix 3.  
52 See (BUMB, 2017); I use the lower limit of 95% in the case-study. 
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Figure 9: German decarbonization targets in the power sector.53 

To calculate the carbon emissions of each resource technology, I use the emission factors of lignite, 

coal, and gas as stated by the German Federal Environmental Agency. The respective carbon 

emission factors are 1,151 g/kWh for lignite, 863 g/kWh for coal, and 391 g/kWh for gas.54 

4.2 Model results 

Section 4.2 provides the numerical results of the model introduced in Chapter 3, using German 

parameters as described in the previous section.55 Section 4.2 is structured along the four scenarios 

introduced in Section 4.1. 

In the scenario without a clean power alternative, to achieve the 2020 target of 40% CO2 emission 

reduction, a carbon price of $82/tCO2 is needed. Lignite-to-coal fuel-switching occurs at a carbon 

price of $18/tCO2 and $82/tCO2 is the break-even point of existing lignite and gas. At $121/tCO2 

the cost sequence of existing coal and gas switches, which is required to meet the 2030 target. For 

the 2040 target, additional gas resources have to replace existing coal. At a carbon price of 

                                                
53 Own illustration; data sources: (BUMB, 2017; UBA, 2017a); note: The resulting carbon budgets to achieve the 
targets are 220 Mt CO2 (2020), 143 Mt CO2 (2030), 110 Mt CO2 (2040) and 18 Mt CO2 (2050). 
54 See (UBA, 2017b). 
55 The model is written in GAMS, using a Cplex solver; the model characteristics are summarized in Appendix 4; the 
source code is depicted in Appendix 5. 
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$165/tCO2, new gas replaces coal in a CF range of 0.33 to 1.00. However, the 2050 target cannot 

be achieved with 100% gas power generation. Figure 10 illustrates which resource technology 

serves residual fossil load between 2020 and 2050 at least cost. 

 

 

Figure 10: Least-cost decarbonization pathway (w/o a clean power alternative).56 

In a scenario with low cost of clean power, a carbon price of $67/tCO2 is needed to achieve the 

2020 target of 40% CO2 emission reduction. Lignite-to-coal fuel-switching occurs again at a 

carbon price of $18/tCO2, and at $67/tCO2, 1.8 GW of clean power resources become cost-

effective. Achieving the 2030 target requires a carbon price of $73/tCO2 to expand clean power to 

10.8 GW in order to push the remaining gas and parts of the lignite power generation out of the 

market. To meet the 2040 target, further lignite capacity has to exit. Expansion of clean power at 

                                                
56 Own illustration. 

2020
-40%

2030
-61%

2040
-70%

2050
-95%

$82/tCO2

$121/tCO2

$165/tCO2

N/A
coal lignite gas

Capacity [GW] Generation [TWh] Cost [USD]
Clean Gas Coal Lignite Clean Gas Coal Lignite Total [bn] Total [per kWh]

2020 x 29.2 25.0 21.3 x 21.8 203.8 30.6 13.4 0.05
2030 x 29.5 25.0 0.8 x 166.0 90.2 0.0 21.8 0.08
2040 x 32.5 22.8 - x 235.8 20.4 - 25.9 0.10
2050 x N/A
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a carbon price of $212/tCO2, after a lignite-to-gas switch at $82/tCO2 and a coal-to-gas at 

$121/tCO2, ensures achievement of the 2050 target. Figure 11 illustrates which resource 

technology serves residual fossil load between 2020 and 2050 at least cost. It is noteworthy that 

no additional gas capacity is required to meet the targets. 

 

 

 

Figure 11: Least-cost decarbonization pathway (low cost of clean power).57 

In the scenario with high cost of clean power, lignite-to-coal and lignite-to-gas at $82/tCO2 are 

needed. An emissions reduction of 61% occurs at 121/tCO2 through coal-to-gas fuel-switching, 

and a carbon price of $153/tCO2 triggers an expansion of new gas by 0.3 GW. 95% emission 

reduction can be achieved at a carbon price of $453/tCO2, with gas resources covering CF = [0.04-

0.58] and clean power resources covering CF = [0.58-1.00]. Figure 12 illustrates which resource 

                                                
57 Own illustration. 

$67/tCO2

2020
-40%

2030
-61%

2040
-70%

2050
-95%

$73/tCO2

$212/tCO2

$80/tCO2

lignite coal gas clean

Capacity [GW] Generation [TWh] Cost [USD]
Clean (l) Gas Coal Lignite Clean (l) Gas Coal Lignite Total Total [per kWh]

2020 1.8 7.2 25.0 21.3 15.6 0.5 197.8 42.3 13.1 0.05
2030 10.8 - 25.0 19.4 94.8 - 149.2 12.2 18.5 0.07
2040 15.0 - 25.0 15.2 130.8 - 119.8 5.6 21.0 0.08
2050 26.0 29.3 - - 209.4 46.8 - - 31.0 0.12
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technology serves residual fossil load between 2020 and 2050. Again, it is notworthy that only 

minor additional gas capacity is required to meet the targets. 

