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Managing a Portfolio of Real Options: 
Sequential Exploration of Dependent Prospects

James L. Smith* and Rex Thompson*

We consider the impact of sequential investment and active management 
on the value of a portfolio of real options. The options are assumed to be 
interdependent, in that exercise of any one is assumed to produce, in addition to 
some intrinsic value based on an underlying asset, further information regarding 
the values of other options based on related assets. We couch the problem in terms 
of oil exploration, where a discrete number of related geological prospects are 
available for drilling, and management’s objective is to maximize the expected 
value of the combined exploration campaign. Management’s task is complex 
because the expected value of the investment sequence depends on the order in 
which options are exercised.

A basic conclusion is that, although dependence increases the variance 
of potential outcomes, it also increases the expected value of the embedded 
portfolio of options and magnifies the value of optimal management. Stochastic 
dynamic programming techniques may be used to establish the optimal sequence 
of investment. Given plausible restrictions on the information structure, 
however, we demonstrate that the optimal dynamic program can be identified 
and implemented by policies that are relatively simple to execute. In other words, 
we provide sufficient conditions for the optimality of intuitive decision rules, like 
“biggest first,” “most likely first,” or “greatest intrinsic value first.” We also 
develop exact analytic expressions for the implied value of the portfolio, which 
permits the value of active management to be assessed directly. 

1. Introduction

We consider the impact of sequential investment and active management 
on the value of a portfolio of real options. The options are assumed to be depen-
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dent, in that exercise of any one produces, in addition to some intrinsic value 
based on its underlying asset, further information regarding the values of other 
options based on related assets. We take the values of the underlying assets to be 
positively related; a high value on any one tends to increase the likelihood of high 
values elsewhere. Valuation of such portfolios is complex in that the combined 
value of the entire portfolio may depend on the order in which options are exer-
cised, and the optimal order is not always obvious (and sometimes counterintui-
tive) when the number of options exceeds two.

As a frame of reference, we couch the problem in terms of oil explo-
ration, where a discrete number of related geological “prospects” are available 
for drilling and management’s objective is to maximize the net present value of 
the entire exploration campaign. Such prospects typically differ in size and prob-
ability of success, and are said to be “dependent” or “associated” if success on 
one increases the conditional probability of success on others.1 Each prospect 
represents a real option, which if successfully exercised (via drilling) conveys 
the intrinsic value of the underlying oil, plus information regarding the value of 
remaining prospects. How much should management be willing to pay to acquire 
such a portfolio? Certainly more than the sum of the intrinsic values, because that 
measure ignores the value created by using intervening information to actively 
manage the exploration sequence. Holding all else equal, the existence of depen-
dence among prospects adds value to the portfolio of options.2

Our results highlight an important difference between real option ap-
plications and the standard financial option paradigm: in many applications of 
real options, the value of the underlying asset will not be revealed until after 
the option has been exercised. The true value of the asset will often depend on 
additional sources of uncertainty that can be resolved only through investment 
and exploitation of the asset. Paddock, Siegel, and Smith (1988) demonstrated 
in the case of petroleum exploration (where the number of “shares” to be ac-
quired via drilling an exploratory well is uncertain) that, where only a single 
asset is involved, the basic analogy to financial options is preserved and standard 
techniques based on the risk-neutral valuation principle may be applied. When 
several dependent assets are involved, however, the valuation problem changes 
in a fundamental way. Unlike standard financial options, the flow of information 
is endogenous—subject to management’s decision to exercise one option that 
could reveal information regarding the values of others. The flow of exploration 
information must be managed in concert with investment in the underlying as-
sets, and the value of the portfolio as a whole will reflect management’s skill in 
combining these two functions.

1. Tong (1980, pp. 78-90) discusses the “association” of random variables (a property equivalent 
to “positive quadrant dependence” in the bivariate case) and reviews many of the relevant statistical 
implications.

2.  Smith and Thompson (2006) consider the impact of dependence on the design of optimal 
prospect portfolios and measure the revealed preference for dependent prospects by oil company 
participants in offshore petroleum lease sales.
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A simple illustration shows the importance of sequencing dependent 
investments optimally. Consider three prospects, each requiring the expenditure 
of $80 million for a test well, and yielding a gross return of $100 million if suc-
cessful. Joint and marginal probabilities of success for the three prospects are 
shown below:

p
1
  =  0.820

p
2
  =  0.810

p
3
  =  0.803

p
1∩2∩3

  =  0.640		  p
1∩2∩

–
3
  =  0.080

p
1∩

–
2∩3

  =  0.078		  p–
1∩2∩3

  =  0.075
p

1∩
–
2∩

–
3
  =  0.022		  p–

1∩
–
2∩3

  =  0.010
p–

1∩2∩
–
3
  =  0.015		  p–

1∩
–
2∩

–
3
  =  0.080

Prospect 1 is the most likely, and prospect 3 the least likely to succeed. It 
is nonetheless optimal to test the third prospect first because it generates valuable 
information that more than compensates for its lesser intrinsic value. The value of 
the portfolio if prospect 3 is tested first amounts to $15.12 million.3 In contrast, the 
value of the portfolio if all three prospects are tested simultaneously, or without 
regard for intervening outcomes, amounts to only $3.3 million. Thus, dependence 
among prospects quadruples the value of this portfolio if investments are made in 
proper sequence and resulting information is acted upon in an optimal manner.

Subject to certain regularity conditions, stochastic dynamic program-
ming techniques may be applied to identify the optimal order of trials in problems 
of this type—and to ascertain portfolio value. That approach relies heavily on 
computational power but, as noted by Vishwanath (1992), does not contribute 
much economic insight regarding the elements of a successful sequential invest-
ment strategy. Of course, as the size of the portfolio grows, dynamic programming 
solutions impose ever larger computational demands and information require-
ments, as well.4 

We show that, given certain plausible constraints on the structure of de-
pendent risks, the solution to this portfolio management problem reduces to a 
form that is much simpler and easier for management to execute. In the extreme, 
for example, is the case where the value of each asset is independent of the others, 
which implies that the value of the portfolio is independent of the order in which 
the options are exercised. But that example throws out the baby with the bath wa-
ter. Our goal is to identify, where possible, simple rules for managing a portfolio 
of dependent options. 

We also show that a risk structure commonly used to describe dependent 
petroleum exploration outcomes is sufficient for the optimality of simple decision 

3.  This value is obtained by solving a simple decision tree.
4.  For example, see Haugen (1996) and Jorgenson (1999).
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rules, like “biggest first,” “most likely first,” or “greatest intrinsic value first”; and 
we develop exact analytic expressions for the value of the portfolio in such cases. 
This permits the incremental value of active management to be assessed simply 
and directly. 

2. Related Literature

Relatively few papers have considered the impact of sequential investment 
and project interdependence on the value of a portfolio of real options. Trigeorgis 
(1993) was among the first to consider the implications of interdependence and 
establish the non-additivity of real option values. His analysis, however, pertains 
to a collection of options all written on the same underlying asset, whereas we have 
in mind applications where distinct assets underlay each option in the portfolio. 
In addition, the sequence in which options might be exercised is predetermined 
in his analysis, whereas flexibility in determining this sequence is paramount in 
our study.

Vishwanath (1992) derives, as we do, sufficient conditions for the 
application of relatively simple rules to solve the problem of optimal sequential 
investment in a collection of projects. Unlike us, her analysis is confined to projects 
whose payoffs are mutually independent, all of which must be exercised.5 

Cortazar, Schwartz, and Casassus (2001) investigate the impact of 
geologic and price risk on the value of a collection of interrelated natural resource 
options. As in Trigeorgis (1993), however, the analysis pertains to multiple 
options written on the same underlying real asset, and the investment sequence 
is predetermined. Childs, Ott, and Triantis (1998) undertake what is perhaps 
the most comprehensive study of the impact of interdependence on real option 
valuation and investment sequence. They describe problems wherein the form of 
interdependence ranges from mutual exclusivity to perfect complementarity. Their 
results anticipate one of our main observations: that it is not necessarily best to 
exercise the most valuable alternative first; and they describe the conditions that 
work for and against such an outcome. Their analysis is limited to the two-prospect 
case, however, and only the case of “mutual exclusivity” is discussed in the text. 
Our work pertains to options whose values tend to be positively correlated, rather 
than mutually exclusive, and we find that not all results obtained for the two-
prospect case generalize to the case of three or more.6 

Several papers in the practitioners’ arena are also pertinent to our work. 
Murtha (1996) has investigated the impact of dependence among petroleum 
prospects, but within a rigid investment structure that would require all prospects 
to be drilled. He finds (correctly within that framework) that expected reserve 
volumes are unaffected by dependence among prospects, and that the variance of 

5.  The sequence of investments matters in that framework, but for reasons that relate to risk 
preferences. 

6. It is impossible with only two prospects, for example, to construct the type of illustration we 
presented in the introduction; i.e., where the lower-probability prospect should go first.
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reserves (payoffs) must increase. His conclusion, that “dependence increases the 
riskiness” of exploration, overlooks the value of flexible management—a value 
that we conclude can be very high. Delfiner (2000) adheres closely to Murtha’s 
approach to portfolio analysis, to the point of repeating Murtha’s potentially 
misleading conclusion, that “dependencies increase the exploration risk.” The 
real options approach incorporates that which Murtha and Delfiner overlook: 
the ability of managerial flexibility to turn inflated variance into enhanced 
return. Wang, et. al. (2000) do recognize that dependence creates managerial 
options to sequence petroleum exploration prospects optimally based on updated 
information, but they provide no analysis of the value of such options. 

3. Preliminaries: The N=2 Case:

We start with two prospects, with intrinsic values given by:

p
1
V

1
 – C	and  p

2
V

2
 – C,

where p
i
 represents the probability of success on the ith prospect, V

i
 is the expected 

value of that prospect conditional on success, and C is the cost of performing the 
trial (we assume identical drilling costs over all prospects).7 

Without loss of generality, we order prospects in terms of decreasing 
intrinsic value, thus:

p
1
V

1
 > p

2
V

2
.

To simplify the presentation, we will assume that all prospects are initially “in the 
money,” thus: p

2
V

2
–C >0.8 As noted already, association implies: 

p
i.j
 ≥ p

i  
and p

j.i
 ≥ p

j
;

that is, success on either prospect increases the chance of success on the other. 
Due to the impact of the specific information generated by the first trial, the value 
of the portfolio depends on which prospect goes first. The expected value of start-
ing with prospect 1 is given by:

Π
1
 = (p

1
V

1
 – C) + (p

2.1
V

2
 – C)p

1
 + m(p

2.
–
1 
V

2
 – C)p–

1
,

where for convenience we define: m(x) = max(x,0), p–
1 
= 1 – p

1
, and p

2.
–
1 
= p–

1∩2
/p–

1
, 

etc. The term m(p
2.

–
1 
V

2
 – C)p–

1
 reflects the option not to test the second prospect 

after failing on the first. 

7.  In the vernacular of the petroleum industry, V
i
 is sometimes referred to as the “unrisked value” 

of a prospect, whereas p
i
V

i
 is the “risked” value.

8. The value of the portfolio may be positive even if p
1
V

1
 < C, and we believe it is possible to derive 

similar results for such cases, but that goes beyond the scope of the present work.



48  /  The Energy Journal

Likewise, the expected value of starting with prospect 2 is given by:

Π
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V

2
 – C) + (p
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V

1
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 + m(p

1.
– 
2  

V
1
 – C)p–

2
.

The premium earned by starting with prospect one is given by the difference:
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We evaluate this expression, distinguishing three cases:

Case A: Neither Prospect is Condemned by Failure of the Other

In this case, both expressions of the form m(p
i.

–
j 
V

i
 – C) are positive and 

we have:
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Thus, order doesn’t matter in Case A since management would test both prospects 
regardless of intervening outcomes.

Case B: Either Prospect is Condemned by Failure of the Other

In this case, both expressions of the form m(p
i.
–
j 
V

i
 – C) are zero and we 

have:

D
B
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1
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2
V

2
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But, V
2
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1
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2
 (by assumption,) so:
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D
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 ≥ �(p
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which takes the sign of (p
1
−p

2
) since p

1.2
V

1
−C > 0 (recall that p

1.2
 ≥ p

1
). Thus, in 

Case B it is optimal to test first the prospect with higher intrinsic value if that 
prospect also has the higher probability of success. If the two prospects have equal 
values conditional on success (i.e., V

1
 = V

2
), you would always test the more likely 

prospect first. If they have equal probabilities of success, then the one with the 
greater conditional value must go first.

On the other hand, you would test the 2nd prospect (lower intrinsic val-
ue) first if its failure conveys enough information to compensate for its lower 
intrinsic value. Specifically, the condition for testing the second prospect first is 
(from Eq. 2):

(p
1
 – p

1∩2
)V

1
 –  (p

2
 – p

1∩2
)V

2 
– (p

1
 – p

2
)C < 0.

Equivalently:

p
1∩

–
2
 (V

1
 – C) <   p–

1∩2
(V

2 
– C);

which implies that you would test the lower intrinsic value first if and only if:

	 p
1∩

–
2
 	 V

2
 – C

———  <  ————.	 (3)
	 p–

1∩2
 	 V

1
 – C

In terms of the primitive parameters, lower values of the ratio p
1∩

–
2
 / p–

1∩2
 

make it more likely that the lower intrinsic value prospect should go first. Intui-
tively, low values of p

1∩
–
2
 / p–

1∩2
 means that the odds are against prospect two gen-

erating many false negatives, at least relative to prospect one, which enhances the 
value of information gleaned from it.

