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1 Introduction.

There is almost no disagreement among economists that the full cost to society of burning a

ton of carbon is greater than its private cost. Burning carbon has an external cost because

it produces CO2 and other greenhouse gases (GHGs) that accumulate in the atmosphere,

and will eventually result in unwanted climate change — higher global temperatures, greater

climate variability, and possibly increases in sea levels. This external cost is referred to as the

social cost of carbon (SCC). It is the basis for taxing or otherwise limiting carbon emissions,

and is the focus of policy-oriented research on climate change.

So how large is the SCC? Here there is plenty of disagreement. Some argue that climate

change will be moderate, will occur in the distant future, and will have only a small impact

on the economies of most countries. This would imply that the SCC is small, perhaps only

around $10 per ton of CO2. Others argue that without an immediate and stringent GHG

abatement policy, there is a reasonable chance of substantial temperature increases that

might have a catastrophic economic impact. If so, it would suggest that the SCC is large,

perhaps as high as $200 per ton of CO2.
1

Might we narrow this range of disagreement over the size of the SCC by carefully quan-

tifying the relationships between GHG emissions and atmospheric GHG concentrations, be-

tween changes in GHG concentrations and changes in temperature (and other measures of

climate change), and between higher temperatures and measures of welfare such as output

and per capita consumption? In other words, might we obtain better estimates of the SCC

by building and simulating integrated assessment models (IAMs), i.e., models that “inte-

grate” a description of GHG emissions and their impact on temperature (a climate science

model) with projections of abatement costs and a description of how changes in climate

affect output, consumption, and other economic variables (an economic model).

Building such models is exactly what some economists interested in climate change policy

have done. One of the first such models was developed by William Nordhaus over 20 years

1The SCC is sometimes expressed in terms of dollars per ton of carbon. A ton of CO2 contains 0.2727
tons of carbon, so an SCC of $10 per ton of CO2 is equivalent to $36.67 per ton of carbon. The SCC numbers
I present in this paper are always in terms of dollars per ton of CO2.
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ago.2 That model was an early attempt to integrate the climate science and economic aspects

of the impact of GHG emissions, and it helped economists understand the basic mechanisms

involved. Even if one felt that parts of the model were overly simple and lacked empirical

support, the work achieved a common goal of economic modeling: elucidating the dynamic

relationships among key variables, and the implications of those relationships, in a coherent

and convincing way. Since then, the development and use of IAMs has become a growth

industry. (It even has its own journal, The Integrated Assessment Journal.) The models have

become larger and more complex, but unfortunately have not done much to better elucidate

the pathways by which GHG emissions eventually lead to higher temperatures, which in turn

cause (quantifiable) economic damage. Instead, the raison d’etre of these models has been

their use as a policy tool. The idea is that by simulating the models, we can obtain reliable

estimates of the SCC and evaluate alternative climate policies.

Indeed, a U.S. Government Interagency Working Group has tried to do just that. It

ran simulations of three different IAMs, with a range of parameter values, discount rates,

and assumptions regarding GHG emissions, to estimate the SCC.3 Of course, different input

assumptions resulted in different SCC estimates, but the Working Group settled on a base

case or “average” estimate of $21 per ton, which was recently updated to $33 per ton.4 Other

IAMs have been developed and likewise used to estimate the SCC. As with the Working

Group, those estimates vary considerably depending on the input assumptions for any one

IAM, and also vary across IAMs.

Given all of the effort that has gone into developing and using IAMs, have they helped us

resolve the wide disagreement over the size of the SCC? Is the U.S. government estimate of

2See, for example, Nordhaus (1991, 1993b,a).

3The three IAMS were DICE (Dynamic Integrated Climate and Economy), PAGE (Policy Analysis of the
Greenhouse Effect), and FUND (Climate Framework for Uncertainty, Distribution, and Negotiation). For
descriptions of the models, see Nordhaus (2008), Hope (2006), and Tol (2002a,b).

4See Interagency Working Group on Social Cost of Carbon (2010). For an illuminating and very readable
discussion of the Working Group’s methodology, the models it used, and the assumptions regarding param-
eters, GHG emissions, and other inputs, see Greenstone, Kopits and Wolverton (2011). The updated study
used new versions of the DICE, PAGE, and FUND models, and arrived at a new “average” estimate of $33
per ton for the SCC. See Interagency Working Group on Social Cost of Carbon (2013).
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$21 per ton (or the updated estimate of $33 per ton) a reliable or otherwise useful number?

What have these IAMs (and related models) told us? I will argue that the answer is very

little. As I discuss below, the models are so deeply flawed as to be close to useless as tools

for policy analysis. Worse yet, their use suggests a level of knowledge and precision that is

simply illusory, and can be highly misleading.

The next section provides a brief overview of the IAM approach, with a focus on the

arbitrary nature of the choice of social welfare function and the values of its parameters.

Using the three models the Interagency Working Group chose for its assessment of the SCC

as examples, I then discuss two important parts of IAMS where the uncertainties are greatest

and our knowledge is weakest — the response of temperature to an increase in atmospheric

CO2, and the economic impact of higher temperatures. I then explain why an evaluation

of the SCC must include the possibility of a catastrophic outcome, why IAMs can tell us

nothing about such outcomes, and how an alternative and simpler approach is likely to

be more illuminating. As mentioned above, the number of IAMs in existence is large and

growing. My objective is not to survey the range of IAMs or the IAM-related literature,

but rather to explain why climate change policy can be better analyzed without the use of

IAMs.

2 Integrated Assessment Models.

Most economic analyses of climate change policy have six elements, each of which can be

global in nature or disaggregated on a regional basis. In an IAM-based analysis, each of these

elements is either part of the model (determined endogenously), or else is an exogenous input

to the model. These six elements can be summarized as follows:

1. Projections of future emissions of a CO2 equivalent (CO2e) composite (or individual

GHGs) under “business as usual” (BAU) and one or more abatement scenarios. Pro-

jections of emissions in turn require projections of both GDP growth and “carbon

intensity,” i.e., the amount of CO2e released per dollar of GDP, again under BAU and

alternative abatement scenarios, and on an aggregate or regionally disaggrated basis.
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2. Projections of future atmospheric CO2e concentrations resulting from past, current,

and future CO2e emissions. (This is part of the climate science side of an IAM.)

3. Projections of average global (or regional) temperature changes — and possibly other

measures of climate change such as temperature and rainfall variability, hurricaine

frequency, and sea level increases — likely to result over time from higher CO2e con-

centrations. (This is also part of the climate science side of an IAM.)

4. Projections of the economic impact, usually expressed in terms of lost GDP and con-

sumption, resulting from higher temperatures. (This is the most speculative element of

the analysis, in part because of uncertainty over adaptation to climate change.) “Eco-

nomic impact” includes both direct economic impacts as well as any other adverse

effects of climate change, such as social, political, and medical impacts, which under

various assumptions are monetized and included as part of lost GDP.

5. Estimates of the cost of abating GHG emissions by various amounts, both now and

throughout the future. This in turn requires projections of technological change that

might reduce future abatement costs.

6. Assumptions about social utility and the rate of time preference, so that lost consump-

tion from expenditures on abatement can be valued and weighed against future gains

in consumption from the reductions in warming that abatement would bring about.

These elements are incorporated in the work of Nordhaus (2008), Stern (2007), and others

who evaluate abatement policies though the use of IAMs that project emissions, CO2e con-

centrations, temperature change, economic impact, and costs of abatement. Interestingly,

however, Nordhaus (2008), Stern (2007), and others come to strikingly different conclusions

regarding optimal abatement policy and the implied SCC. Nordhaus (2008) finds that opti-

mal abatement should intially be very limited, consistent with an SCC around $20 or less,

while Stern (2007) concludes that an immediate and drastic cut in emissions is called for,

consistent with an SCC above $200.5 Why the huge difference? Because the inputs that

5In an updated study, Nordhaus (2011) estimates the SCC to be $12 per ton of CO2.
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go into the models are so different. Had Stern used the Nordhaus assumptions regarding

discount rates, abatement costs, parameters affecting temperature change, and the function

determining economic impact, he would have also found the SCC to be low. Likewise, if

Nordhaus had used the Stern assumptions, he would have obtained a much higher SCC.6

2.1 What Goes In and What Comes Out.

And here we see a major problem with IAM-based climate policy analysis: The modeler has

a great deal of freedom in choosing functional forms, parameter values, and other inputs,

and different choices can give wildly different estimates of the SCC and the optimal amount

of abatement. You might think that some input choices are more reasonable or defensible

than others, but no, “reasonable” is very much in the eye of the modeler. Thus these models

can be used to obtain almost any result one desires.7

There are two types of inputs that lend themselves to arbitrary choices. The first is

the social welfare (utility) function and related parameters needed to value and compare

current and future gains and losses from abatement. The second is the set of functional

forms and related parameters that determine the response of temperature to changing CO2e

concentrations and (especially) the economic impact of rising temperatures. I discuss the

social welfare function here, and leave the functional forms and related parameters to later

when I discuss the “guts” of these models.

2.2 The Social Welfare Function.

Most models use a simple framework for valuing lost consumption at different points in time:

time-additive, constant relative risk aversion (CRRA) utility, so that social welfare is:

W =
1

1 − η
E0

∫

∞

0

C1−η
t e−δtdt , (1)

6Nordhaus (2007), Weitzman (2007), Mendelsohn (2008) and others argue (and I would agree) that the
Stern study (which used a version of the PAGE model) makes assumptions about temperature change,
economic impact, abatement costs, and discount rates that are generally outside the consensus range. But
see Stern (2008) for a detailed (and very readable) explanation and defense of these assumptions.

7A colleague of mine once said “I can make a model tie my shoe laces.”
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where η is the index of relative risk aversion (IRRA) and δ is the rate of time preference.

