A Methodology for Calculating the Levelized Cost of Electricity in Nuclear Power Systems with Fuel Recycling

Guillaume De Roo and John E. Parsons

Energy Economics, Vol. 33, No. 5, pp. 826

Guillaume De Roo and John E. Parsons, Energy Economics, Vol. 33, No. 5, pp. 826-839, 2011

In this paper we show how the traditional definition of the levelized cost of electricity (LCOE) can be extended to alternative nuclear fuel cycles in which elements of the fuel are recycled. In particular, we define the LCOE for a cycle with full actinide recycling in fast reactors in which elements of the fuel are reused an indefinite number of times. To our knowledge, ours is the first LCOE formula for this cycle. Others have approached the task of evaluating this cycle using an 'equilibrium cost' concept that is different from a levelized cost. We also show how the LCOE implies a unique price for the recycled elements. This price reflects the ultimate cost of waste disposal postponed through the recycling, as well as other costs in the cycle. We demonstrate the methodology by estimating the LCOE for three classic nuclear fuel cycles: (i) the traditional Once-Through Cycle, (ii) a Twice-Through Cycle, and (iii) a Fast Reactor Recycle. Given our chosen input parameters, we show that the 'equilibrium cost' is typically larger than the levelized cost, and we explain why.

For Associates Only

As a benefit to our Associates, the latest Working Papers are embargoed for a period of up to six months before becoming accessible to the public. If you are interested in becoming an Associate or learning more about the benefits of sponsorship, please click here, or email us at

If you are a CEEPR Associate or CEEPR staff member, please visit the login page here: