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Abstract

Corrective taxes can completely solve a variety of market failures, but actual policies are com-
monly forced to deviate from the theoretical ideal due to administrative or political constraints.
This paper presents a method that requires a minimum of market information to quantify the
e�ciency costs of constraints on the design of externality-correcting tax schemes, or more gen-
erally the costs of imperfect pricing, using simple regression statistics. We demonstrate that,
under certain intuitive conditions, standard output from a regression of true externalities on
policy variables, including the R

2 and the sum of squared residuals, has an immediate welfare
interpretation—it characterizes the relative welfare gains achieved by alternative policies. We
utilize our approach in four diverse empirical applications: random mismeasurement in external-
ities, imperfect spatial policy di↵erentiation, imperfect electricity pricing, and heterogeneity in
the longevity of energy-consuming durable goods. In two cases, we find that policy constraints
are relatively harmless, while in the other two cases, the constraint induces large ine�ciencies.
Regarding the case of durable longevity, we find that policies that regulate vehicle fuel economy,
but ignore the di↵erences in average longevity across types of automobiles, recover only about
one-quarter to one-third of the welfare gains achievable by a policy that also takes product
longevity into account.
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1 Introduction

Many important public policies aim to fix market failures that create wedges between marginal social

costs and benefits. Many prominent examples are externality-correcting policies, which range from

taxes on cigarettes, alcohol, or sugary beverages to mandatory immunizations to the regulation of

pollution. Since Pigou (1932), economists have understood that, if there are no additional market

failures beyond the externality, market e�ciency can be fully restored when externalities are taxed

directly and the marginal damage at the optimal quantity is known. Yet, relatively few policies

closely follow this prescription. Often it is administratively impossible, technologically too costly,

or politically infeasible to price actions according to the externalities that they generate.

Consequently, externality-correcting policies are generally imperfect. Imperfection often takes

the following form: the externality is dependent on a set of variables, but policy is contingent on

only a subset of those variables or their imperfect proxies. For example, the external damages

from sulfur dioxide depend on the amount of pollution emitted, the weather, and the location of

emissions relative to population centers. But, sulfur dioxide regulations are based only on emissions

quantities. In transportation, congestion externalities are highly concentrated in certain times of

day, but most toll prices are uniform or vary only slightly with tra�c conditions. In health, the

externalities associated with second-hand smoke depend on many factors, including proximity to

other people, whether the smoking is indoors or outdoors, etc. But, cigarette taxes are uniform.

In this paper, we develop a model that characterizes the welfare costs of using policies that

take this form. We show that, when certain conditions are met, familiar statistics from simple

regressions of the true externality on the variables upon which policy is based have direct welfare

interpretations. Specifically, deadweight loss scales with the sum of squared residuals, and the R

2

summarizes the fraction of the welfare gain from a Pigouvian benchmark that is achievable by

the constrained (which we call second-best) policy. We demonstrate the usefulness of the method

through four empirical applications.

Our theory posits a standard model of a competitive market with a representative consumer who

chooses among a variety of related goods, each of which produce a di↵erent level of an externality.

A vector of Pigouvian taxes (which we call the Pigouvian benchmark) on these goods can restore

e�ciency, but we suppose that the planner faces a constraint, so that taxes must be made contingent

upon some variable that is imperfectly correlated with the externality. This induces “errors” in the

constrained optimal tax rates, as compared to the Pigouvian benchmark. We build on Harberger

(1964) in deriving a general expression that characterizes the deadweight loss of some alternative set

of taxes that deviates from the Pigouvian benchmark using a local approximation. Evaluating this

full expression requires information about all cross-price derivatives of demand, which will typically

be unavailable. However, under some conditions regarding the demand matrix, second-best policies

will involve a set of taxes or shadow prices under which cross-product substitution does not a↵ect

overall welfare. Intuitively, what is required is that two products that are closer substitutes for

each other do not, on average, have more similar tax rate errors.

We show that, when this condition is met, welfare conclusions can be drawn with limited in-
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formation. Given data on the distribution of the externality and its degree of correlation with

the variables upon which policy is based, one can determine the proportion of the welfare gain

achievable by the Pigouvian policy that the second-best policy achieves. Unlike results in the pre-

vious literature, this policy comparison does not require an estimate of any behavioral parameters.

Given an estimate of the own-price derivative for the goods and the marginal damage due to the

externality, the welfare costs of employing second-best policies in lieu of the Pigouvian benchmark

can be estimated directly in dollars (rather than as a proportion).

To demonstrate the power of this method, we apply it to four distinct empirical problems.

The first application considers random mismeasurement—energy e�ciency is measured according

to laboratory test procedures which di↵er from in-use averages, thereby creating mismeasurement

in externalities across regulated products. We take advantage of a change in the fuel-economy

test procedure for automobiles in the United States to quantify the e�ciency cost of basing fuel-

economy regulation on the older, noisier test ratings. We conclude that the second-best policy is

quite e�cient; it obtains more than 95% of the gains achieved by the Pigouvian benchmark.

Our second application regards real-time electricity pricing. Unlike our other three applications,

this does not concern an externality. Instead, there is a wedge between marginal costs and benefits

due to the fact that the marginal cost of generating electricity varies hour by hour, but electricity

tari↵s do not vary to reflect these costs (Borenstein and Holland 2005). We apply our method to

characterize the welfare gain of tari↵s that vary along some time or date dimensions, but fall short

of the theoretical ideal of real-time pricing. We find that realistic time-varying tari↵s recover only

a modest fraction of the gains achieved by real-time pricing.

Our third application concerns the regulation of energy-consuming durable goods that have

heterogeneous total lifetime utilization. The lifetime pollution stemming from a durable good

depends on both its energy e�ciency and its lifetime utilization, but policies that regulate energy

e�ciency ignore di↵erences in product longevity. We use a novel data set that indicates the lifetime

miles traveled for a large sample of automobiles. We quantify that average lifetime miles traveled

by individual vehicles of a particular model vary substantially across di↵erent models. This implies

that vehicle models with the same fuel-economy rating in fact have very di↵erent levels of expected

lifetime carbon dioxide emissions. We conclude that actual fuel-economy policies, which treat such

vehicles identically, recover only about one-quarter to one-third of the welfare gain compared to a

policy that considers both fuel economy and vehicle longevity. This result is robust even when we

relax key assumptions about demand.

To illustrate our results, Figure 1 shows the relationship between fuel-economy ratings and

average lifetime carbon emissions for di↵erent types of automobiles. Each data point represents the

average lifetime CO2 emissions across a number of individual vehicles of the same model (e.g., all

2012 Toyota Camry LE observations are combined into one data point). The solid line is the linear

best fit. Dispersion in the data comes from heterogeneity in lifetime mileage; if all vehicles had the

same lifetime mileage, the data would lie on a straight line. Federal fuel-economy standards impose

implicit taxes on vehicles that are a linear function of each vehicle’s o�cial fuel-consumption rating;
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they cannot be based on average lifetime mileage. Our theory shows that, under some conditions,

the second-best fuel-economy standard creates implicit taxes equal to the OLS prediction line and

the R

2 from this regression—0.29 in the case of Figure 1—is an estimate of the fraction of the

Pigouvian welfare gain that is achieved by this fuel-economy policy.

Figure 1: The Relationship Between Lifetime CO2 Emissions and Fuel E�ciency
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Note: The solid line is an OLS regression line. Each point represents a car model. The x-axis shows each model’s

fuel-economy rating: the number of gallons of gasoline per 100 miles driven. The y-axis shows each model’s lifetime

CO2 emissions, calculated by dividing each model’s average lifetime miles driven by its fuel-economy rating to arrive

at lifetime gallons of gasoline consumed, and then multiplying by the tons of CO2 per gallon of gasoline. The sample

is restricted to models for which we observe at least 200 retirements from model years 1988 to 1992. The data are

described in detail in Section 5. The solid line is an OLS regression line. Each point represents a car model.

A fourth application considers spatial di↵erentiation. A given amount of pollution or energy

use may have quite di↵erent health or environmental consequences depending on where it takes

place, but policies often cannot di↵erentiate their treatment by location. We use our framework to

quantify the welfare costs of imperfect spatial di↵erentiation for the case of carbon dioxide emissions

resulting from the use of electric appliances. Here, di↵erences in emissions across space are due to

the fact that the emissions rate from the marginal power plant di↵ers across regions of the country.

This application also serves to demonstrate the broader applicability of regression statistics for

welfare analysis because our required demand conditions will not hold for the policy we consider.

Instead, we demonstrate that an alternative regression statistic, the within-R2 from a regression

with spatial fixed e↵ects, has the desired interpretation. We conclude, for this particular case, that
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the welfare costs of failing to spatially di↵erentiate are small.

Our method in general, and our analysis of fuel-economy policy specifically, represent contribu-

tions to the evaluation of energy e�ciency policies. No prior research has analyzed the implications

of heterogeneity in lifetime utilization for the design of energy e�ciency programs. This adds a

new, and apparently economically important, dimension to the analysis of energy e�ciency pro-

grams. In particular, it points out a new concern for the comparison between gasoline taxation

and fuel-economy standards as competing policies aimed to reducing greenhouse gas emissions from

transportation.1 Similar issues arise for any policy that regulates pollution-control technology.

More broadly, our main contribution is to show the relationship between familiar regression

statistics and second-best policies that aim to fix market failures but are constrained to be imperfect.

This relates to the su�cient statistics literature in public finance, which is similar in seeking to

find ways of characterizing welfare e↵ects of policies that require information about a minimum

number of parameters. Our analysis is unique in focusing on regression statistics, and also adds to

the small set of articles in this literature that are focused on externalities.2

Our analysis also connects to an important strand of literature in environmental economics

that considers heterogeneity in damages from the same pollutant emitted in di↵erent locations. For

example, the marginal damage from a ton of sulfur dioxide will di↵er depending on whether or not it

is emitted near a densely populated city. A theoretical literature has noted that this type of spatial

heterogeneity implies that uniform national policies are ine�cient, and suggested an e�ciency gain

from spatially di↵erentiated regulation (Tietenberg 1980; Mendelsohn 1986; Baumol and Oates

1988). This type of concern has been used to study the potential benefits of spatial di↵erentiation

in policies regarding air pollution (Muller and Mendelsohn 2009; Muller, Mendelsohn, and Nordhaus

2011; Fowlie and Muller 2017), renewable energy generation (Cullen 2013; Callaway, Fowlie, and

McCormick 2018), water pollution (Farrow, Schultz, Celikkol, and van Houten 2005), and electric

vehicles (Holland, Mansur, Muller, and Yates 2016). As we discuss in Section 6, a number of these

models can be understood as special cases of our general setup, and we suggest that our approach

1For reviews of this literature for automobiles, see Harrington, Parry, and Walls (2007); Anderson, Parry, Sallee,
and Fischer (2011); Anderson and Sallee (2016). Existing research, including Fullerton and West (2002), Fullerton
and West (2010) and Feng, Fullerton, and Gan (2013), has considered how heterogeneity across consumers in driving
behavior influences optimal policy design and welfare consequences, and Knittel and Sandler (2013) examine similar
questions related to heterogeneity across individual automobiles in their local air pollution emissions rates. But, none
consider heterogeneity in average lifetime utilization.

2Chetty (2009) documents a broad set of topics that have been considered by the literature on su�cient statistics
in public economics, but he cites no papers focused on externalities. Recent work has included not only traditional
questions in taxation (Feldstein 1999; Goulder and Williams 2003; Kleven and Kreiner 2006; Saez, Slemrod, and
Giertz 2012; Hendren 2016), but also studies of social insurance (Baily 1978; Chetty 2006), health insurance (Einav,
Finkelstein, and Cullen 2010), and limited rationality (Chetty, Looney, and Kroft 2009; Allcott, Mullainathan, and
Taubinsky 2014). Hendren (2016) briefly notes that, in order to fully assess a policy in the presence of externalities,
one needs to know the e↵ect of the policy on the externality net of many general equilibrium (cross-price) e↵ects across
a variety of related goods. But that paper does not propose a way to estimate this net e↵ect, whereas we described
conditions when they will cancel. One paper that invokes the su�cient statistics tradition and does explicitly consider
energy is Allcott, Mullainathan, and Taubinsky (2014), which models energy e�ciency policy when heterogeneous
consumers may undervalue energy e�ciency due to limited rationality. They model a discrete choice between an
e�cient or ine�cient good and derive su�cient statistics for the optimal combination of energy taxes and subsidies
for energy e�cient products.
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could o↵er a straightforward way of estimating potential gains from counterfactual policies in these

contexts.

We investigate four distinct empirical applications in this paper, and we believe that the methods

can be applied more broadly. The key data requirement is some measure of the distribution of the

externality (or other e�ciency wedge) and its correlation with the variables upon which policy is

contingent. For a few more examples, consider the policies we described at the beginning of this

introduction. The e�ciency of sulfur dioxide trading programs could be assessed using estimates

of the spatial distribution of marginal damages generated by Muller and Mendelsohn (2009) and

Muller, Mendelsohn, and Nordhaus (2011).3 The e�ciency of various congestion pricing policies

could be estimated using existing tra�c data, such as the high frequency records from thousands of

locations in the California highway system (Caltrans 2016). Data on second-hand smoke exposure at

home and in the workplace from the National Adult Tobacco Survey for the U.S. or the Global Adult

Tobacco Survey could be used to estimate the e�ciency of cigarette taxes as tools for mitigating

externalities from second-hand smoke.4

The balance of the paper is as follows. In Section 2 we develop the theory for deriving su�cient

statistics. In Section 3 we apply our method to the case of random mismeasurement in externalities,

using a recent change in fuel-economy testing procedures for automobiles. Section 4 shows how

our method applies to mispricing in electricity markets. In Section 5 we apply our results to

heterogeneity in the longevity of automobiles. Section 6 considers spatial heterogeneity in emissions

from identical products used in di↵erent locations, using carbon emissions from refrigerators as an

example. Section 7 concludes.

2 Theory for Deriving Su�cient Statistics

The goal of our model is to facilitate analysis of the e�ciency costs of policies that correct an exter-

nality or another wedge between marginal costs and benefits but that deviate from the theoretical

ideal. Actual policies may be less e�cient than an ideal policy for a variety of reasons, including

political constraints, technological cost, and administrative feasibility. After presenting our model

setup and notation, we first derive a general expression for the welfare loss from using some alter-

native, constrained policy in lieu of the ideal. We then specify su�cient conditions under which

this general expression collapses so that simple regression statistics have welfare interpretations.

Finally, we describe what can be learned from simple regression statistics even when our su�cient

conditions are not met and when externalities are measured with error.
3Spatial heterogeneity is not the only factor that determines the e�ciency of SO2 trading. Montero (1999),

for example, demonstrates that adverse selection in voluntary opt-in to the SO2 trading program in the U.S. had
significant e�ciency impacts in the program’s early years.

4For details on those data sources, see http://www.cdc.gov/tobacco/data_statistics/surveys/nats/index.

htm and http://www.who.int/tobacco/surveillance/gats/en/.
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2.1 Model setup

We emphasize a simple model in which there is only one market failure. We model a representative

consumer in a perfectly competitive market. The economy has products indexed j = 1, ..., J .

The consumer chooses quantities of each, denoted xj . The consumer derives utility, U , from the

consumption of these products according to the function U(x1, ..., xJ), which we assume is twice

di↵erentiable, increasing, and weakly concave in each argument. We denote the cost of production

by C(x1, ..., xJ), which we assume is twice di↵erentiable, increasing and weakly convex in each

argument. There is an exogenous amount of income in the economy, M , and all remaining income

is consumed in a quasilinear numeraire, n. We assume no technological change and do not model

the endogenous entry and exit of products into the market.5 As such, ours is a short-run model,

though one could allow for zero quantities so that the product vector represents potential products.

We posit that there is some market failure which leads the market, absent policy, to choose

quantities so that there is a wedge, denoted �j , between the marginal private benefit and the

marginal private cost of a unit of xj . Our first assumption is that �j is fixed and unchanging

with respect to policy intervention, and that the total social ine�ciency is the sum of these wedges

across goods, multiplied by quantities: � =
PJ

j=1 �jxj . The simplest interpretation is that �j is

an externality, as is the case in three of our four applications. In one of our applications, �j is a

gap between marginal cost and marginal benefit due to coarse pricing, where the cost of producing

a good varies over time but the price is constrained to be constant.6 Inspired by the externality

interpretation, we refer to �j as the marginal social damage per unit of xj .

Assumption 1. Marginal social damages from each product, �j, are fixed w.r.t. the tax vector t.

A natural way to think of our setup is that it models a sector of the economy—e.g., j indexes

types of refrigerators, and n is a separable bundle that represents all other goods. Each of the

goods in the sector contributes varying amounts, �j , to a common externality—e.g., the use of

each refrigerator over its lifetime leads to a di↵erent amount of carbon dioxide, discounted to the

present. The consumer ignores the externality when making choices, and the goal of the planner is

to use taxes to internalize the externality.

The planner can impose product taxes, denoted tj . We describe policies as taxes on products,

but this is equivalent to regulatory policies that create implicit taxes (shadow prices). We assume

that consumers remit taxes, so that the price to consumers is pj+tj . Revenue is recycled lump-sum

to consumers through a grant D. The consumer acts as a price taker. The consumer’s optimization

5For a treatment of how product redesigns can influence the design of a tax system that is limited in its ability to
assign unique tax rates to each product, see Gillitzer, Kleven, and Slemrod (2017).

6The wedge could come from other sources, such as market power, but our derivation assumes that �j is fixed with
respect to the policy vector. Markups will generally shift with policy intervention, so application of our framework
to market power would require modifications.
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problem is:

max
x1,...,xJ

Z = U(x1, ..., xJ) + n

s.t.
JX

j=1

(pj + tj)xj + n  M +D.

(1)

The consumer’s first-order conditions imply that @U
@xj

= pj+tj , which we assume holds at an interior

solution.

Social welfare W is the utility from the product bundle, the numeraire (substituted out for the

budget constraint), and the externality:

W = U(x1, ..., xJ) +M � C(x1, ..., xJ)�
JX

j=1

�jxj . (2)

We say the planner is unconstrained when she can set a unique tax rate on each product. In

this case, the planner’s problem is:

max
t1,...,tJ

W = U(x1, ..., xJ) +M � C(x1, ..., xJ)�
JX

j=1

�jxj . (3)

The first-order condition for product j is:

dW

dtj
=

JX

k=1

✓
@U

@xk
� @C

@xk
� �k

◆
@xk

@tj
=

JX

k=1

(tk � �k)
@xk

@tj
= 0, (4)

where the second equality follows from substituting the consumer’s first-order condition, and from

our assumption of marginal cost pricing.

For wedges other than an externality, the same expression will arise as long as the wedge satisfies

Assumption 1. For example, one of our applications relates to coarse pricing—electricity prices are

constant at all hours of the day, whereas marginal cost varies. In this case, �j is the gap between

the price faced by the consumer (which equals marginal utility) and the true marginal cost. To

consider that case, drop the externality term from Equation 2. Then, di↵erentiating W with respect

to tj yields the same
PJ

k=1(tk � �k)
@xk
@tj

.

Equation 4 shows that all J first-order conditions for the planner will be met if and only if

tj = �j 8j. That is, the planner’s optimum is a vector of Pigouvian taxes; each product’s tax rate

is set equal to its marginal external damage. This is as expected. We refer to the policy vector

tj = �j 8j as the Pigouvian benchmark.

We wish to characterize how welfare under this Pigouvian benchmark compared to that under a

policy that satisfies some constraint. The di↵erence represents the cost of the constraint on policy

design. The constraint is a restriction on the vector of taxes that the planner can choose. We write

this constraint as a function tj = g(fj ; ✓), where f is some vector of exogenous attributes of the
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products, ✓ are parameters to be chosen by the planner, and g is some function. The planner’s

problem can now be written:

max
✓

W = U(x1, ..., xJ) +M � C(x1, ..., xJ)�
JX

j=1

�jxj (5)

s.t. tj = g(fj ; ✓) 8j

We call the solution to this policy, denoted tj = g(fj ; ✓⇤), the second-best, or constrained, tax

vector. Recall that our goal is to provide welfare interpretations of regression statistics. Motivated

by this, we restrict attention to situations where g(fj ; ✓) can be written as linear in parameters,

noting that this is no more restrictive than it is in any application of (multivariate) linear regression,

where variables can be transformed and interacted. For example, in our third application, we

consider fuel-economy regulations that impose a shadow tax on vehicles that is an a�ne function of

their fuel-economy ratings. Thus, g(fj ; ✓) = tj = ↵+�fj , where ✓ consists of two parameters, ↵ and

�, and fj is the fuel-economy rating. Our four applications demonstrate a variety of policy-design

constraints that fit into this framework.

Our objective is to describe the welfare cost of such policy constraints relative to the Pigouvian

benchmark. We note that the Pigouvian benchmark itself is not necessarily “first-best” in the

presence of other market failures or margins of adjustment that product-based taxes cannot correct.7

For example, taxes on new vehicles cannot induce optimal scrappage behavior. Therefore, our

Pigouvian new vehicle tax vector falls short of a first-best tax on gasoline. We discuss this in

more detail in Section 5. In such cases, our method considers the welfare gain along a particular

dimension of interest that is targeted directly by the tax, assuming that other distortions are held

constant. We return to this point in the applications.

To describe the welfare consequences of such policy constraints, we now proceed to deriving a

generic expression that characterizes the loss of social welfare caused by moving from the Pigouvian

benchmark policy to some arbitrary tax vector. We then use this expression to relate second-best

policies that would arise given a particular constraint.

2.2 Characterizing deadweight loss

Let a generic tax schedule be denoted as ⌧1, ..., ⌧J . We characterize the welfare loss of moving

from the Pigouvian benchmark tj = �j to tj = ⌧j by specifying a weighted average of the two tax

schedules and then integrating the marginal welfare losses of moving the weights from �j to ⌧j . We

denote the di↵erence in welfare between the two schedules as DWL(t = ⌧).8 To do so, we assume

7For simplicity, even though the Pigouvian benchmark will not be first-best in all settings, we refer to the con-
strained policy as “second-best”.

8We consider relative benefits of policies but the final policy choice also depends on relative costs (e.g., administra-
tive or technology costs). Our method provides a bound on the costs that would make the less precise policy better
overall. Note that, in our four empirical examples, the Pigouvian benchmark is technically feasible and requires only a
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local linearity.

Assumption 2. Demand derivatives @xj

@tk
are constant between �j and ⌧j for all j and k.

Under the assumption of constant demand derivatives, the e�ciency loss incurred from imposing

any arbitrary tax schedule ⌧ in lieu of the Pigouvian tax schedule can be written as:

W (t = �)�W (t = ⌧) ⌘ DWL(t = ⌧) = �1

2

JX

j=1

JX

k=1

(⌧j � �j) (⌧k � �k)
@xj

@tk
. (6)

The proof, along with all others, is in Appendix A. This formula is in the form of a set of Harberger

triangles, and indeed the same result (although without externalities) is in Harberger (1964). When

⌧j = �j , each term in the summation will be zero.

In line with the traditional use of Harberger triangles, we assume that demand derivatives are

constant over the relevant range of taxes. In our discussion here, we also assume that producer

prices are unchanged, which implies constant marginal cost. In this case, @xj

@tk
represents only a

demand derivative, not a combined e↵ect of supply and demand. Where marginal cost is increasing

but linear, our mathematical results are all the same, but @xj

@tk
is interpreted as the combined

response of supply and demand (see Appendix A).

Where demand or marginal costs are convex, our results represent a local approximation in the

same way that Harberger triangles normally do. Thus, our derivations can also be understood as

indicating incremental welfare losses from small movements away from the Pigouvian benchmark.

Note that we relax both the linearity and the constant marginal cost assumptions in our electricity-

pricing application, but we preserve them here for the exposition.

To better understand the content of Equation 6 we substitute ej ⌘ ⌧j � �j , where ej is the

“error” in the tax rate, and decompose the own and cross e↵ects:

�2⇥DWL(t = ⌧) =
JX

j=1

JX

k=1

ejek
@xj

@tk
(7)

=
JX

j=1

e

2
j

@xj

@tj

| {z }
own e↵ects

+
JX

j=1

X

k 6=j

ejek
@xj

@tk

| {z }
cross e↵ects

. (8)

(7) and (8) are quite general expressions. But, using these formulas to evaluate policy alternatives

requires knowledge of the complete demand matrix, including all cross-price derivatives. This

information will frequently be unavailable.

Under some conditions, however, the expression will simplify further and policy evaluation will

set of tax rates or prices, where taxes and prices are already being charged. It seems unlikely then that administrative
costs would be a major factor in comparing policies in our settings, but this may not be true in other situations.
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require less information.9 Specifically, the cross e↵ects in Equation 8 will be zero when there is

no substitution between goods, so that cross-price derivatives are all zero. Alternatively, the cross

e↵ects will be proportional to the own e↵ects when the errors in the tax rates are mean zero and

products of errors are uncorrelated with cross-price derivatives. Note that we refer to @xj/@tk as

cross-price derivatives and the contribution of the ejek@xj/@tk to deadweight loss as cross e↵ects.

Zero cross-price derivatives are a su�cient condition for the cross e↵ects to simplify, but so are the

alternative conditions listed below.

We state these possibilities formally as Assumption 3. We then proceed to derive results under

the case where Assumption 3 holds before returning to a detailed discussion of these conditions.

Assumption 3. (a) Tax errors ej are uncorrelated with own-price derivatives: cov

⇣
ej ,

@xj

@tj

⌘
= 0.

(b) Products of tax errors ejek are uncorrelated with cross-price derivatives: cov

⇣
ejek,

@xj

@tk

⌘
=

0 8j 6= k. (A stronger version of this, (b’), assumes that cross-price derivatives are zero: @xj

@tk
=

0 8j 6= k.)

where cov

⇣
ejek,

@xj

@tk

⌘
is calculated for all non-diagonal elements of the demand matrix (j 6= k).

Version (b’) of this assumption holds if there is no substitution across products. Version (b) assumes

that cross-price derivatives between each pair of products are uncorrelated with the product of their

tax errors. This holds if externalities, conditional on policy, are orthogonal to substitutability. As

we discuss further below, this is a plausible property of second-best policies. To provide a more

intuitive economic interpretation, we note that one way that this assumption can be satisfied is if

i) for each product j the errors of its substitutes are uncorrelated with the cross-price derivatives

and ii) across products j the tax errors are uncorrelated with average cross-price derivatives.

In our empirical applications, we provide examples where (b’) is likely to hold by approximation

(electricity pricing) as well as as cases in which (b) is reasonable (fuel-economy standards and noisy

energy e�ciency ratings). Nevertheless, Assumption 3 will not hold in all cases, so we review what

can be learned when the conditions do not hold after establishing our primary results that obtain

under Assumption 3. Moreover, we provide numerous robustness checks throughout our empirical

applications.

2.3 Welfare statistics when DWL is proportional to squared tax errors

Under Assumptions 1, 2, the strong version of Assumption 3 (parts (a) and (b’)), and assuming

unbiasedness on average so that
PJ

j=1 ej = 0, the deadweight loss of an arbitrary tax vector is

given by:

9Goulder and Williams (2003) also build from the general Harberger formula and present a simplified expression
for the excess burden of taxation that does not require estimates of all cross-price derivatives. They study interactions
between commodity and labor taxes, a very di↵erent setting from ours.
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DWL = �1

2

@xj

@tj

JX

j=1

e

2
j , (9)

which foreshadows a central role for minimizing a sum of squared tax errors. When we use the

weaker variant of Assumption 3 (parts (a) and (b)), the welfare loss expression remains very similar:

DWL = �1

2

✓
@xj

@tj
� @xj

@tk

◆ JX

j=1

e

2
j . (10)

where the average cross-price derivative (over the non-diagonal entries of the demand derivative

matrix) @xj

@tk
= 1

J(J�1)

⇣PJ
j=1

P
k 6=j

@xj

@tj

⌘
. Note that DWL in Equation 10 is still proportional to

the sum of squared tax errors, but it is multiplied by the di↵erence in the average own-price and

the average cross-price derivative. Because the proportionality of the DWL is maintained, all

propositions and corollaries below hold exactly using either variant of Assumption 3. The algebra

leading to Equations 9 and 10 appears in Appendix A.

When the number of goods J is large, @xj

@tk
will become small. Thus, Equation 9 will be a close

approximation of the DWL in Equation 10 even in cases where only the average own-price elasticity

is known. Moreover, even for smaller values of J , @xj

@tk
will shrink if the substitution to the outside

good becomes larger.

The solution to the planner’s constrained problem in Equation 5 is the same as from minimizing

the deadweight loss in Equation 10 subject to the same constraint.10 This makes the link between

policy and regression obvious. Whenever the policy constraint tj = g(fj ; ✓) can be written as a

function that is linear in parameters, minimization of deadweight loss is the same as minimizing

the sum of squared residuals in a regression of the true externalities on the tax rates.

When Assumptions 1 to 3 hold, the second-best policy will be to choose ↵ and � to be the OLS

solutions from fitting the externality to the policy variable. This is stated in Proposition 1:11

Proposition 1. Under Assumptions 1 to 3, the second-best policy is the OLS fit of �j to fj, and

the deadweight loss is proportional to the sum of squared residuals:

DWL = �1

2

✓
@xj

@tj
� @xj

@tk

◆
SSR. (11)

The proof is in Appendix A. The intuition is as follows. When the externalities, conditional on

characteristics that are in the policy function, are uncorrelated with product substitutability then

10Deadweight loss is just the objective function evaluated at the Pigouvian benchmark minus the objective function
evaluated at an alternative tax vector, so the original objective function is just deadweight loss plus a constant term.

11For expositional ease, we derive results for the case where policy is contingent on one exogenous variable, denoted
fj , and the tax policy takes the form of a linear function of fj . Then the policy choice is to choose ↵ and � where
tj = ↵+ �fj . It is straightforward to modify our derivation to include many variables.
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the deadweight loss is a linear function of the sum of squared tax errors and the sum of errors

(bias in the tax) squared. We show that this objective function is minimized by the same line that

minimizes the sum of squared tax errors: a simple OLS fit. We show below how weighted least

squares provides a similar solution when own-price derivatives may be correlated with the error.

In turn, the resulting deadweight loss is the sum of squared residuals from the OLS regression

scaled by the average demand derivative and an average cross-price derivative factor that is close

to zero when the number of products J is large. Thus, given data on the externality and own-

price derivatives, and the attributes upon which policy is based, an analyst can run a simple linear

regression and assign direct welfare interpretations to the regression output.

Moreover, the R

2 from this regression is a su�cient statistic that summarizes the percentage

of welfare gain that could be achieved by the Pigouvian benchmark that is achievable by the

second-best constrained policy. The percentage gain in welfare must be defined relative to some

benchmark. The R2 is defined relative to a benchmark policy that imposes a uniform unbiased tax

rate t̄ that is the same for all products.12

Corollary 1. Under Assumptions 1 to 3, the R

2 from the OLS fit of �j to fj represents the

percentage of the welfare gain of the Pigouvian tax (relative to a baseline of a uniform unbiased tax

t̄) that is achieved by the second-best linear tax on fj (relative to the same baseline):

R

2 =
DWL(t = ↵

OLS + �

OLS
fj)�DWL(t = t̄)

DWL(t = �)�DWL(t = t̄)
. (12)

Under our assumptions, theR2 relaxes the information requirement of knowing own-price deriva-

tives and also eliminates the small adjustment factor involving the average cross-price derivative.

No moments of the demand system are required to calculate this su�cient statistic. This makes

assessing the relative welfare gain very intuitive and easy: all that is required is running a sim-

ple OLS regression of the actual externality for each product on the variables used in the policy

function.

We now relax part (a) of Assumption 3 to allow correlation between errors and own-price

derivatives. This leads to a very intuitive relationship with weighted multivariate regression:

Proposition 2. Under Assumptions 1, 2 and 3(b), the second-best policy is the weighted least

squares fit of �j to a vector of attributes fj, where the weighting matrix is diagonal with each entry

equal to the own-price derivative for product j.

Given information about the own-price derivatives of each product, a researcher could calculate

the WLS estimator and derive parallel welfare results for this case. The second-best policy is still

a linear best fit; the deadweight loss is the weighted sum of squared residuals from that regression.

The proof appears in Appendix A. Further, when relaxing Assumption 3 altogether, the second-

best policy is the GLS fit of � to f where the weighting matrix is the full demand matrix. We do

12The application of the deadweight loss formula in Equation 10 to this benchmark requires applying Assumptions
1 to 3. When we relax Assumption 3 in Section 2.4 we also relax its application to the benchmark policy.
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not emphasize this result because it requires additional information about the demand system, but

in many instances this formula would be useful for robustness analysis. We demonstrate such a

calculation in Section 5.6, using estimates on the full matrix of demand elasticities for automobiles.

Interpreting the assumptions about cross e↵ects

We now discuss the key economic implications of the assumptions needed for the results above.

Part (a) of Assumption 3 says that the strength of own-price derivatives is not correlated with

a product’s tax error; i.e., whatever factors that determine the externality but are omitted from

the policy function do not also indicate stronger or weaker own-price responses. Proposition 2

relaxes this assumption. Doing so is important in empirical applications where some products are

demanded in much larger quantities than others (and so have larger own-price derivatives, all else

equal).

The second part of Assumption 3 has more economic content. The strong version 3(b’) applies

to markets where products are not substitutes or complements. This assumption is unlikely to hold,

though we argue in Section 4 that it applies, at least by approximation, to electricity pricing. Even

when cross-price derivatives are not zero, Corollary 1 will still apply as long as the weaker version of

3(b) holds: this says that the di↵erence between the errors in the tax rates between two products is

no smaller or larger when the two products are closer substitutes. The errors in tax rates represent

the residual variation in the externality, after conditioning on the attributes upon which policy is

contingent, f . Consider the vehicle example. Two vehicles with similar externalities (�) will be

closer substitutes, provided that vehicle fuel economy (f) is a factor that determines vehicle choice,

because � is mechanically related to f . But, Assumption 3 can still be met if, after conditioning

on fuel economy, the residual variation in the externality � is not correlated with substitutability.

Whether this will be true depends on the variables that are included in the policy and the source

of residual variation in the externality. We discuss Assumption 3 in more detail for each of our

empirical applications.

The results in this section demonstrate that—under assumptions that are often plausible—

the deadweight loss of deviating from the Pigouvian benchmark can be calculated with limited

information about the market. The welfare gains possible in the second-best relative to those in

the Pigouvian case can be calculated with even less information. In the next four sections we

demonstrate that these theoretical results have empirical relevance by illustrating four situations

in which a su�cient statistic useful for evaluating policy can be derived from this framework.

2.4 What information remains in the R2 when the cross e↵ects do not simplify?

In this subsection, we explore cases where the R

2 is biased (because our assumptions do not hold),

but that bias can be signed, so the R2 is interpretable as a bound on welfare e↵ects. To be precise,

we consider what the R

2 indicates about the welfare gains from the linear best fit policy, showing

when this overstates or understates welfare gains. When our assumptions do not hold, this linear

best fit policy may not be second-best. But, we still think it is the most interesting candidate
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policy to analyze for many situations where the policy-maker lacks the detailed information about

demand needed to determine how the second-best deviates from the best fit. We first present a

formula that highlights how di↵erent forces push the true welfare ratio away from R

2 in di↵erent

directions. We then make suggestions for how empiricists might investigate the potential bias based

on the type of violation.13

When we do not impose Assumption 3 so that cross e↵ects do not simplify, we can still write out

an expression for the relative gain in welfare achieved by the linear-best fit policy over a uniform

tax policy, divided by the gain from the Pigouvian benchmark over the same uniform tax. We

denote this welfare gain by S, and compare it to the R

2:

S = 1�
�1

2
@xj

@tj
SSR

second�best � 1
2

P
j

P
k 6=j ejek

@xj

@tk

�1
2
@xj

@tj
TSS

second�best � 1
2

P
j

P
k 6=j �j�k

@xj

@tk

, (13)

where �j are the residuals in the regression of � on a constant (the uniform policy). Note that �j =

�j+ej , where �j is defined as the explained portion in the linear regression: �j = ↵

OLS+�OLS
fj��̄.

Because � is a function of f , the tax errors in the uniform policy depend on f . Thus, Equation 13

allows cross-price derivatives to be correlated either with e or with f (and thus �).

We now consider two types of correlation that determine the direction of the bias in R

2. First,

correlation between products of constrained policy errors and cross-price derivatives cov
⇣
ejek,

@xj

@tk

⌘

(“type 1”). Second, correlation between products of the policy variable and cross-price derivatives

cov

⇣
�j�k,

@xj

@tk

⌘
(“type 2”).

Proposition 3. Under Assumptions 1 and 2, (i) R

2
< S if type 1 correlation is positive (but type

2 correlation is zero); (ii) R

2
> S if type 2 correlation is positive (but type 1 correlation is zero).

The proof is in Appendix A. First consider part (i) of Proposition 3. If cross-price elasticities

are larger for goods with similar tax errors (e.g., vehicle durability in application 3) then the

true fraction of welfare recovered in the second-best policy increases relative to the R

2 measure.

The intuition here is that when goods with similar tax errors are good substitutes, the Pigouvian

benchmark loses some of its advantage: consumers do not substitute much along this dimension

anymore and so the two policies become more similar, acting mostly along the margin of reducing

f .

Now consider part (ii). If cross-derivatives are large when �j and �k (a function of the ob-

servable attribute f , such as fuel economy in application 3) are similar then the true fraction of

welfare recovered by the second-best policy S will decrease relative to R

2. The intuition for this

follows from observing that correlation of substitutability with f makes the second-best policy less

e↵ective because consumers now substitute mainly among products with similar f . The Pigouvian

13Another approach is to derive bounds on the deadweight loss from Equation 7. We have constructed analytical
bounds based on properties of quadratic forms and their eigenvalues, but they will be informative only in special
cases. This may be a promising area of future research.
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benchmark is still based on both f and the tax error and so its e↵ectiveness is not damaged as

much.

It is important to note that, in many common settings, both types of positive correlation are

likely to be present, and sometimes the bias cancels out. For example, as we discuss in Section

5, cars that are strong substitutes are relatively likely to have similar fuel economy and similar

durability.

The results above are directional and qualitative. In many cases, as we illustrate in the ap-

plications, simulation of the true welfare gain using a range of plausible demand elasticities can

be highly informative. This usually does require some knowledge on the structure of the demand

matrix, e.g. from existing empirical work in the literature.

2.5 Measurement error biases in R2

To implement our method, the analyst needs estimates of the externalities (or other wedges). A

practical concern in many settings will be accurate measurement of �j . When inaccuracies in

measures of �j have a classical error structure it is straightforward to characterize the way that

this biases the R

2 statistic. An example of classical measurement error would be would be when

�j is estimated from a sample of observations, as in our first application, and sampling variability

produces unbiased but variable estimates. Likewise, if �j is an unbiased prediction, it may have

classical mismeasurement. We use the following notation: �̂j ⌘ �j+⌫j , where �j is the true wedge,

�̂j is the observed or estimated wedge, and ⌫j is therefore the error in measurement. Consistent

with classical errors, suppose that ⌫j is independent of �j (and of any regressors that are used in

determining the tax scheme) and is distributed normally with mean zero and variance �2⌫ .

Suppose that the analyst regresses �̂j on fj . This is a situation of errors in the dependent

variable, so errors do not cause bias in the coe�cients and the second-best policy is still consistently

estimated. The R2 statistic, however, is biased downward due to the noise from mismeasurement. A

simple derivation (see Majeske, Lynch-Caris, and Brelin-Fornari (2010)) shows that, in expectation:

R̂

2 = R

2

 
1� �

2
⌫

�

2
�̂

!
(14)

where R̂2 is the result from the estimation using mismeasured data and �2
�̂
is the variance in �̂j . In

terms of welfare interpretations, it implies that the second-best constrained policy will have larger

welfare gains than indicated by the estimated statistic. In practical terms, where measurement

error is a concern and errors are classical, an analyst can inflate the R

2 upwards given an estimate

of the signal-to-noise ratio in the data.

Another relevant source of noise in our setting could arise from the use of micro-data in per-

forming the regression. Conceptually, the regression we have in mind should be run at the same

level of detail over which the policy is being applied; if the benchmark policy di↵ers with product j
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then a dataset containing di↵erent individual observations for each product should be collapsed to

the product level before computing R

2. However, it is still possible to adjust the R

2 from a regres-

sion run on the micro-data to recover the relevant welfare statistic. The average variance in the

micro-data across products,
P

�2
j

J , can be substituted into Equation 14 in place of �2⌫ . The resulting

adjustment produces a value that is computationally equivalent to the R

2 from the product-level

regression, reflecting the welfare statistic we have in mind.14

2.6 Summary: when is our theory applicable?

The central point of our theory is that simple regression statistics often contain intuitive information

about the welfare properties of corrective policies that face some design constraint. Figure 2 provides

a visual summary of the situations under which our results obtain, which is intended to serve as

an initial guide for those considering our methods in other applications.

All of our theory assumes that in the absence of policy, consumption of a good deviates from the

social optimum due to some wedge �, such as an externality. Our base assumptions are that these

wedges are fixed with respect to prices and that demand and supply are linear over the relevant

range, as is generally assumed in the analysis of Harberger triangles. Under those assumptions,

Equation 8 expresses the deadweight loss of an arbitrary vector of taxes that deviates from the

Pigouvian benchmark. When demand and supply are not locally linear, it is possible to amend our

results through simulation, which we illustrate in our electricity-pricing application.

When the conditions of Assumption 3 are met, then our results about the interpretation of

the sum of squared residuals and the R

2 will hold (Proposition 1). We interpret our first two

applications, to electricity pricing and noisy laboratory measures, as meeting these condition most

closely.

Even when violations of the assumptions are significant, the R

2 may be a useful bound. As

described in Proposition 3, particular types of correlations between tax errors and demand will

create predictable bias in the R2 as a measure of welfare gain. In our vehicle longevity application,

we demonstrate the size of this bias after introducing correlations calibrated from the literature.

In some cases, the cross e↵ects will not simplify, and the bias will not fit the special cases

embodied in Proposition 3. In that case, we suggest two approaches. One is to look for a modified

14Using micro-data adds noise to the regression and can be corrected using Equation 14. We show here why the

relevant correction factor substitutes
P

�2
j

J for �2
⌫ , where we define �

2
j as the variance across observations of product

j: �2
j =

PI
i=1 �2

ij

I � �

2
j .

First note that in the general setting we define �

2
�̂
= �

2
� + �

2
⌫ , where �

2
� is the variance of the true product-level

externality �j . The variance of a micro-data set, �ij , containing I independent observations on each of the J products
can be written:

�

2
�i =

PJ
j=1

PI
i=1 �

2
ij

IJ

� �ij
2
=

PJ
j=1(I�

2
j + I�

2
j )

IJ

� �ij
2
=

PJ
j=1 �

2
j

J

+

PJ
j=1 �

2
j

J

� �

2
=

PJ
j=1 �

2
j

J

+ �

2
�

The corresponding correction using (14) then raises R2 to the value it would take in a regression where the averaged
data, �j , is used on the left hand side. To the extent there is still important mismeasurement in the averaged data

(for example sampling error in the form
�2
j

I ), an additional correction can be layered on to the result here.
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Figure 2: Schematic of Theoretical Results

Is ! fixed with respect to t? (Assumption 1)

Are demand and supply locally linear? (Assumption 2)

Yes

Yes

DWL formula
(Equation 8)

Do cross effects simplify?
(Assumption 3)

GLS result
(Proposition 2)

OLS, R2 result
(Proposition 1)

Does bias fit 
special cases?

Is ! mismeasured? Inflate R2
(Equation 14)

Yes No

R2 is a bound 
(Proposition 3)

Consider alternative 
statistic

(e.g., Proposition 4)

Yes

No

Consider 
simulation

(e.g., 
Application 3)

Consider 
simulation

(e.g., Application 1)

No

18



relationship between regression statistics and welfare. This is what we do in application 4. There, we

argue that R2 will be substantially biased, but that an alternative set of assumptions appropriate to

the setting imply that the within-R2 from a fixed e↵ects regression has the desired interpretation

(Proposition 4). Other approaches that incorporate additional market failures, endogenize � or

consider other relaxations of our assumptions are key topics for future research. The other approach

is to use simulation to determine whether calibrated degrees of correlation between tax errors and

the demand system indicate that the bias in the R

2 will be small or large. We demonstrate this

approach in our vehicle longevity application.

Finally, at the bottom of Figure 2 we call out a practical consideration. Where there is clas-

sical mismeasurement of the wedges, R2 will be biased downwards. This can be corrected where

information is available on the degree of noise in the data (Equation 14).

3 Application 1: Noisy Energy E�ciency Ratings

One reason that taxes or regulatory incentives for energy-consuming products may be imperfectly

related to the true externalities that they generate is that the energy e�ciency ratings themselves

are imperfect. To determine the energy e�ciency rating of a product, governments establish a

laboratory test procedure. The government, or the manufacturers themselves, then test a prototype

or example product. Actual performance in the field can di↵er from lab test results and, when it

does, policies based upon the o�cial ratings will be imperfect indicators of the actual externalities

associated with each product.15 This creates ine�ciencies, and our theoretical framework can be

used to quantify the consequent welfare losses.

In general, the challenge in studying this phenomenon is that it requires credible measures of

average in-use energy e�ciency which can be compared to the o�cial rating. Scattered evidence of

in-use performance does exist for some products, but we take a di↵erent approach here and analyze

a change in the U.S. rating system for automobiles that was meant to address mis-measurement.

The EPA began measuring fuel economy of automobiles in 1978 in support of the Corporate Average

Fuel Economy (CAFE) program, which mandates that each firm meet a minimum average sales-

weighted fuel economy of vehicles. The ratings are based on a laboratory test during which a

vehicle is driven on a dynamometer (a treadmill for cars) through a specific pattern of speeds and

accelerations. The test procedure established in 1978 included two courses; one each to represent

urban and highway driving. The two ratings were averaged to determine each vehicle’s rating for

the CAFE program. These same ratings were presented to consumers on fuel-economy labels.

In 1986, in response to consumer complaints that the ratings systematically overstated fuel

economy, the EPA revised the ratings downward by simply scaling them by the same amount for

all vehicles. CAFE continued to use the original values to determine automakers’ compliance, but

15Such mismeasurement naturally also occurs for non-energy goods and externalities. For example, to help prevent
obesity, calorie labeling on menus will be mandatory for many U.S. restaurants. Urban, McCrory, Dallal, Krupa Das,
Saltzman, Weber, and Roberts (2011) found using lab tests that while menus are, on average, pretty accurate,
substantial variation exists. About 20 percent of foods purchased had at least 100 more calories than what was
reported.
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consumer labels were updated. Over time, the revised ratings were deemed to be inaccurate as

well. The original test used low highway speeds, did not involve the use of air conditioning, and

generally became less accurate as automobile technology and average driving patterns changed.

Yet again, the EPA instituted a new test procedure in 2008 that changed the ratings substantially

on average, and also more for some vehicles than others.16

For political reasons, however, the CAFE program continues to use the less accurate original

rating system from 1978.17 While consumers are now provided with the more accurate updated

ratings, the regulation (and hence the regulatory shadow price faced by automakers) are still based

on the noisy original system.

We can use our theoretical framework to quantify the welfare costs of using the old rating system

in lieu of the updated one, via simple linear regression. Our thought experiment is the following.

We suppose (1) the new ratings represent the true fuel-economy rating of a vehicle, (2) after a

linear adjustment, the old rating is a white noise mismeasurement of the truth, and (3) the policy

maker is sophisticated and is aware of the inaccuracy in the old rating but must base policy upon

it because of political or legal constraints. In other words, a sophisticated regulator can take out

overall bias/tilt in measurement, but does not observe car-specific mistakes. These assumptions

likely hold in practice—reported on-road fuel economy is close to the 2008 EPA ratings and the

EPA explicitly presents di↵erences between window sticker and regulatory CAFE fuel-economy

values.18

3.1 The Pigouvian benchmark versus the constrained policy

In this application, we take a simplified view of the externalities associated with fuel economy

and assume that the externalities associated with an automobile are proportional to its true fuel

consumption per mile. This is consistent with how fuel-economy standards have been designed, as

such standards impose a shadow cost on each vehicle equal to a linear function of the vehicle’s fuel

economy rating (see, e.g., Anderson and Sallee 2016). (In application 3, we challenge this notion

and discuss various complications, but here we wish to focus only on the issue of mismeasured test

ratings, not other problems with fuel-economy regulation.)

In terms of our model, each product j is a type of car. The externality �j is some factor ⇣ (e.g.,

the social cost of carbon times carbon emissions per gallon of gasoline times total miles driven)

times true fuel economy. The shadow taxes imposed by CAFE will be a linear transformation of

16This procedure involved five separate dynamometer tests – the original two tests and three new ones. Several
tests are combined to determine the highway and city ratings that appear on fuel-economy labels for consumers.

17Evidently it was determined that changing the rating that entered the CAFE compliance program would require
a political battle not worth waging. Changing the CAFE ratings would have created winners and losers among
automakers.

18See http://www.epa.gov/fueleconomy/documents/420f14015.pdf and http://www.epa.gov/fueleconomy/

documents/420b14015.pdf.
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the old ratings, which the regulator is constrained to use in setting policy:

�j = ⇣ ⇥ New Fuel Economy Test Ratingj

tj = ↵+ � ⇥ Old Fuel Economy Test Ratingj .

3.2 Will cross e↵ects simplify?

Where the noise in measurement is uncorrelated with factors that determine vehicle demand, the

weaker version of Assumption 3 from Section 2 will hold, and the main theoretical results in

Proposition 1 and Corollary 1 apply. It is logical to suppose that errors in the tax rates from

an unbiased policy are uncorrelated with cross-price derivatives, as they are likely to be due to

idiosyncratic aberrations from test trials or particular technologies, like stop-start systems, that

are of little concern to consumers (and therefore not correlated with cross-price derivatives).

In this case, the R

2 from a regression of �j on tj has a welfare interpretation. It indicates

the fraction of the welfare gain over a flat tax (that corrects for the average externality produced

by an automobile) achieved by a policy that uses the less accurate, noisy fuel-economy estimates

(the second-best) in place of the accurate ratings (the Pigouvian benchmark). Note, however, that

because �j is proportional to the old fuel-economy ratings and tj is a linear transformation of the

new fuel-economy estimates, that the R

2 of interest is identical to the R

2 from a regression of the

new fuel-economy rating on the old one.

3.3 Data

To estimate this R

2, we use the sample of vehicles that the EPA itself used to establish the con-

cordance between the old and new highway and city test ratings. In determining how to create

the new system, the EPA tested a few hundred vehicles meant to represent the car market and

compared the results under the new and old regimes. We obtained the data from these tests from

the EPA and use them here to assess the change in ratings.19

3.4 Results

We plot these data in Figure 3. The old and new ratings are highly correlated, but there is an

upward bias in the old ratings (the old miles per gallon ratings were too high on average). In

addition, there are noticeable di↵erences in how the test revision a↵ected di↵erent models—there

is dispersion around the fitted line. The rating change is quantitatively important: the average

di↵erence between the old and new estimated present-discounted fuel costs in this sample is $1,700.

The di↵erence ranges from $500 to $4,250 with a standard deviation of nearly $700.20 So even if

the bias was recognized, it still a↵ected di↵erent vehicles to varying degrees.

19These same data are used in Sallee (2014) to characterize the uncertainty faced by consumers about true lifetime
fuel costs of vehicles under the old regime.

20This assumes a gasoline price of $2.50 per gallon (roughly the average in 2008), for vehicles driven 12,000 miles
per year for 14 years with a 5% discount rate.
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Figure 3: Old and New Combined Fuel-Economy Ratings
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Figure shows the pre-2008 (original) combined fuel-economy rating and the post-2008 (five-

cycle) rating in miles per gallon for a sample of vehicles. Dashed line is linear fit. Solid line

is the 45-degree ray.

The OLS regression of the new rating on the old one yields an R

2 above 0.97.21 This indicates

that, along the dimension of test rating quality, the e�ciency gain from removing noise is quite

minor. The vast majority of the welfare gain from an optimally designed fuel-economy policy that

used the new ratings can be achieved by a policy that uses the old rating system. Interestingly, this

makes the lack of updating relatively innocuous despite the fairly large di↵erences between the two

rating systems. The welfare losses from this noise, however, may be substantial if the policy maker

does not take the bias in the old ratings into account and fails to make a correction (i.e., chooses

a policy that is based on the assumption that the old rating system is accurate and is therefore

too lax on average, causing distortions on the extensive margin). Also, note that the ine�ciency

from noisy energy e�ciency ratings adds to a long list of existing distortions from fuel-economy

standards, including the welfare loss from ignoring product durability discussed in Section 5.

4 Application 2: Real-Time Electricity Pricing

Our second application is to time-varying electricity prices. Electricity consumers typically pay

the same price for electricity regardless of when they consume it. In contrast, the marginal cost of

producing electricity varies significantly across hours of the day, days of the week, and months of

21The R2 changes little when modifying the sample. Adding the 13 available hybrid models to the gasoline-powered
sample produces an R

2 of 0.98. The R

2 values for the subsamples of cars and trucks are 0.96 and 0.98, respectively.
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the year due to variance in the marginal source of generation. At low levels of demand, marginal

cost is low because only solar, wind and so-called inexpensive “base load” power plants are needed.

At high levels of demand, higher cost “peaker” plants produce the marginal unit. As a result, the

marginal cost of electricity is frequently several times higher at one hour of the day as compared

to another hour in the same day.

Economists have contemplated the e�ciency benefits of time-varying pricing schemes that align

price and marginal cost. The theoretical ideal is called real-time pricing, which is a scheme in

which the price of electricity charged to the consumer is unconstrained and is adjusted at a high

frequency to reflect costs. Real-time pricing provides the right incentive to consumers at every

moment and therefore achieves the e�cient resource allocation, provided that no other markets

failures are present (Borenstein and Holland 2005).22

Historically, it was infeasible to measure electricity consumption hour by hour for each end

user, so this mispricing was a necessary compromise. However, with the advent and roll out of

computerized electricity meters, high frequency measurement at the customer level is already a

reality in most parts of the United States. Even so, real time electricity prices have met with

considerable resistance from utilities and regulators, who fear that consumers will complain about

price surges and unpredictable bills.

As a result, while the technology to implement real-time pricing is already in place, pricing

reforms have been incremental. Instead of real-time pricing, utilities have experimented with peak

pricing for certain times of the day, seasonal rates, or peak prices only on certain days on which

demand is forecasted to be very high due to weather. A significant literature in economics has

evaluated these programs, primarily with a focus on how demand responds to price variation (Jessoe

and Rapson 2014; Andersen, Hansen, Jensen, and Wolak 2017; Fowlie, Wolfram, Spurlock, Todd,

Baylis, and Cappers 2017; Gillan 2017; Ito, Ida, and Tanaka 2018). A remaining unanswered

question in this literature is whether most of the e�ciency gains from real-time pricing can be

achieved by these intermediate policies. If simpler rate designs can capture most of the e�ciency

gains of real-time pricing, then this may present a useful way forward for the industry that can

accelerate reform.

We demonstrate that our model can be used to answer this policy-relevant question with readily

available data and simple OLS regressions. We use wholesale pricing data from a major electricity

market in the Eastern U.S., which provides a measure of the marginal cost of electricity at the

hourly level. Using our model, we show that the R

2 from a regression of observed wholesale prices

on season, day-of-week, or peak demand periods measures the proportion of the welfare gain that

an intermediate reform that allows tari↵s to vary by those variables would achieve, relative to the

welfare gain that would be achieved by moving all the way from a flat rate to real-time pricing. As

such, our method allows us to evaluate a wide range of alternative policies with minimal e↵ort. This

can be quite valuable because the welfare gain achieved my intermediate policies will vary based on

22Although not the focus of this application, pollution externalities can be introduced to our analysis by adding
environmental damages to private marginal costs and running the regressions with social marginal costs as the
dependent variable.
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the characteristics of supply and demand, e.g., demand variability and capacity constraints in the

system. This increases the value of being able to quickly calculate potential welfare gains across a

number of di↵erent markets in terms of both time and geographic scope.

In our application below, we find that the intermediate schemes perform relatively poorly.

Fairly complex schemes are required to recover half of the welfare gains from real-time pricing, and

schemes that mimic real-world policies used to date recover only a small fraction of the potential

gains. These results should prove useful in the ongoing debate about electricity rate design, which

is poised to undergo significant reform in the coming years.

The insights from this application will also apply to other settings that feature coarse pricing,

where many related goods must be given a common price due to some exogenous constraint on the

pricing policy, even though social costs di↵er due to production technologies, scarcity or externali-

ties. Potential examples include markets for parking, tra�c congestion, taxis/ride-sharing services,

or event tickets.

4.1 The real-time pricing benchmark versus the constrained policy

To apply our model to electricity, we interpret each product j as electricity consumed at a specific

moment. Empirically, we will consider an hour to be a unique moment, because this is the gran-

ularity of our wholesale pricing data. We focus on a single integrated electricity market, so we do

not need to consider electricity consumed at di↵erent locations to be di↵erent goods.23

In our model, consumers pay pj+tj where tj is understood as a tax and pj is a uniform producer

price. Here, we interpret tj as the tari↵ that applies to good j, so that the final price to consumers

is just the tari↵ tj (equivalent to assuming pj = 0 in the original notation). Under a flat tari↵, tj

is the same across all j goods. Under real-time pricing, the tari↵ is unique to each j. Intermediary

policies will have subsets of j (such as peak demand periods) for which consumers face a common

tari↵.

Unlike our other applications, there is no externality. Thus, the full social cost of producing a

unit of good j is just the marginal cost mcj , which we allow to vary across time. Any mismatch

between the tari↵ and marginal cost induces an ine�ciency, where the wedge is equal to tj �mcj .

This wedge plays exactly the same role in our theory as the wedge due to imperfect correction of

an externality (which is denoted tj � �j in the other applications). Thus, in terms of our model:

�j = mcj

tj = ↵+ �
0
zj .

23As discussed further below, we use data from PJM, an integrated electricity market that spans multiple states.
We treat this market as a single location and use PJM’s reported system price. In reality, there are sometimes
transmission constraints that imply that delivering electricity to one specific location has higher cost than delivering
to another location at the same time, even within the market. Most U.S. electricity markets therefore have locational
marginal prices (LMPs) that are specific to a particular node in the grid. We abstract from this issue, as does the
bulk of the literature. In principle, however, our method could be used to gauge the welfare implications of the
granularity of prices across geographical space as well as the time dimension focused on here.
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where zj is a vector that includes tari↵ policy variables such as on versus o↵-peak or day-of-week

indicators. Note that zj can represent any tari↵ scheme that is linear in parameters, including

interactions of indicator variables. The method can thus evaluate highly flexible tari↵s.

If our assumptions about demand and supply hold, then the R

2 of a regression of �j on tj will

indicate the welfare fraction achieved by the constrained pricing scheme (second-best) relative to

the real-time pricing benchmark, where both welfare gains are calculated relative to an unbiased

flat tari↵.24 Even the real-time pricing benchmark is not quite first-best since it is granular on hour,

ignores transmission constraints, etc. Thus, as usual, we measure the e�ciency gain from more

granular pricing along the dimension that policy makers can realistically target; in this example:

average hourly tari↵s.

4.2 Will cross e↵ects simplify?

In this application increasing marginal costs are essential. As discussed in Section 2, our results

still apply in this case, but the assumptions should be interpreted in terms of combined responses

of demand and supply. As detailed in Appendix A, zero cross-price derivatives (the strong version

(b’) of Assumption 3) for demand and supply is su�cient for all our results from Section 2 to go

through. In that case, we can characterize the deadweight loss of using an arbitrary vector of tari↵s,

denoted tj = ⌧j , as compared to using real-time pricing, as the sum of J Harberger triangles:

�2⇥DWL(t = ⌧) =
JX

j=1

(⌧j �mcj)
2@x̃j

@tj
,

where @x̃j

@tj
= @xj

@tj
� @mcj

@tj
. Minimizing this distortion will involve fitting the tari↵ schedule so as to

minimize the sum of squared errors between the tari↵ and the observed marginal cost, weighted by

the derivative terms. When @x̃j

@tj
is uncorrelated with the wedges or common across all j, then the

formula simplifies to its final form and our R2 result applies.

Does it make sense to assume that cross-price derivatives are zero for supply and demand? On

the demand side, the required assumption is that a change in the tari↵ in hour j does not a↵ect

demand in hour k 6= j. Substantial empirical support exists for this assumption. A consistent

finding in the literature is that such cross-price derivatives are quite small, and are often statistically

indistinguishable from zero. In other words, the electricity tari↵ during hour j does not a↵ect the

demand for electricity during hour k 6= j.

Specifically, a substantial literature has studied experiments that raise the cost of electricity at

specific hours of the day; for example on weekdays during late afternoons in the summer, when

system demand peaks due to air conditioner use in homes. A common question has been to what

extent consumers will reduce electricity consumption during this high-price window and substitute

24It may seem counterintuitive that we can use historical data that come from observed marginal costs, even though
those realized marginal costs depend on the particular flat tari↵ that was in place during the sample. Appendix A
shows that, under local linearity, the R

2 of a regression of observed marginal costs (under the flat tari↵) on the
policy variables equals the R

2 of a regression of the benchmark marginal costs (under real-time pricing) on the policy
variables. Hence, the relative e�ciency gain can be computed from a regression that directly corresponds to our data.
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this for consumption in “shoulder” hours around the experiment. Such studies consistently find

that peak tari↵ schemes lower consumption during the targeted window but reveal minimal shifting

of demand into o↵-peak hours (Jessoe and Rapson 2014; Fowlie et al. 2017; Gillan 2017; Ito, Ida,

and Tanaka 2018). The exception is Andersen et al. (2017) which finds that a variable pricing

scheme does cause significant shifts of demand into lower priced windows in Denmark. Therefore,

the strong version (b’) of Assumption 3 is likely appropriate in this application, at least in many

circumstances. Bolstered by this evidence, we proceed by assuming that cross-derivatives are zero,

but we also assess the performance of R2 using estimates from the literature that quantify how

large cross e↵ects might be in Section 4.5 below.

On the supply side, the corollary question is whether the price of electricity in time period j

a↵ects the cost of production in time period k 6= j. It is reasonable, and indeed common in the

literature, to assume that production costs in di↵erent hours are separate production processes

and are not directly related. Marginal costs are likely to be serially correlated, but this is because

demand is serially correlated not because production in one time causes a shift in cost in other

hours.25 (Recall that we allow the marginal cost of production to be rising at any moment j. The

assumption is that price in one hour does not a↵ect cost in a di↵erent hour.)

4.3 Other modeling considerations

Throughout our theory, we maintain the assumption that demand and supply curves are linear over

the relevant range of prices. Note that we only require that each good j has locally linear supply

and demand, not that the demand and supply curves across products j have the same slope. Local

linearity does not seem like a problematic assumption on the demand side, but electricity supply

curves can become convex when a market approaches capacity limits (though we show empirically

that a linear supply assumption still fits a large part of the supply curve). When supply is convex,

the R

2 statistic will provide an approximation. We investigate its accuracy via simulation, given

data on the shape (convexity) of the market-level supply curve. In our case, the approximation

appears to be quite good (see Section 4.5 below).

4.4 Data

Our empirical application uses data from the PJM wholesale electricity market. While originally

comprising the states of Pennsylvania, New Jersey and Maryland (thus, the name PJM), the

PJM market is a regional transmission organization (RTO) that runs one of the largest wholesale

electricity markets in the U.S., stretching into 13 states in eastern and central U.S. plus the District

of Columbia. PJM is one of five RTOs that run an active market for wholesale electricity. As in

most wholesale electricity markets, PJM runs an hourly real-time auction for energy, bringing

together producers and consumers (typically, utility companies) of electricity. These auctions yield

25Technically this may not be true for adjacent hours because of startup and ramping costs for fossil-fueled plants.
We follow much of the literature in assuming that their impact on key results is modest, though we note that Reguant
(2014) and Cullen (2015) are exceptions that model startup costs explicitly.
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hourly wholesale prices for electricity, which are a good measure of marginal costs. We use hourly

pricing data for the year 2012, as this is the year for which we have data for the supply curve which

we use in the convexity simulation below.

4.5 Results

In this section, we report the R

2 for a wide variety of alternative pricing schemes. We also discuss

the results from simulations that introduce cross-derivatives and convex supply (details are in

Appendix B). We run variants of the following regression:

priceth = ↵+ �
0
zth + "th,

where t indexes date, h indexes hour, priceth is the observed wholesale electricity price, zth is a

vector that includes potential tari↵ policy variables such as on vs. o↵-peak indicators ✓p, hour of

day fixed e↵ects ✓h, day of week fixed e↵ects ✓d, monthly fixed e↵ects ✓m, season fixed e↵ects ✓s,

or their interactions.

Table 1 shows the e�ciency gain from using increasingly flexible tari↵ policies. We find that

simple, yet commonly used, tari↵ structures like on vs. o↵-peak prices do not improve e�ciency

much. Even the highly sophisticated—and potentially hard to understand for consumers—pricing

schemes that we analyze (such as tari↵s that vary by weekday, hour and month) capture less than

half of the e�ciency gain of real-time electricity pricing. This conclusion is similar to Borenstein

(2005), who uses a more detailed simulation model of competitive electricity generation.

Table 1: R

2 from Electricity Tari↵ Regressions

Pricing Regime R

2

On vs. o↵ peak fixed e↵ects 0.040
Hour of day fixed e↵ects 0.135
Hour of day & day of week fixed e↵ects 0.153
Hour of day & month of year fixed e↵ects 0.193
Hour of day, day of week, & month of year fixed e↵ects 0.211
Day of week interacted with month of year fixed e↵ects 0.297
Hour of day interacted with day of week interacted with month of year fixed e↵ects 0.428
Number of observations 8,784

Notes: Dependent variable is the hourly price of electricity observed in the PJM market for 2012. Peak hours are
defined as 2-6 p.m.

We test the robustness of this finding by assessing the performance of R

2 when cross-price

derivatives in demand are not zero. Andersen et al. (2017) report the largest cross-price derivatives

among the studies we discuss above, with substitution to shoulder hours of approximately 29%

of the own-price e↵ect. Appendix B.1 compares the R

2 with welfare calculations that account

for such substitution. Even with considerable substitution, the largest bias in the R

2 measure is

approximately two percentage points. We also consider the cross-price e↵ects estimated in Ata,

Duran, and Islegen (2016), as well as cases with spillovers across hours as in Jessoe and Rapson
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(2014). We find similarly small biases.

Finally, we evaluate how our results change when we take into account that electricity supply

is convex at high levels of capacity utilization. To do this, we make use of plant-level engineering

data from the same year. These data report both capacity and engineering marginal costs for each

plant in the system, forming a step-function supply curve.26 We capture the convexity of supply in

two ways. First, we estimate a quadratic supply curve through the aggregate engineering marginal

cost curve. Second, we use the actual step function.

We then simulate the welfare gains from each of the seven pricing regimes above and compare

these to their respective R2 measures. We find that R2 remains a reliable indicator for the e�ciency

gain of constrained policies even when marginal costs are convex. R

2 is always within 1% of the

simulated welfare gains under our quadratic estimate of supply and generally within 10% using the

step-function supply curve. Furthermore, the bias in the R

2 when using the step-function supply

curve is relatively constant across pricing regimes suggesting that comparisons across di↵erent

pricing regimes can still be made. See Appendix B.2 for details.

5 Application 3: Automobiles and Longevity

The total externality caused by an energy-consuming durable good depends on both its energy

e�ciency and its lifetime utilization; e.g., a car’s lifetime gasoline consumption depends on fuel

economy and miles driven. Were all products utilized the same amount, a set of product taxes based

only on energy e�ciency could accurately target lifetime externalities, thereby shifting demand

across products e�ciently. But, heterogeneity in the longevity of products with the same energy

e�ciency rating implies that energy e�ciency policy is necessarily imperfect.

We demonstrate the empirical importance of this issue using the case of greenhouse gas emissions

from automobiles. We use a novel data set to estimate the average lifetime mileage of di↵erent car

models, and we translate that into lifetime damages from greenhouse gas emissions, according to

each vehicle’s fuel economy and the social cost of carbon. We then use simple linear regressions

motivated by our theory to evaluate second-best policies that must construct a tax vector for

vehicles that depends on a vehicle’s fuel economy, but not its longevity. As we explain below,

this constrained policy closely resembles the dominant real-world policy in this sector, fleet-average

fuel-economy standards, such as the U.S. CAFE program.

We find that the constrained policies are highly ine�cient. There is a voluminous literature

that explores the welfare implications of energy-e�ciency policies, but we know of no prior paper

that has demonstrated the importance of heterogeneity in product longevity.27 We speculate that

this issue is a first-order concern not just for automobiles, but also appliances, building codes and

other e�ciency programs.

26Data such as these have been used extensively to calculate hourly equilibria within electricity markets.
27Allcott and Greenstone (2012) note that di↵erences in utilization might justify geographically di↵erentiated

appliance standards, but they do not quantify heterogeneity or calculate potential gains from di↵erentiation.
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5.1 The Pigouvian benchmark versus the constrained policy

We study the e�ciency of a fuel-economy standard in correcting greenhouse gas emissions in the

purchase of new vehicles. In terms of our model, each type of vehicle is a product j. We model the

lifetime greenhouse gas related externality from automobiles as proportional to the total gasoline

consumed by each vehicle type j. Total gasoline consumed is the total lifetime mileage of a vehicle

multiplied by its miles per gallon e�ciency. To translate this into a dollar externality, lifetime

emissions are multiplied by a constant,  , which is equal to the social cost of carbon per gallon of

gasoline. Note that a gasoline tax would achieve the Pigouvian benchmark, so long as consumers

are aware of product durability and have a rational forward-looking valuation of fuel costs.

In contrast, a fleet-average fuel-economy standard will create a shadow tax scheme where shadow

taxes are equal to a linear function of a vehicle’s fuel-economy rating.28 Thus, in terms of our model:

�j =  ⇥ Fuel Economy Ratingj ⇥ Lifetime Mileagej

tj = ↵+ � ⇥ Fuel Economy Ratingj .

If our assumptions all hold, then the R

2 of a regression of �j on tj will indicate the fraction of the

welfare gain achieved by a fuel-economy standard (second-best tax), which depends on only fuel-

economy ratings, as compared to the welfare gain achieved by a policy based on both fuel economy

and lifetime usage (the Pigouvian benchmark), where both gains are measured compared to a policy

that places a uniform tax on all cars equal to the average externality. In Section 5.3, we discuss

additional complications related to vehicle-related externalities and ways in which fuel-economy

regulation di↵ers from gasoline taxation that are not captured in this description.

Note that our unit of observation is the vehicle model (e.g., a 1995 Toyota Corolla). Due to

accidents and random mechanical failure, individual units will be scrapped with variable lifetime

mileage, but this is orthogonal to our welfare comparisons. That is, all of our results are robust to

allowing for random product failure, with �j interpreted as the mean externality—so long as the

random failure rates are not endogenous to product taxes (which we return to below). The reason

is that ex ante unknowable variation in damages across identical units cannot be targeted by any

new vehicle policy, so this will not a↵ect our comparison of second-best policies to the Pigouvian

benchmark.

5.2 Will cross e↵ects simplify?

Our main assumptions are about cross-price derivatives across types of automobiles. In this market,

cross-price derivatives are clearly important, so the strong version of our Assumption 3(b’) will not

hold. Instead, we argue that cross-e↵ects will plausibly be small and will cancel out in the R2 ratio

28Historically, policies like CAFE were firm-specific, so that the shadow price varied across firms. CAFE, and most
similar policies in other countries, now allow trading, which fits our description here. However, there is suggestion
that trading in CAFE has been thin (Leard and McConnell Forthcoming), but this may be because trading was
introduced alongside footprint-based standards, which reduces the variation in shadow costs across firms (Ito and
Sallee Forthcoming).
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under a second-best tax policy so long as vehicles that have greater or lesser longevity, conditional

on fuel-economy ratings, are not systematically closer or further substitutes for each other. In that

case, Assumption 3(b) will hold. But, we relax that assumption empirically by allowing vehicles

with more similar longevity and more similar fuel economy to be closer substitutes, following the

derivations in Section 2.4. Introducing these correlations turns out to have limited impact; our

results are robust.

5.3 Other modeling considerations

Below we find that second-best constrained policies are highly ine�cient. We interpret this as

evidence that fuel-economy regulations are ine�cient as compared to a gasoline tax. But, this

interpretation is generous to fuel-economy regulation, because it abstracts from other well-known

ine�ciencies in fuel-economy policies. In particular, fuel-economy regulations fail to incentivize

abatement on the intensive margin; e.g., a fuel-economy standard can get people to buy the optimal

vehicle, but they will not drive the optimal number of miles. Our model abstracts from that by

assuming that the externality attached to each vehicle is fixed. Note, however, that we are concerned

with lifetime mileage, so the intensity-of-use margin that concerns us is only the scrappage decision,

not miles traveled per year.29 In addition, revenue-neutral energy-e�ciency policies fail to get the

average price of goods right; e.g., a fuel-economy standard can get the relative price of ine�cient

versus e�cient cars right, but all cars will be too inexpensive and the car market will be too large

overall.30

Our welfare analysis considers two alternative tax structures, a second-best scheme that imposes

a tax on each vehicle that is a linear function of its fuel economy rating, and a Pigouvian benchmark

that imposes taxes according to each vehicle’s externality. As such, we measure welfare loss along

the vehicle purchase margin, which is directly targeted by vehicle-based taxes. This abstracts from

the market size e↵ects (by assuming both tax schedules are correct on average) and the intensive

margin e↵ect (which is omitted from both policies and therefore likely has limited impact on the

proportional gains we emphasize), and bases the policy comparison only on di↵erences related to

tax rate errors driven by heterogeneity in longevity.

Thus, our R2 results can be interpreted as an upper bound on the fraction of the welfare gain

from a gasoline tax that can be achieved by a second-best fuel-economy regulation. It is an upper

bound because a gasoline tax would also achieve gains along the scrappage (intensity of use) margin,

and because a gasoline tax would correct the overall size of the car market by raising the average

price of automobiles.

The Pigouvian vehicle tax does neither. In brief, our comparison—within which CAFE performs

quite poorly—understates the real welfare losses incurred from using CAFE instead of a tax on

gasoline.

29See Jacobsen and van Benthem (2015) for evidence on how scrappage decisions influence the welfare implications
of fuel-economy regulations.

30See Holland, Hughes, and Knittel (2009) for an exploration of how performance standards create ine�ciencies
due to their average price e↵ects.
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Finally, recall that our model is for a representative consumer. Individual drivers may have

di↵erent on-road fuel consumption rates for identical cars due to di↵erences in driving styles and

conditions (Langer and McRae 2014). Di↵erences in maintenance or accident risk may imply

that some drivers “use up” a vehicle faster than others, so that expected lifetime mileage for a

car depends on driver behavior. We abstract from these considerations, both because of data

limitations and because we doubt their quantitative significance. As discussed above, we are not

concerned with random failure that is unpredictable to the consumers themselves at the time of

purchase. Thus, driver heterogeneity is relevant only to the extent that di↵erent types of drivers

sort into di↵erent vehicles systematically in response to changing taxes. Moreover, our model does

permit heterogeneity in miles driven per year—all calculations are done in terms of total miles

driven from new until scrappage, regardless of calendar age. Heterogeneity in annual usage matters

only to the extent that faster or slower rates of utilization a↵ect the total expected lifetime mileage

of the vehicle. The fact that most cars have several owners over their life will tend to de-couple any

individual owner from the vehicle and will mitigate concerns related to individual heterogeneity.

5.4 Data

Our data come from the California Smog Check program, which records the odometer reading for

all tested vehicles. We merge these data with a national registration database that identifies when

a vehicle has been retired from the U.S. fleet, and take the last observed odometer reading before a

vehicle’s retirement as the measure of its lifetime mileage. We aggregate individual observations to

the VIN10 level (the finest distinction of a unique car type possible in our data, which delineates

a vehicle by make, model, model year, engine size and, often, transmission, drive type, body style

and trim) and VIN8 level (which encompasses the same vehicle characteristics as the VIN10 but

aggregates across model years). We divide lifetime mileage by o�cial fuel-economy ratings to

estimate lifetime gallons consumed.31 We use this as our measure of the lifetime externality of each

vehicle type (i.e., �j), multiplying by the social cost of carbon per gallon of gasoline when necessary

to convert the externality into dollars.32

We do not observe all units, which creates the possibility of measurement error and censorship

bias. Regarding the former, we are concerned with the average mileage at scrappage of cars but

we observe only a sample. To the extent this error may be large the R

2 value can be adjusted

following the discussion in Section 2.5. However, we demonstrate that for our sample the bias is

likely to be very small (see Section 5.5 and Appendix C). Regarding censorship bias, we do not

observe cars under six years old (as they are usually not required to be tested), cars that were

31This abstracts from the timing of emissions. That is, we sum total miles driven and do not discount them into
the present value at the time when a car is new. We do so not only for simplicity, but also because many climate
models and the current federal guidelines suggest that the time path of the social cost of carbon rise at roughly the
rate of interest. This means that social cost growth o↵sets discounting.

32We abstract from carbon emissions related to construction and scrappage of vehicles because standard estimates
suggest that these emissions make up only 8% of life cycle emissions (National Research Council 2010). The remainder
is due to gasoline consumption. Moreover, to the extent that these emissions are the same across models, incorporating
them would have no e↵ect on our welfare calculations. Only heterogeneous life cycle emissions matter.
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Figure 4: The Relationship Between Lifetime Gasoline Consumption and Fuel E�ciency
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Note: The unit of observation is a type of vehicle (a VIN10-prefix). Gallons consumed is the average across obser-

vations for that type. The sample is restricted to models for which we observe at least 200 vehicle retirements and

to model years 1988 to 1992. Observations with VMT above one million miles are dropped. Solid lines are OLS

prediction lines.

retired before our data began, or cars that were still in the fleet when our data ended. These

missing observations could bias our results in either direction, but we demonstrate through several

procedures that this censorship bias is apparently small and likely causes us to slightly overstate

the e�ciency of fuel-economy policies. We use comprehensive national registration data from R.L.

Polk to address concerns related to missing data. More data details and robustness checks are

included in Appendix C.

5.5 Results

In this section, we report the R

2 from several alternative specifications. In Appendix C we explore

further robustness checks. In Section 5.6, we use estimates of the social cost of carbon and the

derivative of vehicle demand with respect to price to convert the R2 into deadweight loss measured

in dollars.

We begin by showing the data for our preferred sample in a scatterplot. Figure 4 shows a

scatterplot of the relationship between a vehicle’s total lifetime externality (gallons of gasoline) and

its o�cial fuel consumption rating, for both cars and trucks, along with the OLS fitted line. A point

in the figure corresponds to the average lifetime gasoline consumption at the VIN10-prefix level. It

ignores within-VIN10 variation in gasoline consumption. The sample in the figure is restricted to

model years 1988 to 1992, the years for which censoring is least problematic (more on this below),

and to vehicle models for which we have at least 200 observed retirements. We drop observations

with more than one million miles to limit the influence of outliers.

There is, as expected, a positive correlation between fuel consumption ratings (the inverse

of fuel-economy ratings) and lifetime gasoline consumption. But, there is also a great deal of
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dispersion. Vehicles have substantially di↵erent average lifetime mileage, and this translates into

variation in lifetime fuel consumption conditional on the o�cial fuel consumption rating. The R

2

for cars and trucks in this sample is only 0.18 and 0.12, respectively. (The R

2 from a combined

sample regression is 0.29.) According to our theory, this implies that the second-best linear policy

captures only 18% and 12% of the welfare gains for cars and trucks that would be achievable with

an e�cient set of product-based taxes that varies not only with fuel economy, but also with vehicle

durability.

Note that the second-best policy will under-tax long-lived vehicles (observations above the

regression line), and it will over-tax short-lived vehicles (observations below the regression line).

Some may find it counterintuitive that the e�cient policy would raise taxes on long-lived vehicles.

To see the intuition, consider two vehicles with the same fuel-economy rating, where one lasts twice

as long as the other. To drive the same number of miles (same emissions), two short-lived vehicles

will be required, so that the tax will be paid twice. Thus, harmony between the tax paid and the

emissions emitted requires taxing the long-lived vehicle more heavily.

Table 2 reports the R

2 from a set of regressions that take the form:

Average Lifetime Gasoline Consumptionj = ↵+ �Gallons per Milej + "j , (15)

where j indexes a vehicle type (VIN10-prefix or VIN8-prefix). We report a range of estimates in

order to assess the importance of sample restrictions, weighting, censoring, the level of aggregation,

and sampling error. Weighted least squares (WLS) results weight VIN-prefixes by the number of

observed retirements N . These results are useful for assessing the e↵ect of sampling variation, but

they also approximate weighting by sales share, which leads to the preferred welfare interpretation

because it aggregates to total externalities generated. In all cases, we drop observations with

reported mileage above one million (1,525 observations out of roughly 4 million, or less than 0.05%).

The unit of observation is average gasoline consumption across vehicles with the same VIN10-prefix

or VIN8-prefix, consistent with Figure 4 above.

Table 2 shows that our estimate of the R

2 remains small in all VIN10-prefix specifications,

ranging from a low of 0.17 to a high of 0.29. R

2 is slightly higher when the data are collapsed at

the VIN8-prefix level (0.19 to 0.34). Importantly, our estimates change very little when we restrict

the sample to include only 1988 to 1992 model years, which are the years in our data with the least

censorship concerns and therefore our preferred specification. As these model years span the age

range in which the majority of retirement happens, this provides us with a first indication that our

welfare conclusions will be broadly robust to additional measures that account for censoring in the

data.

As discussed above, white noise in the measurement of lifetime mileage by type (sampling error)

will cause the estimated R

2 to be below the true welfare gain ratio. To assess the importance of

sampling error, we compare results from OLS to WLS, which weights models by the number of

vehicles scrapped. We also check how our results change when we limit the sample to vehicles for

which we observe relatively many retirements (N � 200). The R

2 changes only modestly when
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Table 2: Regression R

2

VIN10-prefix VIN8-prefix
OLS WLS OLS WLS

All model years
All models .26 .20 .23 .19
Models with N � 200 .22 .17 .27 .19
Model years 1988-1992
All models .27 .26 .28 .27
Models with N � 200 .29 .22 .34 .25

Note: Table shows R

2 from regressions using VIN-prefix average lifetime gallons consumed on fuel con-

sumption rating. The unit of observation is either a VIN10-prefix or a VIN8-prefix in the first panel.

Observations with VMT above one million miles are dropped. N is the number of observed retirements,

and WLS weights the regressions by N .

moving between OLS and WLS, and when restricting the sample to N � 200. This suggests that

our qualitative findings are not overly sensitive to sampling considerations. We explore this issue

further in Appendix C.

Our theoretical results are focused on second-best policies—tax schedules that are set optimally

against some design constraint—but actual policies may deviate from the second-best. In Appendix

C we comment further on biased policies, which can come either because the average tax is wrong

(“mean bias”) or because the slope is wrong (“slope bias”).

Summary of additional estimates

Our approach also applies to more flexible fuel-economy policies; the R

2 from the appropriate

regression will have the same welfare interpretation for any policy that is linear in parameters.

For example, fuel-economy policy could put a shadow price on each model that was a quadratic

function of fuel consumption ratings. Or, tax rates could be based on fuel-economy bins. Then,

the R

2 from a regression of the externality on fuel consumption and fuel consumption squared, or

of discrete bin dummies, would have the desired interpretation. More flexible fuel-economy policy

could also base shadow prices on not just fuel economy, but also other attributes, like class (car

versus truck), model year or body style. The R

2 from regressions of lifetime externalities on fuel

consumption and these additional attributes directly indicates the welfare gains possible from more

flexible policies.

We ran a number of such regressions and summarize the results here. First, we allow for separate

fleetwide average standards for cars and light-duty trucks (similar in spirit to the initial structure

of U.S. CAFE standards). In our framework, this corresponds to adding a truck indicator and

its interaction with the fuel consumption rating. This adds very little explanatory power. In our

preferred specifications using model years 1998-1992, R2 rises by 0.004-0.013 to a range of 0.23-0.35,

depending on the specification in Table 2). This strongly rejects the notion that separate regulation
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of cars and trucks was useful in addressing the ine�ciency that we identify. Adding other policy

attributes such as body style and model year has a similarly small impact on the R2; none of these

attributes are strongly correlated with durability (conditional on fuel economy).

We also considered attribute-based policies based on fuel consumption and vehicle size, either

using the vehicle’s footprint (wheelbase ⇥ track width, where wheelbase is the distance between

the front and rear axles of a vehicle) or by more flexibly including wheelbase and width as separate

regressors. In both specifications, we also allowed the policy to be di↵erent for cars vs. light-duty

trucks. This mimics current U.S. CAFE policy, which is based on fuel consumption and footprint,

with separate standards for cars vs. trucks. However, including footprint in our regressions has

little e↵ect. It raises R2 by 0.004-0.049 to 0.25-0.35. Including wheelbase and width has a somewhat

larger e↵ect: R2 increases by 0.077-0.096 to 0.31-0.43. This suggests that there could be e�ciency

gains from more flexible sized-based standards due to the correlation between size and longevity,

though such standards create distortionary incentives (Ito and Sallee Forthcoming).

In all cases, the qualitative conclusion remains that there is substantial variation in lifetime

consumption that is not explained by fuel economy, vehicle type, or size, which implies that policies

based only on such vehicle attributes, but not on average product durability, will raise welfare by

significantly less than would an e�cient policy (such as a carbon tax or a gasoline tax).

5.6 Estimates of deadweight loss

We can translate the relative gains from the Pigouvian and second-best product-based taxes, ex-

pressed above as an R

2, into deadweight loss by assigning a dollar value to the externality and

considering the pattern of substitution across vehicles. We begin with the 1990 model year (typical

of the years in Table 2 above), computing the possible welfare gains from a Pigouvian product-level

tax and the deadweight loss from the second-best tax based on fuel economy. We then explore the

influence of a range of substitution patterns across vehicles, following the theory in Section 2.4 that

allows correlation between cross-price derivatives and either the tax error or the e�ciency rating.

We show that when calibrating to estimates of this correlation from the literature the R

2 remains

very close to the true fraction of welfare recovered.

To evaluate the level of deadweight loss—following the formula in Equation 6—we first assign

a value of $40 for the social cost of carbon (Interagency Working Group on Social Cost of Carbon

(2013)), leading to an external cost of 35.5 cents per gallon.33 Using our data on lifetime fuel use

this implies an average of $3,334 in external costs for each vehicle sold. We further impose an own-

price elasticity of -5 (roughly comparable to the estimates in Berry, Levinsohn, and Pakes (1995))

and cross-price elasticities distributed evenly over the full set of models. We relax both of these

assumptions below, considering higher and lower own-price elasticities and cross-price elasticities

that are correlated with attributes.

As above we compute welfare results relative to a baseline that controls for substitution to an

33If the cost associated with carbon emissions has been rising approximately at the discount rate, we interpret this
value as being in 2013 dollars (looking retrospectively at the 1988-1992 vintages).
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outside good (since a revenue-neutral fuel-economy standard does not directly incentivize switching

to an outside good) and so isolate the welfare e↵ects coming from switching among vehicles. Under

these assumptions on elasticities the welfare gain from a Pigouvian tax on each of 356 vehicle

models amounts to $246 per car sold, or about $3.5 billion, for model year 1990. The best linear

tax on fuel use per mile, equivalent here to the optimal average fuel-economy standard, generates

about $0.8 billion in surplus and so leaves $2.7 billion in deadweight loss. This corresponds directly

to the intuition on R

2 above: for the 1990 model year the weighted R

2 is 0.24, implying 24% of

possible gains can be recovered with a single linear policy.

Table 3 presents the central case described above followed by three panels exploring sensitivity

to own- and cross-price elasticities. Panel 1 considers changes in the own-price elasticity of demand

for individual vehicle models (-5 in the central case). More elastic demand allows a larger change in

the composition of the fleet and so greater welfare gains are possible in the Pigouvian benchmark.

As expected the ratio of welfare gains in the second-best vs. the Pigouvian benchmark remains

fixed at 0.24, the value of R2.

Panel 2 turns to relaxing Assumption 3, investigating how di↵erent correlations between cross-

price elasticities and the residuals in the policy regressions influence the share of welfare recovered

by second-best policy. We first consider the expected direction of bias building on the theory in

Section 2.4. Specifically, we demonstrate that R

2 is biased upwards or downwards in this case as

predicted by Proposition 3. The first row in Panel 2 makes vehicles with similar durability better

substitutes, leaving all other attributes uncorrelated. As expected, this reduces the e↵ectiveness

of the Pigouvian benchmark policy and the true fraction of welfare gained increases relative to

R

2. Here, when elasticities fall in half for each standard deviation di↵erence in durability, we see

the fraction of welfare recovered increases to 0.27. The second row examines correlation between

cross e↵ects and fuel-economy rating, now making cars with similar miles-per-gallon (MPG) better

substitutes. This reduces welfare gains in both the Pigouvian benchmark and the second-best; the

fraction of welfare recovered falls to 0.19. Finally, the third experiment makes vehicles of similar

price the best substitutes. This introduces both types of correlation together since both MPG and

durability are related to price. The e↵ects on the fraction of welfare recovered partially o↵set, with

the fraction recovered returning toward R

2. This further supports the use of the R

2 measure.

Finally, in Panel 3, we calibrate cross-price derivatives using estimates of brand and class loyalty

from the literature. This introduces a whole range of correlations together, with class loyalty looking

most like correlation with MPG, and brand loyalty tending to create correlation with durability.

The first line of this panel shows the net e↵ects in our calculation when calibrating to the brand

and class loyalty estimates from the demand system in Bento, Goulder, Jacobsen, and von Haefen

(2009). The various e↵ects o↵set almost completely, with the fraction of welfare recovered falling

slightly to 0.23. The final row doubles the strength of the e↵ects in Bento et al. (2009) (doubling

the fraction of buyers who substitute within brand and class) and again the e↵ects are very close

to o↵setting. Across a wide range of substitution patterns, R2 remains a robust predictor for the

fraction of welfare that can be recovered in the second-best.
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Table 3: Welfare E↵ects for Model Year 1990

Second-best Pigouvian Ratio
benchmark

Central case 817 3472 0.24
Panel 1: Own-price elasticity

-3 501 2128 0.24
-7 1126 4782 0.24

Panel 2: Cross-price elasticities correlated with:
Durability 811 2971 0.27
E�ciency rating 638 3385 0.19
Price 739 3523 0.21

Panel 3: Brand and class loyalty
Calibrated to Bento et al. (2009) 783 3431 0.23
Doubling relative to Bento et al. 756 3396 0.22

Notes: Welfare gains are expressed in millions of 2013 dollars relative to a constant tax at the average

externality. For Panel 2, each standard deviation reduction in attribute distance increases the cross-price

elasticity by a factor of two.

6 Application 4: Spatial Variation in Emissions

Externalities from pollution are typically a function of the amount of pollution emitted as well as

location-specific conditions, including pre-existing pollution levels, weather, and the proximity of

vulnerable populations. This has long been understood as a rationale for location-specific environ-

mental policies (Tietenberg 1980; Mendelsohn 1986; Baumol and Oates 1988). But, many policies

are constrained to be uniform across space, due to practical or political considerations.

When our assumptions hold, our model shows that second-best environmental policies that

are constrained to be uniform across space can be analyzed via regression statistics. Many past

studies in this area have implicitly assumed our stronger condition, Assumption 3(b’), by assuming

that the price of pollution in one location has no impact on the demand for pollution in other

locations.34 For example, Mendelsohn (1986) provides a calibrated example showing the welfare

gains from drawing two or three distinct zones that have di↵erentiated policies for air pollution.

The exercise assumes that there are no cross-jurisdiction relationships in emissions quantities. This

is a special case of our more general R2 result, in which the explanatory variables that determine

the second-best tax scheme are dummy variables for geographic zones.

For another example, Holland et al. (2016) document heterogeneity in the environmental benefit

of switching from a gasoline vehicle to an electric vehicle in each U.S. county. They then describe

the welfare benefits of a fully di↵erentiated (county level) policy, versus a national policy, versus

an in-between policy that varies by state. They assume no demand spillovers across markets, so

34Other strains of the voluminous literature on spatial di↵erentiation have focused on emissions leakage (see, e.g.,
Felder and Rutherford 1993; Paltsev 2001), which can be thought of as cross-price derivatives in our setting. Our
regression results may hold in those cases, depending on the pattern of cross-price derivatives.
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our model suggests that the fraction of the gains from complete di↵erentiation (as compared to a

national policy) achieved by a state-level policy would be the R

2 of the county-level damages on

dummy variables for state, with regression weights to account for di↵erences in market sizes.

As such, our core theory model provides a unifying framework that nests some prior literature

concerned with spatial variation. To that literature, we introduce the welfare interpretation of

regression statistics, which could be used to summarize the relative e�ciency of many alternative

policies.

In our final application, we consider a variant on geographic di↵erentiation in which there are

many products with di↵erent externalities within each jurisdiction. Specifically, we consider a tax

placed on the purchase of new refrigerators that aims to correct for greenhouse gas emissions.

Refrigerators vary in their energy consumption, and the externality of a given refrigerator depends

on its location of use, because a unit of electricity corresponds to di↵erent amounts of greenhouse

gas emissions in di↵erent locations according to what type of power is used (e.g., coal versus

renewables). We consider a constrained policy under which the tax scheme on appliances depends

on only the appliance’s energy consumption, not on its location.

We show that our assumptions will not hold in this case and that the R

2 will be significantly

biased. Instead, we o↵er an alternative derivation that demonstrates that the within-R2 from

a fixed e↵ects regression has a welfare interpretation. The main purpose of this exercise is to

demonstrate the promise of adapting our core framework to find alternative relationships between

familiar regression statistics and the welfare properties of constrained externality-correcting policies.

6.1 The Pigouvian benchmark versus the constrained policy

To model spatial variation, we suppose that there are s = 1, ..., S geographically distinct markets,

and denote product j sold in market s as a product xjs. We model the carbon externality from a

refrigerator as follows. First, each product has an energy e�ciency rating, which is measured in

kWh per year (more on this below). To translate energy consumed into carbon emissions, this is

multiplied by rs, which is the carbon emissions rate per kWh; this varies across electricity markets

depending on the marginal source of electricity. This yields a measure of carbon emissions per year,

which is then multiplied by a constant !, which scales annual emissions into lifetime emissions. We

know of no information about the heterogeneity of lifetimes for di↵erent types of refrigerators, so

we abstract from the longevity considerations that we explored in our previous application and

assume all refrigerators have a common lifetime. Given that assumption, we just use annual energy

consumption to calculate emissions rates and tax rates, as scaling them by a lifetime utilization

term will have no impact on the R

2.

The policy we consider is a national policy that creates a tax schedule that depends linearly on

energy e�ciency rates, but does not di↵erentiate by location:

�js = ! ⇥ rs ⇥ Energy E�ciencyj

tjs = tj = ↵+ � ⇥ Energy E�ciencyj .
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The U.S. does not have such a tax policy for refrigerators, but we believe this is a useful character-

ization of various existing policies that do treat appliances according to energy e�ciency but not

location. For example, Energy Star certification for appliances and buildings, which determines

eligibility for a variety of subsidies and rebates, depends solely on energy e�ciency, not on location.

Tax credits for alternative fuel vehicles, weatherization, or solar panels have a similar structure. For

example, there is a uniform investment tax credit for solar panels, but the greenhouse gas benefits

of solar vary with the carbon intensity of the marginal electricity source that it replaces, which

varies substantially over space.

6.2 Will cross e↵ects simplify?

Assumption 3 will not hold in this case and the cross e↵ects will not simplify. Denote the energy

e�ciency of product j as fj , and let ↵⇤ and �

⇤ be the second-best tax parameters. Then, ejs =

�js� tjs = !rsfj � (↵⇤+�

⇤
fj) = (!rs��

⇤)fj �↵

⇤. This shows that the tax errors have a market-

specific component, !rs��⇤, which will be shared by all products in a market s. If we assume that

most substitution occurs within a market, instead of across a geographic border (which is clearly

a good assumption for large appliances), then the cross-price derivatives will be systematically

larger for products within a market s. This means that there is a systematic correlation between

the product ejseks and the cross-price derivatives @xjs/@tks within each region s. In brief, in our

setting errors in policy will be highly correlated within region, and products sold in the same market

are necessarily closer substitutes. Thus, we next derive an alternative result that does apply to our

setting.35

6.3 An alternative: the within-R2 as a welfare measure

To proceed, we make assumptions about the nature of the geographic markets. The first is to

assume that consumers reside and use the j products within a single geographic market. This is

stated formally in Assumption 4:

Assumption 4. Geographic markets are separable: @xjs

@tkq
= 0 8j, k whenever q 6= s.

Under a hypothetical Pigouvian benchmark policy where tax rates di↵er by region this assumption

would also imply that cross-border shopping and resale are not possible. While certain taxes—

for example taxes on automobiles—are assessed based on state of residence rather than state of

purchase, di�culty in enforcing di↵ering tax rates across geography is one reason the second-best

policy we study here (a single tax profile across all regions) may be more likely in practice.

Next, for expositional simplicity, we assume that the S markets have identical demand systems,

so that cross-price derivatives and total demand (conditional on prices) are the same in each market

(Assumption 5). Finally, we also make use of an assumption that says that the overall size of each

product market is fixed (Assumption 6).

35In this case, the second-best constrained policy will turn out to nevertheless be the OLS policy, but the R

2 will
be a biased measured of its e�ciency. In other settings, the second-best policy will di↵er from the OLS prediction.
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Assumption 5. Demand is identical in each geographic market: xjs(t) = xjq(t) 8t, q, s.

Assumption 6. Total demand in each geographic market is fixed:
P

j xjs(t) = xs 8s, t.

Assumption 5 simplifies notation greatly, but is straightforward to relax and a weighted least-

squares intuition (with weights based on the size of regions) applies as in Proposition 2. Assumption

6 is more substantive, but we can sign the way that relaxing it influences our results. In a discrete

choice context—which is often appropriate for energy consuming durable goods—Assumption 6

is akin to assuming there is no net substitution to the outside good. For some products, like

refrigerators in the United States, the substitution margin to the outside good is plausibly small,

which makes this assumption appealing. That is, virtually every home has a refrigerator, and most

have exactly one. Below we demonstrate that welfare results can be bounded when relaxing this

assumption.

Under Assumption 4, the deadweight loss from imposing a tax vector t = ⌧ can be written as

our original formula in Equation 8 summed over the S regions:

�2DWL =
SX

s=1

0

@
JX

j=1

e

2
js

@xjs

@tjs
+

JX

j=1

X

k 6=j

ejseks
@xjs

@tks

1

A
. (16)

Furthermore, under Assumptions 4 to 6, the second-best national tax policy will be to set the

policy slope equal to the average damage factor across regions (� = r̄).36 The resulting tax error

for a product will be the di↵erence between the local damage factor and the average, multiplied by

the attribute: ejs = rsfj � tjs = (rs � r̄)fj . Within each region, these second-best taxes create two

types of mis-pricing. First, prices are biased (compared to the Pigouvian benchmark), on average,

across products within each region, depending on how the region’s damage factor rs deviates from

the mean. Second, relative prices are also wrong within each region.

This is illustrated in Figure 5, which is a schematic with a hypothetical depiction of three

products with di↵erent electricity consumption rates in two regions with varying emissions rates.

Under the second-best policy, all of the products in region 1 (the clean region) are too expensive,

and all of the products in region 2 (the dirty region) are too inexpensive. When there is substitution

to an outside good, the bias in each region will create an overall market size distortion—e.g., too

many refrigerators are purchased in the dirty market, and too few in the clean market. Within

market, the mis-pricing of products is therefore correlated. That is, product 1 in region 2 is under-

priced, but so are its substitutes (the other products in region 2). This implies that cross e↵ects

will mitigate own e↵ects (the second term of Equation 16 partially o↵sets the first) and the raw R

2

statistic in Corollary 1 would overstate the ine�ciency.

The second type of mis-pricing is that even within-region, relative prices are wrong. Figure 5

demonstrates that the slope of the second-best OLS tax schedule does not equal the slope in either

of the two regions. Hence, even if the OLS policy could be adjusted for each region to get the

average tax rate correct, products with similar attributes have similar tax errors.

36A proof of this is included within the proof of Proposition 4 in Appendix A.
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Figure 5: Average and Relative Mis-Pricing across Regions
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Assumption 6 implies that the first type of mis-pricing—average bias within a region—creates

no distortion in choice.37 In this case, a simple su�cient statistic from a fixed e↵ects regression

captures the relative e�ciency of a national linear policy as compared to the e�cient spatially-

di↵erentiated tax, evaluated over a baseline of a flat unbiased tax on all products. This result is

stated in Proposition 4 (see Appendix A for a proof).

Proposition 4. Under Assumptions 1, 2, 4, 5 and 6, the second-best policy is tj = r̄fj. The

fraction of the welfare gain from the Pigouvian benchmark achieved by this second-best policy is the

within-R2 from a regression of �js on fj with fixed e↵ects for the S regions:

DWL(t = r̄fj)�DWL(t = t̄)

DWL(t = �)�DWL(t = t̄)
= 1� var(rs)

E[r2s ]
= within-R2

. (17)

As with our results in Section 2 this is a familiar statistic from regression analysis: The within-

R

2 from a fixed e↵ects regression is provided automatically by most statistical software or can be

readily calculated as the R

2 from an OLS regression that has been de-meaned by region. In our

setting this statistic depends only on variation in damage factors across regions (the first equality

in Equation 17), meaning it again does not rely on any information about the demand system

(e.g., the second-type of mis-pricing mentioned above is irrelevant) beyond the assumptions on

geographic separability and net substitution to the outside good. The structure of demand within

each region will influence the deadweight loss measured in dollars,38 but variation in the demand

system a↵ects welfare under the policy alternatives in a proportional way such that all the demand

37The constant ↵ in a tax schedule tjs = ↵+�fj is therefore irrelevant. ↵ does a↵ect a transfer between consumers
and the government, but this is undone through revenue recycling.

38As shown in the proof of Proposition 4 in Appendix A, the deadweight loss expression can be obtained by

41



derivatives divide through.

As noted above, the assumption of no net substitution to the outside good will be plausible

in some conditions, but not others. When the J goods represent all of the goods in a sector, it

is logical to assume that, on average across products, increases in taxes on each product will lead

to a decrease in the total market size (i.e., the sector is not a “Gi↵en sector,” where average price

increases expand the market). Under that assumption, the welfare statistic derived above will

overstate the fractional welfare gain of the second-best policy over the baseline of an equal tax on

all products, which we state in Corollary 2.39

Corollary 2. Under Assumptions 1, 2, 4, and 5, the second-best policy slope remains � = r̄, and

the fraction of the welfare gain from the Pigouvian benchmark achieved by this second-best policy

over a policy of a constant tax on all products is:

DWL(t = r̄fj)�DWL(t = t̄)

DWL(t = �)�DWL(t = t̄)
< within-R2

. (18)

Thus, the same su�cient statistic now represents an upper bound on the fraction of the welfare

gain under the Pigouvian benchmark that is achieved by the non-spatially di↵erentiated product

tax. Intuitively, the second-best policy will not have the correct slope in all regions (as before) and

now it also over- or under-taxes with respect to the outside good. In our empirical application,

which we move to next, substitution to an outside good is probably of limited importance, but this

e↵ect could be important in other applications.

6.4 Data

Implementation of our method requires data on energy e�ciency rates of di↵erent refrigerator

models and carbon emissions rates per unit of electricity for each region of the country. We

obtained the energy e�ciency rating for a cross-section of all refrigerators certified for sale in the

United States in 2010 from the Association of Home Appliance Manufacturers. Our final sample

includes 1,349 models. Their average government rated electricity consumption is 488 kWh per

year, with a standard deviation of 93 kWh.

Power markets are integrated over geographic regions, so di↵erences in emissions will emerge

mostly across these markets. The power market is thus the relevant unit of spatial heterogeneity

for our analysis. Existing literature suggests that the appropriate level of integration is to either

consider the three major power market interconnections, or to consider eight distinct regions defined

by the North American Electric Reliability Corporation (NERC) (Gra↵ Zivin, Kotchen, and Mansur

simplifying the expression in Equation 16:

�2⇥DWL = S ⇥ var(rs)⇥
JX

j=1

JX

k=1

fjfk
@xjs

@tks
.

39The proof is in Appendix A. For expositional clarity, the proof uses an additional regularity condition stating that
average substitution to the outside good across products is not correlated with the attribute or demand derivatives.
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Figure 6: Distribution of Annual Carbon Emissions for Refrigerators by Power Market
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Note: Graph shows a ten percent random sample of all refrigerator models for visual clarity.

The three regions modeled are the Western Electricity Coordinating Council (WECC), the

Electric Reliability Council of Texas (ERCOT) and the Eastern Interconnection (Eastern).

2014; Holland et al. 2016).

To quantify spatial di↵erences in emissions rates, we rely on results from Gra↵ Zivin, Kotchen,

and Mansur (2014), who estimate the emissions rate from the marginal generation of electricity

at each hour of the day in each of several electricity regions. We assume that refrigerators use a

constant level of electricity throughout the day, so we simply take the average over these marginal

rates over the 24-hour cycle. Multiplying the average marginal emissions rate by the energy con-

sumption rate per year of each refrigerator yields an estimate of the annual carbon emissions that

would be expected for a product deployed in each electricity region. We use this annual emissions

rate in our regressions.

6.5 Results

The left panel in Figure 6 shows a scatterplot of annual emissions against annual electricity con-

sumption for a sample of products across the three power market interconnections. Within a

region, there is, by construction, a perfect linear relationship between fuel consumption and emis-

sions. However, both the level and the slope di↵er across regions because of di↵erences in emissions

rates per kWh. The left panel also shows the OLS fit to the raw data. As discussed above, the

OLS slope is an average of the slopes across the three regions; this is the second-best policy under

the assumptions used in Proposition 4. Residuals are substantial and are highly correlated across

regions. Thus, if the OLS line represented a tax schedule, there would be substantial errors, but

those errors are similar (though not identical) across products within a region.

The right panel in Figure 6 shows the data with region fixed e↵ects removed. Visually, the

remaining variation determines the within-R2. The residuals are greatly muted. If the OLS line

was a tax schedule, there is still a relative mis-pricing of products within a region because the slope
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of the tax function is too steep for the power markets with lower than average emissions rates,

whereas it is not steep enough for the markets with higher than average emissions rates.

Table 4 shows the R2 and within-R2 values from a regression of the carbon emissions associated

with each product-region level observation on the product’s electricity consumption rate. The

first row includes region fixed e↵ects that produce within-R2 values of 0.96 and 0.90 (depending

on geographic disaggregation), representing the fraction of the welfare gain under the Pigouvian

benchmark achieved by a national policy that does no spatial di↵erentiation. For reference, the R2

values from OLS, which are far smaller, are also included.

These findings demonstrate a, perhaps surprisingly, small welfare loss from the lack of regional

policy di↵erentiation for electric appliances. The estimates from OLS show that spatial di↵erences

in emissions rates per kWh do create large di↵erences in implied emissions for products sold across

parts of the United States. But, the di↵erences are largely between geographic markets. The mis-

pricing of products within a market are highly correlated, muting the degree to which mis-pricing

causes consumers to choose the wrong appliance. As a result, the welfare impacts of failing to

spatially di↵erentiate corrective taxes across electricity markets are modest (relative to the total

gain achieved by Pigouvian benchmark policy over the baseline). This result relies on the extensive

margin for refrigerator demand being zero or small. When the extensive margin response grows

(and it will be larger for appliances other than refrigerators), there will be a second welfare loss

due to the fact that the overall product market will be too large or small in each region.

7 Conclusion

Externality-correcting policies rarely take on the ideal form of a direct tax on marginal damages.

Actual policies are frequently constrained by administrative feasibility, technological cost, or polit-

ical constraints so that they must place imperfect marginal incentives on products or actions. We

demonstrate that, under certain conditions, simple regression statistics have welfare interpretations

that describe the e�ciency costs of these constraints.

We demonstrate the usefulness of this approach through four examples. Three of our appli-

cations pertain to environmental externalities, but they span a number of distinct challenges to

policy, including random mismeasurement of product attributes, spatial heterogeneity, and the

Table 4: Su�cient Statistics for Spatially Di↵erentiated Refrigerators

Three interconnections Eight NERC regions
Within-R2, fixed e↵ects 0.96 0.90
R

2, OLS 0.47 0.24
Sample size 4,047 10,792

Note: Results are from regressing emissions on electricity consumption with the unit of observation a

refrigerator model in a particular interconnection (second column) or NERC region (third column).
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implications of heterogeneity in the lifetime utilization of energy-consuming durable goods. Our

other application, which is about wedges between price and marginal cost due to coarse pricing

rather than externalities, suggests the potentially wider reach of our approach. These applications

demonstrate the viability of our theoretical framework, but they also make contributions in their

own right.

Most importantly, our study of the heterogeneity in automobile longevity points out a previ-

ously undiscussed e�ciency problem with a class of energy e�ciency policies that regulate new

durable goods. When di↵erent products have di↵erent average lifetime utilization, energy e�-

ciency policy—which creates explicit or implicit price incentives according to only energy e�ciency

ratings—is inherently imprecise. Through analysis of unique micro data on automobile mileage,

we demonstrate that di↵erent types of automobiles have widely varying average lifetime mileage,

which implies large ine�ciencies in fuel-economy policy.

We suspect that there are many additional applications that could benefit from this approach.

In the introduction, we mention other possible applications in energy, environment, health and

transportation, but the possibilities extend to any setting where data are available on the distri-

bution of an externality (or other wedge) and its correlation with the variables upon which policy

is contingent. Some of our results may be relevant to settings where there is heterogeneity in the

deadweight loss of taxation even in the absence of externalities. For example, labor supply elastic-

ities di↵er along dimensions such as age—the young supply labor more inelastically than the old

(Kleven and Schultz 2014).40 It is generally politically infeasible to condition income or payroll

taxes on age. Our findings suggest that these restrictions, while perhaps desirable based on other

grounds, increase the overall deadweight loss of labor taxation and provide a method to quantify

the e�ciency loss. In applying our model to other settings, we emphasize that it is important to

consider the demand assumptions, but also note that it is straightforward to conduct robustness

checks that indicate the degree of error created when the assumptions do not hold.
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A Appendix: Proofs

Derivation of Equation 6

Let any generic tax schedule be denoted as ⌧1, ..., ⌧J . To obtain Equation 6, we characterize the

welfare loss of moving from the Pigouvian benchmark tax schedule tj = �j to tj = ⌧j by specifying

a weighted average of the two tax schedules and then integrating the marginal welfare losses of

moving the weights from �j to ⌧j . That is, we specify the function tj = (1 � ⇢)�j + ⇢⌧j . We

di↵erentiate W with respect to ⇢, and then derive the welfare loss of moving from the Pigouvian

policy (when ⇢ = 0) to the alternative policy (when ⇢ = 1).

First, we di↵erentiate Equation 2 with respect to ⇢ and substitute in the consumer’s optimality

condition. This yields:

dW

d⇢

=
JX

j=1

JX

k=1

✓
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@xj
� @C
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j=1

JX
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(tj � �j)
@xj

@tk

@tk

@⇢

. (A.1)

This term, dW
d⇢ , is the incremental change in welfare as we move from the Pigouvian benchmark

rates toward the alternative tax schedule, where all rates move by an amount proportional to the

di↵erence between the Pigouvian benchmark taxes and the alternative taxes. However, this object

is not of particular interest to us; it is only an intermediate step that enables us to characterize

deadweight loss in terms of demand derivatives (which are estimable) instead of the utility function

(which is more di�cult to recover with data).

By definition, @tk
@⇢ = (⌧k � �k). We use that substitution, as well as the definition of tj , and

simplify:

dW
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=
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(A.2)

Because ⇢ is a constant, we can remove it from the summation, which yields the final equation.

To obtain the change in social surplus from moving fully between the two tax schedules, we integrate

from ⇢ = 0 to ⇢ = 1. If the demand derivatives (Assumption 2) are constant over the relevant range,

then the integration is straightforward and yields:

W (t = �)�W (t = ⌧) ⌘ DWL(t = ⌧) = �1

2

JX

j=1

JX

k=1

(⌧j � �j) (⌧k � �k)
@xj

@tk
. (A.3)

Allowing for increasing marginal cost

In our theoretical derivation, we assume a constant marginal cost. This means that the incidence

of a tax is borne completely by consumers (@p/@t = 1), and in turn that @xj/@tk is interpreted
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directly as a demand derivative. Our mathematical derivations remain the same if we allow for

increasing, but locally linear, marginal costs. The interpretation of the assumptions, however, are

now in terms of equilibrium quantity changes @x̃j

@tk
. These relate to combined supply and demand

derivatives, rather than just demand derivatives. This is equivalent to adding assumptions about

pass through.

With increasing marginal cost, Assumption 3(b) requires that cov

⇣
ejek,

@x̃j

@tj

⌘
= 0. This as-

sumption is met if the errors are orthogonal to equilibrium quantity responses to cross-tax rate

changes. This substitution a↵ects the interpretation of Assumption 3, which is a statement about

whether the variation in demand derivatives is correlated with functions of the tax errors. Intro-

ducing increasing marginal cost that is uniform across products would have no material impact

on the interpretation of our assumptions. Neither would cost functions for which the quantity of

good j produced does not a↵ect the production cost of good k 6= j. Specifically, denote demand

as dj and supply as sj . When cross-price demand derivatives @dj
@tk

= 0 (Assumption 3(b’)) and

cross-price supply derivatives @sj
@tk

= 0, @x̃j

@tj
= 0 and all our results from Section 2 go through (these

assumptions are su�cient but not necessary).

Derivation of Equations 9 and 10

Begin with the general welfare formula:

DWL(t = ⌧) = �1

2

JX

j=1

e

2
j

@xj

@tj
� 1

2

JX

j=1

X

k 6=j

ejek
@xj

@tk
(A.4)

Applying the part (a) of Assumption 3 we can move the average own-price derivative out from

the own e↵ects:

= �1

2

@xj

@tj

JX

j=1

e

2
j �

1

2

JX

j=1

X

k 6=j

ejek
@xj

@tk
(A.5)

When the strong version (b’) of Assumption 3 holds, (A.5) directly reduces to Equation 9.

Substituting in the weaker version (b) of Assumption 3 (i.e., cov
⇣
ejek,

@xj

@tj

⌘
= 0), we obtain:

= �1

2

@xj

@tj

JX

j=1

e

2
j �

1

2

1

J(J � 1)

0

@
JX

j=1

X

k 6=j

ejek

1

A

0

@
JX

j=1

X

k 6=j

@xj

@tj

1

A (A.6)

Using
P

k 6=j ek =
PJ

k=1 ek � ej , the expression becomes:

= �1

2

@xj

@tj

JX

j=1

e

2
j �

1

2

1

J(J � 1)

0

@

0

@
JX

j=1

ej

1

A
2

�
JX

j=1

e

2
j

1

A

0

@
JX

j=1

X

k 6=j

@xj

@tj

1

A (A.7)
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Now impose the mean-zero error condition to obtain an expression equivalent to Equation 10

in the main text:

= �1

2

0

@@xj
@tj

� 1

J(J � 1)

0

@
JX

j=1

X

k 6=j

@xj

@tj

1

A

1

A
JX

j=1

e

2
j

= �1

2

✓
@xj

@tj
� @xj

@tk

◆ JX

j=1

e

2
j .

(A.8)

Proof of Proposition 1

We apply Assumptions 1 through 3 to the tax errors and minimize the deadweight loss formula. The

first steps follow the derivation of Equation 10 above, beginning with the general welfare formula

in (A.4). We show the derivation for a single policy variable fj , but the proof trivially extends to

multivariate case. We do not yet impose an unbiased tax—this will be endogenous to the choice of

↵ and �—so the relevant objective function is in the same form as (A.7):

min
↵,�

DWL(t = ⌧) = �1

2

JX

j=1

JX

k=1

(�j � ↵� �fj)(�k � ↵� �fk)
@xj

@tk

= �1

2

✓
@xj

@tj
� @xj

@tk

◆ JX

j=1

(�j � ↵� �fj)
2 � 1

2

@xj

@tk

✓ JX

j=1

(�j � ↵� �fj)

◆2

(A.9)

Noting that the average derivatives are constant with respect to the policy choice, we take

first-order conditions:

↵ :
@xj

@tj

✓ JX

j=1

�j � ↵J � �

JX

j=1

fj

◆
= 0

� :

✓
@xj

@tj
� @xj

@tk

◆✓ JX

j=1

fj�j � ↵

JX

j=1

fj � �

JX

j=1

f

2
j

◆
+
@xj

@tk

✓ JX

j=1

fj

◆✓ JX

j=1

�j � ↵J � �

JX

j=1

fj

◆
= 0

Solving:

� =

PJ
j=1 fj�j �

1
J

PJ
j=1 fj

PJ
j=1 �jPJ

j=1 f
2
j � 1

J (
PJ

j=1 fj)
2

= �

OLS

↵ =
1

J

JX

j=1

�j � �

1

J

JX

j=1

fj = ↵

OLS (A.10)
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The second-order conditions for this problem reduce to:

�J

@xj

@tj
> 0

✓
@xj

@tj
� @xj

@tk

◆✓
1

J

✓ JX

j=1

fj

◆2

�
JX

j=1

f

2
j

◆
> 0

The residuals e from an OLS regression become the tax errors and will sum to zero by con-

struction of ↵OLS and �OLS . The second term in (A.9) will therefore be zero and deadweight loss

at the second-best policy is given by:

�1

2

✓
@xj

@tj
� @xj

@tk

◆ JX

j=1

e

2
j = �1

2

✓
@xj

@tj
� @xj

@tk

◆
SSR (A.11)

Proof of Corollary 1

This follows from the use of Equation 10 and Proposition 1 to evaluate the deadweight losses

from the second-best (tj = ↵

OLS + �

OLS
fj) and uniform (tj = t̄ = �̄) policies. Define as S the

improvement the second-best tax o↵ers relative to the improvement the Pigouvian benchmark tax

o↵ers:

S =
DWL(t = ↵

OLS + �

OLS
fj)�DWL(t = �̄)

DWL(t = �)�DWL(t = �̄)
= 1� DWL(t = ↵

OLS + �

OLS
fj)

DWL(t = �̄)

where the equality follows from DWL(t = �) = 0.

Define the residuals in the regression of � on a constant (the uniform policy) as �j . Note that

�j has dual significance: it is also the total deviation in the original second-best policy resulting

from the regression of � on f :

JX

j=1

�

2
j = SSR

uniform = TSS

second�best (A.12)

Finally, define �j as the explained portion in the original regression: �j = ↵

OLS +�OLS
fj � �̄ so we

have �j = �j + ej . Notice that since � is a function of f we have that the tax errors in the uniform

policy depend on f . In order to apply the deadweight loss formula in Equation 10 to the uniform

policy we will need to apply Assumption 3: these tax errors must also be uncorrelated with demand

derivatives. Under Assumptions 1-3 and applying Equation 10 the fraction S becomes:

S = 1�
�1

2

⇣
@xj

@tj
� @xj

@tk

⌘
SSR

second�best

�1
2

⇣
@xj

@tj
� @xj

@tk

⌘
SSR

uniform
= 1� SSR

second�best

TSS

second�best
= R

2 second�best (A.13)
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Proof of Proposition 2

This follows directly from Proposition 1 and the fact that Equation 7 can be written in matrix

notation as:

min
b

DWL(t = ⌧

⌧

⌧) = �1

2
e’De (A.14)

where D is the matrix of own- and cross-price derivatives of demand, the vector e = �

�

� � Fb in

which ��� is the vector of product-specific externalities, F is the matrix of product attribute values

including a constant, and b = (↵ �

↵ �

↵ �)0 is the vector of policy coe�cients. Now redefine D⇤⇤⇤ = �D, so

that the problem becomes to minimize e’D⇤⇤⇤e. This is exactly the definition of a generalized least

squares estimation.41

Proof of Proposition 3

We investigate correlation in cross-price derivatives that would violate Assumption 3, revisiting

the proof for Corollary 1. When the assumptions on cross-price derivatives are relaxed the DWL

formula in Proposition 1 expands to:

DWL = �1

2

@xj

@tj
SSR� 1

2

X

j

X

k 6=j

ejek
@xj

@tk
(A.15)

Equation A.13 in turn expands to:

S = 1�
�1

2
@xj

@tj
SSR

second�best � 1
2

P
j

P
k 6=j ejek

@xj

@tk

�1
2
@xj

@tj
TSS

second�best � 1
2

P
j

P
k 6=j(�j + ej)(�k + ek)

@xj

@tk

=

1�
�1

2
@xj

@tj
SSR

second�best � 1
2

P
j

P
k 6=j ejek

@xj

@tk

�1
2
@xj

@tj
TSS

second�best � 1
2

P
j

P
k 6=j �j�k

@xj

@tk
� 1

2

P
j

P
k 6=j ejek

@xj

@tk

(A.16)

The above expression allows cross-price derivatives to be correlated either with e or with �.

Restricting ourselves to one form of correlation at a time, with no correlation between the correlated

pair and the remaining residual term, allows us to remove the terms interacting � and e in the

denominator. Note that
P

j

P
k 6=j �jek = �

P
j �jej = 0 (by construction of the OLS estimate).

Relaxing Assumption 3 to allow correlation between cross-price derivatives and � (a function

of f): If cross-price derivatives are large when �j and �k are similar then the summation involving

� in the denominator of (A.16) becomes larger. Since it is subtracted from the own-price term the

fraction grows and S will decrease relative to the original R2 measure.

Relaxing Assumption 3 to allow correlation between cross-price derivatives and e: The same

terms involving e are present in both the numerator and denominator. If cross-price derivatives are

41Note that D⇤⇤⇤ is positive definite and symmetric in the case of quasilinear utility, as it is the negative of the
Slutsky matrix, which is negative definite and symmetric. In that case, the solution is bGLS = (F’D⇤⇤⇤F)�1F’D⇤⇤⇤

�

�

�.
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large when ej and ek are similar then the numerator and denominator decline equally. Since the

denominator is larger (if there was any information in f) the fraction shrinks and S will increase

relative to the original R2 measure.

Derivation of the welfare loss statistics for electricity pricing

Here we derive an alternative expression to Equation 9 in the main text for the deadweight loss from

using a constrained-optimal tari↵ structure rather than marginal cost pricing under the real-time

pricing benchmark. As discussed in Section 4, we assume zero cross-price derivatives in demand

and supply (marginal cost).42 We then show that the constrained-optimal tari↵ policy corresponds

to a linear regression of the benchmark marginal cost (under real-time pricing) on tari↵ variables.

Finally, we demonstrate how the R

2 from this regression is identical to the R

2 from a regression of

the observed marginal cost (under the flat tari↵) on the same tari↵ variables.

Welfare gain from a regression of benchmark marginal cost on tari↵ variables

We start with the following optimization problem, which is a simplified version from the setup in

Section 2:

max
x1,...,xJ

Z = U(x1, ..., xJ) + n

s.t.
JX

j=1

tjxj  M +D

FOC
@U

@xj
= tj

The consumer consumes up to the point where the marginal utility equals the tari↵. The planner’s

problem has no externalities, but non-constant marginal costs:

max
t1,...,tJ

W = U(x1, ..., xJ) +M � C(x1, ..., xJ)

With zero cross-price derivatives, we can just write out the DWL from each tax and then sum:

42Note that we are not assuming that there is no correlation in the cost of production across hours. The cost
function will be correlated across adjacent time periods and over parts of the day, for example because renewable
generation follows weather patterns. This is not a problem for our model, which makes no assumptions about the
correlation of the cost function across products.
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dW

dtj
= �

✓
@U

@xj
� @C

@xj

◆
@xj

@tj

= �(tj �mcj)
@xj

@tj

where mcj is the marginal cost. This implies that the real-time pricing benchmark tari↵ is t

⇤
j =

mc

⇤
j 8j. Note that @xj/@tj term is the slope of the demand curve. The slope of supply is in mcj ,

not hidden in the dxj/dtj terms. The latter happens when you assume prices are passed through

to consumers but add a subsidy/tax to each price at each j. When demand and supply are locally

linear, the deadweight loss depends on the relative slopes of demand and supply as well as the price

wedge.

We now show that the deadweight loss expression can be written as a sum of squared errors,

where the error is given by the di↵erence between the tari↵ tj = ⌧j and the real-time pricing

benchmark tari↵ t

⇤
j = mc

⇤
j . From that, using the results in Section 2, it follows immediately that

the R

2 of a regression of benchmark marginal costs on a set of tari↵ policy variables recovers the

welfare gain of the constrained-optimal tari↵ relative to real-time pricing (with the reference policy

being an unbiased flat tari↵ t̄).