Future consumption is unknown, so I included the expectation operator E, although most

IAMs are deterministic in nature. Uncertainty, if incorporated at all, is usually analyzed by

running Monte Carlo simulations in which probability distributions are attached to one or

more parameters.8 Eqn. (1) might be applied to the United States (as in the Interagency

Working Group study), to the entire world, or to different regions of the world.

I will put aside the question of how meaningful eqn. (1) is as a welfare measure, and

focus instead on the two critical parameters, δ and η. We can begin by asking what is the

“correct” value for the rate of time preference, δ? This parameter is crucial because the effects

of climate change occur over very long time horizons (50 to 200 years), so a value of δ above 2

percent would make it hard to justify even a very moderate abatement policy. Financial data

reflecting investor behavior and macroeconomic data reflecting consumer and firm behavior

suggest that δ is in the range of 2 to 5 percent. While a rate in this range might reflect the

preferences of investors and consumers, should it also reflect intergenerational preferences

and thus apply to time horizons greater than 50 years? Some economists (e.g., Stern (2008)

and Heal (2009)) have argued that on ethical grounds δ should be zero for such horizons, i.e.,

that it is unethical to discount the welfare of future generations relative to our own welfare.

But why is it unethical? Putting aside their personal views, economists have little to say

about that question.9 I would argue that the rate of time preference is a policy parameter,

i.e., it reflects the choices of policy makers, who might or might not believe (or care) that

their policy decisions reflect the values of voters. As a policy parameter, the rate of time

preference might be positive, zero, or even negative.10 The problem is that if we can’t pin

8A recent exception is Cai, Judd and Lontzek (2013), who developed a stochastic dynamic programming
version of the Nordhaus DICE model. Also, Kelly and Kolstad (1999) show how Bayesian learning can affect
policy in a model with uncertainty.

9Suppose John and Jane both have the same incomes. John saves 10 percent of his income every year
in order to help finance the college educations of his (yet-to-be-born) grandchildren, while Jane prefers to
spend all of her disposable income on sports cars, boats, and expensive wines. Does John’s concern for his
grandchildren make him more ethical than Jane? Many people might say yes, but that answer would be
based on their personal values rather than economic principles.

10Why negative? One could argue, perhaps based on altruism or a belief that human character is improving
over time, that the welfare of our great-grandchildren should be valued more highly than our own.
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down δ, an IAM can’t tell us much; any given IAM will give a wide range of values for the

SCC, depending on the chosen value of δ.

What about η, the IRRA? The SCC that comes out of almost any IAM is also very

sensitive to this parameter. Generally, a higher value of η will imply a lower value of the

SCC.11 So what value for η should be used for climate policy? Here, too, economists disagree.

The macroeconomics and finance literatures suggest that a reasonable range is from about

1.5 to at least 4. As a policy parameter, however, we might consider the fact that η also

reflects aversion to consumption inequality (in this case across generations), suggesting a

reasonable range of about 1 to 3.12 Either way, we are left with a wide range of reasonable

values, so that any given IAM can give a wide range of values for the SCC.

Disagreement over δ and η boils down to disagreement over the discount rate used to

put gains and losses of future consumption (as opposed to utility) in present value terms. In

the simplest (deterministic) Ramsey framework, that discount rate is R = δ + ηg, where g

is the real per-capita growth rate of consumption, which historically has been around 1.5 to

2 percent per annum, at least for the U.S. Stern (2007), citing ethical arguments, sets δ ≈ 0

and η = 1, so that R is small and the estimated SCC is very large. By comparison, Nordhaus

(2008) tries to match market data, and sets δ = 1.5% and η = 2, so that R ≈ 5.5% and the

estimated SCC is far smaller.13 Should the discount rate be based on “ethical” arguments

or market data? And what ethical arguments and what market data? The members of

the Interagency Working Group got out of this morass by focusing on a middle-of-the-road

11The larger is η, the faster the marginal utility of consumption declines as consumption grows. Since
consumption is expected to grow, the value of additional future consumption is smaller the larger is η. But
η also measures risk aversion; if future consumption is uncertain, a larger η makes future welfare smaller,
raising the value of additional future consumption. Most models show that unless risk aversion is extreme
(e.g., η is above 4), the first effect dominates, so an increase in η (say from 1 to 4) will reduce the benefits
from an abatement policy. See Pindyck (2012) for examples.

12If a future generation is expected to have twice the consumption as the current generation, the marginal
utility of consumption for the future generation is 1/2η as large as for the current generation, and would
be weighted accordingly in any welfare calculation. Values of η above 3 or 4 imply a relatively very small
weight for the future generation, so one could argue that a smaller value is more appropriate.

13Uncertainty over consumption growth or over the discount rate itself can reduce R, and depending on
the type of uncertainty, lead to a time-varying R. See Gollier (2013) for an excellent treatment of the effects
of uncertainty on the discount rate. Weitzman (2013) shows how the discount rate could decline over time.
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discount rate of 3 percent, without taking a stand on whether this is the “‘correct” rate.

3 The Guts of the Models.

Let’s assume for the moment that economists could agree on the “correct” value for the

discount rate R. Let’s also assume that they (along with climate scientists) could also agree

on the rate of emissions under BAU and one or more abatement scenarios, as well as the

resulting time path for the atmospheric CO2e concentration. Could we then use one or more

IAMs to produce a reliable estimate of the SCC? The answer is no, but to see why, we

must look at the insides of the models. For some of the larger models, the “guts” contain

many equations and can seem intimidating. But in fact, there are only two key organs that

we need to dissect. The first translates increases in the CO2e concentration to increases in

temperature, a mechanism that is referred to as climate sensitivity. The second translates

higher temperatures to reductions in GDP and consumption, i.e., the damage function.

3.1 Climate Sensitivity.

Climate sensitivity is defined as the temperature increase that would eventually result from

an anthropomorphic doubling of the atmospheric CO2e concentration. The word “eventu-

ally” means after the world’s climate system reaches a new equilibrium following the doubling

of the CO2e concentration, a period of time in the vicinity of 50 years. For some of the sim-

pler IAMs, climate sensitivity takes the form of a single parameter; for larger and more

complicated models, it might involve several equations that describe the dynamic response

of temperature to changes in the CO2e concentration. Either way, it can be boiled down to

a number that says how much the temperature will eventually rise if the CO2e concentration

were to double. And either way, we can ask how much we know or don’t know about that

number. This is an important question because climate sensitivity is an exogenous input

into each of the three IAMs used by the Interagency Working Group to estimate the SCC.

Here is the problem: the physical mechanisms that determine climate sensitivity involve

crucial feedback loops, and the parameter values that determine the strength (and even the
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sign) of those feedback loops are largely unknown, and for the forseeable future may even be

unknowable. This is not a shortcoming of climate science; on the contrary, climate scientists

have made enormous progress in understanding the physical mechanisms involved in climate

change. But part of that progress is a clearer realization that there are limits (at least

currently) to our ability to pin down the strength of the key feedback loops.

The Intergovernmental Panel on Climate Change (2007) (IPCC) surveyed 22 peer-reviewed

published studies of climate sensitivity and estimated that they implied an expected value of

2.5◦C to 3.0◦C for climate sensitivity.14 Each of the individual studies included a probability

distribution for climate sensitivity, and by putting the distributions in a standardized form,

the IPCC created a graph that showed all of the distributions in a summary form. A number

of studies — including the Interagency Working Group study — used the IPCC’s results to

infer and calibrate a single distribution for climate sensitivity, which in turn could be used

to run alternative simulations of one or more IAMs.15

Averaging across the standardized distributions summarized by the IPCC suggests that

the 95th percentile is about 7◦C, i.e., there is roughly a 5 percent probability that the true

climate sensitivity is above 7◦C. But this implies more knowledge than we probably have.

This is easiest to see in the relatively simple climate model developed by Roe and Baker

(2007). Using their notation, let λ0 be climate sensitivity in the absence of any feedback

effects, i.e., absent feedback effects, a doubling of the atmospheric CO2e concentration would

lead to an increase in radiative forcing that would in turn cause a temperature increase of

∆T0 = λ0
◦C. But as Roe and Baker explain, the initial temperature increase ∆T0 “induces

changes in the underlying processes ... which modify the effective forcing, which, in turn,

modifies ∆T .” Thus the actual climate sensitivity is given by

λ =
λ0

1 − f
, (2)

14The IPCC also provides a detailed and readable overview of the physical mechanisms involved in climate
change, and the state of our knowledge regarding those mechanisms.

15Newbold and Daigneault (2009) and Pindyck (2012) (who fit a gamma distribution to the IPCC’s
summary graph) used the distribution to infer the implications of uncertainty over climate sensitivity for
abatement policy. But as discussed below, they probably underestimated the extent of the uncertainty.
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where f (0 ≤ f ≤ 1) is the total feedback factor (which in a more complete and complex

model would incorporate several feedback effects).

Unfortunately, we don’t know the value of f . Roe and Baker point out that if we knew

the mean and standard deviation of f , denoted by f̄ and σf respectively, and if σf is small,

then the standard deviation of λ would be proportional to σf/(1 − f̄)2. Thus uncertainty

over λ is greatly magified by uncertainty over f , and becomes very large if f is close to 1.

Likewise, if the true value of f is close to 1, climate sensitivity would be huge.

As an illustrative exercise, Roe and Baker assume that f is normally distributed (with

mean f̄ and standard deviation σf), and derive the resulting distribution for λ, climate sen-

sitivity. Given their choice of f̄ and σf , the resulting median and 95th percentile are close to

the corresponding numbers that come from averaging across the standardized distributions

summarized by the IPCC.16 The Interagency Working Group calibrated the Roe-Baker dis-

tribution to fit the composite IPCC numbers more closely, and then applied that distribution

to each of the three IAMs as a way of analyzing the sensitivity of their SCC estimates to

uncertainty over climate sensitivity.

Given the limited available information, the Interagency Working Group did the best

it could. But it is likely that they — like others who have used IAMs to analyze climate

change policy — have understated our uncertainty over climate sensitivity. We don’t know

whether the feedback factor f is in fact normally distributed (nor do we know its mean and

standard deviation). Roe and Baker simply assumed a normal distribution. In fact, in an

accompanying article in the journal Science, Allen and Frame (2007) argued that climate

sensitivity is in the realm of the “unknowable.”

16The Roe-Baker distribution is given by:

g(λ; f̄ , σf , θ) =
1

σf

√
2πz2

exp

[

−1

2

(

1 − f̄ − 1/z

σf

)2
]

,

where z = λ + θ. The parameter values are f̄ = 0.797, σf = .0441, θ = 2.13. This distribution is fat-tailed,
i.e., declines to zero more slowly than exponentially. Weitzman (2009) has shown that parameter uncertainty
can lead to a fat-tailed distribution for climate sensitivity, and that this implies a relatively high probability
of a catastrophic outcome, which in turn suggests that the value of abatement is high. Pindyck (2011a)
shows that a fat-tailed distribution by itself need not imply a high value of abatement.
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3.2 The Damage Function

When assessing climate sensitivity, we at least have scientific results to rely on, and can

argue coherently about the probability distribution that is most consistent with those results.

When it comes to the damage function, however, we know almost nothing, so developers of

IAMs can do little more than make up functional forms and corresponding parameter values.

And that is pretty much what they have done.

Most IAMs (including the three that were used by the Interagency Working Group to

estimate the SCC) relate the temperature increase T to GDP through a “loss function”

L(T ), with L(0) = 1 and L′(T ) < 0. Thus GDP at time t is GDPt = L(Tt)GDP′

t, where

GDP′

t is what GDP would be if there were no warming. For example, the Nordhaus (2008)

DICE model uses the following inverse-quadratic loss function:

L = 1/[1 + π1T + π2(T )2] . (3)

Weitzman (2009) suggested the exponential-quadratic loss function:

L(T ) = exp[−β(T )2] , (4)

which allows for greater losses when T is large. But remember that neither of these loss

functions is based on any economic (or other) theory. Nor are the loss functions that appear

in other IAMs. They are just arbitrary functions, made up to describe how GDP goes down

when T goes up.

The loss functions in PAGE and FUND, the other two models used by the Interagency

Working Group, are more complex but equally arbitrary. In those models, losses are calcu-

lated for individual regions and (in the case of FUND) individual sectors, such as agriculture

and forestry. But there is no pretense that the equations are based on any theory. When

describing the sectoral impacts in FUND, Tol (2002b) introduces equations with the words

“The assumed model is:” (e.g., pages 137–139, emphasis mine), and at times acknowledges

(p. 142) that “The model used here is therefore ad hoc.”

The problem is not that IAM developers were negligent and ignored economic theory;

there is no economic theory that can tell us what L(T ) should look like. If anything, we
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would expect T to affect the growth rate of GDP, and not the level. Why? First, some effects

of warming will be permanent; e.g., destruction of ecosystems and deaths from weather

extremes. A growth rate effect allows warming to have a permanent impact. Second, the

resources needed to counter the impact of warming will reduce those available for R&D and

capital investment, reducing growth.17 Third, there is some empirical support for a growth

rate effect. Using data on temperatures and precipitation over 50 years for a panel of 136

countries, Dell, Jones and Olken (2012) have shown that higher temperatures reduce GDP

growth rates but not levels. Likewise, using data for 147 countries during 1950 to 2007,

Bansal and Ochoa (2011, 2012) show that increases in temperature have a negative impact

on economic growth.18

Let’s put the issue of growth rate versus level aside and assume that the loss function of

eqn. (3) is a credible description of the economic impact of higher temperatures. Then the

question is how to determine the values of the parameters π1 and π2. Theory can’t help us,

nor is data available that could be used to estimate or even roughly calibrate the parameters.

As a result, the choice of values for these parameters is essentially guesswork. The usual

approach is to select values such that L(T ) for T in the range of 2◦C to 4◦C is consistent

with common wisdom regarding the damages that are likely to occur for small to moderate

increases in temperature. Most modelers choose parameters so that L(1) is close to 1 (i.e.,

no loss), L(2) is around .99 or .98, and L(3) or L(4) is around .98 to .96. Sometimes these

numbers are justified by referring to the IPCC or related summary studies. For example,

Nordhaus (2008) points out (page 51) that the 2007 IPCC report states that “global mean

losses could be 1–5% GDP for 4◦C of warming.” But where did the IPCC get those numbers?

17Adaptation to rising temperatures is equivalent to the cost of increasingly strict emission standards,
which, as Stokey (1998) has shown with an endogenous growth model, reduces the rate of return on capital
and lowers the growth rate. To see this, suppose total capital K = Kp + Ka(T ), with K′

a(T ) > 0, where
Kp is directly productive capital and Ka(T ) is capital needed for adaptation to the temperature increase T
(e.g., stronger retaining walls and pumps to counter flooding, more air conditioning and insulation, etc.).
If all capital depreciates at rate δK , K̇p = K̇ − K̇a = I − δKK − K′

a(T )Ṫ , so the rate of growth of Kp is
reduced. See Brock and Taylor (2010) and Fankhauser and Tol (2005) for related analyses.

18See Pindyck (2011b, 2012) for further discussion and an analysis of the policy implications of a growth
rate versus level effect. Note that a climate-induced catastrophe, on the other hand, could reduce both the
growth rate and level of GDP.
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From its own survey of several IAMs. Yes, it’s a bit circular.

The bottom line here is that the damage functions used in most IAMs are completely

made up, with no theoretical or empirical foundation. That might not matter much if we are

looking at temperature increases of 2 or 3◦C, because there is a rough consensus (perhaps

completely wrong) that damages will be small at those levels of warming. The problem is

that these damage functions tell us nothing about what to expect if temperature increases

are larger, e.g., 5◦C or more.19 Putting T = 5 or T = 7 into eqn. (3) or (4) is a completely

meaningless exercise. And yet that is exactly what is being done when IAMs are used to

analyze climate policy.

I do not want to give the impression that economists know nothing about the impact

of climate change. On the contrary, considerable work has been done on specific aspects of

that impact, especially with respect to agriculture. One of the earliest studies of agricultural

impacts, including adaptation, is Mendelsohn, Nordhaus and Shaw (1994); more recent ones

include Deschênes and Greenstone (2007) and Schlenker and Roberts (2009). A recent study

that focuses on the impact of climate change on mortality, and our ability to adapt, is

Deschênes and Greenstone (2011). And recent studies that use or discuss the use of detailed

weather data include Dell, Jones and Olken (2012) and Auffhammer et al. (2013). These are

just a few examples; the literature is large and growing.

Statistical studies of this sort will surely improve our knowledge of how climate change

might affect the economy, or at least some sectors of the economy. But the data used in these

studies are limited to relatively short time periods and small fluctuations in temperature and

other weather variables — the data do not, for example, describe what has happened over

20 or 50 years following a 5◦C increase in mean temperature. Thus these studies cannot

enable us to specify and calibrate damage functions of the sort used in IAMs. In fact, those

damage functions have little or nothing to do with the detailed econometric studies related

19Some modelers are aware of this problem. Nordhaus (2008) states (p. 51): “The damage functions
continue to be a major source of modeling uncertainty in the DICE model.” To get a sense of the wide range
of damage numbers that come from different models, even for T = 2 or 3◦C, see Table 1 of Tol (2012). Stern
(2013) argues that IAM damage functions ignore a variety of potential climate impacts, including possibly
catastrophic ones.
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to agricultural and other specific impacts.

4 Catastrophic Outcomes

Another major problem with using IAMs to assess climate change policy is that the models

ignore the possibility of a catastrophic climate outcome. The kind of outcome I am referring

to is not simply a very large increase in temperature, but rather a very large economic effect,

in terms of a decline in human welfare, from whatever climate change occurs. That such

outcomes are ignored is not surprising; IAMs have nothing to tell us about them. As I

explained, IAM damage functions, which anyway are ad hoc, are calibrated to give small

damages for small temperature increases, and can say nothing meaningful about the kinds

of damages we should expect for temperature increases of 5◦C or more.

4.1 Analysis of Catastrophic Outcomes.

For climate scientists, a “catastrophe” usually takes the form of a high temperature outcome,

e.g., a 7◦C or 8◦C increase by 2100. Putting aside the difficulty of estimating the probability

of that outcome, what matters in the end is not the temperature increase itself, but rather

its impact. Would that impact be “catastrophic,” and might a smaller (and more likely)

temperature increase be sufficient to have a catastrophic impact?

Why do we need to worry about large temperature increases and their impact? Because

even if a large temperature outcome has low probability, if the economic impact of that

change is very large, it can push up the SCC considerably. As discussed in Pindyck (2013a),

the problem is that the possibility of a catastrophic outcome is an essential driver of the SCC.

Thus we are left in the dark; IAMs cannot tell us anything about catastrophic outcomes,

and thus cannot provide meaningful estimates of the SCC.

It is difficult to see how our knowledge of the economic impact of rising temperatures

is likely to improve in the coming years. More than temperature change itself, economic

impact may be in the realm of the “unknowable.” If so, it would make little sense to try to

use an IAM-based analysis to evaluate a stringent abatement policy. The case for stringent
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abatement would have to be based on the (small) likelihood of a catastrophic outcome in

which climate change is sufficiently extreme to cause a very substantial drop in welfare.

4.2 What to Do?

So how can we bring economic analysis to bear on the policy implications of possible catas-

trophic outcomes? Given how little we know, a detailed and complex modeling exercise is

unlikely to be helpful. (Even if we believed the model accurately represented the relevant

physical and economic relationships, we would have to come to agreement on the discount

rate and other key parameters.) Probably something simpler is needed. Perhaps the best

we can do is come up with rough, subjective estimates of the probability of a climate change

sufficiently large to have a catastrophic impact, and then some distribution for the size of

that impact (in terms, say, of a reduction in GDP or the effective capital stock).

