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Abstract

We study pollution permit markets in which a fraction of permits are allocated to

firms based on their output. Output-based allocations, which are receiving increasing

attention in the design of carbon markets around the world (e.g., Europe, California,

New Zealand), are shown to be optimal under demand and supply volatility despite

the output distortions they may create. In a market that covers multiple sectors,

the optimal design combines auctioned permits with output-based allocations that are

specific to each sector and increasing in its volatility. When firms are better informed

about the latter or must self select, the regulator resorts to some free (i.e., lump-sum)

allocations to sort firms out.
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1 Introduction

The implementation of emission trading usually confronts two contentious issues: how to

initially allocate permits and how to introduce some flexibility in the permit-trading sys-

tem in response to market fluctuations. In this article we study output-based allocations

(OBAs) as a way to introduce such flexibility. Under an OBA scheme a fraction of permits

is allocated to firms based on their output while the remaining fraction is allocated through

either auctioning or grandfathering. OBA schemes have been introduced and considered in

a number of existing and proposed permit markets, most notably, the carbon markets in the

EU, California, and New Zealand.1 Because OBA schemes have the ability to directly af-

fect firms’ output decisions, they have received considerable attention to deal with pollution

leakage and market power problems. Our focus in this paper is different: to what extent can

an OBA scheme handle market shocks better than a fixed allocation, that is, keep permit

prices closer to (expected) marginal pollution damages?

We consider a permit-market design in which a fixed number of permits are auctioned

off (or freely distributed in a lump-sum fashion to firms) and in addition a variable number

of permits are issued proportionally to firms’ output. At the time of market design —when

the regulator must decide on both the number of permits to be auctioned off and the OBA

rate— there is uncertainty about future market conditions (e.g., output demand). Such

OBA market design helps introduce flexibility by indexing the total number of permits in

the market to market conditions (i.e., firm’s output) but at the cost of distorting output

away from the socially optimal level.

An OBA scheme will inevitably present the regulator with this trade-off because the

adjustment in the number of permits always comes at the cost of subsidizing production.

We analyze this trade-off with two different settings, first in a single-sector setting where

firms decide on output and abatement and second, in a multi-sector setting where firms only

decide on output (emissions are equal to output). These two settings allow us to illustrate

the two main misallocations that operate in an OBA scheme: the misallocation between

output and abatement in a particular sector, and the output misallocation that may occur

across sectors.

The costs and benefits associated to these misallocations are studied in detail in different

sections of the article. We start in Section 2 by asking whether an OBA scheme would

1In Sweden, a refunded emission payments program based on firms’ output was introduced in 1992 to
control NOx emissions. It was made output-based to facilitate the industry acceptance to the regulation.
For an evaluation of this scheme see Sterner and Isaksson (2006) and for a theoretical analysis of optimal
refunding scheme with imperfect competition see Gersbach and Requate (2004).
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ever be optimal for an industrial sector with a large number of firms. We establish that

an OBA scheme should be considered whenever we observe a positive covariance between

permit prices and output under a fixed permit allocation (Proposition 1).2 This is true even

if the market design already considers a price stability mechanism such as price thresholds at

which the regulator is ready to either sell or buy back permits to stabilize prices (following

Roberts and Spence, 1976, and the California market). Whenever these price thresholds are

optimally set, we establish (for linear demand and marginal costs) that introducing OBAs

is indeed optimal (Proposition 2).

To understand why an OBA scheme can be welfare enhancing, suppose the regulator

issues a fixed number of permits such that the expected permit price is equal to the marginal

harm from pollution. If in addition, the regulator issues a few permits based on firms’ output,

these few OBA permits will lead to both more output (the subsidy effect) and more emissions

relative to the fixed allocation. The increase in output is clearly inefficient but becomes of

second order as the fraction of OBA permits goes to zero. Conversely, the increase in

emissions can be a good or bad thing depending on whether the demand/supply shocks are

positive or negative. Since the extra emissions that result from increasing the OBA rate in

one unit is exactly equal to output as the OBA rate goes to zero,3 if the correlation between

output and permit prices is positive the increase in emissions will be larger when the permit

price is above the marginal harm than when it is below, which results in a net welfare gain.

This positive result is only reinforced as we introduce several sectors. Because firms

covered by a permit market are never identical, as they belong to different productive sectors

or regions, in Section 3 we look at the optimal OBA design when there are multiple sectors

subject to different shocks. Sector heterogeneity introduces a covariance between permit

prices and sector output —which vary from sector to sector in magnitude and sometimes

direction— making OBA always worth implementing. The optimal OBA scheme has, in

addition to a fraction of auctioned permits, sectors subject to bigger shocks receiving higher

OBA rates (Propositions 3 and 4).

One potential implementation problem with this multi-sector OBA scheme is that it

discriminates across sectors creating perverse incentives for sectors to pretend they face

bigger shocks than they actually do or to simply lobby for larger OBA rates. So, even if

2An OBA scheme could in principle be considered for negative covariances as well, but only if it is
politically feasible to deduct permits from firms (i.e., use a negative OBA rate). One way of implementing
this in practice is by requiring firms to surrender permits enough to cover all their emissions and a fraction
of their output. We thank a referee for this observation.

3Recall that we are assuming perfect compliance, so total emissions are equal to some fixed amount of
permits (which can be auctioned off or grandfathered) plus the OBA rate times output.
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the regulator knows sectors well, it may be unfeasible for her to sort them out without

relying on self selection. Fortunately, there is a simple way for the regulator to go around

this selection problem while preserving the optimal OBA outcome: to use a fraction of

the auctioned permits to construct menus of OBA rates and free (i.e., lump-sum) permits

(Proposition 5). Sectors facing smaller shocks are ready to take lower OBA rates because

they are compensated with a larger fraction of lump-sum permits. The “single-crossing

property” that allows for this separation of sectors is that more volatile sectors are willing

to pay more for a marginal increase in the OBA rate.

We end this introduction by briefly reviewing some related literature. We are obviously

not the first to be interested in permit market flexibility. Since the seminal work of Weitzman

(1974) much has been written on the design of permit markets subject to demand and supply

shocks. Weitzman (1974) anticipated that any regulatory design, whether is based on prices

or quantities, is subject to errors in the presence of market fluctuations, so the policy design

challenge is to keep those errors at a minimum. Roberts and Spence (1976) propose a

hybrid permit scheme in which the regulator is ready to issue extra permits if the price hits

a pre-determined ceiling and buy back permits if it reaches a floor.4 Unold and Requate

(2001) propose the use of options, the strike prices of which can used to approximate the

environmental damage curve.5

More recently, Newell and Pizer (2008) and Branger and Quirion (2014) propose to index

the allocation of permits to any exogenous variable, such as GDP, that could be correlated to

shocks affecting permit prices (see also Ellerman and Wing, 2003; Jotzo and Pezzey, 2007;

Quirion, 2005).6 And in the specific context of the carbon market in the EU, there are

also proposals to introduce a “market stability reserve” from or to which permits could be

withdrawn or add as the number of unused (i.e., banked) permits in the market reaches

a critical level that could push permit prices either too high or too low (Kollenberg and

Taschini, 2015).7

4Berglann (2012) also proposes a hybrid scheme in which firms trade pollution-permit shares and pay
taxes depending on their emissions and number of shares they hold.

5In a similar spirit, Collinge and Oates (1982) propose a menu of numbered permits with different prices,
unlike Henry (1989), who allows for a regulator to directly intervene in the permit market.

6Some of these papers introduce the idea of an ”intensity target” that establishes a ratio between emissions
and GDP (e.g. Quirion, 2005). This is basically indexing the cap to GDP, which operates at a more aggregate
level than a regulation that indexes a sector’s allocation to its output. This second class of intensity target
appears closer to an OBA scheme, but still different because it lacks the ”subsidy effect”.

7A related issue concerns inter-temporal trade of permits as a way to smooth market shocks (Kling
and Rubin, 1997; Ellerman and Montero, 2007). However we are not much interested in the intertemporal
smoothing of yearly variations but in the flexibility of the overall cap over an entire trading phase which can
span over several years.
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There is also an increasing OBA literature. To start, OBA schemes have been proposed

as an alternative, albeit inferior, to border tax adjustments to deal with leakage problems

(Fischer and Fox, 2007; Quirion, 2009; Monjon and Quirion, 2011; Fischer and Fox, 2012;

Meunier et al., 2014).8 They have also been proposed to deal with market power prob-

lems (Fischer, 2011; Fowlie et al., 2016). In addition to these efficiency justifications, in

second-best contexts, OBAs have also been viewed as a trade-off between efficiency and

compensation (Böhringer et al., 1998; Burtraw et al., 2001). Böhringer and Lange (2005a,b)

compare output-based and emission-based allocations. Böhringer and Lange (2005a) stress

the efficiency advantage of OBA compared to an emission-based allocation rule.Böhringer

and Lange (2005b) determine the optimal mix between the two methods when a fraction of

permits must be allocated for free for political reasons.

Much less attention, however, has been paid to the possibility of OBA schemes to handle

market volatility.9 One possible explanation for this lack of attention is that in the absence

of leakage and/or market power there is no reason to subsidize production, which is what

OBA schemes ultimately do. In this article we abstract from leakage and market power

issues to focus exclusively on the performance of OBA schemes to handle market volatility.10

Finally, the self-selection problem in Section 3, which forces the regulator to offer each

sector a menu of OBA rates and lump-sum allocations to sort sectors out, relates to the

literature of environmental policy under asymmetric information (e.g. Spulber, 1988; Mon-

tero, 2008; Martimort and Sand-Zantman, 2016). But there are important differences. One

of them is that the full-information OBA scheme is not first best, so it is not evident what

kind of distorsions might be needed when the regulator cannot implement the optimal OBA

scheme. Another difference is that the sorting condition required to separate sectors is

endogenous to the regulatory design.

The rest of the article is organized as follows. We start in the next section with a permit

market that covers a single-sector with a large number of firms to demonstrate that the

optimality of OBA schemes holds quite generally. In Section 3 we extend the analysis to

cover multiple sectors, each of which facing independent shocks. We conclude in Section 4.

8For example, Burtraw et al. (2015) suggests that OBA should be considered to mitigate leakage within
the US, since the implementation of the Clean Power Plan may lead to state-specific regulations.

9The only article that studies OBA schemes under uncertainty is Meunier et al. (2014), but again the
focus is on leakage not on the implication of having a flexible permit allocation.

10In our companion paper we extend the analysis to the possibility of leakage (Meunier et al., 2017).
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2 A single-sector model

Consider a competitive market for an homogeneous good subject to demand and supply

shocks. Inverse demand is given by P (q; θ) where q is total consumption and θ ∈ [θmin, θmax]

is a demand shock. Function P (·) is positive, differentiable and decreasing in q and increasing

in θ. The corresponding consumer gross surplus is S(q; θ) with Sq = P (q; θ).11 The good

is supplied by an industrial sector with a large number of price-taking firms. The sector’s

cost of producing q while polluting e is C(q, e; η), where η ∈ [ηmin, ηmax] is a supply shock.

Function C(·) is positive and increasing in q and η, decreasing in e and

Cqe < 0, Cqq > 0, Cee > 0 and CqqCee > C2
qe. (1)

This formulation assumes that output and pollution are cost complements (see Spulber,

1988).

Damage from pollution depends on total emissions according to D(e), a positive, increas-

ing and convex function. For any given realization of θ and η, social welfare is computed as

the difference between gross consumer surplus, production costs and pollution damage

W (q, e, θ, η) = S(q; θ)− C(q, e; η)−D(e) (2)

so expected welfare is denoted by

W̃ = Eθ,η[S(q(·); θ)− C(q(·), e(·); η)−D(e(·))] (3)

Throughout, we assume that shocks θ and η move within a range that there is positive

production and pollution abatement in equilibrium for all states of demand and supply and

regulatory designs (including no intervention).

2.1 OBA regulation and market equilibrium

In the absence of government intervention, the market equilibrium P (q; θ) = Cq(q, e; η) and

Ce(q, e; η) = 0 leads to too much pollution. To correct for this, the regulator implements

a permit market where the total amount of permits may not be fixed but endogenous to

output. The regulator auctions off ē permits and in addition allocates permits to firms

11Partial derivatives are sometimes denoted by a subscript, e.g., Sq ≡ ∂S/∂q.
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based on their output.12 For each unit of output, a firm gets α permits for free, so the total

amount of pollution/permits in any given period is equal to

e = ē+ αq (4)

In what follows, we will refer to α as the OBA rate. Most of the article is about to understand

the conditions under which it is socially optimal to set α > 0, whether there is a single sector

like here or multiple sectors like in the next section.

At the beginning of each period firms learn θ and η, after which they decide how much to

produce and pollute anticipating the additional permits they will get for their output. Since

the permit market is perfectly competitive, the auction clears at the price firms expect to

trade permits in the secondary market. We denote this price by r. Thus, each firm takes r

and the output price p = P (q; θ) as given and solves (think of C(·) as the cost function of a

representative firm)

max
q,e
{pq − C(q, e; η)− r(e− αq)}

leading to the first-order equilibrium conditions

p = Cq(q, e; η)− αr (5)

and

r = −Ce(q, e; η) (6)

Equilibrium prices p and r are in turn obtained using (4).

Since OBA is a subsidy to production, the first-order conditions are standard ones. A

firm will produce to the point where the marginal cost of production is equal to the output

price plus the OBA subsidy. Similarly, the firm will abate emissions to the point where the

marginal cost of doing so is equal to the permit price.

Details on how the equilibrium levels of production q and pollution e respond to shocks

θ and η and the regulatory variables ē and α are in Appendix A.1. One aspect worth

commenting here is the non-monotonic influence of the OBA rate α. From looking at the

first-order conditions (5) and (6), one could decompose the effect of an increase in r on q in

two opposing effects: a positive effect due to the increase in the OBA subsidy and a negative

12In principle, the ē permits could also be allocated for free to firms based, for example, on historic
emissions. But as soon as we allow for some positive cost of public funds (Goulder et al., 1997), auctioning
becomes optimal. Our implicit assumption in the article is that the cost of public funds is positive but
arbitrarily small, so we do not need to explicitly model it.
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effect due to more pollution abatement.13 When α is small, the second effect dominates,

so an increase in r would lead to a drop in q. Conversely, when α is large, the first effect

may dominate, and an increase in r may well lead to an increase in q as well. For these

same reasons, the effect of a marginal increase in α or in ē on output and pollution cannot

be signed a priori when α is large. Fortunately, there is no need to delve much into these

monotonicity issues. For most part we only need to focus on the welfare effects of a small α,

for which the monotonicity is clear, and when we take the model to a linear world, as done

in the next two sections, the monotonicity is preserved even for a large α.

2.2 Optimal OBA scheme

We now turn to the optimal permit design and to see whether setting α > 0 is ever optimal.

Before doing so, it helps to ask what would be the optimal number of permits ē if we set

α = 0. The answer, which is well known (e.g., Weitzman, 1974), is stated in the next lemma.

Lemma 1 When the OBA rate is set equal to zero (i.e., α = 0), the optimal number of

permits to be auctioned off, ē, is such that the expected permit price is equal to the marginal

environmental damage.

Proof. If α = 0, the quantity of emissions is ē in all demand states, hence, by the

envelope theorem, we have that

W̃ē(ē, α = 0) = Eθ,η [−Ce −D′(ē)] = Eθ,η[r]−D′(ē)

so, at the optimum E[r] = D′(ē).

By letting the permit price fluctuate around the marginal harm D′(ē), the authority

minimizes the errors from a policy that never hits the first-best ex-post, except when the

shocks θ and η are such that r(θ, η) = D′(ē). The question now is whether setting a positive

OBA rate, α > 0, helps minimize those errors any further. Maintaining the auction allocation

fixed at ē, the welfare effect of adding a few OBA permits to the market is

W̃α(ē, α) = E[− αrqα + (r −D′(e))eα] (7)

The first term captures the welfare loss from the output distortion introduced by the OBA

subsidy (notice from Appendix A.1 that both qα and eα are positive when α is not too

13As done in the Appendix A.1, totally differentiating (5) and (6) with respect to r yields dq/dr =
[Cqe + αCee]/δ1 and de/dr = −[Cqq − Pq + αCqe]/δ1, where δ1 = CqqCee − PqCee − C2

qe > 0.
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large, which is the relevant case for the next proposition). As captured by the second term,

however, this loss can be potentially compensated by a gain from higher emissions whenever

the permit price r is above D′(ē). But since E[r] = D′(ē), it is not evident that the gains

from allocating additional permits in periods when r > D′(ē) are not exactly offset by the

losses from increasing emissions in periods when r < D′(ē). In fact, in a world of certainty,

when ē is such that r = D′(ē), setting α > 0 only reduces welfare because you are left with

just the first term.

In a world of changing supply and demand this logic may not apply, as the next propo-

sition shows.

Proposition 1 Consider a permit market with α = 0 and ē0 such that D′(ē0) = E[r]. If

in that market we observe a positive correlation between permit prices and output, then it is

optimal to introduce a positive OBA rate, α > 0. Furthermore, the optimal OBA scheme

(ē, α) in that case satisfies the system of equations

E[r −D′(e)] = αE[D′(e)
∂q

∂ē
] (8)

cov

(
∂W

∂ē
, q

)
= αE

[
D′(e)

−Ce
δ2

]
(9)

where δ2 = −Pq + Cqq + 2αCqe + α2Cee > 0.

Proof. Notice first that δ2 > 0 thanks to assumption (1). Now, from Lemma 1 notice

that when α = 0, it is optimal to set ē0 such that E[r] = D′(ē0). Next, from equation (4)

obtain eα = q + αqα, which replaced into (7) together with α = 0 yields

W̃α(ē0, α = 0) = E[(r −D′(ē0))q] (10)

Since D′(ē0) is constant and equal to the expected permit price, W̃α(ē0, α = 0) is positive if

E[(r −D′(ē0))q] = E[r −D′(ē0)]E[q] + cov(r, q) = cov(r, q) > 0 (11)

The system (8) and (9), on the other hand, is obtained by simply rearranging the optimality

conditions

W̃ē(ē, α) = E[− αrqē + (r −D′(e))eē] = 0 (12)

and W̃α(ē, α) = 0, where W̃α(ē, α) is given by (7). To arrive at (8), obtain first eē = 1 + αqē

from (4) and then plug it into (12).
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To arrive at (9), obtain first eα = q + αqα from (4) and plug it into (7) to obtain

W̃α(ē, α) = E[(r −D′(e))q − αD′(e)qα] = 0 (13)

Now, replacing qα = qqē − Ce/δ2, which is derived in Appendix A.1 (see equation (39)), in

(13) yields

W̃α(ē, α) = E[{r −D′(e)− αD′(e)qē}q + αD′(e)Ce/δ2] = 0

But the term in curly brackets is ∂W/∂ē , which can be seen directly from (8), so using

E[{∂W/∂ē}q] =cov(∂W/∂ē, q) we finally arrive at (9).

Production is inefficiently high with OBA given the number of emissions, however, with

uncertainty this inefficiency might be worth the flexibility in the cap created by OBA.

Whether it is the case can be easily checked by looking at the covariance between the permit

price and the quantity produced. A positive OBA rate relaxes the overall emissions cap in

all demand and supply states, which has a positive (resp. negative) welfare effect in “high”

(resp. low) states of demand/supply, that is, in states in which the permit price is higher

(resp. lower) than the marginal environmental damage. Therefore, the net welfare effect

depends one whether the gains in high demand/supply states more than offset the losses in

low demand/supply states. When the OBA rate is small, the gain (or loss) in each state

is equal to the difference between the permit price and the marginal environmental damage

times the number of extra permits. But this latter is exactly equal to output when α = 0,

so if output tend to be larger in periods when permit prices are high and above marginal

damages, then, the net welfare effect from injecting a few extra permits in all states must

be positive.

The exact choice of the regulatory variables α and ē, captured by equations (8) and

(9), is the result of the trade-off the regulator must solve between output distortion and

additional emissions. Because a marginal increase in α or ē results in more emissions and

output, the exact same trade-off is present in both (7) and (12). In (7), and given some ē, the

regulator will increase α to the point in which the additional (expected) loss from the output

distortion (−αrqα) is exactly equal to the extra gain from having relatively more emissions

in periods of higher permit prices. Likewise, in (12), and given α > 0, the regulator will

increase ē to the point in which the additional (expected) loss from the output distortion

(−αrqē) is exactly equal to the extra gain from having more emissions in periods of higher

permit prices. Notice from (8) that ē is set below the level that equalizes marginal damages

D′(e) to expected prices E[r]. This is done to correct for the additional permits that are
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brought to the market in each period by setting α > 0.

Proposition 1 says that observing permit prices and output to fluctuate over time is not

enough to implement an OBA scheme. The latter requires output to be positively correlated

with permit prices, which ultimately depends on the impact of shocks θ and η on prices and

cost functions. So, the relevant question is how likely is to observe a positive correlation.

We argue that it is most likely (perhaps the best example is the carbon market in Europe

where the positive correlation has been reinforced by the sharp drop in permit prices during

the recent international crisis). For instance, if demand is the main source of uncertainty,

when demand is high both permit prices and output will be high. Similarly, if shocks affect

primarily production costs (e.g., the oil price), when production costs are high both output

and permit prices will be low.

We cannot rule out in theory, however, cases that may exhibit a negative correlation. For

example, if abatement cost are the main source of uncertainty, high abatement costs could

lead to both high permit prices and low output. But even in this case of negative correlation,

an OBA scheme can still be welfare enhancing, but only if it is politically feasible to deduct

permits from firms (i.e., to use a negative OBA rate). One way to implement this in practice

is by requiring firms to surrender permits enough to cover all their emissions and a fraction

of their output.

These examples can be summarized in the following lemma.

Lemma 2 A small positive OBA rate increases welfare (i.e., W̃α(α = 0) > 0) when (i)

Pθ > 0 and Cη = 0, or (ii) Pθ = 0, Cqη > 0 and Ceη > 0.

Conversely, a small positive OBA rate may decrease welfare if the permit price does

not vary with θ and the marginal abatement cost −Ce increases sufficiently more than

the marginal production cost Cq with respect to η (i.e., Pθ = 0, Cqη > 0 and −Ceη >

−CqeCqη/(Cqq − Pq)).

Proof. See Appendix A.2.

Because the implementation of an OBA scheme not only requires the regulator issuing

additional permits each period but also setting different OBA rates to different groups of

firms (a topic covered in Sections 3.1 and 3.2), one may argue that the gains from imple-

menting an OBA scheme may not be sufficient to justify its implementation costs. Our

numerical exercises of Section 4 show otherwise, that the gains from implementing OBA can

be substantial. And having different groups of firms does not make the implementation of

OBA much more difficult; it may require the regulator to allocate a fraction of the auctioned
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permits in a lump-sum manner to sort firms out into the scheme (this is covered in Section

3.3). Yet, some may argue that OBA permits may not be necessary if the regulator opts for

an alternative (flexible) allocation scheme. The next section points otherwise.

2.3 Hybrid design

An OBA scheme is one of several ways to let the overall emissions cap to adjust to demand

and supply shocks. Alternatives include the introduction of a market stability reserve (which

is closely related to banking and borrowing provisions) or the use of a hybrid permit scheme

with a price floor and ceiling as first proposed by Roberts and Spence (1976) and recently

adopted in California (Borenstein et al., 2015). Since an optimal hybrid scheme is strictly

superior to the best market stability reserve (or best banking and borrowing provisions for

that matter),14 in this section we study whether the introduction of an OBA scheme still

plays a role in a well designed hybrid permit market.

Consider then a hybrid design with a price ceiling and price floor, which we denote,

respectively, by r̄ and r. These thresholds are equivalent to setting a penalty for not com-

pliance equal to r̄ and a subsidy for over-compliance equal to r. The regulatory timing is

as before: price thresholds r̄ and r are set ex-ante together with the number of auctioned

permits ē and the OBA rate α.

To simplify the presentation we will only consider demand shocks θ, which are assumed

to be drawn from the cumulative distribution function F (θ). If the demand for permits is

sufficiently high (resp. low), the price of permits will be equal to r̄ (resp. r). Since the

demand for permits is increasing with respect to the demand state θ (see Appendix A.1),

there will be two demand states θ and θ̄ > θ such that: (i) when θ ∈ [θmin, θ], r = r and

e− αq ≤ ē; (ii) when θ ∈ (θ, θ̄), r < r < r̄ and e− αq = ē; and (iii) when θ ∈ [θ̄, θmax], r = r̄

and e− αq ≥ ē.

Notice that in this hybrid scheme there will be not one but three instances in which

the policy will be ex-post efficient. One is for a low demand shock θ ∈ (θmin, θ) such

that r = D′(e(θ) − αq(θ) < ē); the second for an intermediate demand shock θ ∈ (θ, θ̄)

such that r = D′(ē); and the third for a high demand shock θ ∈ (θ̄, θmax) such that r̄ =

D′(e(θ)− αq(θ) > ē).

14Unlike Roberts and Spence (1976), banking and borrowing work through firms’ intertemporal optimiza-
tion paying little attention to environmental damages. Introducing exchange rates to alter how firms borrow
or save permits does not work either.
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When α = 0, the optimal hybrid design (ē, r, r̄) solves the following system of equations

W̃ē =

∫ θ̄

θ

[r(θ)−D′(ē)]dF (θ) = 0 (14)

W̃r =

∫ θ

θmin

[r −D′(e(θ))]erdF (θ) = 0 (15)

W̃r̄ =

∫ θmax

θ̄

[r̄ −D′(e(θ))]er̄dF (θ) = 0 (16)

Equation (14) follows the same logic of the previous section. In the demand range where

emissions are fixed at ē and the permit price varies with θ, it is optimal to have the expected

permit price be equal to the marginal damage. In the other two regions, however, where

prices are fixed but emissions adjust to shocks, equations (15) and (16) show that what is

optimal is to have the fixed price be equal to expected marginal damages (weighted by either

er or er̄, unless they are invariant to θ).

Introducing both a price floor and ceiling allows the equilibrium permit price to follow

more closely the marginal environmental damage for different realizations of θ (cf. Roberts

and Spence, 1976). Whether it is worth adding some OBA permits over this more flexible

design is not obvious because extreme permit price realizations have now been truncated,

which also has an effect on output outcomes. To check the optimality of OBA we proceed

as before by considering the welfare effect of introducing an arbitrarily small OBA rate over

this optimal hybrid scheme. Changes in expected welfare at α = 0 are only due to changes in

emissions because there is no production inefficiency when α = 0; hence, Wα = E[(r−D′)eα].

Since eα = q in the demand range where emissions are fixed at ē, this welfare change can

be decomposed as

W̃α(α = 0) =

∫ θ

θmin

(r −D′(θ))eαdF (17)

+

∫ θ̄

θ

(r −D′(ē))qdF +

∫ θmax

θ̄

(r̄ −D′(θ))eαdF

The OBA rate has a different influence in intermediary demand states than in the more

extreme ones. In intermediary states, there is both a direct effect on emissions due to the

increased number of free permits and an indirect effect via the rise of production due to a

higher subsidy. In extreme demand states, the permit price is fixed, and free allocations

alleviate the bill of the firm but not its emission choice. However, there is still the subsidy
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channel that induces higher emissions due to higher production. The influence of the OBA

rate is positive for intermediary demand states (second term above). The magnitude of this

positive effect depends on how often θ ∈ [θ, θ̄] and the covariance between output and permit

prices. The first and third terms are more difficult to sign because of the influence of α on

emissions when either the floor or ceiling is binding, and how this influence compares to the

influence of the permit price on emissions.

Proposition 2 Suppose we observe a positive correlation between permit prices and output

in the optimal hybrid design with α = 0. If the influence of the OBA rate and of the price

floor and ceiling on emissions do not vary with demand (i.e., eαθ = er̄θ = erθ = 0), then a

strictly positive OBA rate increases welfare (This is so when demand is linear, uncertainty

is additive and cost is quadratic).

Proof. When er̄ and eα are independent of the demand shock θ, the optimal price floor

solves

r = E[D′(e(θ))|θ < θ]

so the first term in (17) is zero. Since the same applies to the third term, the welfare effect

of adding a few OBA permits will be positive if the second term is positive, which requires

of a positive correlation between permit prices and output.

Propositions 1 and 2 show that an OBA scheme is likely to be beneficial in the context

of a single sector, even if there is a flexible scheme already in place. We now explains how

this result extends to multiple sectors, which is the more realistic case.

3 Multiple sectors

The single-sector analysis provides us with the solution to the OBA problem when the

regulator sets the same rate α to all firms, whatever similar or different they might be. In

reality firms covered by a permits market are never identical for different reasons. They

may use different production technologies, belong to different productive sectors or simply

be located in different regions. In this section we look at the optimal OBA design when there

are multiple sectors subject to different shocks (or when the regulator can assign firms to

different groups). To focus on the issue of the allocation of emissions/output across sectors

we adopt the assumption that emissions and output are in fixed proportions. We do this

not only for tractability, but more importantly, to highlight the fact that abatement is not

essential to generate a correlation between permit prices and output. Introducing abatement,
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as in the single-sector setting, would only make the OBA case stronger. We start with a

general set-up and then introduce some simplifying assumptions to derive additional results.

3.1 General set-up

Consider a permit market covering a large number n of sectors, each of which takes the

price of permits as given. In each sector there is a continuum of identical firms. Production

in sector i = 1, ..., n is denoted by qi and since the only abatement technology is output

reduction, we normalize emissions to output, i.e., ei = qi. As in the previous section, inverse

demand in sector i is denoted by Pi(qi, θi), consumer surplus by Si(qi; θi) =
∫ qi

0
Pi(x; θi)dx,

and production costs by Ci(qi; ηi), so welfare for a given realization of θ = {θ1, ..., θn} and

η = {η1, ..., ηn} is equal to

W (θ, η) =
n∑
i=1

[Si(qi; θi)− Ci(qi; ηi)]−D(e)

where e =
∑n

i=1 qi.

An OBA scheme {ē, α1, ..., αn} includes a fraction of ē auctioned permits and OBA rates

αi ∈ [0, 1) for each sector i = 1, ..., n, so the total number of permits in the market will be

e = ē +
∑n

i=1 αiqi. The output market in each sector will clear at the price pi that equals

marginal production costs minus the OBA subsidy

pi = Pi(qi; θi) = C ′i(qi; ηi) + r − αir

where r is permit price (common to all sectors) and C ′i(·) is sector i’s marginal cost. Thus,

the market equilibrium is described by n+ 1 equations

n∑
i=1

(1− αi)qi = ē (18)

Pi(qi, θi)− C ′i(qi; ηi) =
1− αi
1− α1

[P1(q1, θ1)− C ′1(q1; η1)] (19)

for all i = 1, ..., n.

Lemma 3 Any scheme {ē, α1, ..., αn} with αi ∈ [0, 1) is equivalent (i.e., it leads to the same

equilibrium outcome and payoffs) to a scheme in which the lowest OBA rate is normalized

to zero {
ē

1− αj
,
α1 − αj
1− αj

, ...,
αj−1 − αj

1− αj
, 0,

αj+1 − αj
1− αj

, ...,
αn − αj
1− αj

}
(20)
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where αj = mini αi.

Proof. It is easy to see that both schemes satisfy equations (18) and (19), which implies

that output levels are identical under both schemes for all demand states. In addition, the

net emission price (1 − αi)r in sector i is identical to the price under scheme (20); more

precisely, the permit price under the new scheme is (1 − αj) times the permit price under

the original scheme. Given the equivalence in output and price levels, profits and consumer

surplus must be identical across schemes.

Although it appears from the lemma that the regulator has some room to change OBA

rates across sectors without welfare consequences, the reality is that she has none because

(20) is just one of the many price normalizations she can pick,15 any of which with the same

distribution implications. Hence, one can theoretically consider schemes with negative OBA

rates, since, any such scheme could be transformed into an equivalent scheme with positive

OBA rates for all sectors.16

When it comes to choosing the optimal OBA scheme, the same tension detected in the

single-sector appears in this multiple-sector setting: letting the overall cap on emissions to

adjust to shocks comes at an inefficiency cost. The inefficiency here is a misallocation of the

cap across sectors. Sectors with relatively higher OBA rates produce and pollute too much.

In fact, the welfare impact of increasing the OBA rate in one sector, say k, is given by (see

Appendix B.1)

∂W̃

∂αk
= E

[
(r −D′(e))qk −D′(e)

n∑
i=1

αi
∂qi
∂αk

]
(21)

where e =
∑n

i=1 qi = ē+
∑n

i=1 αiqi.

The first term in (21) captures the direct effect of increasing emissions in sector k by

increasing αk. This term is expected to be positive if qk is larger when r −D′(e) > 0. The

second term represents the effect of the change in production, not only in sector k but in all

sectors. Increasing production in sector i has a net effect of −αiD′(e), which is the sum of

the loss αir due to the subsidy of production and the gain αi(r−D′) of increasing emissions.

This second term can still be positive, since production in sector i 6= k might well decrease

with respect to αk.

15Notice that no normalization can violate the constraint αi < 1. Setting αi = 1, for example, is equivalent
to removing sector i from the permit regulation.

16Note that the degree of freedom in the setting of α1 is lost if we allow for abatement possibilities, as
in the single-sector setting. In such a case α1 is uniquely determined, although none of the qualifications
that follow change. In fact, all α’s would converge to this value as we let all sectors become identical in all
aspects.
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Expression (21) tells us right away that setting αi = 0 for all sectors cannot be optimal

if there is just one sector that exhibits a correlation different from zero between output and

permit prices. Notice that a negative correlation would in principle call for a negative OBA

rate in that sector, but according to Lemma 3, this would be equivalent to set a null OBA

rate in that sector and positive rates in all others. In any case, the presence of multiple

sectors makes the optimality of an OBA scheme certain (unless all sectors are equal, which

takes us back to Proposition 1).

Proposition 3 An optimal OBA scheme {ē, α1, ..., αn} satisfies the following system of

equations

E[r −D′(e)] = E

[
D′(e)

−∂r
∂ē

n∑
i=1

αi
1− αi
C ′′i − P ′i

]
(22)

cov

(
∂W

∂ē
, qk

)
= E

{
D′(e)

r

C ′′k − P ′k
−∂r
∂ē

n∑
i=1

[
1− αi
C ′′i − P ′i

(αk − αi)
]}

(23)

for all k = 1, ..., n.

Proof. See Appendix B.1.

Equation (22) is similar to equation (8) in Proposition 1. It says that the optimal number

of auctioned permits, ē, should be adjusted to the allocation of OBA permits, so as to keep

a difference between permit prices and marginal harm equal to the marginal inefficiency cost

generated by these OBA permits. If for some reason it is optimal to set all OBA rates equal

to zero, then (22) reduces to the standard optimality condition that expected permit prices

should be equal to marginal harm, i.e., E[r] = D′(e = ē).

Equation (23) also follows a similar logic than equation (9) in Proposition 1. Increasing

the OBA rate in sector k could be decomposed in two effects: it is like auctioning qk more

permits and shifting the demand for permits in sector k. But we know that when the total

number of auctioned permits ē is optimally set, the expected marginal (social) value of an

extra auctioned permit in the market across all demand states is null (this applies regardless

of whether we have one or multiple sectors). This implies that only the covariance matters

for the first effect (i.e., the effect of auctioning additional permits) to have a positive welfare

impact.

The right-hand-side of (23) can be interpreted as the marginal effect of αk on the mis-

allocation of the total cap when αi’s differ across sectors. The effect of αk on the distorted

allocation is a weighted difference between the OBA rate in sector αk and the remaining
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sectors. Contrary to the single sector case, this effect could be negative, increasing the OBA

rate in a particular sector might actually reduce distortions associated to other OBA rates.

Without uncertainty, one can see from equation (23) that it would be optimal to set all αi

equal which is equivalent to not introducing an OBA scheme. The benefit from introducing

an OBA scheme necessarily requires some covariance, in at least one sector, between the

benefit/cost of auctioning one extra permit in a state and the number of permits actually

injected in that state.

The main difference between Propositions 1 and 3 rests on the multidimensionality of

the scheme, so that one cannot, and does not need to, perform a “positive correlation test”

as in Proposition 1 to determine whether a sector requires a positive OBA rate. It might be

optimal to set a strictly positive OBA rate in a particular sector whatever the sign of the

correlation between its output and the marginal benefits from an extra permit. We do need

to know, however, the sign and size of the correlation relative to other sectors in order to

compute the OBA rates.

The main message from Proposition 3 is that setting αk = 0 (or αk = αi) for all sectors

would only happen if cov(∂W/∂ē, qk) = 0 for all k. It is easy to rule this out; it suffices to

have sectors receiving different shocks. To fully appreciate this, and get some more palatable

results, a linear specification is considered next. The linear specification will also serve as

the basis for the self-selection analysis in the following section.

3.2 A linear set-up

For tractability, and without much loss of generality, in what follows we work with linear

functions and shocks that only affect demand, which in addition are assumed to be indepen-

dently distributed and to enter additively.17 In particular, we let

D′(e) = h, pi(qi, θi) = ai + θi − biqi and Ci(qi) = γiq
2
i /2 (24)

for all i = 1...n, where ai, bi, γi are all strictly positive, and E[θi] = 0, E[θ2
i ] = σ2

i > 0 and

cov(θi, θj) = 0. We also assume that shocks are such that there is always an interior solution,

that is, that there is always a positive level of output in all sectors for all possible shocks

and regulatory designs.

Under this linear specification, it is possible to fully describe and compute the optimal

17We could have alternatively considered shocks on the supply side (e.g., Ci = ηiqi +γiq
2
i /2). In this linear

world, it is irrelevant whether shocks are on the demand or production side.
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OBA scheme of Proposition 3.

Proposition 4 Under the linear specification described above, the optimal OBA scheme

considers OBA rates increasing with sector volatility (σi) and market size (1/βi, where βi =

bi + γi), that is, αk > αl if σ2
k/βk > σ2

l /βl for any l 6= k = 1, ..., n. If sector 1 is defined as

σ2
1/β1 = mini σ

2
i /βi, then an optimal OBA scheme is characterized by (i) α1 = 0, (ii)

αk =
∆k

∆k + Ψ
(25)

where

∆k =
1

h2

[
σ2
k

βk
− σ2

1

β1

]
(26)

and Ψ is the unique positive solution to x in equation
∑n

i=1 [βi(∆i + x)]−1 = 1, and (iii) a

number of auctioned permits ē such that

Er =

∑
i(1− αi)/βi∑
i(1− αi)2/βi

h (27)

Proof. See Appendix B.2.

This proposition shows quite clearly that what matters for OBA is not the absolute

volatility but the relative volatility between sectors, after controlling for sector size. In

fact, expression (26) indicates that the optimal design remains unchanged if the volatility

in all sectors, measured by σ2/β, change by the same amount. This relative volatility is

what generates a covariance between permit prices and output. Suppose there are only two

sectors, 1 and 2, with σ2
2/β2 > σ2

1/β1. If the regulator allocates an optimal number of permits

ē together with α1 = α2 = 0, total output will be fixed, q1+q2 = ē, but it would split between

the two sectors depending on the specific shocks affecting them. This output adjustment

leads to changes in permit prices r and, ultimately, to a positive covariance between permit

prices and output in sector 2.

Proposition 4 also helps us to visualize more precisely the impact of changes in market

conditions, for example, of adding a (volatile) sector to the regulation or of increasing the

volatility of one particular sector or of a group of sectors. The first change is straightforward

to evaluate. Since adding a sector would increase Ψ, this will reduce the OBA rates in all

existing sectors.

In this n-sector (linear) model it is relatively easy to compute profit and welfare gains

from implementing an (optimal) OBA scheme vis-a-vis the simple permit scheme of Lemma

1. The numerical exercises in Section 4 shows that these gains can be indeed substantial even
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for volatility levels that are not that large. These gains, however, introduce the regulator to

an implementation problem as seen in the carbon market in Europe: sectors want to lobby

for larger OBA rates. We turn to this implementation problem now.

3.3 Self selection

Not only in the carbon market in Europe, but allocating free permits to firms or sectors is

always controversial and subject to an intense amount of lobbying activity. We expect an

OBA scheme to be no different.18 For instance, if the regulator announces the OBA scheme of

Proposition 4 all sectors would lobby to get the highest available OBA rate. Therefore, even

if the regulator is able to identify the characteristics of each sector well, political reality may

prevent her to discriminate among sectors and implement the optimal OBA scheme. We will

show that there is a simple way for the regulator to go around this selection problem while

preserving the optimal OBA outcome of Proposition 4: to use a fraction of the auctioned

permits ē to construct a menu of OBA rates and lump-sum allocations that can sort out

sectors. This allocation mechanism should be viewed as a stylized representation of the

negotiation taking place between the regulator and regulated sectors. Alternatively, one

can view this mechanism as the solution to an adverse selection problem in which sector’s

characteristics, most notably volatility and costs, are unknown to the regulator, so the

regulator needs to communicate with sectors before designing the regulation.19

Our analysis builds upon the linear specification of the previous section. Since sector

volatility is our central problem here, we will work with sectors that are identical except for

their volatility: ai = a, bi = b and γi = γ for all i = 1, ..., n and σ1 < ... < σi < ...σn. The

regulator offers a menu of permit-allocation options {(αj, êj)/j = 1, ..., n}, where αj is the

OBA rate in option j and êj is the number of free lump-sum permits in that option. Whenever∑
j êj < ē, the regulator auctions the remaining fraction ē−

∑
j êj. Since negotiations take

place at the sectorial level, all firms within a sector that goes for option j = 1, ..., n will

receive the same allocation (αj, êj). Sectors anticipate the effect of different OBA rates on

their profit while taking the permit price r as given.

18Rent seeking behavior is also present in ‘Harstad and Eskeland (2010). In their model firms signal their
types by buying more permits today than what is actually efficient in order to get a more generous allocation
in the future.

19Martimort and Sand-Zantman (2016) also study a problem of adverse selection as applied to climate
change policy. One main difference with that article is that here it is mandatory for polluters to comply
with the regulation. Another is that we allow initial permit allocations to be tradable. We do share with
them the possibility of implementing the (full-information) optimal scheme (which in our case is already
second-best) as long as the budget-balanced constraint is not binding.
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We want to determine conditions under which the optimal scheme could be indeed im-

plemented via such a menu, that is, under which conditions the menu satisfies both (i) the

balanced-budget constraint
∑

j êj ≤ ē and (ii) the self-selection constraints

E[πi(θi, r, αi) + rêi] ≥ E[πi(θi, r, αj) + rêj] (28)

for all i = 1, ..., n and j 6= i, where

πi(θi, r, α) =
γ

2β2
[a+ θi − (1− α)r]2 (29)

is sector i’s profit gross of permit transfers for a given level of demand θi, permit price r and

OBA rate α.

Let us focus first on what it takes for the self-selection constraints to hold. This requires

to establish the existence of something equivalent to a single-crossing property. Thus, take

two adjacent sectors, say θi and θi+1, and ask which of the two is willing to pay more for a

marginal increase in the OBA rate from any given level α. Differentiating sectors’ payoffs

with respect to α and taking the difference yields

E
[
∂πi+1(θi+1, r, α)

∂α

]
− E

[
∂πi(θi, r, α)

∂α

]
=

γ

β2
E [r(θi+1 − θi)] (30)

We want to establish the conditions under which this difference is positive, so that sector

i + 1 is willing to pay more than sector i for the marginal increase at any possible level α.

This latter is what will allow us to separate sectors. For instance, if sector n − 1 needs to

be compensated in ∆ to take its equilibrium rate αn−1 instead of the highest rate αn, then

sector n− 2 needs to be compensated in strictly less than ∆ to achieve the same and so on

as we considers sectors with lower volatilities.

Since sectors are too small to affect the permit price, we can evaluate the profit changes

in (30) at the permit price that will prevail in equilibrium, that is, at the permit price when

all sectors take their equilibrium options, which is

r =

∑n
k=1 [(1− αk)(a+ θk)]− βē∑n

k=1(1− αk)2
(31)

Plugging (31) into (30), it turns out that this latter expression is positive as long as

(1− αi+1)σ2
i+1 > (1− αi)σ2

i (32)
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which requires that the OBA rates in the optimal scheme do not grow much faster than the

sector volatilities.

It is evident that condition (32) departs from the single-crossing property that we usually

encounter in standard models of adverse selection, where the sorting condition depends

exclusively on the functional form of the agent’s utility and not on the value of a regulatory

decision variable. The reason here is different is due to changes in the way a sector volatility

affects permit price variations. In the absence of OBA, more volatile sectors have a greater

influence on permit price variations. However, as these more volatile sectors get assigned

higher OBA rates, their volatility is reduced, and hence, their influence on permit price

variations. Condition (32) requires such reduction not be so large in the optimal scheme, so

that more volatile sectors continue having a greater influence on permit price variations.

Whether the optimal OBA scheme of Proposition 4 can be indeed implemented not only

depends on (32) holding but also on satisfying the budget constraint (i). Thanks to Lemma

3 we do not need to check a potentially large number of menus that could implement the

optimal scheme. We can restrict ourselves to menus in which α1 = 0 and ên = 0 since any

implementable menu could be transformed into a menu with these two features. Therefore,

the menu that can potentially implement the optimal scheme with the minimum number of

lump-sum permits being allocated consists in setting α1 = 0 and αi as in Proposition 4 and

ên = 0

ên−1 − ên = E[πn−1(θn−1, r, αn)− πn−1(θn−1, r, αn−1)]/E[r]

...

êi − êi+1 = E[πi(θi, r, αi+1)− πi(θi, r, αi)]/E[r] (33)

...

so that each of self-selection constraints holds. Whether
∑n

j=1 êj is smaller than ē is not

immediate, but it is very likely as the next proposition shows.

Proposition 5 Under the linear specification above with sectors that are identical but for

their volatility (i.e., σ1 < ... < σn), the optimal OBA scheme in Proposition 4 can be

implemented with a menu of OBA rates and lump-sum allocations {(αj, êj)/i = 1, ..., n} as

described in (33) as long as (i) a ≥ h(1 + 2γ/b) and (ii) σ2
1 ≤ h2

∑n
i=1(1− αi).

Proof. See Appendix B.3

Condition (ii) is obtained from working through the n − 1 incentive compatibility con-

straints. According to this condition, it appears that all that is required is to have just one
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single sector in the permit system with a volatility low enough for all this to work. This

should not be interpreted, however, as that all we need is to just bring a low volatility sector

to the permit system; the sector must be large enough, like all the others, so that there is

always a positive amount of production in the sector for any possible shock and permit price

realizations. Arriving at condition (i) is more demanding, but it is also likely to hold in

practice. Take the electricity sector for instance. Estimates of the value of lost load, which

is a good approximation for a since it corresponds to what customers are willing to pay to

avoid a disruption in their electricity service, is many times larger than the corresponding

social cost of carbon, i.e., h in our model.

As we will see next, both conditions (i) and (ii) hold easily in our policy exercises, but

it is nevertheless useful to explore more formally what would be the additional distortions

the regulator will need to introduce to sort sectors out when these two conditions do not

hold. Given that the optimal OBA scheme in Proposition 4 is already away from the first-

best, it is not clear what are these least-cost extra distortions. For example, if the budget

constraint is only slightly violated one could imagine reducing the lump-sum allocation êi of

all i = 1, ..., n − 1 by the same (small) amount while also reducing αn for the self-selection

constraint of the n− 1 sector to continue holding.

3.4 A numerical two-sector example

We illustrate some of the previous results with a very simple numerical example based on

the linear specification of section 3.2 with two sectors with the following numerical values

for the parameters: a1 = a2 = 1, b1 = b2 = 1, γ1 = γ2 = 1, h = 1/4, θ1 = 0 and θ2 ∈ {−λ, λ}
with equal probability, so σ2 = λ. The parameter λ will be referred as the level of volatility.

The model is explored for λ moving from 0 to 1/2. We are particularly interested in large

values of λ.

Corollary 1 With the linear specification (24) for two identical sectors but for their volatility

(σ1 = 0 and σ2 > 0) the optimal OBA scheme {ē, α1, α2} reduces to

α1 ∈ [0, 1)

α2 − α1

1− α1

= 1−
[
(∆2 + 1)1/2 −∆

]
> 0 (34)

ē =
1

2
(a− h)(2− α1 − α2) (35)

where ∆ = σ2
2/2h

2 > 0.
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Figure 1: Optimal policy as a function of uncertainty (λ)

Proof. See Appendix B.4.

Corollary 1 provides the relation between α1 and α2 that must hold under an optimal

OBA scheme, so without any loss of generality we focus on α1 = 0. Figure 1 depicts this

optimal policy as a function of λ. It can be observed that the optimal OBA rate is increasing

rapidly as the volatility increases. The level of permits to be auctioned off (which includes

lump-sum permits needed to handle self selection) is also depicted, as well as the number of

lump-sum permits that should be allocated to sector 1 to make the optimal OBA rate robust

to self selection. These values of permits are given in percentage of the cap without OBA, but

considering volatility. For example, for λ = 0.5 approximately 60% of the permits should be

auctioned off, and to prevent sector 1 to lobby for sector 2’s OBA rate, the regulator should

give sector 1 a total of 20% of the permits in a lump-sum fashion, reducing the total number

of permits to be auctioned off to 40%. This slacks applies to any level of λ, as Figure 1

shows.

4 Conclusions

We have studied pollution permit markets in which a fraction of the permits is allocated to

firms based on their output while the remaining fraction is allocated through either auction-

ing or grandfathering. We find that these output-based allocation (OBA) schemes can be

optimal under demand and supply volatility despite the output distortions they may create.

Take for instance the case of demand volatility and a fixed permits cap. For any given real-

ization of demand, the cap is likely to be sub-optimal, being either too low or too high. An

OBA scheme introduces some flexibility since the number of permits allocated depends on
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the level of demand. An OBA scheme enhances welfare by conditioning the emissions cap to

economic activity, though imperfectly. This holds whether there is single productive sector

covered by the permit market or, even more so, multiple sectors subject to different shocks.

Even if a price floor and ceiling are introduced, an OBA scheme can be welfare enhancing.

OBA schemes are receiving increasing attention in the design of carbon markets around

the world (e.g., Europe, California, New Zealand), mostly motivated for leakage problems.

Our model provides interesting insights to discuss a number of pending issues in the design

of carbon markets, most notably, whether OBA permits should be deducted from auctioned

permits so as to keep the overall cap fixed at all times. Our results show that for an OBA

scheme to increase welfare is essential that the overall cap remains flexible. Doing otherwise,

i.e., insisting on a fixed overall cap as it is the case in California and the EU, can lead to an

important welfare loss relative to a non-OBA design. Using the insights and methods of this

paper, we explore this issue in greater detail in our companion paper (Meunier et al., 2017).
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Appendix

A Single-sector case

A.1 Equilibrium

To characterize the equilibrium for any demand-supply state θ-η we first need to establish

how the demand for auctioned permits ē changes with r. Take any r > 0, the equilibrium is

fully characterized by the first-order conditions (5) and (6). Let q̃(α, r, θ, η) and ẽ(α, r, θ, η)

be the unique production and pollution levels, respectively, that solve the two first-order

conditions.

Result A1. The demand for auctioned permits ẽ− αq̃ is decreasing in r.

Proof. Take the derivative of the first-order conditions (5) and (6) with respect to r:[
Pq − Cqq −Cqe
−Cqe −Cee

][
q̃r

ẽr

]
=

[
−α
1

]
(36)
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so that the effects of a change in the permit price on production and emissions are:[
q̃r

ẽr

]
=

1

δ1

[
Cqe + αCee

(Pq − Cqq)− αCqe

]
(37)

where δ1 = (Cqq − Pq)Cee − C2
qe is strictly positive by assumption (1). The derivative of the

net demand for (auctioned) permits is then:

ẽr − αq̃r =
−1

δ1

[
−Pq + Cqq + 2αCqe + α2Cee

]
≤ −1

δ1

[
−Pq + Cqq − 2α

√
CqqCee + α2Cee

]
≤ −1

δ1

[
−Pq + (C1/2

qq − αC1/2
ee )2

]
< 0

where the second inequality is thanks to (1).�

The equilibrium permit price depends on α, ē and shocks θ and η according to the

function r(α, ē, θ, η), which is the unique solution of ẽ(α, r, θ, η)− αq̃(α, r, θ, η) = ē.

The equilibrium levels of output and emissions, q(α, ē, θ, η) and e(α, ē, θ, η) respectively,

are the (unique) solution of the system of equations:

P (q, θ)− Cq(q, e, η)− αCe(q, e, η) = 0

αq + ē = e

For the comparative static of this equilibrium, first introduce

δ2 = −Pq + Cqq + 2αCqe + α2Cee > 0.

See proof of Result A1 for the sign of δ2. Let us now consider in turn the influence of ē, α

and the shocks θ and η on both q and e.

1. The influence of ē is given by:[
qē

eē

]
=

1

δ2

[
−Cqe − αCee

Cqq + αCqe − Pq

]
(38)

For small values of α both signs are positive. For large values of α there is a coun-

teracting effect via the OBA subsidy and auctioned permits. With a larger number of

auctioned permits the permit price is lower (see Result A1 above) and so is the OBA
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subsidy. This latter effect can more than offset the increase in production that results

from the lower production cost associated to cheaper permits.

2. The influence of α is given by:[
qα

eα

]
=

1

δ2

[
−Ce − q(Cqe + αCee)

−αCe + q(Cqq + αCqe − Pq)

]
= −Ce

δ2

[
1

α

]
+ q

[
qē

eē

]
(39)

In both lines the first term comes from the subsidy component of the scheme, and the

second term is the effect via the increase in the number of permits, which is equal to

the effect of the quantity of auctioned permits times output.

3. The influence of θ is given by: [
qθ

eθ

]
=
Pθ
δ2

[
1

α

]
(40)

Both quantities are increasing in θ. However, the monotonicity of the permit price is

not that clear as the next expression shows:

rθ = −Cqeqθ − Ceeeθ =
Pθ
δ2

[−Cqe − αCee] (41)

The first term in the brackets is positive but the second one is negative and comes

from the OBA subsidy. If demand increases and α is large, an increase in the number

of OBA permits can more than compensate the pressure on marginal abatement cost

coming from a higher output.

4. Finally, the influence of η is given by:[
qη

eη

]
=
−Cqη − αCeη

δ2

[
1

α

]
(42)

Both quantities change in the same direction with respect to η, because of their rela-

tionship with the fixed quantity of auctioned permits: emissions can increase only if

production increases, so more permits are issued. The sign of the monotonicity depends

on the sign of the influence of η on the marginal production cost and the subsidy. For

α = 0 only the former matters. On the other hand, the influence of η on the permit

price is the sum of a term related to the direct effect of η on abatement costs and a
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term related to the adjustment of production and emissions. At α = 0 we have

rη|α=0 = −Ceη − Cqeqη − Ceeeη = −Ceη + Cqe
Cqη
δ2

(43)

A.2 Proof of Lemma 2

We first prove that the covariance of two increasing functions of a random variable is positive.

Result A2. If φ and ψ are two real valued strictly increasing functions of θ then

cov(φ(θ), ψ(θ)) > 0.

Proof. Consider a second random variable ε independent from θ with the same distri-

bution; then

2cov(φ(θ), ψ(θ)) = cov(φ(θ), ψ(θ)) + cov(φ(ε), ψ(ε)) = cov(φ(θ)− φ(ε), ψ(θ)− ψ(ε))

and cov(φ(θ) − φ(ε), ψ(θ) − ψ(ε)) = E[(φ(θ) − φ(ε)) × (ψ(θ) − ψ(ε))] and ∀(θ, ε) ∈
[θmin, θmax]2 the product (φ(θ)− φ(ε))× (ψ(θ)− ψ(ε)) is positive and strictly so if θ 6= ε.�

We now use the comparative static on θ and η performed in Appendix A.1 to establish

the following:

• Case 1: Pθ > 0 and Cη = 0. From equations (40) and (41), r and q are both increasing

in θ and invariant to changes in η. This latter implies that cov(r, q) > 0, so from

Proposition 1 we have that a small increase in α above 0 augments welfare.

• Case 2: Pθ = 0, Cqη > 0 and Ceη > 0. From (42) and (43), r and q are both decreasing

in η, so they covary, which, from Proposition 1, indicates that a small increase in α

above 0 augments welfare.

• Case 3: Pθ = 0, Cqη > 0 and −Ceη > −CqeCqη/(−Pq + Cqq). From (42) and (43), q is

decreasing in η but and r is increasing in it, so cov(r, q) < 0. Consequently, a small

increases in α decreases welfare.

B Multi-sector case

B.1 Proof of Proposition 3

Preliminaries
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To ease the presentation we will omit the shocks θ and η, unless otherwise necessary

to avoid confusion. We will first determine how equilibrium output and permit prices vary

with respect to ē and OBA rates. For that, let us introduce the sectorial residual demand

Qi(t), which is the unique solution of Pi(xi) − C ′i(xi) = t. For each sector i = 1, ..., n, the

function Qi(.) is positive, decreasing and differentiable with Q′i = 1/(P ′i−C ′′i ). At the market

equilibrium, sector i’s output is qi = Qi((1− αi)r).
The equilibrium permit price is a function r(ē, α1, .., αn) that solves the equation

∑
i
(1− αi)Qi((1− αi)r) = ē. (44)

Taking the derivative of (44) with respect to ē gives

rē =
[∑

i
(1− αi)2Q′i

]−1

(45)

and with respect to αk for k = 1, ..., n

∑
i
(1− αi)2Q′irαk

= Qk + (1− αk)rQ′k

so

rαk
= rē[qk + (1− αk)rQ′k].

On the other hand, changes in equilibrium output with respect to ē and OBA rates are

given by

qiē = (1− αi)Q′irē

and

qiαk
≡ ∂qi
∂αk

= (1− αi)Q′irαk
= (1− αi)Q′irē[qk + (1− αk)rQ′k]

= qiēqk + (1− αi)Q′i(1− αk)Q′krrē (46)

for all i 6= k, and

qkαk
= −rQ′k + (1− αk)Q′krαk

= −rQ′k + qkēqk + [(1− αk)Q′k]2rrē (47)

Choice of the cap
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The effect of ē on welfare for any given state of demand and supply is

∂W

∂ē
=
∑

i
(1− αi)rqiē −D′

∑
i
qiē = (r −D′)

∑
i
qiē − r

∑
i
αiqiē

= (r −D′)−D′
∑

i
αiqiē = (r −D′)−D′

∑
i
αi(1− αi)Q′irē (48)

then, using Q′i = 1/(P ′i − C ′′i ) yields equation (22).

Choice of the OBA rates αi

Since
∑
qi = ē+

∑
αiqi, we have

∑
qiαk

= qk +
∑
αiqiαk

, so that

∂W

∂αk
= (r −D′)

∑
i
qiαk
− r

∑
i
αiqiαk

= (r −D′)qk −D′
∑

i
αiqiαk

Which correspond to equation 21. We now use the Preliminary results above to isolate the

effect of releasing qk free permits from the “subsidy effect”. Using equations (46) and (47)

yields

∂W

∂αk
=
[
(r −D′)−D′

∑
i
αiqiē

]
qk

−D′
{

(1− αk)Q′k
∑

i
[αi(1− αi)Q′i]rrē − αkrQ′k

}
(49)

Since the first bracketed term is equal to the derivative of welfare with respect to ē times

output qk, making use of (45) we obtain

∂W

∂αk
=
∂W

∂ē
qk − rrēQ′kD′

∑
i

[
αi(1− αi)(1− αk)Q′i − αk(1− αi)2Q′i

]
=
∂W

∂ē
qk − rrēQ′kD′

∑
i

[(1− αi)(αi − αk)Q′i] (50)

Taking expectations and using the fact that ē is optimal chosen we obtain

E
[
∂W

∂ē
qk

]
= E

[
∂W

∂ē

]
E [qk] + cov

(
∂W

∂ē
, qk

)
= cov

(
∂W

∂ē
, qk

)
But Q′i = −1/(C ′′i − p′i), which shows that expression (23) holds.

B.2 Linear specification and proof of Proposition 4

Permit market equilibrium
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At this stage ē and (αi)i∈{1,n} are fixed, and for each realization of the n-tuple (θi)i∈{1,n}

output quantities and the permit price are determined by market clearing of each output

market and the emission permit market.

Let βi = bi + γi be the slope of the sectoral demand, Qi(t) = (ai + θi − t)/βi. We write

ãi = ai + θi, the intersect of the demand in state θi. At equilibrium qi = (ãi − (1− αi)r)/βi
and the permit price clears the permit market

∑
i qi = ē+

∑
i αiqi, that is,

ē =
∑

i

[
(1− αi)

ãi
βi

]
− r

∑
i

[
(1− αi)2

βi

]
so the permit price is

r =

∑
i [(1− αi)ãi/βi]− ē∑

i [(1− αi)2/βi]
(51)

Choice of the cap

From (48) and (51) we obtain that the effect of ē on welfare is given by

∂W

∂ē
= (r − h)− h

∑
i

αiqiē = r − h− h
∑

i[αi(1− αi)/βi]∑
i(1− αi)2/βi

(52)

so at the optimal ē(α1, ..., αn) we have the expression (27) of the expected permit price and,

from (51), the optimal cap is

ē(α1, .., αn) =
∑
i

(1− αi)(ai − h)/βi (53)

Note that ∂W/∂ē is random and in expression (52) the random component is in r.

Choice of the OBA rates αk

The optimal αk satisfies equation (23). Using D′ = h, Q′i = −1/βi and rē = 1/
∑

((1 −
αi)

2/βi) yields the first order condition:

cov

(
∂W

∂ē
, qk

)
=

hE[r]

βk
∑

i[(1− α2
i )/βi]

∑
i

[
1− αi
βi

(αk − αi)
]

=
h2

βk

∑
i(1− αi)/βi

[
∑

i(1− αi)2/βi]2

∑
i

[
1− αi
βi

(αk − αi)
]

using eq. (27) (54)
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We also know that

cov
(∂W
∂ē

, qk

)
= cov(r, (ãk − (1− αk)r)/βk) from eq. (52)

= cov

(∑
i [(1− αi)θi/βi]∑
i [(1− αi)2/βi]

,
1

βk

[
θk − (1− αk)

∑
i [(1− αi)θi/βi]∑
i [(1− αi)2/βi]

])
using eq. (51)

=
1/βk

[
∑

i(1− αi)2/βi]2
cov

(∑
i

1− αi
βi

θi, θk
∑
i

(1− αi)2

βi
− (1− αk)

∑
i

1− αi
βi

θi

)

=
1/βk

[
∑

i(1− αi)2/βi]2

[
σ2
k

1− αk
βk

∑
i

(1− αi)2

βi
− (1− αk)

∑
i

(1− αi)2

β2
i

σ2
i

]

=
(1− αk)/βk

(
∑

i(1− αi)2/βi)2

∑
i

[
(1− αi)2

βi

(
σ2
k

βk
− σ2

i

βi

)]
(55)

so, combining the two expressions above, the optimal rate αk satisfies

∑
i

[
(1− αi)2

βi

(
σ2
k

βk
− σ2

i

βi

)]
= h2

[∑
i

1− αi
βi

]∑
i

[
1− αi
βi

αk − αi
1− αk

]
(56)

Using the latter to substract expressions associated to k and l, and writing (αk − αi)/(1 −
αk) = (1− αi)/(1− αk)− 1, yields

σ2
k

βk
− σ2

l

βl
= h2

[∑
i

1− αi
βi

][
1

1− αk
− 1

1− αl

]
(57)

Therefore, if σ2
k/βk > σ2

l /βl then αk > αl.

Since α1 is the lowest rate, we can set α1 = 0 and using equation (57) we obtain for all

other k = 2, ..., n

αk =
∆k

∆k + Ψ

where ∆k is given by (26) and Ψ =
∑

i(1− αi)/βi. Finally, summing over k gives that Ψ is

a solution of the equation
n∑
i=1

1

βi(∆i + x)
= 1.

There is a unique solution to this equation between 0 and +∞, it is lower than
∑

i(1/βi),

because the left-hand-side is strictly decreasing, and, since ∆1 = 0, it is equal to +∞ for

x = 0, and for x =
∑

i 1/βi, it is lower than 1.

Then for Ψ the unique positive solution of this equation, define αi = ∆i/(∆i + Ψ) for all

i > 1 which is between 0 and 1, and ē is given by equation (53). They all satisfy the first
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order conditions and thus, maximize expected welfare.

B.3 Proof of Proposition 5

Let us assume that (i) a > h(1 + 2γ/b) and (ii) σ2
1 < h2

∑n
i=1(1 − αi) hold, and show that

the optimal OBA scheme in Proposition 4 can be implemented with a menu of OBA rates

and lump-sum allocations {(αj, êj)/i = 1, ..., n} as described in (33).

At the optimum scheme described in Proposition 4, for βi = β ∀i, we have ψ =
∑

i(1−
αi)/β, αi = ∆i/(δi + ψ) and σ2

i − σ2
1 = αiβψh

2

We proceed in three steps: we first show that the derivative of firm i + 1’s profit with

respect to α is higher than the derivative of firm i’s. Then we show that this result ensures

that the lump-sum (free) allocations (33) are sufficient for the self-selection constraints to

hold. And finally we show that the regulator has enough permits to offer the lump-sum

allocations (33).

We first show that the influence of the OBA rate on profit is larger for the more volatile

sectors

E
[
∂πi+1(θi+1, r, α)

∂α

]
≥ E

[
∂πi(θi, r, α)

∂α

]
(58)

Using (29) and (31), the above inequality can be written as

(1− αi+1)σ2
i+1 ≥ (1− αi)σ2

i (59)

for i = 1..n− 1. Then, using σ2
i − σ2

1 = h2βαiψ/(1− αi), eq. (59) is equivalent to

(1− αi+1)(σ2
i+1 − σ2

1) + (1− αi+1)σ2
1 ≥ (1− α2

i )(σ
2
i − σ2

1) + (1− αi)σ2
1

(αi+1 − αi)βψh2 ≥ (αi+1 − αi)σ2
1

h2
∑
i

(1− αi) ≥ σ2
1

which corresponds to assumption (ii) in Proposition 5.

Thanks to this property, all differences êi+1− êi in (33) are positive, and the self-selection

constraints (28) are all satisfied. Consider i, j = 1, ..., n, sector i prefers its option to option
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j if i < j:

E[πi(θi, r, αj)− πi(θi, r, αi)] =

j−1∑
k=i

E[πi(θi, r, αk+1)− πi(θi, r, αk)]

≤
j−1∑
k=i

E[πk(θi, r, αk+1)− πk(θi, r, αk)] thanks to (58)

≤
j−1∑
k=i

E[r](êk − êk+1) = E[r](êi − êj) by definition of the menu (33).

A similar reasoning shows that it also holds for i > j.

We now establish that thanks to assumption (i) the budget-balance constraint is satisfied.

The regulator has enough permits to implement the optimal scheme with the allocations

described in (33)

ē ≥
n∑
i=1

êi =
n−1∑
i=1

i× 1

E[r]
E[πi(θi, r, αi+1)− πi(θi, r, αi)] (60)

The difference in profit is equal to

E[πi(θi, r, αi+1)− πi(θi, r, αi)] =
γ

2β2
(αi+1 − αi)E [r [2(a+ θi)− (2− αi+1 − αi)r]]

=
γ

2β2
(αi+1 − αi) {E[r]× [2a− (2− αi+1 − αi)E[r]] + cov(2θi − (2− αi+1 − αi)r, r)}

So the constraint (60) is equivalent to

ē >
γ

β2

n−1∑
i=1

i(αi+1 − αi)
{[

a− (1− αi+1 + αi
2

)E[r]

]
+ cov

(
θi − (1− αi+1 + αi

2
)r,

r

E[r]

)}

Let us now establish an upper bound for the two terms on the right-hand side. Since αn < 1

we have that
γ

β2

n−1∑
i=1

i(αi+1 − αi)a =
γ

β2

n−1∑
i=1

(αn − αi)a < ψ
γ

β
a

and

∑
j

(1−αj)2×var(r) =

∑
j(1− αj)2σ2

j∑
j(1− αj)2

=

∑
j(1− αj)2(σ2

j − σ2
1)∑

j(1− αj)2
+σ2

1 =

∑
j(1− αj)αj∑
j(1− αj)2

βψh2+σ2
1
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so that the covariance term is lower than h

cov(θi − (1− αi+1 + αi
2

)r,
r

Er
) =

1

Er
∑

j(1− αj)2

{
(1− αi)(σ2

i − σ2
1) +

αi+1 − αi
2

σ2
1 −

(
1− αi+1 + αi

2

)∑
j(1− αj)αj∑
j(1− αj)2

βψh2

}

<
1

βψh

{
αiβψh

2 +
αi+1 − αi

2
σ2

1

}
=

1

βψh

{
αi(βψh

2 − σ2
1

2
) +

αi+1

2
σ2

1

}
<

1

βψh
βψh2 = h

where the last inequality is obtained using h2 > σ2
1 (from (ii)), βψ > 1, and αi < αi+1 < 1.

Then, the right-hand side of (60) is lower than

γ

β2
βψa+

γ

β2

n−1∑
i=1

[i(αi+1 − αi)]h <
γ

β2
βψa+

γ

β2
βψh = (a+ h)

γ

β
ψ

and

a > h(1 + 2γ/b)⇔ (a+ h)
γ

β
< a− h

so that, if a > h(1 + 2γ/b) then (60) is satisfied, because ē > a− h at the optimal scheme.

B.4 Proof of Corollary 1

Let us consider the slightly more general situation, the one in Proposition 4: pi = ai+θi−biqi
and Ci = γiq

2
i /2 denoting βi = bi + γi and ãi = ai + θi. Using the results in this Proposition

and setting α1 = 0, the optimal cap is given by

ē = (a1 − h)/β1 + (1− α2)(a2 − h)/β2

and the expression in Corollary 1 is obtained by simply replacing a1 = a2 = a and β1 = β2 =

2. Let us write ∆2 = [σ2
2/β2 − σ2

1/β1]/h2 as in Proposition 4. The optimal α2 is equal to

∆2/(∆2 + Ψ) with Ψ = 1/β1 + (1− α2)/β2, so (1− α2)(∆2 + Ψ) = Ψ

(1− α2)(∆2 + 1/β1 + (1− α2)/β2) = 1/β1 + (1− α2)/β2
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This implies that (1− α2)/β2 is the positive solution of the equation

x2 + x∆− 1

β1β2

= 0

with ∆ = ∆2 + 1/β1 − 1/β2 (which corresponds to the value of ∆ defined in Corollary 1 for

β1 = β2 = 2), which yields

1− α2

β2

=
1

2

[(
∆2 +

4

β1β2

)1/2

−∆

]
.

The equivalent expression in Corollary 1 is obtained, again, by simply replacing β1 = β2 = 2

and σ1 = 0, and making use of Lemma 3 on the equivalence of schemes.
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