We now integrate from tj = mc

⇤
j (the optimum) to some arbitrary tj = ⌧j . With no cross

e↵ects, we can do this integral for each tj and then sum over j. Let mc

⇤
j denote the marginal cost

at the e�cient tari↵ and mcj the marginal cost for any consumer tari↵ ⌧j :

W (t = t

⇤)�W (t = ⌧) ⌘ DWL(t = ⌧) =
JX

j=1

Z ⌧j

mc⇤j

dW

dtj
dtj

=
JX

j=1

Z ⌧j

mc⇤j

�(tj �mcj)
@xj

@tj
dtj

(local linear supply) =
JX

j=1

Z ⌧j

mc⇤j

�(tj � (mc

⇤
j +

@mcj

@tj
(tj �mc

⇤
j )))

@xj

@tj
dtj

(uncorrelated own-derivatives) = �@xj
@tj

(1� @mcj

@tj
)

JX

j=1

Z ⌧j

mc⇤j

(tj �mc

⇤
j )dtj

(anti derivative) = �@xj
@tj

(1� @mcj

@tj
)

JX

j=1


1

2
(tj �mc

⇤
j )

2

�⌧j

mc⇤j

= �1

2

@xj

@tj
(1� @mcj

@tj
)

JX

j=1

(⌧j �mc

⇤
j )

2

Hence, with locally linear demand and marginal costs, the DWL expression is proportional to a

sum of squared errors, where the error is defined as the di↵erence between the chosen tari↵ tj = ⌧j
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and the marginal cost under the real-time pricing benchmark tari↵ tj = mc

⇤
j . Thus, minimizing

DWL is equivalent to minimizing the squared tari↵ errors, so that the R2 of a regression of mc

⇤
j on

the policy variables zj indicates the relative e�ciency gain:

S =
DWL(t = ↵

OLS + �

OLS
zj)�DWL(t = t̄)

DWL(t = t

⇤
j )�DWL(t = t̄)

= 1� DWL(t = ↵

OLS + �

OLS
zj)

DWL(t = t̄)

= 1�
�1

2
@xj

@tj
(1� @mcj

@tj
)SSRsecond�best

�1
2
@xj

@tj
(1� @mcj

@tj
)TSSsecond�best

= R

2 second�best

where the equality follows from DWL(t = t

⇤
j ) = 0 and TSS

second�best = SSR

uniform. The coe�-

cients of the regression tj = ↵

OLS + �

OLS
zj indicate the constrained-optimal tari↵s.

Welfare gain from a regression of observed marginal cost on tari↵ variables

We do not observe the benchmark marginal cost mc

⇤
j , but we do observe the marginal cost resulting

from an unbiased flat tari↵ t̄. However, the R2 of a regression of mc

⇤
j on the policy variables equals

the R

2 of a regression of the observed mcj(t̄) on the policy variables, since mcj(t̄) is an a�ne

transformation of mc

⇤
j . To see this, denote the slope of marginal cost mc

0
j and note that mc

⇤
j = t

⇤
j .

We can write:

mcj(t̄) = mc

⇤
j +mc

0
j(xj(t̄)� xj(t

⇤))

= mc

⇤
j +mc

0
j

@xj

@tj
(t̄� t

⇤)

= mc

⇤
j +mc

0
j

@xj

@tj
t̄�mc

0
j

@xj

@tj
t

⇤

= mc

⇤
j +mc

0
j

@xj

@tj
t̄�mc

0
j

@xj

@tj
mc

⇤
j

= (1�mc

0
j

@xj

@tj
)mc

⇤
j +mc

0
j

@xj

@tj
t̄,

where mc

0
j
@xj

@tj
t̄ and mc

0
j
@xj

@tj
are constants, so mcj(t̄) is an a�ne transformation of mc

⇤
j . Hence,

the R

2 from a regression of observed marginal costs on policy variables recovers the relative e�-

ciency gain of the tari↵ structure under consideration (over a flat tari↵). In order to compute the

constrained-optimal policy and the welfare loss in dollars, the transformation above can be used to

construct mc

⇤
j and run a regression of mc

⇤
j on the policy variables.
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Proof of Proposition 4

We first show that under Assumptions 1, 2, 4, 5 and 6, the second-best policy is ↵ = 0 and � = r̄.

Consider an OLS policy tjs = ↵ + �fj . Residuals are given by �js � (↵ + �fj) = (rs � �)fj � ↵,

which uses the fact that �js = rsfj . By Equation 16, the deadweight loss from this OLS policy is:

�2DWL(tj = ↵+ �fj) =
SX

s=1

JX

j=1

JX

k=1

ejseks
@xjs

@tks

=
SX

s=1

JX

j=1

JX

k=1

((rs � �)fj � ↵)((rs � �)fk � ↵)
@xjs

@tks

=
SX

s=1

(rs � �)2
JX

j=1

JX

k=1

fjfk
@xjs

@tks
� ↵

SX

s=1

(rs � �)
JX

j=1

JX

k=1

(fj + fk)
@xjs

@tks

+ ↵

2
JX

j=1

JX

k=1

@xjs

@tks

=
JX

j=1

JX

k=1

fjfk
@xjs

@tks
⇥

SX

s=1

(rs � �)2, (A.17)

where the third equality follows from Assumption 5 (common demand system in each market),

which implies that @xjs

@tks
= @xjq

@tkq
8q, s. The fourth equality follows from the two facts. First, under

Assumption 6 (no substitution to the outside good),
PJ

j=1

PJ
k=1

@xjs

@tks
= 0 so the final term (with

↵

2) is zero. Second, under quasilinearity, the demand matrix is symmetric, so
PJ

j=1

PJ
k=1 fj

@xjs

@tks
=

PJ
j=1

PJ
k=1 fk

@xjs

@tks
, and under Assumption 6 (no substitution to the outside good), these terms

are equal to zero:
PJ

j=1

PJ
k=1 fj

@xjs

@tks
=
PJ

j=1 fk
PJ

k=1
@xjs

@tks
=
PJ

j=1 fk ⇥ 0 = 0. Thus, both terms

involving ↵ are equal to zero, and deadweight loss is reduced to only the first term involving �.

The ↵ terms cancel because ↵ is just a lump sum transfer between the government and con-

sumers. Given Assumption 6, with revenue-recycling, the constant has no e↵ect on welfare and the

optimal ↵ is undetermined. We set it to zero, which makes the tax rate an unbiased estimate of

the externality. To find the second-best policy, we minimize deadweight loss (maximize expression

A.17) with respect to �. The first-order condition is:

@DWL

@�

=
JX

j=1

JX

k=1

fjfk
@xjs

@tks
⇥

SX

s=1

(rs � �) = 0. (A.18)

Rearranging yields the solution: � = r̄. Given this second-best policy, we now calculate the

deadweight loss of the second-best policy and the deadweight loss of a constant unbiased tax. The

deadweight loss from the second-best policy is given by Equation A.17 for tj = r̄fj :
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�2DWL(tj = r̄fj) =
SX

s=1

(rs � r̄)2
JX
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JX
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fjfk
@xjs

@tks

= S ⇥ var(rs)⇥
JX

j=1

JX

k=1

fjfk
@xjs

@tks
. (A.19)

The constant unbiased tax equals t = t̄ = r̄f̄ . The resulting deadweight loss is:

�2DWL(t = t̄) =
SX
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JX
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ejseks
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=
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+ Sr̄

2
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2 ⇥
JX
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JX
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� Sr̄

2
f̄ ⇥

JX

j=1

JX

k=1

(fj + fk)
@xjs

@tks

= S ⇥ E(r2s)⇥
JX

j=1

JX

k=1

fjfk
@xjs

@tks
, (A.20)

where, as detailed above in the derivation of Equation A.17, the third equality follows from common

markets (Assumption 5) and the latter two terms are zero because of the no outside good assumption

(Assumption 6).

The fraction of the welfare gain under the Pigouvian benchmark achieved by this second-best

policy over a policy of a constant unbiased tax on all products can now be calculated as:

DWL(t = r̄fj)�DWL(t = t̄)

DWL(t = �)�DWL(t = t̄)
=

1
2S ⇥ (E(r2s)� var(rs))⇥

PJ
j=1

PJ
k=1 fjfk

@xjs

@tks

1
2S ⇥ E(r2s)⇥

PJ
j=1

PJ
k=1 fjfk

@xjs

@tks

= 1� var(rs)

E[r2s ]
. (A.21)

Moving to the fixed-e↵ects intuition follows directly from de-meaning the regression at the level

of the (region s) fixed-e↵ects and calculating R

2 in the resulting regression (the definition of the

within-R2). This amounts to a regression of �js � rsf̄ on fj � f̄ . The total sum of squares is:
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TSS =
SX

s=1

JX

j=1

(�js � rsf̄)
2 =

SX

s=1

JX

j=1

(rs(fj � f̄))2 =
SX

s=1

r

2
s

JX

j=1

(fj � f̄)2

= S ⇥ E[r2s ]⇥
JX

j=1

(fj � f̄)2. (A.22)

A standard derivation of OLS shows that the slope is r̄, and the constant is 0. The OLS

residuals from the regression are therefore given by �js�rsf̄ � r̄(fj� f̄) = rsfj�rsf̄ � (r̄fj� r̄f̄) =

(rs � r̄)(fj � f̄). Now compute the sum of squared residuals:

SSR =
SX

s=1

JX

j=1

[(rs � r̄)(fj � f̄)]2 =
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JX
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(fj � f̄)2. (A.23)

Now we can compute within-R2 as:

within-R2 = 1� SSR

TSS

= 1�
S ⇥ var(rs)⇥

PJ
j=1(fj � f̄)2

S ⇥ E[r2s ]⇥
PJ

j=1(fj � f̄)2
= 1� var(rs)

E[r2s ]
. (A.24)

Proof of Corollary 2

As demonstrated in Equation A.20, the deadweight loss for a constant unbiased tax t = t̄ = r̄f̄

equals:
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(A.25)

where the second and third terms do not cancel if Assumption 6 does not hold and there is substi-

tution to an outside good. The second equality follows from quasilinearity, which implies symmetry

of the demand matrix.

Now define ✓j so that it solves, for each j, �✓j @xjs

@tjs
=
P

k 6=j
@xks
@tjs

. In words, ✓j is the total

market size e↵ect for a change in tax rate tj ; it is the ratio of the sum of cross e↵ects (increases in

quantity for other products that results from raising price j) to the own e↵ect (decrease in quantity
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for product j from an increase in its price). If ✓j = 1, there is no change in market size. If ✓j < 1,

the total market size (quantity summed across all J) shrinks as the price of j rises. Now rewrite

expression A.25:
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, (A.26)

where the last equality follows from Assumption 3 and two other simplifying assumptions that we

make here: fj and ✓j are uncorrelated, and ✓j and @xj

@tj
are uncorrelated. These are assumptions

for expositional convenience—they imply that the overall market size e↵ects of di↵erent products

are not related to the attribute or own-price derivatives and so the summation terms collapse to

expressions of the mean.

In this case, the sign of the second term in Equation A.26 depends upon whether ✓̄ is greater

than, equal to, or less than 1. (Without the simplifying assumptions, the same sign is pivotal,

but the result will depend on weighted averages of ✓.) When ✓̄ = 1, the second term in Equation

A.26 equals zero and Proposition 1 holds. The overall market size (outside good) e↵ect grows in

importance when ✓̄ deviates more from 1, or when demand is more elastic (@xj

@tj
is more negative).

Note that it would be unusual for ✓̄ > 1, which would imply a “sectoral Gi↵en good”—that is, on

average across products in a sector, increase in individual product prices cause the overall market

to expand. We thus assume that ✓̄  1.

We can now evaluate the relative welfare improvement of the second-best linear tax vs. the

constant tax:

61



DWL(t = r̄fj)�DWL(t = t̄)

DWL(t = �)�DWL(t = t̄)

=
�1

2S ⇥ var(rs)⇥
PJ

j=1

PJ
k=1 fjfk

@xjs

@tks
+ 1

2S ⇥ E(r2s)⇥
PJ

j=1

PJ
k=1 fjfk

@xjs

@tks
� 1

2JSr̄
2
f̄

2(1� ✓̄)@xj

@tj

1
2S ⇥ E(r2s)⇥

PJ
j=1

PJ
k=1 fjfk

@xjs

@tks
� 1

2JSr̄
2
f̄

2(1� ✓̄)@xj

@tj

= 1�
S ⇥ var(rs)⇥

PJ
j=1

PJ
k=1 fjfk

@xjs

@tks

S ⇥ E(r2s)⇥
PJ

j=1

PJ
k=1 fjfk

@xjs

@tks
� JSr̄

2
f̄

2(1� ✓̄)@xj

@tj

.

(A.27)

It follows directly from Equation A.27 that ✓̄ < 1 implies that the R

2 overstates the fraction of

the welfare gain from the Pigouvian benchmark achieved by this second-best policy over a policy

of a constant tax on all products (note that the numerator and first term of the denominator in

the fraction below are negative):
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(A.28)

B Impact of Cross-Price Substitution and Convexity in Applica-

tion 2

In this Appendix we investigate the potential bias of R2 in the presence of cross-price derivatives

and marginal cost convexity in the electricity pricing application. To simulate welfare, we use

hourly data on wholesale electricity prices from 2012 in what is called the Pennsylvania-New Jersey-

Maryland market (PJM). Data on real-time wholesale prices and load for PJM are available from

their website. We use the reported “system price,” which measures a weighted average wholesale

price for a given hour across all nodes within PJM, and “system load” data, the sum of demand

within PJM in a given hour. For analyzing the robustness to marginal cost convexity we also use

information on PJM’s 2012 merit order. These data were purchased from SNL Energy and report

plant-level information such as fuel type, capacities, fuel costs, variable operating and maintenance

costs, and emission allowance costs for all generating sources within PJM’s territory selling into the

wholesale market. Figure B.1 shows a scatterplot of hourly wholesale prices and loads for 2012.43

43The reader will note the presence of negative electricity prices. These can arise for two reasons that interact
with the fact that electricity cannot simply be disposed of. First, there is a federal production tax credit for wind
of $23/MWh. Therefore wind generators are willing to continue to produce as long as the price is above negative
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Figure B.1: Electricity Prices and Merit Order in the PJM market at Varying Loads
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B.1 Cross-Price Substitution

Here we relax Assumption 3 in the context of electricity pricing, allowing a form of intertemporal

substitution in demand that may violate our assumption that cross e↵ects are proportional to

own e↵ects. When substitution is concentrated among neighboring hours, serial correlation in the

pricing scheme will create violations of Assumption 3. For example, the sequential hours within a

“peak” period will all be priced the same and are also stronger substitutes in demand. As described

in Section 2.4, this pattern will push the welfare fraction evaluated using the full formula below the

value of R2. At the same time, serial correlation could also create correlation between cross-price

derivatives and pricing errors (for example if a generator is o✏ine for a few days), pushing the

welfare fraction above R

2.

We explore a wide range of cross-price derivatives and find that, in spite of the theoretical

potential for bias, relatively little bias appears in this application. Table B.1 reports results from

a simulated demand system where cross-price elasticities are set to reproduce the shoulder period

substitution estimated in Andersen et al. (2017). That paper estimates substitution to a period

between 2 and 12 hours on either side of the price change and finds an average cross-price shift

in demand equal to 29% of the size of the own-price demand response. We simulate this e↵ect in

our setting by inserting cross-price derivatives into the demand matrix used in Section 4, adjusting

a matrix of share elasticities until the cross-price derivatives are 29%, symmetry is imposed, and

substitution to the outside good is such that the rows (and therefore columns) sum to zero.44 Note

that because the cross-price derivatives require the log of prices, we are unable to account for

$23/MWh. Second, traditional steam power plants face startup costs. This implies that during periods of low demand
that are expected to be followed by high demand, generators are willing to pay consumers to take their electricity to
avoid these startup costs in the future.

44We apply an iterative search process, alternating between scaling the cross-price derivatives and imposing the
adding-up conditions, until the target cross-price share elasticities are reached.
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negative prices. Thus, we impose a minimum price of $1/MWh in our calculations. Because of this

the R

2 measures reported in Table B.1 are slightly di↵erent from those reported in the main text.

Table B.1: Substitution Across Hours Following Andersen et al. (2017)

Welfare formula including cross-price e↵ects:
(1) (2) (3) (4) (5) (6)

Pricing scheme R

2 None 2 hours 3 hours 6 hours 12 hours
On vs o↵ peak FE 0.041 0.041 0.033 0.031 0.033 0.045
HOD FE 0.135 0.135 0.126 0.127 0.134 0.148
HOD & DOW FE 0.153 0.153 0.141 0.142 0.148 0.162
HOD & MOY FE 0.193 0.193 0.177 0.177 0.181 0.192
HOD, MOY & DOW FE 0.211 0.211 0.192 0.191 0.194 0.205
HOD x MOY FE 0.297 0.297 0.282 0.283 0.291 0.306
HOD x MOY x DOW FE 0.422 0.422 0.411 0.412 0.418 0.429

Note: In columns (3) through (6) total substitution to the shoulder period is set equal to 29%, the mean
estimate in Andersen et al. (2017). The shoulder period in their experiment varied between 2 and 12
hours depending on the treatment and so we present results spanning this range. HOD, DOW and MOY
refer to hour of day, day of week, and month of year, respectively.

We find that the bias overall is quite small in magnitude and that the direction depends on

the number of hours in the shoulder period. Even though the intertemporal substitution estimated

in Andersen et al. (2017) is substantial (and much larger than the shift found in other pricing

experiments), the overall bias in the R

2 measure equals at most two percentage points.

Table B.2: Substitution Across Hours Using Estimates from
Ata, Duran, and Islegen (2016) and Jessoe and Rapson (2014)

Cross-price e↵ects considered:
Pricing scheme R

2 None (1) (2) (3)
On vs o↵ peak FE 0.041 0.041 0.036 0.051 0.056
HOD FE 0.135 0.135 0.130 0.147 0.152
HOD & DOW FE 0.153 0.153 0.146 0.168 0.175
HOD & MOY FE 0.193 0.193 0.184 0.215 0.224
HOD, MOY & DOW FE 0.211 0.211 0.200 0.236 0.246
HOD x MOY FE 0.297 0.297 0.289 0.317 0.326
HOD x MOY x DOW FE 0.422 0.422 0.416 0.436 0.441

Notes: Column (1) sets cross-price e↵ects equal to approximately 9% using estimates from the model
in Ata, Duran, and Islegen (2016). Column (2) sets cross-price e↵ects to negative 68%, the average of
spillovers across treatments in Jessoe and Rapson (2014). Finally, column (3) uses the maximum spillover
estimated for any treatment in Jessoe and Rapson (2014), slightly more than 100% of the own-price
derivative in the treated hours. HOD, DOW and MOY refer to hour of day, day of week, and month of
year, respectively.

Table B.2 explores two additional calibrations. First, we draw from estimates in Ata, Duran, and

Islegen (2016) who measure substitution two hours on either side of a price change. They find more

modest cross-price e↵ects than those in Andersen et al. (2017), with substitution o↵setting roughly

9% of reductions during a period of increased prices. The biases are correspondingly smaller.

Finally, we consider the results in Jessoe and Rapson (2014), where they find that information

64



treatments combined with price changes can introduce substantial spillovers: cross-price derivatives

are negative so that changes in an hour with a price change are amplified in the two hours before and

after. This particular substitution pattern is large (greater than 100% in one of their treatments),

but even so we find the bias this causes for the R

2 is small relative to the variation across policies.

We also note that the ranking of policies using R

2 and the full model is identical in all simulations

we have performed.

B.2 Convexity Simulation for Application 2

Here we relax the linearity assumption in supply. We make use of engineering data on capacities

and engineering marginal costs described above for each of the plants within the PJM service area,

the so-called merit order. Figure B.1 superimposes the 2012 merit order on the scatterplot of

wholesale prices and loads in 2012. There is a clear upward slope, but also variation in realized

cost at any given level of load. The merit order provides information on the average availability

and costs of power plants operating in the market, so in any one hour prices can be above or below

this. The di↵erence between the real-time price and the engineering estimate of marginal cost can

be due to variation in production from renewables, periods when other generators are o✏ine due

to maintenance, renewable energy subsidies or transmission congestion that limits the amount of

electricity a low-cost generator can sell to particular locations.

Using data on the merit order, we simulate deadweight loss from a particular intermediate

pricing scheme in each hour. We compare the welfare implications of seven pricing schemes in

Table 1. To generate each intermediate set of prices we regress the hourly wholesale prices on the

set of dummy variables defined by the intermediate pricing scheme. The fitted values from these

regressions represent prices in each scheme.45

We also require both supply and demand to simulate deadweight loss from each of these in-

termediate pricing schemes in a given hour. Consistent with our theoretical results, we assume

demand is (locally) linear. We calibrate demand such that the average elasticity across the year

is 0.1. We use two supply curves. First, we estimate a quadratic supply curve through the merit

order via least squares.46 Second, we use the actual step-function merit order.

In each hour, we project our linear demand curve from the real-time wholesale price. Because

the hourly prices do not lie on the estimated supply curves for the reasons discussed above (e.g.,

power plant outages), we horizontally shift the quadratic and step-function supply curves so that

they intersect with the hourly wholesale price. This implicitly assumes that the supply curve has

shifted due to changes in production from infra-marginal resources.47 Figure B.2 illustrates this

calculation (after shifting the supply curve) for a sub-optimal price that is lower than the real-time

45We do not weight the regression by load, but the results are qualitatively similar when we do.
46We include only the squared term and a constant in the regression. Including the first-order term leads to the

unrealistic result of marginal cost initially declining.
47An alternative method would be to vertically shift the supply curves. Here, the implicit assumption would be

that the marginal cost of the marginal plant and all other plants increase by the same amount. One advantage
of horizontally shifting the supply curves is that it uses only data on wholesale prices, not needing information on
wholesale loads.