 

 

 

Figure 12: Least-cost decarbonization pathway (high cost of clean power).58 

In the scenario with a politically forced coal phase-out in 2030, the results for 2020 and 2050 do 

not change. However, in the interim, additional gas capacity is needed to fill the supply gap. 

Compared to a phase-out strategy, in a scenario with availability of low cost clean power resources, 

the phase-out increases annual system cost by $10 billion in 2040; by 2050, the annual additional 

costs total $7.5 billion. In a scenario with high cost of clean power, the additional costs of a coal 

phase-out are $6.7 billion (by 2040) and $2.6 billion (by 2050). 

                                                
58 Own illustration. 

2020
-40%

2030
-61%

2040
-70%

2050
-95%

$453/tCO2

$153/tCO2

coal lignite gas clean

$82/tCO2

$121/tCO2

Capacity [GW] Generation [TWh] Cost [USD]
Clean (h) Gas Coal Lignite Clean (h) Gas Coal Lignite Total Total [per kWh]

2020 - 29.2 25.0 21.3 - 21.8 203.8 30.6 13.4 0.05
2030 - 29.5 25.0 0.8 - 166.0 90.2 0.0 21.8 0.08
2040 0.9 29.5 24.9 - 8.2 220.7 27.2 - 25.9 0.10
2050 26.0 29.3 - - 209.4 46.8 - - 44.0 0.17
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Figure 13: Least-cost decarbonization pathway (coal phase-out in 2030).59 

                                                
59 Own illustration. 

Capacity [GW] Generation [TWh] Cost [USDbn]
Clean (l) Gas Coal Lignite Clean (h) Gas Coal Lignite Total

2020 1.8 7.2 25.0 21.3 15.6 0.5 197.8 42.3 13.1 0.05
2030 - 55.3 x x - 256.2 x x 28.5 0.11
2040 - 55.3 x x - 256.2 x x 28.5 0.11
2050 26.0 29.3 x x 209.4 46.8 x x 31.0 0.12

Capacity [GW] Generation [TWh] Cost [USDbn]
Clean (h) Gas Coal Lignite Clean (h) Gas Coal Lignite Total

2020 - 29.2 25.0 21.3 - 21.8 203.8 30.6 13.4 0.05
2030 - 55.3 x x - 256.2 x x 28.5 0.11
2040 - 55.3 x x - 256.2 x x 28.5 0.11
2050 26.0 29.3 x x 209.4 46.8 x x 44.0 0.17
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5 Conclusions 

This paper highlights the need for a broader focus on available technology options when 

decarbonizing the power sector, as opposed to narrow reliance on a coal phase-out mandate. The 

case study of Germany illustrates that gradually declining operation of existing fossil resources 

can play an important role in achieving deep decarbonization at least-cost because it avoids new 

investment in lower-carbon, but still emitting, gas generation.  

Still, phasing out coal will more than likely trigger the deployment of additional gas resources, as 

shown in the case study of Germany. In practice, a gas power plant commissioned today would 

not be in operation prior to 2025, and by 2050, the last emitting resource already has to leave the 

market if the carbon budget is to be met. Given their useful economic life of 35 years, additional 

gas resources would therefore inevitably become stranded.  

What is more, there is considerable uncertainty about the life-cycle emission factors of gas. 

Combustion is only the tip of the iceberg, and GHG emissions along the supply chain vary, 

depending on fuel type, origin, and destination.60 Novel insights on pipeline leakage61 and flaring 

at shale production sites62 suggest much higher carbon emissions from gas than commonly 

assumed; climate benefits of gas over coal diminish, or may even reverse in some cases. This 

aspect has to be clarified prior to assessing the technical feasibility of coal phase-outs,63 and prior 

to building new LNG infrastructure.64 

Not following the coal phase-out trend may generate welfare savings, which could be reallocated, 

for instance, to subsidize clean power resources. The estimated incremental cost of a strict coal 

phase-out of up to $10 billion anually is considerable, and rivals the annual financial support for 

renewable energy sources under German feed-in tariff legislation.65 

 

                                                
60 For instance, the carbon intensity of gas depends on extraction (conventional vs fracking), processing (LNG vs w/o 
liquefaction), storage, transmission (pipeline vs ship vs distance) and distribution; similar of coal (e.g. underground 
vs surface extraction), and oil as shown by (Masnadi et al., 2018). 
61 E.g. (Alvarez et al., 2018) find for the U.S. that CH4 leakage along the gas supply chain causes comparable warming 
as the emissions from combustion. 
62 See (Elvidge et al., 2018). 
63 As put forward by gas lobby sponsored research, see (Agora Energiewende, 2018). 
64 E.g. Subsidized construction of LNG terminals in Europe, see (Bloomberg, 2018). 
65 Note: EEG subsidies, which have triggered a large scale expansion of renewables, totalled €30.4 billion in 2017, 
see (BMWi, 2018). 
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6 Appendix  

Appendix 1: Regional differences - Screening curves for coal and gas in the USA, China, and Germany. Own 
illustration; data sources: cost data from (IEA & NEA, 2015); calculation of annualized fixed cost based on overnight 
cost assuming 7% interest rate and a plant life-time of 30 years for gas and 40 years for coal-fired power plants in line 
with (IEA & NEA, 2015); equal split of natural gas in CCGT (Combined Cycle Gas Turbines) and OCGT (Open 
Cycle Gas Turbines) for Germany in line with (Schill et al., 2017); note: Global carbon emission factors lie in a narrow 
ranges for both coal and gas-fired electricity generation [in gCO2/kWh] (gas in brackets): USA: 0.928 (0.401), China: 
0.919 (0.432), and Germany: 0.900 (0.332), see (IEA, 2017). 
 

 

  

USA China Germany

Gas Coal
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Appendix 2: Resource capacity and actual generation by fuel type. Assuming a theoretical maximum of 8,760 
hours of operation without interruption; data from (Global Energy Observatory, Google, KTH Royal Institute of 
Technology in Stockholm, Enipedia, & Institute, 2018); note: The idle gas capacity varies from 78 % in China, to 54 
% in the USA, and 71 % in Germany, as depict in the right column of the table. 

 

  

Capacity [GW] Generation [TWh] CF = 1 [TWh] Current CF
USA
Coal 327 1,713 2,864 0.60
Gas 291 1,166 2,546 0.46

China
Coal 829 4,115 7,259 0.57
Gas 60 115 528 0.22

Germany
Coal 47 285 412 0.69
Gas 24 62 214 0.29
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Appendix 3: Actual production by resource type Germany 2017. Data from (ENTSO-E, 2017). 
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Hydro Pumped Storage  - Actual Aggregated Hydro Run-of-river and poundage  - Actual Aggregated

Hydro Water Reservoir  - Actual Aggregated Biomass  - Actual Aggregated

Solar  - Actual Aggregated Other renewable  - Actual Aggregated

Wind Onshore  - Actual Aggregated Wind Offshore  - Actual Aggregated

Other  - Actual Aggregated Waste  - Actual Aggregated

Fossil Coal-derived gas  - Actual Aggregated Fossil Oil  - Actual Aggregated

Fossil Gas  - Actual Aggregated Fossil Brown coal/Lignite  - Actual Aggregated

Fossil Hard coal  - Actual Aggregated Nuclear  - Actual Aggregated



26 
 

Appendix 4: Model characteristics 

Item Detailing 
Objective function • Minimize total system costs 
Variables • Capacity investment 

• Hourly dispatch 
Constraints • Demand coverage 

• Capacity limit 
• Carbon budget 
• Non-negativity 

Resolution • Hourly granularity  
• Four resource technologies 

Input data • Hourly demand (ENTSO-E, 2017) 
• Existing capacity (UBA, 2017c) 
• Technology specific cost (IEA & NEA, 2010, 2015) 
• Technology specific emissions (UBA, 2017b) 
• Decarbonization targets (BUMB, 2017) 

Assumptions • Price-inelastic demand 
• Existing capacity available until 2050 
• Resource capacity can be adjusted annually 

Equilibrium • Short-term (hourly/production) 
• Mid-term (yearly/investment) 
• Long-term (2020-2050/decarbonization) 

Limitations • No fixed unit expansion size 
• No economies of scale in supply 
• No market power of generators 
• No detailed power plant fleet 
• No imports/exports 
• No sector coupling 
• No transmission cost/constraints 
• No system service provisions 
• No cycling cost/ramping constraints 
• No location-based assessment 

Implementation • Program type: Linear program 
• Model language: GAMS 
• Solver: Cplex  
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Appendix 5: GAMS source code 
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Appendix 6: German fossil power plant fleet installations by capacity and commissioning year. Data from 
(UBA, 2017c); note: In case of modification or expansion, the chart shows the date of the latest change as 
commissioning year. 
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staff as well as international research associates contribute to the empirical study of a wide range of policy issues 
related to energy supply, energy demand, and the environment.
 
An important dissemination channel for these research efforts is the MIT CEEPR Working Paper series. CEEPR 
releases Working Papers written by researchers from MIT and other academic institutions in order to enable timely 
consideration and reaction to energy and environmental policy research, but does not conduct a selection process or 
peer review prior to posting. CEEPR’s posting of a Working Paper, therefore, does not constitute an endorsement of 
the accuracy or merit of the Working Paper.  If you have questions about a particular Working Paper, please contact 
the authors or their home institutions. 