Case C: Only One Prospect is Condemned by Failure of the Other

It is easy to show ∆
C
 and ∆

B
 have the same sign. To see this, examine the 

difference:
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where the first equality is implied by Eq. 1, and the second by Eq. 2. Thus:

D
B <

> 0 ⇔ (p
1.

–
2
 V

1
 – C)p–

2
 – (p

2.
–
1
 V

2
 – C)p–

1  <
> 0;

which, since p–
1
 and p–

2 
 are non-negative, is equivalent to:

D
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> 0 ⇔ (p
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–
2
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1
 – C)
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–
1
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2
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> 0,

where we have used the fact that in Case C these two expressions must differ in 
sign. Therefore, if ∆

B
 > 0, we know:

D
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2
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2
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1
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1
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Likewise, for ∆
B
 < 0, we have:

D
C
 = �D

A 
+

 
(p

1.
–
2
V

1
 – C)p–

2
 < 0.

Implications:

Some preliminary results can now be summarized. If neither prospect 
has the power to condemn the other, both may be tested simultaneously.9 Other-
wise, the necessary and sufficient condition for testing the ith first is given by (cf. 
Eq. 3):

		  p
i∩

–
j
 	 V

j
 – C

Test the ith prospect first if and only if:  ———  >  ——— .
		  p–

i∩j
  	 V

i
 – C

For i=1, this condition is assured if, in addition to p
1
V

1
 > p

2
V

2
, we have  

p
1
 > p

2
. On the other hand, if we have V

1
 = V

2
, the condition implies testing pros-

pect one first since we have assumed p
1
 > p

2
. Our conclusions regarding the opti-

mal investment sequence is summarized in the following diagram.

9.  Throughout this paper, we neglect the time value of money in order to emphasize the option-
value component of portfolio value. 
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Option Value

We define the “static value” of the portfolio (Π
0
) to be the sum of in-

trinsic values; i.e., the expected value of the portfolio if management ignores the 
information content of previous outcomes:

Π
0
 = (p

1
V

1
 – C) + (p

2
V

2
 – C).

We may then define the “option value” of the ith prospect (OV
i
) as the additional 

value that comes by testing it first and using the resulting information to make 
subsequent investment decisions:

OV
i
 = Π

i  
– Π

0
 = (p

j.i 
V

j
 – C)p

i
  + m(p

j,
–
i 
V

j
 – C)p–

i   
– (p

j
V

j
 – C).

Now, if failure on the ith prospect does not condemn the jth, we have:

OV
i
 = (p

j.i 
V

j
 – C)p

i
  + (p

j.
–
i 
V

j
 – C)p–

i
  – (p

j 
V

j
 – C)

OV
i
 = p
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V

j
 – p

i
C + p

j.
–
i 
V

j
 – p–

i
 C – p

j
V

j
 + C = 0.

Thus, if the ith prospect has no power to condemn the other, it has no option value. 
Alternatively, if failure on the ith prospect does condemn the jth, we have:

OV
i
 = (p

j.i 
V

j
 – C)p

i
  – (p

j
V

j
 – C) = (p

j∩i 
 – p

j
)V

j
 + (1 – p

i
)C

	 (4)
OV

i
 = p–

i
 C – p–

i∩j
V

j
 > 0.
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This option value has the natural interpretation of being the expected 
cost savings (in terms of deferred testing cost) less the foregone revenue due to 
the occurrence of a false negative (i.e., the ith prospect wrongly deferring the jth). 
Partial differentiation of Eq. (4) gives:

	 ∂OV
i	

∂OV
i	

∂OV
i——— =  –p–

i∩j
  < 0      ———  = p–

i  
 > 0      ———  =  –V

j
.

	 ∂V
j	

∂C	 ∂p–
i∩j

Thus, option value falls as the intrinsic value of the other prospect rises since there 
is less chance that failure will defer it. Option value rises as the cost of trials rises 
since the potential cost savings is larger. Finally, option value falls as the prob-
ability of false negatives rises.

4. The General Case: N ≥ 2

To extend our results to three or more prospects, we must place further 
restrictions on the risk structure. In this section, we restrict attention to what is 
referred to in petroleum exploration as the “shared risk” information structure.10

“Shared Risk” Information Structures

We let:	 p(F
i
) = q

i
;	 and p(

–
F

i
) = 1-q

i
;	 for i = 0, 1, ..., N;

where the F
i
 represent independent events. Then, define:

	 S
i
 = F

0
∩F

i
;	 i = 1, 2, ..., N.

Intuitively, F
0
 denotes the presence of a common or shared factor that is necessary 

for success on each of the N prospects (e.g., the original deposition of carbonif-
erous sediments in a prospective petroleum basin). For i = 1, ..., N, each of the 
F

i
 represents the presence of an additional prospect-specific factor (e.g., a local 

trapping mechanism) that is necessary for success on that specific prospect. The 
prospect-specific factors are assumed to be independent of each other and inde-
pendent of the common factor. Thus:

p
i
 = p(S

i
) = q

0
q

i
;	 i = 1, 2, ..., N;

p
i.j
 = p(S

i
|S

j
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∩S

j
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j
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0
∩F
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)/p(F

0
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j
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0
q

i
q

j
/q

0
q

j
 = q

i
.

Also:  p
i.j

–
k
  = q

0
q

i
q

j
q–

k
 / q

0
q

j
q–

k
 = p

i.j
;

	 p
i.jk

  = q
0
q

i
q

j
q

k
 / q

0
q

j
q

k
 = p

i.j
;	 etc.

10.  The name comes from Stabell (2000), although applications of this type have a much longer 
history in the petroleum industry. See Megill (1979) for example.
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In the shared risk structure, relative probabilities of success among remaining 
prospects are not affected by previous outcomes, since:

p
i.{k}	

p
i	

q
i——  =  —  =  —,

p
j.{k}	

p
j	

q
j

where the set {k} represents any set of outcomes on previously drilled prospects. 
From this, it also follows:

p
i.{k} 

V
i    <

>    p
j.{k} 

V
j       

⇔     p
i
V

i    <
>    p

j 
V

j 

I.e., the ranking of remaining prospects by intrinsic value is not affected 
by the outcomes of previous trials. Within this framework, we can now prove:

Theorem 1: Given N prospects such that p
i
V

i
 ≥ p

j
V

j
 and p

i
 ≥ p

j
, for all i and 

j such that i < j, then at each stage in the investment sequence it is optimal to test 
next the prospect with highest intrinsic value. (Proof—see Appendix)

It follows immediately from Theorem 1 that if all prospects are equally 
likely, then the largest should be drilled first; if all are the same size, then the most 
likely should be drilled first.

Option Values

We now extend the definition of option value to the N-prospect case.  
The specific results to follow are based on Theorem 1, and therefore presume that 
p

i
 ≥ p

j
, for all i and j such that i < j. Moreover, for the time being, we will assume 

that failure on prospect one would condemn prospect two.
The option value of the 1st prospect as it affects the jth can be defined as 

in the N=2 case:

OV
1j
   =   p–

1
C – p–

1∩j
V

j
,	 for j = 2, ..., N.

The value of the portfolio can then be computed as the sum of these elementary 
option values (cf. Eq. 4):

Theorem 2: If failure on prospect one would condemn prospect two, then 
the value of the portfolio is given by:

Π*  =  Π
1
  =  Π

0
  +  OV

12
 +  OV

13
 + ... + OV

1N
. 	 (5)

	 =  Π
0
  +  p–

1
  

N

Σ
j=2

 (C – p
j.

–
1 
V

j
).

(Proof—see Appendix)
The value of actively managing the portfolio is therefore:

Π
1
  –  Π

0
  =  p–

1
  

N

Σ
j=2

 (C – p
j.

–
1 
V

j
).
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Portfolio Value—Comparative Statics

We differentiate Eq. (5) to observe the impact of parameter changes on 
portfolio value and the value of active management. First, with respect to the cost 
of testing the prospects:

 ∂Π
1——  =  –N + (N – 1)p–

1
  = –Np

1
 – p–

1
 < 0; 

 ∂C

 ∂(Π
1 
–  Π

0
)

—————  =  (N – 1)p–
1
  > 0; 

      ∂C

which means that a higher testing cost decreases the value of the portfolio, but 
increases the value of active management.

With respect to the conditional value of each prospect:

 ∂Π
1——  =  p

j
  –  p–

1∩j
  =  p

1∩j
 > 0; 

 ∂V
j

 ∂(Π
1 
–  Π

0
)

—————  =  –p–
1∩j

 =  –(p
j
 – p

1∩j
) < 0; 

      ∂V
j

which means that higher prospect value (conditional on success) increases the 
value of the portfolio, but decreases the value of active management.

Finally, with respect to the probability of obtaining a false negative signal 
from each prospect (while holding constant the marginal probabilities of success):

 ∂Π
1	

∂(Π
1 
–  Π

0
)

——  =  —————   =  –V
j
 < 0.

 ∂p
j.

–
1	

∂p
j.

–
1

But, note that p
j.

–
1
 = 1 – p–

j.
–
1
; thus:

 ∂Π
1	

∂(Π
1 
–  Π

0
)

——  =  —————   =  V
j
 > 0; 

 ∂p–
j.

–
1	

∂p–
j.

–
1

which means that, holding other things equal, greater dependence increases the term 
p–

j.
–
1
, and therefore increases both the value of the portfolio and the value of active 

management; whereas greater probability of a false negative regarding any prospect 
decreases both the value of the portfolio and the value of active management.

Next we account for the case where failure on the 1st prospect may not 
condemn the 2nd. To make an interesting problem, some prospect must be con-
demned by one or more prior failures, else all prospects would be tested and the 
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value of the portfolio would be given simply by the static value, Π
0
. We let pros-

pect m+1 (where 1≤m<N) represent the most valuable “condemnable” prospect 
(i.e., the prospect of highest intrinsic value that would be condemned by prior 
failures). We can then establish:

Theorem 3: If prospect m+1 is the condemnable prospect of highest in-
trinsic value, then the value of the portfolio is given by: 

Π*  =  Π
1
  =  Π

0
  +  p –

m 
C(N – m) 

 
–

  
  

N

Σ
j=m+1

 p
j∩

–
m
 
 
V

j
	 (6)

where p –
m
 is the probability of no success among the first m trials, and p

j∩
–
m
 is the 

probability that the jth prospect (j > m) succeeds and all m prior trials fail. Proof: 
(see appendix).

Our previous Eq. (5) represents the special case of (6) obtained by setting 
m=1. The same natural interpretation of option values applies here as in that case, 
but where the decision to test the first m prospects simultaneously is treated as a 
single act. The form of the expression is otherwise entirely analogous. Finally, the 
value of actively managing the portfolio is given by:

Π
1
  –  Π

0
  =  p –

m 
C(N – m) 

 
–

  
  

N

Σ
j=m+1

 p
j∩

–
m
 
 
V

j
,

from which analogous comparative static properties can be derived in the manner 
given above.

5. Summary

Our analysis demonstrates the optimality of several heuristic decision 
rules regarding the management of drilling options embedded in a portfolio of 
dependent prospects.

1.	 When choosing between two prospects, it is optimal to test both 
simultaneously if neither has the power to condemn the other.

2.	 When choosing between two prospects, it is optimal to test first 
the prospect with larger intrinsic value if that prospect also has the 
larger probability of success. However, it is optimal in some cases to 
test first the prospect with smaller intrinsic value if it has the larger 
probability of success.

3.	 When choosing between two prospects, the relative likelihood of 
false negatives (i.e., the ratio of success probabilities conditional on 
failure of the other prospect) is sufficient to order the prospects in 
terms of unrisked valuations.

4.	 If prospect dependence conforms to the “shared-risk” information 
structure, then the previous results generalize to comparisons 
involving N (>2) prospects:
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a.	 When choosing among N prospects, it is optimal to test first the 
prospect with the largest intrinsic value if it also has the largest 
probability of success.

b.	 When choosing among N prospects, it is also optimal to 
simultaneously test any prospects that would not be deferred 
(condemned) by failure on the prospect identified in part a, 
regardless of its intrinsic value and/or risk.

c.	 If all prospects are the same “size”, it is optimal to test first the 
one with the largest probability of success.

d.	 If all prospects have the same probability of success, it is 
optimal to test first the largest one.

5.	 The option value of a prospect measures the extent to which 
information revealed via a test of that prospect enhances the value 
of the rest of the portfolio of prospects.

6.	 The option value of a prospect increases directly with its degree of 
interdependence with other prospects. 

7.	 The option value of any prospect varies directly with the cost of 
testing, but inversely with the intrinsic value of other prospects. In 
these two respects, circumstances that are associated with a decrease 
in the static value of the portfolio are associated with an increase in 
the value of managing the portfolio actively.

This work represents a preliminary effort to understand how best to man-
age a portfolio of real options. We hope our results will encourage further consid-
eration of the problem, determining for example whether and how extensions of 
the underlying information structure alter the simple rules we have provided. Will 
it be possible to state less restrictive sufficient conditions than we employ, or to 
characterize the information structure in terms of a set of necessary and sufficient 
conditions under which simple rules suffice? What will these conditions look like 
and how closely will they conform to meaningful, real-world applications? And, 
within a broader range of information structures, how much value is contributed 
by the optimal management of imbedded exploration options? The answers to 
these questions await future research.

Acknowledgement

The authors thank Scott Farrow, Stein-Erik Fleten, Axel Pierru, John 
Semple, and Charles Stabell for helpful discussions, and Jacqueline McLelland 
for assistance with reference materials and library research. Smith gratefully ac-
knowledges research support provided by the MIT Center for Energy and Envi-
ronmental Policy Research. None of these entities are responsible, however, for 
any mistakes the authors may have committed.



Managing a Portfolio of Real Options  /  57

References

Childs, P., S. H. Ott, and A. J. Triantis (1998).“Capital Budgeting for Interrelated Projects: A Real Op-
tions Approach,” Journal of Financial and Quantitative Analysis, 33(3): 305-334.

Cortazar, G., E. S. Schwartz, and J. Casassus (2001). “Optimal Exploration Investments Under 
Price and Geological-Technical Uncertainty: A Real Options Model,” R&D Management, 31(2): 
181-189.

Delfiner, P. (2000). “Modeling Dependencies Between Geologic Risks in Multiple Targets,” Society of 
Petroleum Engineers, SPE Paper 63200.

Haugen, K. K. (1996). “A Stochastic Dynamic Programming Model for Scheduling of Offshore Petro-
leum Fields with Resource Uncertainty,” European Journal of Operational Research, 88: 88-100.

Jorgenson, T. (1999). Project Scheduling as a Stochastic Dynamic Decision Problem, doctoral dis-
sertation, Dept. of Industrial Economics and Technology Management, Norwegian University of 
Science and Technology, Trondheim.

Megill, R. E. (1979). An Introduction to Risk Analysis, Tulsa: PennWell Publishing.
Murtha, J. A. (1996). “Estimating Reserves and Success for a Prospect with Geologically Dependent 

Layers,” SPE Reservoir Engineering, February.
Paddock, J. L., D. R. Siegel, and J. L. Smith (1988). “Option Valuation of Claims on Real Assets: The 

Case of Offshore Petroleum Leases,” Quarterly Journal of Economics, August. 
Smith, J. L. and R. Thompson (2006). “Rational Plunging and the Option Value of Sequential Invest-

ment: The Case of Petroleum Exploration,” working paper, May.
Stabell, C. B. (2000). “Two Alternative Approaches to Modeling Risks in Prospects with Dependent 

Layers,” Society of Petroleum Engineers, SPE Paper 63204.
Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions, New York: Academic 

Press.
Trigeorgis, L. (1993). “The Nature of Option Interactions and the Valuation of Investments with Mul-

tiple Real Options,” Journal of Financial and Quantitative Analysis, 28: 1-20.
Vishwanath, T. (1992). “Optimal Orderings for Parallel Project Selection,” International Economic 

Review, February.
Wang, B., et. al. (2000). “Dependent Risk Calculations in Multiple-Prospect Exploration Evaluations,” 

Society of Petroleum Engineers, SPE Paper 63198.

Appendix

Proof of Theorem 1: 
The proof is by induction. The result has already been established for the 

case of N=2, so begin now with N=3. Pick any prospect j other than the first (j≠1) 
to test first. Among the N-1 prospects that remain, we have already shown that it 
is optimal to test the highest intrinsic value first. Since the order is preserved, the 
prospect with highest intrinsic value (and highest probability of success) after j 
has been tested is the same as before j was tested. There is no ambiguity therefore 
in the labeling of prospects. The maximal expected value of all N prospects, given 
that you start with j, may then be written: 

Π
j  
=  (p

j
V

j
 – C) +  (p

1.j
V

1
 – C)p

j
 + (p

1.j
E

j1
 + p–

1.j 
E

j
–
1
) p

j
	 (A1)

	 + m [(p
1.

–
j 
 V

1
 – C) + p

1.
–
j 
 E–

j1  
+ p–

1.
–
j 
 E–

j
–
1
] p–

j  
;

where: p
1,

–
j 
  = conditional probability of success on prospect 1 after failing on j. 
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E
1

–
j   

= expected value of remaining prospects after success on 1 and fail-
ure on j.

m[x] = maximum of (0,x).

If a negative value appears in the square bracket, then you would choose 
to not test 1 after failing on j. But, in that case you would test no further (else pros-
pect 1 would not have been the optimal choice to follow 

–
j
 
) and the series ends. 

We claim that a value not less than Π
j
 could be obtained by starting with 

the first instead of the jth. The maximal expected value, given that you start with 
prospect 1, can be written as:

Π
1  

=  (p
1
V

1
 – C) +  (p

j.1
V

j
 – C)p
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 + (p

j.1
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j.

–
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j.
–
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 E–

1 
–
j   

– E–
1
] p–

1  
+ E–

1 
p––

1

where: E–
1
 = expected value of remaining prospects after failure on 1 and not per-

mitting j to go next. Equation (2) differs in form from (1) only because there is no 
assurance that j (which was chosen arbitrarily) should optimally follow 1. If the 
value in square brackets is non-negative, it should follow 1; otherwise not.