65



price for linear demand and linear and step-function supply. Given linear demand, the deadweight

loss coming from consumers will always be a triangle with a height equal to the price di↵erence and

a width defined by the slope of demand. For the quadratic supply, the deadweight loss arising from

the supply side integrates from the baseline quantity over the change in quantity defined by the

price di↵erences and the slope of the demand curve. For the step-function supply, deadweight loss

coming from the supply side is the sum of the series of rectangles over this change in quantity.48

Figure B.2: Deadweight Loss Calculations under Intermediate Pricing Schemes

P	

PInter	

Prt	

Q	

S	

D	

P	

Q	

PInter	

Prt	

Qrt	 Qinter	 Qrt	 Qinter	

Note: Pinter is the second-best, or intermediate, price, against with Prt, the real-time price, is evaluated.

For the vast majority of the hours (8,544 of the 8,784 hours),49 the steps discussed above are

su�cient for calculating deadweight loss. However, there are two cases where calculating deadweight

loss using the step function in this way is not possible. The first is in hours where the observed

real-time price is below the initial starting point of the merit order ($0.55/MWh). The second is

when the counterfactual demand under the intermediate pricing scheme (Qinter) falls beyond the

vertical portion of the supply curve.

We considered a number of ways to deal with these “outlier” hours. For example, we could

vertically shift the supply curve during these low price hours, or we could stretch out supply or

assume some marginal cost for imports in hours where demand under the intermediate price is

beyond the capacity of the system. Given the relatively small number of hours for which this is an

issue, in the tables below we omit these 247 hours from both the deadweight loss calculations and

the formation of the intermediate prices.50

48Under the step-function supply the real-time price can either be between steps or at the horizontal portion of the
step. When the real-time price is at a horizontal section, we shift the step-function supply curve so that the observed
price is at the beginning of the step as shown.

49Recall that 2012 was a leap year.
50To do this, we first use all of the hours to calculate intermediate prices and then identify the problematic hours.
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Table B.3 reports the results from this procedure using the slightly smaller sample, as well as

the R2 results for the full sample reported in Table 1 reported in the main text. Expectedly, because

we are omitting price extremes, the share of deadweight loss eliminated is larger than in results

reported in the main text. We find almost no bias using the quadratic supply curve for each of the

seven pricing regimes. The bias under the step function supply is at most 10.4%, except for the

first case where the absolute discrepancy is very small. While we have not shown this theoretically,

for each of the pricing schemes R2 is slightly biased upward. In addition, the bias is fairly stable,

in percentage terms, across the pricing schemes (except for the simple peak/o↵-peak tari↵) ranging

from 6.6% to 10.4%.

Table B.3: Comparison of R2 with Simulated Welfare Measures from Electricity Tari↵ Application

Pricing Regime R

2, complete R

2, restricted Simulated, quadratic Simulated, step-function

On vs. o↵ peak FE 0.040 0.042 0.042 0.063
HOD FE 0.135 0.253 0.257 0.280
HOD & DOW FE 0.153 0.278 0.282 0.310
HOD & MOY FE 0.193 0.329 0.333 0.355
HOD, DOW & MOY FE 0.211 0.354 0.358 0.383
DOW x MOY FE 0.297 0.449 0.452 0.499
HOD x MOY x DOW FE 0.428 0.599 0.599 0.642
Number of observations 8,784 8,544 8,544 8,544

Notes: Data are from hourly wholesale electricity prices in the PJM market for 2012. Peak hours are defined as 2-6
p.m. Complete Sample uses all 8,784 hourly prices, while the restricted sample omits hours where price is below
the minimum marginal cost and hours where the counterfactual demand under constant pricing exceeds the capacity
available in the merit order. HOD, DOW and MOY refer to hour of day, day of week, and month of year, respectively.

We reiterate that our goal here is to verify the validity of our su�cient statistics approach; it

is not to provide a full analysis of the welfare gains from particular pricing rules. A variety of

caveats to our analysis exist. First, we are analyzing only one year. The welfare implications may

vary across years for a number of reasons. Second, we are looking only at the welfare implications

of prices constructed within sample. In practice, policy must set prices before real-time prices are

realized. Third, this is only for one geographic market.

These caveats, however, increase the importance of being able to calculate the welfare implica-

tions of di↵erent pricing regimes across multiple markets and time periods with minimal modeling

e↵ort. For example, our method could be used to quickly estimate the optimal moving window of

data that policymakers should use to set prices in advance. Or, policymakers could use our method

to verify the external validity of welfare e↵ects from one pricing rule in another market. Outside of

our framework, such comparisons would have imposed a much higher modeling and data burden.

Next, we re-estimate the intermediate prices omitting these problematic hours. We have found that these second set
of intermediate prices do not generate any additional problematic hours. We have also calculated the portions of
deadweight loss defined for all hours (e.g., all of the deadweight loss from consumers and portions of the deadweight
loss from supply) and the results are qualitatively similar.
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C Appendix for Application 3

Data details

To calculate lifetime mileage for each type of automobile, we use data on vehicle miles traveled

(VMT) from California’s vehicle emissions testing program—the Smog Check Program—which is

administered by the California Bureau of Automotive Repair. We match the data to a comprehen-

sive registration micro dataset that allows us to infer when a vehicle has been retired. Our analysis

is primarily based upon the universe of emissions inspections from 1996 to 2010. An automobile

appears in the data for a number of reasons. First, in large parts of the state an emissions inspec-

tion is required every other year as a pre-requisite for renewing the registration on a vehicle that

is six years or older. Second, vehicles more than four years old must pass a smog check within 90

days of any change in ownership. Third, a test is required if a vehicle moves to California from

out-of-state. Vehicles that fail an inspection must be repaired and receive another inspection before

they can be registered and driven in the state.51

These data report the location of the test, the unique vehicle identification number (VIN),

odometer reading, the reason for the test, and test results. We decode the VIN to obtain each

vehicle’s make, model, vintage, and engine characteristics. Using this information, we match the

vehicles to Environmental Protection Agency data on fuel economy. Because the VIN decoding

is only feasible for vehicles made after 1981, our data are restricted to these models. This yields

roughly 120 million observations. In our main specification, we define each unique 10-digit VIN-

prefix (“VIN10-prefix”) as a unique vehicle type. This is the finest possible di↵erentiation of ex

ante identical vehicles in our data, and it delineates a vehicle according to make, model, model

year, engine size and, sometimes, also according to transmission, drive type and body style.

Our primary use of the smog check data is to calculate the vehicle’s odometer reading shortly

before the vehicle was scrapped.52 However, vehicles may leave the smog check data because they

leave California. To accurately determine when a vehicle is scrapped, we also use data obtained

from CARFAX Inc. which contain the date and location of the last record of the vehicle, regardless

of state, reported to CARFAX for 32 million vehicles in the smog check data. Because the CARFAX

data include import/export records, we are able to correctly classify the outcomes of vehicles which

are exported to Mexico as censored, rather than scrapped, thus avoiding the issues identified in

Davis and Kahn (2010). We define a vehicle as being scrapped if the vehicle is not registered

anywhere in the U.S. for two years.

51There is also a group of exempt vehicles. These are: vehicles of 1975 model-year or older, hybrid and electric
vehicles, motorcycles, diesel-powered vehicles, and large natural-gas powered trucks.

52The actual date of retirement of the vehicle is not the same as the last date of registration. The vehicle’s odometer
reading occurs at the last registration date. Rather than imputing the odometer at the moment of scrap using hazard
rates, we simply use the last observed reading for reasons of transparency. Such an imputation would be unlikely to
have an impact on the R

2 in our regressions.
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Robustness: outliers, sampling and censoring

Outliers

Our data include some cases of very high lifetime VMT, which raises the possibility of coding

errors. Our estimates of the R2 could be sensitive to such outliers, even when restricting to vehicles

with relatively large sample sizes. In our main results, we have dropped observations for which

VMT-at-death exceeds one million miles. To check whether our R2 results are sensitive to di↵erent

treatments of observations with very high VMT-at-death, Table C.4 reports regressions that include

all observations as well as regressions in which we winsorize the underlying micro-data at di↵erent

VMT thresholds.53 The table reports OLS and WLS results, restricting the sample to model years

1988 to 1992 and to VIN10-prefixes with at least 200 observed retirements. The first two rows

indicate that dropping observations with VMT above one million miles hardly a↵ects R

2. Rows

3-6 indicate that, starting from the full sample, winsorizing at progressively lower VMT levels only

slightly increases R2. The OLS R

2 rises from a baseline of 0.28 to a maximum of 0.37 when we limit

the influence of data over 400,000 miles.54 The WLS R

2 rises from a baseline of 0.22 to a maximum

of 0.30 for the same restriction. Our qualitative conclusions are therefore robust to outliers.

Table C.4: Regression R

2 Using Winsorized Data

VIN-pre averages, model years 1988-1992, models with N � 200 OLS WLS
All odometer readings .29 .22
Drop if odometer � 1, 000, 000 miles .28 .22
Winsorize at 1,000,000 miles .28 .22
Winsorize at 600,000 miles .30 .23
Winsorize at 500,000 miles .32 .25
Winsorize at 400,000 miles .37 .30

Note: Table shows R2 from regressions of average lifetime gallons consumed on fuel consumption rating.

The unit of observation is a VIN10-prefix.

Sampling variation

Above we argued that bias in the R

2 due to mismeasurement from sampling variation was likely

to be small because our results are not overly sensitive to restricting the set of vehicles to those

with a large sample. To further examine the importance of sampling variation, we test how the

R

2 changes when we randomly select subsets of our data for analysis. Specifically, we limit our

sample to all VIN10-prefixes for our focal vintages of 1988 to 1992, for which we have at least 200

53For example, in the fourth row, any observation that has a reported odometer rating above 600,000 miles is recoded
as having exactly 600,000 miles. Its gasoline consumption is recalculated assuming the new odometer reading, and
the observation is then averaged along with all other observations from the same VIN10-prefix.

54Our data have a median VMT at scrappage of 160,000 miles, but there is a long right tail. Just under 7% of
vehicles in our data are scrapped with over 400,000 miles. It is useful to recall that our data are for California, where
the climate facilitates longer vehicle lifetime mileage than would be true in other climate zones.
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Figure C.3: The Distribution of Vehicle Age at Death for Di↵erent Vintages
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retirements in our sample. We then bootstrap that sample and estimate the R

2 many times. The

mean estimate is 0.283, which is close to the 0.29 from the corresponding specification in Table 2.

Next, we bootstrap the sample again, but in each iteration we randomly drop 50%, 90%, or 98%

of our sample. Dropping these fractions of the sample decreases the R

2 to 0.282, 0.273, and 0.229,

respectively. The negligible change in R

2 as the sample size is cut in half provides strong evidence

that sampling error is unlikely to cause a downward bias in our R

2 estimates. Even cutting our

data down to just 2% of our preferred sample reduces the R

2 by only 0.06.

Censorship

Censorship bias is a concern because we observe only a subset of all years of retirement for each

vehicle type. Vehicles under six years old generally do not appear in the smog check data, so we

do not observe the lifetime mileage of cars scrapped at very young ages. And, for vehicles that are

not yet retired, or were retired before our data began, we do not observe their mileage at scrap,

which creates an age censorship that di↵ers across each vintage. For illustration, Figure C.3 shows

the age at retirement of vehicles that appear in our sample for model year 1981 and 1995 vehicles

separately. Because our data on retired vehicles span the period from 1996 to 2008, we observe

1981 vehicles that were at least 15 years old at retirement, whereas we observe retirements up to

age 13 for 1995 models.55 This censoring can create (non-classical) mismeasurement, which can be

particularly problematic when comparing across cohorts. However, we will now show that, while

censoring moves our primary estimates, we can bound the impacts of censoring to a su�ciently

narrow set of values that have a similar qualitative economic conclusion (which is that ignoring

lifetime heterogeneity induces large ine�ciencies).

In Section 5.5 we provide a first indication that the bias from censoring may be limited. Here

55Our smog check data extend to 2010, but we must observe a two year window after a vehicle’s last smog check
to know if it has missed its next required check. Thus, we identify vehicle retirements that occurred between 1996
and 2008.
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we consider two alternative methods. The first method is an extrapolation technique that assigns

retirement counts and VMT-at-death to non-observed ages for each individual VIN10-prefix. The

extrapolation is intentionally conservative, so that the resulting R

2 should be considered an upper

bound on the true R

2. The second method exacerbates the censoring by progressively removing

vehicles of certain ages, and shows how the R

2 changes in response.

The extrapolation method starts with national registration count data from RL Polk at the

VIN10-prefix level. We use these uncensored data to compute annual scrap rates for each VIN10-

prefix over the sample period 1999-2009 and then to fill in missing scrap rates in our main data

wherever possible. We fill in missing scrap rates for unobserved ages using average scrap rates by

age at the VIN8-prefix level, which does not distinguish model year. In other words, if the scrap

rate for a 20-year-old 1985 Toyota Corolla LE is missing, we replace it with the average scrap rate

of any 20-year-old Toyota Corolla LE, regardless of vintage (assuming that at least one vintage

is observed at age 20). For ages that are not observed at the VIN8-prefix level, we assign scrap

rates based on sample-wide average scrap rates by age (weighted by registration counts).56 Having

extrapolated missing scrap rates (and, indirectly, missing vehicle retirements), we then impute

missing VMT-at-death using a similar procedure. We first replace missing VMT-at-death for each

age using VMT averages across VIN8-prefixes. For ages that are never observed at the VIN8-prefix

level, we use the polynomial fit for the relationship between VMT-at-death and age, averaged across

all models and weighted by the number of retirements.

This is an extremely conservative approach, in that we assume that most missing scrap rates

and VMT-at-death are the same across all vehicles. This necessarily reduces cross-model variation

in lifetime mileage and thus raises the R2. The process essentially removes all relevant variation for

many of the imputed observations. The resulting R

2 from regressions with imputed data should

therefore be considered an upper bound; one that is likely substantially above the true R

2 that

would be obtained with a fully uncensored sample.

Table C.5 presents the results for model years 1988-1992. When missing data are imputed for

all models, the R

2 increases to 0.38-0.47, depending on whether the regression is weighted and

if the sample is restricted to observations with at least 200 observed retirements or at least 400

retirements (including imputed ones) (panel 1). While this range is clearly above 0.22-0.29 (as

reported in panel 2 of Table 2), the R

2s are still low from an absolute perspective. Panel 2 shows

that when we restrict the sample to VIN10-prefixes for which we impute VMT-at-death for at most

12 ages, the range goes down to 0.23-0.34. This provides further evidence that censoring is unlikely

to cause a large bias.

Our second approach to investigating the impact of censoring is to drop vehicles of certain ages,

thereby exacerbating the censoring problem, to see how that influences the R

2. The change in R

2

in response to more restrictive censoring can provide additional insight into what would happen if

we could instead relax the censoring.

56Specifically, we fit a fifth-order polynomial to the scrap rate by age pattern, and use this for imputing missing
data.

71



Table C.5: Regression R

2 Using Imputed Data

VIN10-prefix averages, model years 1988-1992 OLS WLS
Panel 1: VMT imputed for all models
All models .44 .43
Models with N � 200 .45 .38
Models with Nimputed � 400 .47 .40
Panel 2: Only models for which VMT is imputed for  12 ages
All models .34 .25
Models with N � 200 .29 .24
Models with Nimputed � 400 .28 .23

Note: Table shows R2 from regressions of average lifetime gallons consumed on fuel consumption rating,

where scrap rates and VMT for missing ages are imputed. The unit of observation is a VIN10-prefix.

Observations with VMT above one million miles are dropped. WLS uses the actual number of observed

retirements N when the sample is selected based on N � 200. WLS uses the number of retirements

including imputed retirements Nimputed when the sample is selected based on Nimputed � 400.

Specifically, we restrict the sample to models with N � 200 and model years 1988-1992 and

show how R

2 changes as we progressively remove vehicles of older ages from the sample. Table

C.6 shows the results for vehicles in the age ranges 10-X years old, where X goes up from 10 to

20 years. We find that the R

2 increases from 0.28 to 0.40 when the age range is further censored,

suggesting that less censoring would yield lower values. We have also run age-specific regressions

(i.e., regressions on only 10,. . . , 20-year-old cars). The R

2 falls as vehicles get older.57 Intuitively,

censoring “young” vehicles depresses the R

2, as there will be less variation in VMT among cars

that are scrapped (generally because of accidents) at young ages, whereas censoring “old” vehicles

likely exaggerates the R2 by understating heterogeneity. The smog check data are censored to omit

vehicle deaths below six years, but relatively few vehicle deaths occur in those years, so on balance

our data are mostly missing deaths at older ages. This suggests that the censoring problem is most

likely, on net, causing us to exaggerate the R

2.

Policies with a bias

Our theoretical results assume that the policy-maker chooses an unbiased second-best tax scheme.

When the policy is in fact biased, there will be, by definition, additional welfare losses. In that sense

our estimates of e�ciency cost are upper bounds on the actual e�cacy of real world policies. Policies

might deviate from the second-best by being “biased” in two di↵erent senses. First, policy might get

57
R

2 decreases from 0.37 for 10-year-old vehicles to 0.13 for 20-year-old vehicles.
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Table C.6: Regression R

2 With Di↵erent Vehicle Age Restrictions

VIN10-prefix averages, model years 1988-1992, N � 200
Low age High age OLS WLS

10 10 .37 .41
10 11 .40 .37
10 12 .39 .34
10 13 .37 .32
10 14 .35 .31
10 15 .33 .29
10 16 .31 .27
10 17 .30 .25
10 18 .29 .23
10 19 .29 .22
10 20 .28 .21

Note: Table shows R2 from regressions of average lifetime gallons consumed on fuel consumption rating.

The unit of observation is a VIN10-prefix. Observations with VMT above one million miles are dropped.

WLS weights the regressions by the number of observed retirements N .

the average tax wrong (“mean bias”).58 In the context of our fuel-economy application, a downward

bias in the mean tax rate would fail to shrink the car market by the optimal amount (market size

becomes relevant in settings with an outside good). Revenue-neutral fuel-economy standards by

definition set an average tax rate of zero across all cars; since the average externality is positive

this constitutes a downward bias.59 This creates an additional ine�ciency at the extensive margin,

such that R

2 in the tables above can be interpreted as an upper bound on the relative welfare

gain. Second, policy might have a “slope bias”—the slope of the policy di↵ers from the second-best

OLS estimate. One reason that slope bias might emerge is if there is a correlation between average

lifetime mileage and fuel consumption ratings in the data, but the policy is determined as if there

were no such correlation. We show here the di↵erence between this “näıve” linear tax from the

actual second-best. We illustrate this in Figure C.4, which replicates Figure 4, but adds a line

that represents the relationship between fuel consumption ratings and lifetime fuel consumption,

if all cars (or trucks) were driven the same number of miles, which we set equal to the observed

58In terms of the theory, a useful decomposition is to separate the mean bias in tax rates from their variance, which
can be seen by rewriting deadweight loss in Equation 10 under Assumptions 1 to 3:

�2⇥DWL(t = ⌧) ⇡
JX

j=1

@xj

@tj
⇥

✓
J ⇥ e

2

| {z }
bias

+
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(ej � e)2

| {z }
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◆
.

This illustrates that when there is bias in the tax rates, and variance in their errors, the e↵ects on welfare can be
separated. The mean bias can be eliminated by a linear policy but the variance cannot. Note that OLS minimizes
the variance term in this equation, but (non-OLS) policies with a slope bias have a larger variance term.

59Graphically, this can be represented by shifting downward the linear tax schedule in Figure C.4. Because a
revenue-neutral fuel-economy standard will have the wrong intercept, Holland, Hughes, and Knittel (2009) show that
there is no guarantee that welfare will increase, relative to the case of no regulation.
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Figure C.4: The Relationship Between Lifetime Gasoline Consumption and Fuel-E�ciency
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Note: The unit of observation is a type of vehicle (VIN10-prefix). Gallons consumed is the average across observations

for that type. The sample is restricted to models for which we observe at least 200 vehicle retirements from model

years 1988 to 1992. Observations with VMT above one million miles are dropped. Solid lines are OLS prediction

lines. Dashed lines are linear fits under the assumption that all vehicles are driven the mean number of miles.

mean in our data. This line represents the best fit line that a policymaker would choose if they

knew only the average mileage (separately for cars and trucks) across all vehicles, but did not know

the correlation between average mileage and fuel consumption ratings. This is our depiction of a

“näıve” linear tax, which gets the average shadow price right, but ignores durability completely.

Current fuel-economy standards such as CAFE are näıve in this way, as the standards are not based

on expected VMT. Figure C.4 shows that the näıve linear tax di↵ers noticeably from the best linear

tax for trucks, but that the di↵erence for cars is small. This mis-pricing represents another source

of ine�ciency from ignoring heterogeneity in durability. In our case, this ine�ciency turns out to

be small, so we do not emphasize its implications, though it could be important in other contexts.
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