The problem is analogous to assessing the world’s greatest catastrophic risk during the

Cold War — the possibility of a U.S.-Soviet thermonuclear exchange. How likely was such

an event? There were no data or models that could yield reliable estimates, so analyses

had to be based on the plausible, i.e., on events that could reasonably be expected to play

out, even with low probability. Assessing the range of potential impacts of a thermonuclear

exchange had to be done in much the same way. Such analyses were useful because they

helped evaluate the potential benefits of arms control agreements.

The same approach might be used to assess climate change catastrophes. First, consider

a plausible range of catastrophic outcomes (under, for example, BAU), as measured by

percentage declines in the stock of productive capital (thereby reducing future GDP). Next,

what are plausible probabilities? Here, “plausible” would mean acceptable to a range of

economists and climate scientists. Given these plausible outcomes and probabilities, one can

calculate the present value of the benefits from averting those outcomes, or reducing the

probabilities of their occurrence. The benefits will depend on preference parameters, but

if they are sufficiently large and robust to reasonable ranges for those parameters, it would

support a stringent abatement policy. Of course this approach does not carry the perceived

precision that comes from an IAM-based analysis, but that perceived precision is illusory.
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To the extent that we are dealing with unknowable quantities, it may be that the best we

can do is rely on the “plausible.”

5 Conclusions.

I have argued that IAMs are of little or no value for evaluating alternative climate change

policies and estimating the SCC. On the contrary, an IAM-based analysis suggests a level of

knowledge and precision that is nonexistent, and allows the modeler to obtain almost any

desired result because key inputs can be chosen arbitrarily.

As I have explained, the physical mechanisms that determine climate sensitivity involve

crucial feedback loops, and the parameter values that determine the strength of those feed-

back loops are largely unknown. When it comes to the impact of climate change, we know

even less. IAM damage functions are completely made up, with no theoretical or empiri-

cal foundation. They simply reflect common beliefs (which might be wrong) regarding the

impact of 2◦C or 3◦C of warming, and can tell us nothing about what might happen if the

temperature increases by 5◦C or more. And yet those damage functions are taken seriously

when IAMs are used to analyze climate policy. Finally, IAMs tell us nothing about the

likelihood and nature of catastrophic outcomes, but it is just such outcomes that matter

most for climate change policy. Probably the best we can do at this point is come up with

plausible estimates for probabilities and possible impacts of catastrophic outcomes. Doing

otherwise is to delude ourselves.

My criticism of IAMs should not be taken to imply that because we know so little,

nothing should be done about climate change right now, and instead we should wait until

we learn more. Quite the contrary. One can think of a GHG abatement policy as a form of

insurance: society would be paying for a guarantee that a low-probability catastrophe will

not occur (or is less likely). Some have argued that on precautionary grounds, there is a case

for taking the Interagency Working Group’s $21 (or updated $33) number as a rough and

politically acceptable starting point and imposing a carbon tax (or equivalent policy) of that
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amount.20 This would help to establish that there is a social cost of carbon, and that social

cost must be internalized in the prices that consumers and firms pay. (Yes, most economists

already understand this, but politicians and the public are a different matter.) Later, as we

learn more about the true size of the SCC, the carbon tax could be increased or decreased

accordingly.

20See, for example, Pindyck (2013b) and Litterman (2013). National Research Council (2011) comes to a
similar conclusion.
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Deschênes, Olivier, and Michael Greenstone. 2011. “Climate Change, Mortality, and

Adaptation: Evidence from Annual Fluctuations in Weather in the US.” American Eco-

nomic Journal: Applied Economics, 3: 152–185.

Fankhauser, Samuel, and Richard S. J. Tol. 2005. “On Climate Change and Economic

Growth.” Resource and Energy Economics, 27: 1–17.

Gollier, Christian. 2013. Pricing the Planet’s Future. Princeton University Press.

Greenstone, Michael, Elizabeth Kopits, and Ann Wolverton. 2011. “Estimating the

Social Cost of Carbon for Use in U.S. Federal Rulemakings: A Summary and Interpreta-

tion.” National Bureau of Economic Research Working Paper 16913.

Heal, Geoffrey. 2009. “Climate Economics: A Meta-Review and Some Suggestions.” Re-

view of Environmental Economics and Policy, 3: 4–21.

18



Hope, C.W. 2006. “The Marginal Impact of CO2 from PAGE 2002: An Integrated As-

sessment Model Incorporating the IPCC’s Five Reasons for Concern.” The Integrated

Assessment Journal, 6: 19–56.

Interagency Working Group on Social Cost of Carbon. 2010. “Technical Support

Document: Social Cost of Carbon for Regulatory Impact Analysis.” U.S. Government.

Interagency Working Group on Social Cost of Carbon. 2013. “Technical Support

Document: Technical Update of the Social Cost of Carbon for Regulatory Impact Analy-

sis.” U.S. Government.

Intergovernmental Panel on Climate Change. 2007. Climate Change 2007. Cambridge

University Press.

Kelly, David L., and Charles D. Kolstad. 1999. “Bayesian Learning, Growth, and

Pollution.” Journal of Economic Dynamics and Control, 23: 491–518.

Litterman, Bob. 2013. “What Is the Right Price for Carbon Emissions?” Regulation,

36(2): 38–43.

Mendelsohn, Robert. 2008. “Is the Stern Review an Economic Analysis?” Review of

Environmental Economics and Policy, 2: 45–60.

Mendelsohn, Robert, William D. Nordhaus, and Daigee Shaw. 1994. “The Impact

of Global Warming on Agriculture: A Ricardian Analysis.” American Economic Review,

84(4): 753–771.

National Research Council. 2011. America’s Climate Choices. Washington,

D.C.:National Academies Press.

Newbold, Stephen C., and Adam Daigneault. 2009. “Climate Response Uncertainty

and the Expected Benefits of Greenhouse Gas Emissions Reductions.” Environmental and

Resource Economics, 44: 351–377.

Nordhaus, William D. 1991. “To Slow or Not to Slow: The Economics of the Greenhouse

Effect.” Economic Journal, 101: 920–937.

Nordhaus, William D. 1993a. “Optimal Greenhouse Gas Reductions and Tax Policy in

the ’DICE’ Model.” American Economic Review, 83: 313–317.

Nordhaus, William D. 1993b. “Rolling the ’DICE’: An Optimal Transition Path for Con-

trolling Greenhouse Gases.” Resource and Energy Economics, 15: 27–50.

Nordhaus, William D. 2007. “A Review of the Stern Review on the Economics of Climate

Change.” Journal of Economic Literature, 686–702.

19



Nordhaus, William D. 2008. A Question of Balance: Weighing the Options on Global

Warming Policies. Yale University Press.

Nordhaus, William D. 2011. “Estimates of the Social Cost of Carbon: Background and

Results from the RICE-2011 Model.” National Bureau of Economic Research Working

Paper 17540.

Pindyck, Robert S. 2011a. “Fat Tails, Thin Tails, and Climate Change Policy.” Review

of Environmental Economics and Policy, 5(2): 258–274.

Pindyck, Robert S. 2011b. “Modeling the Impact of Warming in Climate Change Eco-

nomics.” In The Economics of Climate Change: Adaptations Past and Present. , ed. G.

Libecap and R. Steckel. University of Chicago Press.

Pindyck, Robert S. 2012. “Uncertain Outcomes and Climate Change Policy.” Journal of

Environmental Economics and Management, 63: 289–303.

Pindyck, Robert S. 2013a. “The Climate Policy Dilemma.” Review of Environmental

Economics and Policy, 7.

Pindyck, Robert S. 2013b. “Pricing Carbon When We Don’t Know the Right Price.”

Regulation, 36(2): 43–46.

Roe, Gerard H., and Marcia B. Baker. 2007. “Why is Climate Sensitivity So Unpre-

dictable?” Science, 318: 629–632.

Schlenker, Wolfram, and Michael J. Roberts. 2009. “Nonlinear Temperature Effects

Indicate Severe Damages to U.S. Crop Yields under Climate Change.” Proceedings of the

National Academy of Sciences, 106(37): 15594–15598.

Stern, Nicholas. 2007. The Economics of Climate Change: The Stern Review. Cambridge

University Press.

Stern, Nicholas. 2008. “The Economics of Climate Change.” American Economic Review,

98: 1–37.

Stern, Nicholas. 2013. “The Structure of Economic Modeling of the Potential Impacts

of Climate Change Has Grafted Gross Underestimation onto Already Narrow Science

Models.” Journal of Economic Literature, 51: ??–??

Stokey, Nancy. 1998. “Are There Limits to Growth?” International Economic Review,

39: 1–31.

Tol, Richard S. J. 2002a. “Estimates of the Damage Costs of Climate Change, Part I:

Benchmark Estimates.” Environmental and Resource Economics, 21: 47–73.

20



Tol, Richard S. J. 2002b. “Estimates of the Damage Costs of Climate Change, Part II:

Dynamic Estimates.” Environmental and Resource Economics, 21: 135–160.

Tol, Richard S.J. 2012. “Targets for Global Climate Policy: An Overview.” Draft working

paper.

Weitzman, Martin L. 2007. “A Review of the Stern Review on the Economics of Climate

Change.” Journal of Economic Literature, 703–724.

Weitzman, Martin L. 2009. “On Modeling and Interpreting the Economics of Catastrophic

Climate Change.” Review of Economics and Statistics, 91: 1–19.

Weitzman, Martin L. 2013. “Tail-Hedge Discounting and the Social Cost of Carbon.”

Journal of Economic Literature, 51: ??–??

21