To prove our claim, we must show Π
1
 – Π

j
 ≥ 0. Using (A1) and (A2), 

we have:

D = Π
1
 – Π

j
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1
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where:	 d
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–
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= (p
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and:	 d
1.

–
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= (p
1.

–
j  
V

1
 – C) + p

1.
–
j  
E–
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1.
–
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 E–
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–
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.		

The terms d
j.

–
1 
and d

1.
–
j 
 show the impact on portfolio value if each prospect is tested, 

rather than deferred, after the failure of the other. A negative value indicates that 
deferral is optimal.

We evaluate each of these three components separately, then combine 
results. It is straightforward to show (cf. the N=2 case):

T
1
 = (p

1∩
–
j
 V

1
 –  p–

1∩j 
V

j
) – (p

1 
– p

j
)C > 0.
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We proceed to T
2
, where due to the common-risk structure, we have: 

E
1j  

=  E
1
–
j    

=  E
j
–
1  

 ≡  E ≥ 0.

I.e., confirmation of any prospect confirms the common factor on all remaining 
prospects. After substituting these into T

2
, we get:

T
2
  =  (p

1 
– p

j
)E  ≥  0,

since p
1
 > p

j
 by assumption.

Regarding T
3
, there are three possible cases to consider.

Case A: Neither  d
j.

–
1 

nor d
1.

–
j 
 is negative (neither is deferred by failure of 

the other). T
3
 then takes the form:
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But, the common-risk structure implies: 

E
1

–
j
  =  E

j
–
1
  ≡  E  >  0.

After making this substitution and cancelling like terms, T
3
 reduces to:

T
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–
j
  V
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)(E – C) = –(T
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Thus, in Case A:

D
A
 = T

1
 + T

2
 + T

3
 = 0

Thus, if failure of neither prospect would cause the other to be deferred, the order 
is of no consequence; they could be tested simultaneously.

Case B: Both d
j.

–
1 

and d
1.

–
j 
 are negative (either is deferred by failure of the 

other). T
3
 then takes the simple form: T

3
 = E–

1
p–

1
  ≥ 0 (since E–

1
 cannot be negative), 

which when combined with T
1
 and T

2
 gives:

D
B
 = T

1
 + T

2
 + p–

1
E–

1
 > 0

Thus, if failure on each prospect would cause the other to be deferred, the highest 
expected value (and most likely) should be tested first.
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Case C: Only d
j.

–
1 

is negative (only one is deferred by failure of the other). 
The fact that it is the 1st prospect that would defer the jth can be deduced from the 
Case A result, where we showed:

T
3
  =  d

j.
–
1 
p–

1  
+ E–

1
 p–

1  
– d

1.
–
j 
p–

j
  = –(T

1
+ T

2
) < 0,

which implies:
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Now, if d
j.

–
1
 and d–

1.j 
 are to differ in sign (as Case C requires), then it must 

be that d
j.

–
1
  < 0 while    d–

1.j
 > 0. Thus, it must be the 1st prospect that has the power 

to defer the jth.
We can now easily evaluate T

3
 in Case C by reference to Case A: what 

entered there into T
3
 (and therefore D) as d

j.
–
1 
p–

1
 enters here as 0. All else remains the 

same. Thus, we can simply subtract this term from the Case A result to obtain:

D
C
 = D

A
 – d

j.
–
1
 p–

1
 > 0.

Thus, if failure on only one of the prospects is informative enough to 
cause deferral of the other, the most likely (and highest intrinsic value) prospect 
would be the informative one, and it should be tested. 

Proof of Theorem 2:
Theorem 1 established that the value of the portfolio is given by Π

1
, 

which can be computed directly using the decision tree approach. We keep in 
mind that if the 1st prospect succeeds, then all prospects will be tested, and if the 
1st prospect fails, no more will be tested. (We assumed that the 1st would condemn 
the 2nd, but the 2nd would optimally follow the 1st under Theorem 1, thus no other 
prospect could follow the 1st but the 2nd. In other words, if the 1st has the power to 
condemn the 2nd, then it has the power to condemn them all.

Thus, we can compute the value of the entire portfolio as follows:
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Proof of Theorem 3:
The first m prospects will be tested simultaneously, en block. Prospect 

m+1 (and all remaining prospects) would be condemned unless at least one suc-
cess occurs among the first m trials—in which case prospect m+1 (and all remain-
ing prospects) would be tested. Thus, we can write the value of the portfolio as:
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where p
m
 is the probability of at least one success among the first m trials, and p

j.m
  

represents the probability that the jth prospect (j>m) succeeds given that there was 
at least one success among the first m trials.

This expression can be simplified as follows:
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